]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Alexandre Duret-Lutz <adl@gnu.org>
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
e62f1a89 471999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
150* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
151
bfa74976
RS
152Examples
153
154* RPN Calc:: Reverse polish notation calculator;
155 a first example with no operator precedence.
156* Infix Calc:: Infix (algebraic) notation calculator.
157 Operator precedence is introduced.
158* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 159* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
160* Multi-function Calc:: Calculator with memory and trig functions.
161 It uses multiple data-types for semantic values.
bfa74976
RS
162* Exercises:: Ideas for improving the multi-function calculator.
163
164Reverse Polish Notation Calculator
165
75f5aaea 166* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
167* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
168* Lexer: Rpcalc Lexer. The lexical analyzer.
169* Main: Rpcalc Main. The controlling function.
170* Error: Rpcalc Error. The error reporting function.
171* Gen: Rpcalc Gen. Running Bison on the grammar file.
172* Comp: Rpcalc Compile. Run the C compiler on the output code.
173
174Grammar Rules for @code{rpcalc}
175
13863333
AD
176* Rpcalc Input::
177* Rpcalc Line::
178* Rpcalc Expr::
bfa74976 179
342b8b6e
AD
180Location Tracking Calculator: @code{ltcalc}
181
182* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
183* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
184* Lexer: Ltcalc Lexer. The lexical analyzer.
185
bfa74976
RS
186Multi-Function Calculator: @code{mfcalc}
187
188* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
189* Rules: Mfcalc Rules. Grammar rules for the calculator.
190* Symtab: Mfcalc Symtab. Symbol table management subroutines.
191
192Bison Grammar Files
193
194* Grammar Outline:: Overall layout of the grammar file.
195* Symbols:: Terminal and nonterminal symbols.
196* Rules:: How to write grammar rules.
197* Recursion:: Writing recursive rules.
198* Semantics:: Semantic values and actions.
93dd49ab 199* Locations:: Locations and actions.
bfa74976
RS
200* Declarations:: All kinds of Bison declarations are described here.
201* Multiple Parsers:: Putting more than one Bison parser in one program.
202
203Outline of a Bison Grammar
204
93dd49ab 205* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
206* Bison Declarations:: Syntax and usage of the Bison declarations section.
207* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 208* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
209
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
228* Token Decl:: Declaring terminal symbols.
229* Precedence Decl:: Declaring terminals with precedence and associativity.
230* Union Decl:: Declaring the set of all semantic value types.
231* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 232* Initial Action Decl:: Code run before parsing starts.
72f889cc 233* Destructor Decl:: Declaring how symbols are freed.
d6328241 234* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
235* Start Decl:: Specifying the start symbol.
236* Pure Decl:: Requesting a reentrant parser.
237* Decl Summary:: Table of all Bison declarations.
238
239Parser C-Language Interface
240
241* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 242* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
f7ab6a50
PE
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
95923bd6 254* Token Locations:: How @code{yylex} must return the text location
bfa74976 255 (line number, etc.) of the token, if the
93dd49ab 256 actions want that.
bfa74976
RS
257* Pure Calling:: How the calling convention differs
258 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
259
13863333 260The Bison Parser Algorithm
bfa74976
RS
261
262* Look-Ahead:: Parser looks one token ahead when deciding what to do.
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
268* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
279Handling Context Dependencies
280
281* Semantic Tokens:: Token parsing can depend on the semantic context.
282* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
283* Tie-in Recovery:: Lexical tie-ins have implications for how
284 error recovery rules must be written.
285
93dd49ab 286Debugging Your Parser
ec3bc396
AD
287
288* Understanding:: Understanding the structure of your parser.
289* Tracing:: Tracing the execution of your parser.
290
bfa74976
RS
291Invoking Bison
292
13863333 293* Bison Options:: All the options described in detail,
c827f760 294 in alphabetical order by short options.
bfa74976 295* Option Cross Key:: Alphabetical list of long options.
93dd49ab 296* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 297
12545799
AD
298C++ Language Interface
299
300* C++ Parsers:: The interface to generate C++ parser classes
301* A Complete C++ Example:: Demonstrating their use
302
303C++ Parsers
304
305* C++ Bison Interface:: Asking for C++ parser generation
306* C++ Semantic Values:: %union vs. C++
307* C++ Location Values:: The position and location classes
308* C++ Parser Interface:: Instantiating and running the parser
309* C++ Scanner Interface:: Exchanges between yylex and parse
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
d1a1114f
AD
319Frequently Asked Questions
320
1a059451 321* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 322* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 323* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 324* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 325
f2b5126e
PB
326Copying This Manual
327
328* GNU Free Documentation License:: License for copying this manual.
329
342b8b6e 330@end detailmenu
bfa74976
RS
331@end menu
332
342b8b6e 333@node Introduction
bfa74976
RS
334@unnumbered Introduction
335@cindex introduction
336
337@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 338grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
339program to parse that grammar. Once you are proficient with Bison,
340you may use it to develop a wide range of language parsers, from those
341used in simple desk calculators to complex programming languages.
342
343Bison is upward compatible with Yacc: all properly-written Yacc grammars
344ought to work with Bison with no change. Anyone familiar with Yacc
345should be able to use Bison with little trouble. You need to be fluent in
346C programming in order to use Bison or to understand this manual.
347
348We begin with tutorial chapters that explain the basic concepts of using
349Bison and show three explained examples, each building on the last. If you
350don't know Bison or Yacc, start by reading these chapters. Reference
351chapters follow which describe specific aspects of Bison in detail.
352
931c7513
RS
353Bison was written primarily by Robert Corbett; Richard Stallman made it
354Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 355multi-character string literals and other features.
931c7513 356
df1af54c 357This edition corresponds to version @value{VERSION} of Bison.
bfa74976 358
342b8b6e 359@node Conditions
bfa74976
RS
360@unnumbered Conditions for Using Bison
361
a31239f1 362As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 363@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 364Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 365parsers could be used only in programs that were free software.
a31239f1 366
c827f760
PE
367The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
368compiler, have never
9ecbd125 369had such a requirement. They could always be used for nonfree
a31239f1
RS
370software. The reason Bison was different was not due to a special
371policy decision; it resulted from applying the usual General Public
372License to all of the Bison source code.
373
374The output of the Bison utility---the Bison parser file---contains a
375verbatim copy of a sizable piece of Bison, which is the code for the
376@code{yyparse} function. (The actions from your grammar are inserted
377into this function at one point, but the rest of the function is not
c827f760
PE
378changed.) When we applied the @acronym{GPL} terms to the code for
379@code{yyparse},
a31239f1
RS
380the effect was to restrict the use of Bison output to free software.
381
382We didn't change the terms because of sympathy for people who want to
383make software proprietary. @strong{Software should be free.} But we
384concluded that limiting Bison's use to free software was doing little to
385encourage people to make other software free. So we decided to make the
386practical conditions for using Bison match the practical conditions for
c827f760 387using the other @acronym{GNU} tools.
bfa74976 388
eda42934 389This exception applies only when Bison is generating C code for an
c827f760
PE
390@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
391as usual. You can
262aa8dd
PE
392tell whether the exception applies to your @samp{.c} output file by
393inspecting it to see whether it says ``As a special exception, when
394this file is copied by Bison into a Bison output file, you may use
395that output file without restriction.''
396
c67a198d 397@include gpl.texi
bfa74976 398
342b8b6e 399@node Concepts
bfa74976
RS
400@chapter The Concepts of Bison
401
402This chapter introduces many of the basic concepts without which the
403details of Bison will not make sense. If you do not already know how to
404use Bison or Yacc, we suggest you start by reading this chapter carefully.
405
406@menu
407* Language and Grammar:: Languages and context-free grammars,
408 as mathematical ideas.
409* Grammar in Bison:: How we represent grammars for Bison's sake.
410* Semantic Values:: Each token or syntactic grouping can have
411 a semantic value (the value of an integer,
412 the name of an identifier, etc.).
413* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 414* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 415* Locations Overview:: Tracking Locations.
bfa74976
RS
416* Bison Parser:: What are Bison's input and output,
417 how is the output used?
418* Stages:: Stages in writing and running Bison grammars.
419* Grammar Layout:: Overall structure of a Bison grammar file.
420@end menu
421
342b8b6e 422@node Language and Grammar
bfa74976
RS
423@section Languages and Context-Free Grammars
424
bfa74976
RS
425@cindex context-free grammar
426@cindex grammar, context-free
427In order for Bison to parse a language, it must be described by a
428@dfn{context-free grammar}. This means that you specify one or more
429@dfn{syntactic groupings} and give rules for constructing them from their
430parts. For example, in the C language, one kind of grouping is called an
431`expression'. One rule for making an expression might be, ``An expression
432can be made of a minus sign and another expression''. Another would be,
433``An expression can be an integer''. As you can see, rules are often
434recursive, but there must be at least one rule which leads out of the
435recursion.
436
c827f760 437@cindex @acronym{BNF}
bfa74976
RS
438@cindex Backus-Naur form
439The most common formal system for presenting such rules for humans to read
c827f760
PE
440is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
441order to specify the language Algol 60. Any grammar expressed in
442@acronym{BNF} is a context-free grammar. The input to Bison is
443essentially machine-readable @acronym{BNF}.
bfa74976 444
c827f760
PE
445@cindex @acronym{LALR}(1) grammars
446@cindex @acronym{LR}(1) grammars
676385e2
PH
447There are various important subclasses of context-free grammar. Although it
448can handle almost all context-free grammars, Bison is optimized for what
c827f760 449are called @acronym{LALR}(1) grammars.
676385e2 450In brief, in these grammars, it must be possible to
bfa74976
RS
451tell how to parse any portion of an input string with just a single
452token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
453@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
454restrictions that are
bfa74976 455hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
456@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
457@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
458more information on this.
bfa74976 459
c827f760
PE
460@cindex @acronym{GLR} parsing
461@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
462@cindex ambiguous grammars
463@cindex non-deterministic parsing
9501dc6e
AD
464
465Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
466roughly that the next grammar rule to apply at any point in the input is
467uniquely determined by the preceding input and a fixed, finite portion
468(called a @dfn{look-ahead}) of the remaining input. A context-free
469grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 470apply the grammar rules to get the same inputs. Even unambiguous
9501dc6e
AD
471grammars can be @dfn{non-deterministic}, meaning that no fixed
472look-ahead always suffices to determine the next grammar rule to apply.
473With the proper declarations, Bison is also able to parse these more
474general context-free grammars, using a technique known as @acronym{GLR}
475parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
476are able to handle any context-free grammar for which the number of
477possible parses of any given string is finite.
676385e2 478
bfa74976
RS
479@cindex symbols (abstract)
480@cindex token
481@cindex syntactic grouping
482@cindex grouping, syntactic
9501dc6e
AD
483In the formal grammatical rules for a language, each kind of syntactic
484unit or grouping is named by a @dfn{symbol}. Those which are built by
485grouping smaller constructs according to grammatical rules are called
bfa74976
RS
486@dfn{nonterminal symbols}; those which can't be subdivided are called
487@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
488corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 489corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
490
491We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
492nonterminal, mean. The tokens of C are identifiers, constants (numeric
493and string), and the various keywords, arithmetic operators and
494punctuation marks. So the terminal symbols of a grammar for C include
495`identifier', `number', `string', plus one symbol for each keyword,
496operator or punctuation mark: `if', `return', `const', `static', `int',
497`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
498(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
499lexicography, not grammar.)
500
501Here is a simple C function subdivided into tokens:
502
9edcd895
AD
503@ifinfo
504@example
505int /* @r{keyword `int'} */
14d4662b 506square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
507 @r{identifier, close-paren} */
508@{ /* @r{open-brace} */
509 return x * x; /* @r{keyword `return', identifier, asterisk,
510 identifier, semicolon} */
511@} /* @r{close-brace} */
512@end example
513@end ifinfo
514@ifnotinfo
bfa74976
RS
515@example
516int /* @r{keyword `int'} */
14d4662b 517square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 518@{ /* @r{open-brace} */
9edcd895 519 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
520@} /* @r{close-brace} */
521@end example
9edcd895 522@end ifnotinfo
bfa74976
RS
523
524The syntactic groupings of C include the expression, the statement, the
525declaration, and the function definition. These are represented in the
526grammar of C by nonterminal symbols `expression', `statement',
527`declaration' and `function definition'. The full grammar uses dozens of
528additional language constructs, each with its own nonterminal symbol, in
529order to express the meanings of these four. The example above is a
530function definition; it contains one declaration, and one statement. In
531the statement, each @samp{x} is an expression and so is @samp{x * x}.
532
533Each nonterminal symbol must have grammatical rules showing how it is made
534out of simpler constructs. For example, one kind of C statement is the
535@code{return} statement; this would be described with a grammar rule which
536reads informally as follows:
537
538@quotation
539A `statement' can be made of a `return' keyword, an `expression' and a
540`semicolon'.
541@end quotation
542
543@noindent
544There would be many other rules for `statement', one for each kind of
545statement in C.
546
547@cindex start symbol
548One nonterminal symbol must be distinguished as the special one which
549defines a complete utterance in the language. It is called the @dfn{start
550symbol}. In a compiler, this means a complete input program. In the C
551language, the nonterminal symbol `sequence of definitions and declarations'
552plays this role.
553
554For example, @samp{1 + 2} is a valid C expression---a valid part of a C
555program---but it is not valid as an @emph{entire} C program. In the
556context-free grammar of C, this follows from the fact that `expression' is
557not the start symbol.
558
559The Bison parser reads a sequence of tokens as its input, and groups the
560tokens using the grammar rules. If the input is valid, the end result is
561that the entire token sequence reduces to a single grouping whose symbol is
562the grammar's start symbol. If we use a grammar for C, the entire input
563must be a `sequence of definitions and declarations'. If not, the parser
564reports a syntax error.
565
342b8b6e 566@node Grammar in Bison
bfa74976
RS
567@section From Formal Rules to Bison Input
568@cindex Bison grammar
569@cindex grammar, Bison
570@cindex formal grammar
571
572A formal grammar is a mathematical construct. To define the language
573for Bison, you must write a file expressing the grammar in Bison syntax:
574a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
575
576A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 577as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
578in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
579
580The Bison representation for a terminal symbol is also called a @dfn{token
581type}. Token types as well can be represented as C-like identifiers. By
582convention, these identifiers should be upper case to distinguish them from
583nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
584@code{RETURN}. A terminal symbol that stands for a particular keyword in
585the language should be named after that keyword converted to upper case.
586The terminal symbol @code{error} is reserved for error recovery.
931c7513 587@xref{Symbols}.
bfa74976
RS
588
589A terminal symbol can also be represented as a character literal, just like
590a C character constant. You should do this whenever a token is just a
591single character (parenthesis, plus-sign, etc.): use that same character in
592a literal as the terminal symbol for that token.
593
931c7513
RS
594A third way to represent a terminal symbol is with a C string constant
595containing several characters. @xref{Symbols}, for more information.
596
bfa74976
RS
597The grammar rules also have an expression in Bison syntax. For example,
598here is the Bison rule for a C @code{return} statement. The semicolon in
599quotes is a literal character token, representing part of the C syntax for
600the statement; the naked semicolon, and the colon, are Bison punctuation
601used in every rule.
602
603@example
604stmt: RETURN expr ';'
605 ;
606@end example
607
608@noindent
609@xref{Rules, ,Syntax of Grammar Rules}.
610
342b8b6e 611@node Semantic Values
bfa74976
RS
612@section Semantic Values
613@cindex semantic value
614@cindex value, semantic
615
616A formal grammar selects tokens only by their classifications: for example,
617if a rule mentions the terminal symbol `integer constant', it means that
618@emph{any} integer constant is grammatically valid in that position. The
619precise value of the constant is irrelevant to how to parse the input: if
620@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 621grammatical.
bfa74976
RS
622
623But the precise value is very important for what the input means once it is
624parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6253989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
626has both a token type and a @dfn{semantic value}. @xref{Semantics,
627,Defining Language Semantics},
bfa74976
RS
628for details.
629
630The token type is a terminal symbol defined in the grammar, such as
631@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
632you need to know to decide where the token may validly appear and how to
633group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 634except their types.
bfa74976
RS
635
636The semantic value has all the rest of the information about the
637meaning of the token, such as the value of an integer, or the name of an
638identifier. (A token such as @code{','} which is just punctuation doesn't
639need to have any semantic value.)
640
641For example, an input token might be classified as token type
642@code{INTEGER} and have the semantic value 4. Another input token might
643have the same token type @code{INTEGER} but value 3989. When a grammar
644rule says that @code{INTEGER} is allowed, either of these tokens is
645acceptable because each is an @code{INTEGER}. When the parser accepts the
646token, it keeps track of the token's semantic value.
647
648Each grouping can also have a semantic value as well as its nonterminal
649symbol. For example, in a calculator, an expression typically has a
650semantic value that is a number. In a compiler for a programming
651language, an expression typically has a semantic value that is a tree
652structure describing the meaning of the expression.
653
342b8b6e 654@node Semantic Actions
bfa74976
RS
655@section Semantic Actions
656@cindex semantic actions
657@cindex actions, semantic
658
659In order to be useful, a program must do more than parse input; it must
660also produce some output based on the input. In a Bison grammar, a grammar
661rule can have an @dfn{action} made up of C statements. Each time the
662parser recognizes a match for that rule, the action is executed.
663@xref{Actions}.
13863333 664
bfa74976
RS
665Most of the time, the purpose of an action is to compute the semantic value
666of the whole construct from the semantic values of its parts. For example,
667suppose we have a rule which says an expression can be the sum of two
668expressions. When the parser recognizes such a sum, each of the
669subexpressions has a semantic value which describes how it was built up.
670The action for this rule should create a similar sort of value for the
671newly recognized larger expression.
672
673For example, here is a rule that says an expression can be the sum of
674two subexpressions:
675
676@example
677expr: expr '+' expr @{ $$ = $1 + $3; @}
678 ;
679@end example
680
681@noindent
682The action says how to produce the semantic value of the sum expression
683from the values of the two subexpressions.
684
676385e2 685@node GLR Parsers
c827f760
PE
686@section Writing @acronym{GLR} Parsers
687@cindex @acronym{GLR} parsing
688@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
689@findex %glr-parser
690@cindex conflicts
691@cindex shift/reduce conflicts
fa7e68c3 692@cindex reduce/reduce conflicts
676385e2 693
fa7e68c3 694In some grammars, Bison's standard
9501dc6e
AD
695@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
696certain grammar rule at a given point. That is, it may not be able to
697decide (on the basis of the input read so far) which of two possible
698reductions (applications of a grammar rule) applies, or whether to apply
699a reduction or read more of the input and apply a reduction later in the
700input. These are known respectively as @dfn{reduce/reduce} conflicts
701(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
702(@pxref{Shift/Reduce}).
703
704To use a grammar that is not easily modified to be @acronym{LALR}(1), a
705more general parsing algorithm is sometimes necessary. If you include
676385e2 706@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 707(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
708(@acronym{GLR}) parser. These parsers handle Bison grammars that
709contain no unresolved conflicts (i.e., after applying precedence
710declarations) identically to @acronym{LALR}(1) parsers. However, when
711faced with unresolved shift/reduce and reduce/reduce conflicts,
712@acronym{GLR} parsers use the simple expedient of doing both,
713effectively cloning the parser to follow both possibilities. Each of
714the resulting parsers can again split, so that at any given time, there
715can be any number of possible parses being explored. The parsers
676385e2
PH
716proceed in lockstep; that is, all of them consume (shift) a given input
717symbol before any of them proceed to the next. Each of the cloned
718parsers eventually meets one of two possible fates: either it runs into
719a parsing error, in which case it simply vanishes, or it merges with
720another parser, because the two of them have reduced the input to an
721identical set of symbols.
722
723During the time that there are multiple parsers, semantic actions are
724recorded, but not performed. When a parser disappears, its recorded
725semantic actions disappear as well, and are never performed. When a
726reduction makes two parsers identical, causing them to merge, Bison
727records both sets of semantic actions. Whenever the last two parsers
728merge, reverting to the single-parser case, Bison resolves all the
729outstanding actions either by precedences given to the grammar rules
730involved, or by performing both actions, and then calling a designated
731user-defined function on the resulting values to produce an arbitrary
732merged result.
733
fa7e68c3
PE
734@menu
735* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
736* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
737* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
738@end menu
739
740@node Simple GLR Parsers
741@subsection Using @acronym{GLR} on Unambiguous Grammars
742@cindex @acronym{GLR} parsing, unambiguous grammars
743@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
744@findex %glr-parser
745@findex %expect-rr
746@cindex conflicts
747@cindex reduce/reduce conflicts
748@cindex shift/reduce conflicts
749
750In the simplest cases, you can use the @acronym{GLR} algorithm
751to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
752Such grammars typically require more than one symbol of look-ahead,
753or (in rare cases) fall into the category of grammars in which the
754@acronym{LALR}(1) algorithm throws away too much information (they are in
755@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
756
757Consider a problem that
758arises in the declaration of enumerated and subrange types in the
759programming language Pascal. Here are some examples:
760
761@example
762type subrange = lo .. hi;
763type enum = (a, b, c);
764@end example
765
766@noindent
767The original language standard allows only numeric
768literals and constant identifiers for the subrange bounds (@samp{lo}
769and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77010206) and many other
771Pascal implementations allow arbitrary expressions there. This gives
772rise to the following situation, containing a superfluous pair of
773parentheses:
774
775@example
776type subrange = (a) .. b;
777@end example
778
779@noindent
780Compare this to the following declaration of an enumerated
781type with only one value:
782
783@example
784type enum = (a);
785@end example
786
787@noindent
788(These declarations are contrived, but they are syntactically
789valid, and more-complicated cases can come up in practical programs.)
790
791These two declarations look identical until the @samp{..} token.
792With normal @acronym{LALR}(1) one-token look-ahead it is not
793possible to decide between the two forms when the identifier
794@samp{a} is parsed. It is, however, desirable
795for a parser to decide this, since in the latter case
796@samp{a} must become a new identifier to represent the enumeration
797value, while in the former case @samp{a} must be evaluated with its
798current meaning, which may be a constant or even a function call.
799
800You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
801to be resolved later, but this typically requires substantial
802contortions in both semantic actions and large parts of the
803grammar, where the parentheses are nested in the recursive rules for
804expressions.
805
806You might think of using the lexer to distinguish between the two
807forms by returning different tokens for currently defined and
808undefined identifiers. But if these declarations occur in a local
809scope, and @samp{a} is defined in an outer scope, then both forms
810are possible---either locally redefining @samp{a}, or using the
811value of @samp{a} from the outer scope. So this approach cannot
812work.
813
e757bb10 814A simple solution to this problem is to declare the parser to
fa7e68c3
PE
815use the @acronym{GLR} algorithm.
816When the @acronym{GLR} parser reaches the critical state, it
817merely splits into two branches and pursues both syntax rules
818simultaneously. Sooner or later, one of them runs into a parsing
819error. If there is a @samp{..} token before the next
820@samp{;}, the rule for enumerated types fails since it cannot
821accept @samp{..} anywhere; otherwise, the subrange type rule
822fails since it requires a @samp{..} token. So one of the branches
823fails silently, and the other one continues normally, performing
824all the intermediate actions that were postponed during the split.
825
826If the input is syntactically incorrect, both branches fail and the parser
827reports a syntax error as usual.
828
829The effect of all this is that the parser seems to ``guess'' the
830correct branch to take, or in other words, it seems to use more
831look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
832for. In this example, @acronym{LALR}(2) would suffice, but also some cases
833that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
834
835In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
836and the current Bison parser even takes exponential time and space
837for some grammars. In practice, this rarely happens, and for many
838grammars it is possible to prove that it cannot happen.
839The present example contains only one conflict between two
840rules, and the type-declaration context containing the conflict
841cannot be nested. So the number of
842branches that can exist at any time is limited by the constant 2,
843and the parsing time is still linear.
844
845Here is a Bison grammar corresponding to the example above. It
846parses a vastly simplified form of Pascal type declarations.
847
848@example
849%token TYPE DOTDOT ID
850
851@group
852%left '+' '-'
853%left '*' '/'
854@end group
855
856%%
857
858@group
859type_decl : TYPE ID '=' type ';'
860 ;
861@end group
862
863@group
864type : '(' id_list ')'
865 | expr DOTDOT expr
866 ;
867@end group
868
869@group
870id_list : ID
871 | id_list ',' ID
872 ;
873@end group
874
875@group
876expr : '(' expr ')'
877 | expr '+' expr
878 | expr '-' expr
879 | expr '*' expr
880 | expr '/' expr
881 | ID
882 ;
883@end group
884@end example
885
886When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
887about one reduce/reduce conflict. In the conflicting situation the
888parser chooses one of the alternatives, arbitrarily the one
889declared first. Therefore the following correct input is not
890recognized:
891
892@example
893type t = (a) .. b;
894@end example
895
896The parser can be turned into a @acronym{GLR} parser, while also telling Bison
897to be silent about the one known reduce/reduce conflict, by
e757bb10 898adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
899@samp{%%}):
900
901@example
902%glr-parser
903%expect-rr 1
904@end example
905
906@noindent
907No change in the grammar itself is required. Now the
908parser recognizes all valid declarations, according to the
909limited syntax above, transparently. In fact, the user does not even
910notice when the parser splits.
911
912So here we have a case where we can use the benefits of @acronym{GLR}, almost
913without disadvantages. Even in simple cases like this, however, there
914are at least two potential problems to beware.
915First, always analyze the conflicts reported by
916Bison to make sure that @acronym{GLR} splitting is only done where it is
917intended. A @acronym{GLR} parser splitting inadvertently may cause
918problems less obvious than an @acronym{LALR} parser statically choosing the
919wrong alternative in a conflict.
e757bb10 920Second, consider interactions with the lexer (@pxref{Semantic Tokens})
fa7e68c3
PE
921with great care. Since a split parser consumes tokens
922without performing any actions during the split, the lexer cannot
923obtain information via parser actions. Some cases of
924lexer interactions can be eliminated by using @acronym{GLR} to
925shift the complications from the lexer to the parser. You must check
926the remaining cases for correctness.
927
928In our example, it would be safe for the lexer to return tokens
929based on their current meanings in some symbol table, because no new
930symbols are defined in the middle of a type declaration. Though it
931is possible for a parser to define the enumeration
932constants as they are parsed, before the type declaration is
933completed, it actually makes no difference since they cannot be used
934within the same enumerated type declaration.
935
936@node Merging GLR Parses
937@subsection Using @acronym{GLR} to Resolve Ambiguities
938@cindex @acronym{GLR} parsing, ambiguous grammars
939@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
940@findex %dprec
941@findex %merge
942@cindex conflicts
943@cindex reduce/reduce conflicts
944
2a8d363a 945Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
946
947@example
948%@{
38a92d50
PE
949 #include <stdio.h>
950 #define YYSTYPE char const *
951 int yylex (void);
952 void yyerror (char const *);
676385e2
PH
953%@}
954
955%token TYPENAME ID
956
957%right '='
958%left '+'
959
960%glr-parser
961
962%%
963
fae437e8 964prog :
676385e2
PH
965 | prog stmt @{ printf ("\n"); @}
966 ;
967
968stmt : expr ';' %dprec 1
969 | decl %dprec 2
970 ;
971
2a8d363a 972expr : ID @{ printf ("%s ", $$); @}
fae437e8 973 | TYPENAME '(' expr ')'
2a8d363a
AD
974 @{ printf ("%s <cast> ", $1); @}
975 | expr '+' expr @{ printf ("+ "); @}
976 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
977 ;
978
fae437e8 979decl : TYPENAME declarator ';'
2a8d363a 980 @{ printf ("%s <declare> ", $1); @}
676385e2 981 | TYPENAME declarator '=' expr ';'
2a8d363a 982 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
983 ;
984
2a8d363a 985declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
986 | '(' declarator ')'
987 ;
988@end example
989
990@noindent
991This models a problematic part of the C++ grammar---the ambiguity between
992certain declarations and statements. For example,
993
994@example
995T (x) = y+z;
996@end example
997
998@noindent
999parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1000(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1001@samp{x} as an @code{ID}).
676385e2 1002Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1003@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1004time it encounters @code{x} in the example above. Since this is a
1005@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1006each choice of resolving the reduce/reduce conflict.
1007Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1008however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1009ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1010the other reduces @code{stmt : decl}, after which both parsers are in an
1011identical state: they've seen @samp{prog stmt} and have the same unprocessed
1012input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1013
1014At this point, the @acronym{GLR} parser requires a specification in the
1015grammar of how to choose between the competing parses.
1016In the example above, the two @code{%dprec}
e757bb10 1017declarations specify that Bison is to give precedence
fa7e68c3 1018to the parse that interprets the example as a
676385e2
PH
1019@code{decl}, which implies that @code{x} is a declarator.
1020The parser therefore prints
1021
1022@example
fae437e8 1023"x" y z + T <init-declare>
676385e2
PH
1024@end example
1025
fa7e68c3
PE
1026The @code{%dprec} declarations only come into play when more than one
1027parse survives. Consider a different input string for this parser:
676385e2
PH
1028
1029@example
1030T (x) + y;
1031@end example
1032
1033@noindent
e757bb10 1034This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1035construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1036Here, there is no ambiguity (this cannot be parsed as a declaration).
1037However, at the time the Bison parser encounters @code{x}, it does not
1038have enough information to resolve the reduce/reduce conflict (again,
1039between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1040case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1041into two, one assuming that @code{x} is an @code{expr}, and the other
1042assuming @code{x} is a @code{declarator}. The second of these parsers
1043then vanishes when it sees @code{+}, and the parser prints
1044
1045@example
fae437e8 1046x T <cast> y +
676385e2
PH
1047@end example
1048
1049Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1050the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1051actions of the two possible parsers, rather than choosing one over the
1052other. To do so, you could change the declaration of @code{stmt} as
1053follows:
1054
1055@example
1056stmt : expr ';' %merge <stmtMerge>
1057 | decl %merge <stmtMerge>
1058 ;
1059@end example
1060
1061@noindent
676385e2
PH
1062and define the @code{stmtMerge} function as:
1063
1064@example
38a92d50
PE
1065static YYSTYPE
1066stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1067@{
1068 printf ("<OR> ");
1069 return "";
1070@}
1071@end example
1072
1073@noindent
1074with an accompanying forward declaration
1075in the C declarations at the beginning of the file:
1076
1077@example
1078%@{
38a92d50 1079 #define YYSTYPE char const *
676385e2
PH
1080 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1081%@}
1082@end example
1083
1084@noindent
fa7e68c3
PE
1085With these declarations, the resulting parser parses the first example
1086as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1087
1088@example
fae437e8 1089"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1090@end example
1091
fa7e68c3 1092Bison requires that all of the
e757bb10 1093productions that participate in any particular merge have identical
fa7e68c3
PE
1094@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1095and the parser will report an error during any parse that results in
1096the offending merge.
9501dc6e 1097
fa7e68c3
PE
1098@node Compiler Requirements
1099@subsection Considerations when Compiling @acronym{GLR} Parsers
1100@cindex @code{inline}
9501dc6e 1101@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1102
38a92d50
PE
1103The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1104later. In addition, they use the @code{inline} keyword, which is not
1105C89, but is C99 and is a common extension in pre-C99 compilers. It is
1106up to the user of these parsers to handle
9501dc6e
AD
1107portability issues. For instance, if using Autoconf and the Autoconf
1108macro @code{AC_C_INLINE}, a mere
1109
1110@example
1111%@{
38a92d50 1112 #include <config.h>
9501dc6e
AD
1113%@}
1114@end example
1115
1116@noindent
1117will suffice. Otherwise, we suggest
1118
1119@example
1120%@{
38a92d50
PE
1121 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1122 #define inline
1123 #endif
9501dc6e
AD
1124%@}
1125@end example
676385e2 1126
342b8b6e 1127@node Locations Overview
847bf1f5
AD
1128@section Locations
1129@cindex location
95923bd6
AD
1130@cindex textual location
1131@cindex location, textual
847bf1f5
AD
1132
1133Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1134and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1135the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1136Bison provides a mechanism for handling these locations.
1137
72d2299c 1138Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1139associated location, but the type of locations is the same for all tokens and
72d2299c 1140groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1141structure for storing locations (@pxref{Locations}, for more details).
1142
1143Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1144set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1145is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1146@code{@@3}.
1147
1148When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1149of its left hand side (@pxref{Actions}). In the same way, another default
1150action is used for locations. However, the action for locations is general
847bf1f5 1151enough for most cases, meaning there is usually no need to describe for each
72d2299c 1152rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1153grouping, the default behavior of the output parser is to take the beginning
1154of the first symbol, and the end of the last symbol.
1155
342b8b6e 1156@node Bison Parser
bfa74976
RS
1157@section Bison Output: the Parser File
1158@cindex Bison parser
1159@cindex Bison utility
1160@cindex lexical analyzer, purpose
1161@cindex parser
1162
1163When you run Bison, you give it a Bison grammar file as input. The output
1164is a C source file that parses the language described by the grammar.
1165This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1166utility and the Bison parser are two distinct programs: the Bison utility
1167is a program whose output is the Bison parser that becomes part of your
1168program.
1169
1170The job of the Bison parser is to group tokens into groupings according to
1171the grammar rules---for example, to build identifiers and operators into
1172expressions. As it does this, it runs the actions for the grammar rules it
1173uses.
1174
704a47c4
AD
1175The tokens come from a function called the @dfn{lexical analyzer} that
1176you must supply in some fashion (such as by writing it in C). The Bison
1177parser calls the lexical analyzer each time it wants a new token. It
1178doesn't know what is ``inside'' the tokens (though their semantic values
1179may reflect this). Typically the lexical analyzer makes the tokens by
1180parsing characters of text, but Bison does not depend on this.
1181@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1182
1183The Bison parser file is C code which defines a function named
1184@code{yyparse} which implements that grammar. This function does not make
1185a complete C program: you must supply some additional functions. One is
1186the lexical analyzer. Another is an error-reporting function which the
1187parser calls to report an error. In addition, a complete C program must
1188start with a function called @code{main}; you have to provide this, and
1189arrange for it to call @code{yyparse} or the parser will never run.
1190@xref{Interface, ,Parser C-Language Interface}.
1191
f7ab6a50 1192Aside from the token type names and the symbols in the actions you
7093d0f5 1193write, all symbols defined in the Bison parser file itself
bfa74976
RS
1194begin with @samp{yy} or @samp{YY}. This includes interface functions
1195such as the lexical analyzer function @code{yylex}, the error reporting
1196function @code{yyerror} and the parser function @code{yyparse} itself.
1197This also includes numerous identifiers used for internal purposes.
1198Therefore, you should avoid using C identifiers starting with @samp{yy}
1199or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1200this manual. Also, you should avoid using the C identifiers
1201@samp{malloc} and @samp{free} for anything other than their usual
1202meanings.
bfa74976 1203
7093d0f5
AD
1204In some cases the Bison parser file includes system headers, and in
1205those cases your code should respect the identifiers reserved by those
55289366 1206headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1207@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1208declare memory allocators and related types. @code{<libintl.h>} is
1209included if message translation is in use
1210(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1211be included if you define @code{YYDEBUG} to a nonzero value
1212(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1213
342b8b6e 1214@node Stages
bfa74976
RS
1215@section Stages in Using Bison
1216@cindex stages in using Bison
1217@cindex using Bison
1218
1219The actual language-design process using Bison, from grammar specification
1220to a working compiler or interpreter, has these parts:
1221
1222@enumerate
1223@item
1224Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1225(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1226in the language, describe the action that is to be taken when an
1227instance of that rule is recognized. The action is described by a
1228sequence of C statements.
bfa74976
RS
1229
1230@item
704a47c4
AD
1231Write a lexical analyzer to process input and pass tokens to the parser.
1232The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1233Lexical Analyzer Function @code{yylex}}). It could also be produced
1234using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1235
1236@item
1237Write a controlling function that calls the Bison-produced parser.
1238
1239@item
1240Write error-reporting routines.
1241@end enumerate
1242
1243To turn this source code as written into a runnable program, you
1244must follow these steps:
1245
1246@enumerate
1247@item
1248Run Bison on the grammar to produce the parser.
1249
1250@item
1251Compile the code output by Bison, as well as any other source files.
1252
1253@item
1254Link the object files to produce the finished product.
1255@end enumerate
1256
342b8b6e 1257@node Grammar Layout
bfa74976
RS
1258@section The Overall Layout of a Bison Grammar
1259@cindex grammar file
1260@cindex file format
1261@cindex format of grammar file
1262@cindex layout of Bison grammar
1263
1264The input file for the Bison utility is a @dfn{Bison grammar file}. The
1265general form of a Bison grammar file is as follows:
1266
1267@example
1268%@{
08e49d20 1269@var{Prologue}
bfa74976
RS
1270%@}
1271
1272@var{Bison declarations}
1273
1274%%
1275@var{Grammar rules}
1276%%
08e49d20 1277@var{Epilogue}
bfa74976
RS
1278@end example
1279
1280@noindent
1281The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1282in every Bison grammar file to separate the sections.
1283
72d2299c 1284The prologue may define types and variables used in the actions. You can
342b8b6e 1285also use preprocessor commands to define macros used there, and use
bfa74976 1286@code{#include} to include header files that do any of these things.
38a92d50
PE
1287You need to declare the lexical analyzer @code{yylex} and the error
1288printer @code{yyerror} here, along with any other global identifiers
1289used by the actions in the grammar rules.
bfa74976
RS
1290
1291The Bison declarations declare the names of the terminal and nonterminal
1292symbols, and may also describe operator precedence and the data types of
1293semantic values of various symbols.
1294
1295The grammar rules define how to construct each nonterminal symbol from its
1296parts.
1297
38a92d50
PE
1298The epilogue can contain any code you want to use. Often the
1299definitions of functions declared in the prologue go here. In a
1300simple program, all the rest of the program can go here.
bfa74976 1301
342b8b6e 1302@node Examples
bfa74976
RS
1303@chapter Examples
1304@cindex simple examples
1305@cindex examples, simple
1306
1307Now we show and explain three sample programs written using Bison: a
1308reverse polish notation calculator, an algebraic (infix) notation
1309calculator, and a multi-function calculator. All three have been tested
1310under BSD Unix 4.3; each produces a usable, though limited, interactive
1311desk-top calculator.
1312
1313These examples are simple, but Bison grammars for real programming
1314languages are written the same way.
1315@ifinfo
1316You can copy these examples out of the Info file and into a source file
1317to try them.
1318@end ifinfo
1319
1320@menu
1321* RPN Calc:: Reverse polish notation calculator;
1322 a first example with no operator precedence.
1323* Infix Calc:: Infix (algebraic) notation calculator.
1324 Operator precedence is introduced.
1325* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1326* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1327* Multi-function Calc:: Calculator with memory and trig functions.
1328 It uses multiple data-types for semantic values.
1329* Exercises:: Ideas for improving the multi-function calculator.
1330@end menu
1331
342b8b6e 1332@node RPN Calc
bfa74976
RS
1333@section Reverse Polish Notation Calculator
1334@cindex reverse polish notation
1335@cindex polish notation calculator
1336@cindex @code{rpcalc}
1337@cindex calculator, simple
1338
1339The first example is that of a simple double-precision @dfn{reverse polish
1340notation} calculator (a calculator using postfix operators). This example
1341provides a good starting point, since operator precedence is not an issue.
1342The second example will illustrate how operator precedence is handled.
1343
1344The source code for this calculator is named @file{rpcalc.y}. The
1345@samp{.y} extension is a convention used for Bison input files.
1346
1347@menu
75f5aaea 1348* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1349* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1350* Lexer: Rpcalc Lexer. The lexical analyzer.
1351* Main: Rpcalc Main. The controlling function.
1352* Error: Rpcalc Error. The error reporting function.
1353* Gen: Rpcalc Gen. Running Bison on the grammar file.
1354* Comp: Rpcalc Compile. Run the C compiler on the output code.
1355@end menu
1356
342b8b6e 1357@node Rpcalc Decls
bfa74976
RS
1358@subsection Declarations for @code{rpcalc}
1359
1360Here are the C and Bison declarations for the reverse polish notation
1361calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1362
1363@example
72d2299c 1364/* Reverse polish notation calculator. */
bfa74976
RS
1365
1366%@{
38a92d50
PE
1367 #define YYSTYPE double
1368 #include <math.h>
1369 int yylex (void);
1370 void yyerror (char const *);
bfa74976
RS
1371%@}
1372
1373%token NUM
1374
72d2299c 1375%% /* Grammar rules and actions follow. */
bfa74976
RS
1376@end example
1377
75f5aaea 1378The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1379preprocessor directives and two forward declarations.
bfa74976
RS
1380
1381The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1382specifying the C data type for semantic values of both tokens and
1383groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1384Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1385don't define it, @code{int} is the default. Because we specify
1386@code{double}, each token and each expression has an associated value,
1387which is a floating point number.
bfa74976
RS
1388
1389The @code{#include} directive is used to declare the exponentiation
1390function @code{pow}.
1391
38a92d50
PE
1392The forward declarations for @code{yylex} and @code{yyerror} are
1393needed because the C language requires that functions be declared
1394before they are used. These functions will be defined in the
1395epilogue, but the parser calls them so they must be declared in the
1396prologue.
1397
704a47c4
AD
1398The second section, Bison declarations, provides information to Bison
1399about the token types (@pxref{Bison Declarations, ,The Bison
1400Declarations Section}). Each terminal symbol that is not a
1401single-character literal must be declared here. (Single-character
bfa74976
RS
1402literals normally don't need to be declared.) In this example, all the
1403arithmetic operators are designated by single-character literals, so the
1404only terminal symbol that needs to be declared is @code{NUM}, the token
1405type for numeric constants.
1406
342b8b6e 1407@node Rpcalc Rules
bfa74976
RS
1408@subsection Grammar Rules for @code{rpcalc}
1409
1410Here are the grammar rules for the reverse polish notation calculator.
1411
1412@example
1413input: /* empty */
1414 | input line
1415;
1416
1417line: '\n'
18b519c0 1418 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1419;
1420
18b519c0
AD
1421exp: NUM @{ $$ = $1; @}
1422 | exp exp '+' @{ $$ = $1 + $2; @}
1423 | exp exp '-' @{ $$ = $1 - $2; @}
1424 | exp exp '*' @{ $$ = $1 * $2; @}
1425 | exp exp '/' @{ $$ = $1 / $2; @}
1426 /* Exponentiation */
1427 | exp exp '^' @{ $$ = pow ($1, $2); @}
1428 /* Unary minus */
1429 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1430;
1431%%
1432@end example
1433
1434The groupings of the rpcalc ``language'' defined here are the expression
1435(given the name @code{exp}), the line of input (@code{line}), and the
1436complete input transcript (@code{input}). Each of these nonterminal
1437symbols has several alternate rules, joined by the @samp{|} punctuator
1438which is read as ``or''. The following sections explain what these rules
1439mean.
1440
1441The semantics of the language is determined by the actions taken when a
1442grouping is recognized. The actions are the C code that appears inside
1443braces. @xref{Actions}.
1444
1445You must specify these actions in C, but Bison provides the means for
1446passing semantic values between the rules. In each action, the
1447pseudo-variable @code{$$} stands for the semantic value for the grouping
1448that the rule is going to construct. Assigning a value to @code{$$} is the
1449main job of most actions. The semantic values of the components of the
1450rule are referred to as @code{$1}, @code{$2}, and so on.
1451
1452@menu
13863333
AD
1453* Rpcalc Input::
1454* Rpcalc Line::
1455* Rpcalc Expr::
bfa74976
RS
1456@end menu
1457
342b8b6e 1458@node Rpcalc Input
bfa74976
RS
1459@subsubsection Explanation of @code{input}
1460
1461Consider the definition of @code{input}:
1462
1463@example
1464input: /* empty */
1465 | input line
1466;
1467@end example
1468
1469This definition reads as follows: ``A complete input is either an empty
1470string, or a complete input followed by an input line''. Notice that
1471``complete input'' is defined in terms of itself. This definition is said
1472to be @dfn{left recursive} since @code{input} appears always as the
1473leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1474
1475The first alternative is empty because there are no symbols between the
1476colon and the first @samp{|}; this means that @code{input} can match an
1477empty string of input (no tokens). We write the rules this way because it
1478is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1479It's conventional to put an empty alternative first and write the comment
1480@samp{/* empty */} in it.
1481
1482The second alternate rule (@code{input line}) handles all nontrivial input.
1483It means, ``After reading any number of lines, read one more line if
1484possible.'' The left recursion makes this rule into a loop. Since the
1485first alternative matches empty input, the loop can be executed zero or
1486more times.
1487
1488The parser function @code{yyparse} continues to process input until a
1489grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1490input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1491
342b8b6e 1492@node Rpcalc Line
bfa74976
RS
1493@subsubsection Explanation of @code{line}
1494
1495Now consider the definition of @code{line}:
1496
1497@example
1498line: '\n'
1499 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1500;
1501@end example
1502
1503The first alternative is a token which is a newline character; this means
1504that rpcalc accepts a blank line (and ignores it, since there is no
1505action). The second alternative is an expression followed by a newline.
1506This is the alternative that makes rpcalc useful. The semantic value of
1507the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1508question is the first symbol in the alternative. The action prints this
1509value, which is the result of the computation the user asked for.
1510
1511This action is unusual because it does not assign a value to @code{$$}. As
1512a consequence, the semantic value associated with the @code{line} is
1513uninitialized (its value will be unpredictable). This would be a bug if
1514that value were ever used, but we don't use it: once rpcalc has printed the
1515value of the user's input line, that value is no longer needed.
1516
342b8b6e 1517@node Rpcalc Expr
bfa74976
RS
1518@subsubsection Explanation of @code{expr}
1519
1520The @code{exp} grouping has several rules, one for each kind of expression.
1521The first rule handles the simplest expressions: those that are just numbers.
1522The second handles an addition-expression, which looks like two expressions
1523followed by a plus-sign. The third handles subtraction, and so on.
1524
1525@example
1526exp: NUM
1527 | exp exp '+' @{ $$ = $1 + $2; @}
1528 | exp exp '-' @{ $$ = $1 - $2; @}
1529 @dots{}
1530 ;
1531@end example
1532
1533We have used @samp{|} to join all the rules for @code{exp}, but we could
1534equally well have written them separately:
1535
1536@example
1537exp: NUM ;
1538exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1539exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1540 @dots{}
1541@end example
1542
1543Most of the rules have actions that compute the value of the expression in
1544terms of the value of its parts. For example, in the rule for addition,
1545@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1546the second one. The third component, @code{'+'}, has no meaningful
1547associated semantic value, but if it had one you could refer to it as
1548@code{$3}. When @code{yyparse} recognizes a sum expression using this
1549rule, the sum of the two subexpressions' values is produced as the value of
1550the entire expression. @xref{Actions}.
1551
1552You don't have to give an action for every rule. When a rule has no
1553action, Bison by default copies the value of @code{$1} into @code{$$}.
1554This is what happens in the first rule (the one that uses @code{NUM}).
1555
1556The formatting shown here is the recommended convention, but Bison does
72d2299c 1557not require it. You can add or change white space as much as you wish.
bfa74976
RS
1558For example, this:
1559
1560@example
99a9344e 1561exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1562@end example
1563
1564@noindent
1565means the same thing as this:
1566
1567@example
1568exp: NUM
1569 | exp exp '+' @{ $$ = $1 + $2; @}
1570 | @dots{}
99a9344e 1571;
bfa74976
RS
1572@end example
1573
1574@noindent
1575The latter, however, is much more readable.
1576
342b8b6e 1577@node Rpcalc Lexer
bfa74976
RS
1578@subsection The @code{rpcalc} Lexical Analyzer
1579@cindex writing a lexical analyzer
1580@cindex lexical analyzer, writing
1581
704a47c4
AD
1582The lexical analyzer's job is low-level parsing: converting characters
1583or sequences of characters into tokens. The Bison parser gets its
1584tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1585Analyzer Function @code{yylex}}.
bfa74976 1586
c827f760
PE
1587Only a simple lexical analyzer is needed for the @acronym{RPN}
1588calculator. This
bfa74976
RS
1589lexical analyzer skips blanks and tabs, then reads in numbers as
1590@code{double} and returns them as @code{NUM} tokens. Any other character
1591that isn't part of a number is a separate token. Note that the token-code
1592for such a single-character token is the character itself.
1593
1594The return value of the lexical analyzer function is a numeric code which
1595represents a token type. The same text used in Bison rules to stand for
1596this token type is also a C expression for the numeric code for the type.
1597This works in two ways. If the token type is a character literal, then its
e966383b 1598numeric code is that of the character; you can use the same
bfa74976
RS
1599character literal in the lexical analyzer to express the number. If the
1600token type is an identifier, that identifier is defined by Bison as a C
1601macro whose definition is the appropriate number. In this example,
1602therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1603
1964ad8c
AD
1604The semantic value of the token (if it has one) is stored into the
1605global variable @code{yylval}, which is where the Bison parser will look
1606for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1607defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1608,Declarations for @code{rpcalc}}.)
bfa74976 1609
72d2299c
PE
1610A token type code of zero is returned if the end-of-input is encountered.
1611(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1612
1613Here is the code for the lexical analyzer:
1614
1615@example
1616@group
72d2299c 1617/* The lexical analyzer returns a double floating point
e966383b 1618 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1619 of the character read if not a number. It skips all blanks
1620 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1621
1622#include <ctype.h>
1623@end group
1624
1625@group
13863333
AD
1626int
1627yylex (void)
bfa74976
RS
1628@{
1629 int c;
1630
72d2299c 1631 /* Skip white space. */
13863333 1632 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1633 ;
1634@end group
1635@group
72d2299c 1636 /* Process numbers. */
13863333 1637 if (c == '.' || isdigit (c))
bfa74976
RS
1638 @{
1639 ungetc (c, stdin);
1640 scanf ("%lf", &yylval);
1641 return NUM;
1642 @}
1643@end group
1644@group
72d2299c 1645 /* Return end-of-input. */
13863333 1646 if (c == EOF)
bfa74976 1647 return 0;
72d2299c 1648 /* Return a single char. */
13863333 1649 return c;
bfa74976
RS
1650@}
1651@end group
1652@end example
1653
342b8b6e 1654@node Rpcalc Main
bfa74976
RS
1655@subsection The Controlling Function
1656@cindex controlling function
1657@cindex main function in simple example
1658
1659In keeping with the spirit of this example, the controlling function is
1660kept to the bare minimum. The only requirement is that it call
1661@code{yyparse} to start the process of parsing.
1662
1663@example
1664@group
13863333
AD
1665int
1666main (void)
bfa74976 1667@{
13863333 1668 return yyparse ();
bfa74976
RS
1669@}
1670@end group
1671@end example
1672
342b8b6e 1673@node Rpcalc Error
bfa74976
RS
1674@subsection The Error Reporting Routine
1675@cindex error reporting routine
1676
1677When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1678function @code{yyerror} to print an error message (usually but not
6e649e65 1679always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1680@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1681here is the definition we will use:
bfa74976
RS
1682
1683@example
1684@group
1685#include <stdio.h>
1686
38a92d50 1687/* Called by yyparse on error. */
13863333 1688void
38a92d50 1689yyerror (char const *s)
bfa74976 1690@{
4e03e201 1691 fprintf (stderr, "%s\n", s);
bfa74976
RS
1692@}
1693@end group
1694@end example
1695
1696After @code{yyerror} returns, the Bison parser may recover from the error
1697and continue parsing if the grammar contains a suitable error rule
1698(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1699have not written any error rules in this example, so any invalid input will
1700cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1701real calculator, but it is adequate for the first example.
bfa74976 1702
342b8b6e 1703@node Rpcalc Gen
bfa74976
RS
1704@subsection Running Bison to Make the Parser
1705@cindex running Bison (introduction)
1706
ceed8467
AD
1707Before running Bison to produce a parser, we need to decide how to
1708arrange all the source code in one or more source files. For such a
1709simple example, the easiest thing is to put everything in one file. The
1710definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1711end, in the epilogue of the file
75f5aaea 1712(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1713
1714For a large project, you would probably have several source files, and use
1715@code{make} to arrange to recompile them.
1716
1717With all the source in a single file, you use the following command to
1718convert it into a parser file:
1719
1720@example
fa4d969f 1721bison @var{file}.y
bfa74976
RS
1722@end example
1723
1724@noindent
1725In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1726@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1727removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1728Bison contains the source code for @code{yyparse}. The additional
1729functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1730are copied verbatim to the output.
1731
342b8b6e 1732@node Rpcalc Compile
bfa74976
RS
1733@subsection Compiling the Parser File
1734@cindex compiling the parser
1735
1736Here is how to compile and run the parser file:
1737
1738@example
1739@group
1740# @r{List files in current directory.}
9edcd895 1741$ @kbd{ls}
bfa74976
RS
1742rpcalc.tab.c rpcalc.y
1743@end group
1744
1745@group
1746# @r{Compile the Bison parser.}
1747# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1748$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1749@end group
1750
1751@group
1752# @r{List files again.}
9edcd895 1753$ @kbd{ls}
bfa74976
RS
1754rpcalc rpcalc.tab.c rpcalc.y
1755@end group
1756@end example
1757
1758The file @file{rpcalc} now contains the executable code. Here is an
1759example session using @code{rpcalc}.
1760
1761@example
9edcd895
AD
1762$ @kbd{rpcalc}
1763@kbd{4 9 +}
bfa74976 176413
9edcd895 1765@kbd{3 7 + 3 4 5 *+-}
bfa74976 1766-13
9edcd895 1767@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 176813
9edcd895 1769@kbd{5 6 / 4 n +}
bfa74976 1770-3.166666667
9edcd895 1771@kbd{3 4 ^} @r{Exponentiation}
bfa74976 177281
9edcd895
AD
1773@kbd{^D} @r{End-of-file indicator}
1774$
bfa74976
RS
1775@end example
1776
342b8b6e 1777@node Infix Calc
bfa74976
RS
1778@section Infix Notation Calculator: @code{calc}
1779@cindex infix notation calculator
1780@cindex @code{calc}
1781@cindex calculator, infix notation
1782
1783We now modify rpcalc to handle infix operators instead of postfix. Infix
1784notation involves the concept of operator precedence and the need for
1785parentheses nested to arbitrary depth. Here is the Bison code for
1786@file{calc.y}, an infix desk-top calculator.
1787
1788@example
38a92d50 1789/* Infix notation calculator. */
bfa74976
RS
1790
1791%@{
38a92d50
PE
1792 #define YYSTYPE double
1793 #include <math.h>
1794 #include <stdio.h>
1795 int yylex (void);
1796 void yyerror (char const *);
bfa74976
RS
1797%@}
1798
38a92d50 1799/* Bison declarations. */
bfa74976
RS
1800%token NUM
1801%left '-' '+'
1802%left '*' '/'
1803%left NEG /* negation--unary minus */
38a92d50 1804%right '^' /* exponentiation */
bfa74976 1805
38a92d50
PE
1806%% /* The grammar follows. */
1807input: /* empty */
bfa74976
RS
1808 | input line
1809;
1810
1811line: '\n'
1812 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1813;
1814
1815exp: NUM @{ $$ = $1; @}
1816 | exp '+' exp @{ $$ = $1 + $3; @}
1817 | exp '-' exp @{ $$ = $1 - $3; @}
1818 | exp '*' exp @{ $$ = $1 * $3; @}
1819 | exp '/' exp @{ $$ = $1 / $3; @}
1820 | '-' exp %prec NEG @{ $$ = -$2; @}
1821 | exp '^' exp @{ $$ = pow ($1, $3); @}
1822 | '(' exp ')' @{ $$ = $2; @}
1823;
1824%%
1825@end example
1826
1827@noindent
ceed8467
AD
1828The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1829same as before.
bfa74976
RS
1830
1831There are two important new features shown in this code.
1832
1833In the second section (Bison declarations), @code{%left} declares token
1834types and says they are left-associative operators. The declarations
1835@code{%left} and @code{%right} (right associativity) take the place of
1836@code{%token} which is used to declare a token type name without
1837associativity. (These tokens are single-character literals, which
1838ordinarily don't need to be declared. We declare them here to specify
1839the associativity.)
1840
1841Operator precedence is determined by the line ordering of the
1842declarations; the higher the line number of the declaration (lower on
1843the page or screen), the higher the precedence. Hence, exponentiation
1844has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1845by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1846Precedence}.
bfa74976 1847
704a47c4
AD
1848The other important new feature is the @code{%prec} in the grammar
1849section for the unary minus operator. The @code{%prec} simply instructs
1850Bison that the rule @samp{| '-' exp} has the same precedence as
1851@code{NEG}---in this case the next-to-highest. @xref{Contextual
1852Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1853
1854Here is a sample run of @file{calc.y}:
1855
1856@need 500
1857@example
9edcd895
AD
1858$ @kbd{calc}
1859@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18606.880952381
9edcd895 1861@kbd{-56 + 2}
bfa74976 1862-54
9edcd895 1863@kbd{3 ^ 2}
bfa74976
RS
18649
1865@end example
1866
342b8b6e 1867@node Simple Error Recovery
bfa74976
RS
1868@section Simple Error Recovery
1869@cindex error recovery, simple
1870
1871Up to this point, this manual has not addressed the issue of @dfn{error
1872recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1873error. All we have handled is error reporting with @code{yyerror}.
1874Recall that by default @code{yyparse} returns after calling
1875@code{yyerror}. This means that an erroneous input line causes the
1876calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1877
1878The Bison language itself includes the reserved word @code{error}, which
1879may be included in the grammar rules. In the example below it has
1880been added to one of the alternatives for @code{line}:
1881
1882@example
1883@group
1884line: '\n'
1885 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1886 | error '\n' @{ yyerrok; @}
1887;
1888@end group
1889@end example
1890
ceed8467 1891This addition to the grammar allows for simple error recovery in the
6e649e65 1892event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1893read, the error will be recognized by the third rule for @code{line},
1894and parsing will continue. (The @code{yyerror} function is still called
1895upon to print its message as well.) The action executes the statement
1896@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1897that error recovery is complete (@pxref{Error Recovery}). Note the
1898difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1899misprint.
bfa74976
RS
1900
1901This form of error recovery deals with syntax errors. There are other
1902kinds of errors; for example, division by zero, which raises an exception
1903signal that is normally fatal. A real calculator program must handle this
1904signal and use @code{longjmp} to return to @code{main} and resume parsing
1905input lines; it would also have to discard the rest of the current line of
1906input. We won't discuss this issue further because it is not specific to
1907Bison programs.
1908
342b8b6e
AD
1909@node Location Tracking Calc
1910@section Location Tracking Calculator: @code{ltcalc}
1911@cindex location tracking calculator
1912@cindex @code{ltcalc}
1913@cindex calculator, location tracking
1914
9edcd895
AD
1915This example extends the infix notation calculator with location
1916tracking. This feature will be used to improve the error messages. For
1917the sake of clarity, this example is a simple integer calculator, since
1918most of the work needed to use locations will be done in the lexical
72d2299c 1919analyzer.
342b8b6e
AD
1920
1921@menu
1922* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1923* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1924* Lexer: Ltcalc Lexer. The lexical analyzer.
1925@end menu
1926
1927@node Ltcalc Decls
1928@subsection Declarations for @code{ltcalc}
1929
9edcd895
AD
1930The C and Bison declarations for the location tracking calculator are
1931the same as the declarations for the infix notation calculator.
342b8b6e
AD
1932
1933@example
1934/* Location tracking calculator. */
1935
1936%@{
38a92d50
PE
1937 #define YYSTYPE int
1938 #include <math.h>
1939 int yylex (void);
1940 void yyerror (char const *);
342b8b6e
AD
1941%@}
1942
1943/* Bison declarations. */
1944%token NUM
1945
1946%left '-' '+'
1947%left '*' '/'
1948%left NEG
1949%right '^'
1950
38a92d50 1951%% /* The grammar follows. */
342b8b6e
AD
1952@end example
1953
9edcd895
AD
1954@noindent
1955Note there are no declarations specific to locations. Defining a data
1956type for storing locations is not needed: we will use the type provided
1957by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1958four member structure with the following integer fields:
1959@code{first_line}, @code{first_column}, @code{last_line} and
1960@code{last_column}.
342b8b6e
AD
1961
1962@node Ltcalc Rules
1963@subsection Grammar Rules for @code{ltcalc}
1964
9edcd895
AD
1965Whether handling locations or not has no effect on the syntax of your
1966language. Therefore, grammar rules for this example will be very close
1967to those of the previous example: we will only modify them to benefit
1968from the new information.
342b8b6e 1969
9edcd895
AD
1970Here, we will use locations to report divisions by zero, and locate the
1971wrong expressions or subexpressions.
342b8b6e
AD
1972
1973@example
1974@group
1975input : /* empty */
1976 | input line
1977;
1978@end group
1979
1980@group
1981line : '\n'
1982 | exp '\n' @{ printf ("%d\n", $1); @}
1983;
1984@end group
1985
1986@group
1987exp : NUM @{ $$ = $1; @}
1988 | exp '+' exp @{ $$ = $1 + $3; @}
1989 | exp '-' exp @{ $$ = $1 - $3; @}
1990 | exp '*' exp @{ $$ = $1 * $3; @}
1991@end group
342b8b6e 1992@group
9edcd895 1993 | exp '/' exp
342b8b6e
AD
1994 @{
1995 if ($3)
1996 $$ = $1 / $3;
1997 else
1998 @{
1999 $$ = 1;
9edcd895
AD
2000 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2001 @@3.first_line, @@3.first_column,
2002 @@3.last_line, @@3.last_column);
342b8b6e
AD
2003 @}
2004 @}
2005@end group
2006@group
2007 | '-' exp %preg NEG @{ $$ = -$2; @}
2008 | exp '^' exp @{ $$ = pow ($1, $3); @}
2009 | '(' exp ')' @{ $$ = $2; @}
2010@end group
2011@end example
2012
2013This code shows how to reach locations inside of semantic actions, by
2014using the pseudo-variables @code{@@@var{n}} for rule components, and the
2015pseudo-variable @code{@@$} for groupings.
2016
9edcd895
AD
2017We don't need to assign a value to @code{@@$}: the output parser does it
2018automatically. By default, before executing the C code of each action,
2019@code{@@$} is set to range from the beginning of @code{@@1} to the end
2020of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2021can be redefined (@pxref{Location Default Action, , Default Action for
2022Locations}), and for very specific rules, @code{@@$} can be computed by
2023hand.
342b8b6e
AD
2024
2025@node Ltcalc Lexer
2026@subsection The @code{ltcalc} Lexical Analyzer.
2027
9edcd895 2028Until now, we relied on Bison's defaults to enable location
72d2299c 2029tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2030able to feed the parser with the token locations, as it already does for
2031semantic values.
342b8b6e 2032
9edcd895
AD
2033To this end, we must take into account every single character of the
2034input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2035
2036@example
2037@group
2038int
2039yylex (void)
2040@{
2041 int c;
18b519c0 2042@end group
342b8b6e 2043
18b519c0 2044@group
72d2299c 2045 /* Skip white space. */
342b8b6e
AD
2046 while ((c = getchar ()) == ' ' || c == '\t')
2047 ++yylloc.last_column;
18b519c0 2048@end group
342b8b6e 2049
18b519c0 2050@group
72d2299c 2051 /* Step. */
342b8b6e
AD
2052 yylloc.first_line = yylloc.last_line;
2053 yylloc.first_column = yylloc.last_column;
2054@end group
2055
2056@group
72d2299c 2057 /* Process numbers. */
342b8b6e
AD
2058 if (isdigit (c))
2059 @{
2060 yylval = c - '0';
2061 ++yylloc.last_column;
2062 while (isdigit (c = getchar ()))
2063 @{
2064 ++yylloc.last_column;
2065 yylval = yylval * 10 + c - '0';
2066 @}
2067 ungetc (c, stdin);
2068 return NUM;
2069 @}
2070@end group
2071
72d2299c 2072 /* Return end-of-input. */
342b8b6e
AD
2073 if (c == EOF)
2074 return 0;
2075
72d2299c 2076 /* Return a single char, and update location. */
342b8b6e
AD
2077 if (c == '\n')
2078 @{
2079 ++yylloc.last_line;
2080 yylloc.last_column = 0;
2081 @}
2082 else
2083 ++yylloc.last_column;
2084 return c;
2085@}
2086@end example
2087
9edcd895
AD
2088Basically, the lexical analyzer performs the same processing as before:
2089it skips blanks and tabs, and reads numbers or single-character tokens.
2090In addition, it updates @code{yylloc}, the global variable (of type
2091@code{YYLTYPE}) containing the token's location.
342b8b6e 2092
9edcd895 2093Now, each time this function returns a token, the parser has its number
72d2299c 2094as well as its semantic value, and its location in the text. The last
9edcd895
AD
2095needed change is to initialize @code{yylloc}, for example in the
2096controlling function:
342b8b6e
AD
2097
2098@example
9edcd895 2099@group
342b8b6e
AD
2100int
2101main (void)
2102@{
2103 yylloc.first_line = yylloc.last_line = 1;
2104 yylloc.first_column = yylloc.last_column = 0;
2105 return yyparse ();
2106@}
9edcd895 2107@end group
342b8b6e
AD
2108@end example
2109
9edcd895
AD
2110Remember that computing locations is not a matter of syntax. Every
2111character must be associated to a location update, whether it is in
2112valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2113
2114@node Multi-function Calc
bfa74976
RS
2115@section Multi-Function Calculator: @code{mfcalc}
2116@cindex multi-function calculator
2117@cindex @code{mfcalc}
2118@cindex calculator, multi-function
2119
2120Now that the basics of Bison have been discussed, it is time to move on to
2121a more advanced problem. The above calculators provided only five
2122functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2123be nice to have a calculator that provides other mathematical functions such
2124as @code{sin}, @code{cos}, etc.
2125
2126It is easy to add new operators to the infix calculator as long as they are
2127only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2128back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2129adding a new operator. But we want something more flexible: built-in
2130functions whose syntax has this form:
2131
2132@example
2133@var{function_name} (@var{argument})
2134@end example
2135
2136@noindent
2137At the same time, we will add memory to the calculator, by allowing you
2138to create named variables, store values in them, and use them later.
2139Here is a sample session with the multi-function calculator:
2140
2141@example
9edcd895
AD
2142$ @kbd{mfcalc}
2143@kbd{pi = 3.141592653589}
bfa74976 21443.1415926536
9edcd895 2145@kbd{sin(pi)}
bfa74976 21460.0000000000
9edcd895 2147@kbd{alpha = beta1 = 2.3}
bfa74976 21482.3000000000
9edcd895 2149@kbd{alpha}
bfa74976 21502.3000000000
9edcd895 2151@kbd{ln(alpha)}
bfa74976 21520.8329091229
9edcd895 2153@kbd{exp(ln(beta1))}
bfa74976 21542.3000000000
9edcd895 2155$
bfa74976
RS
2156@end example
2157
2158Note that multiple assignment and nested function calls are permitted.
2159
2160@menu
2161* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2162* Rules: Mfcalc Rules. Grammar rules for the calculator.
2163* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2164@end menu
2165
342b8b6e 2166@node Mfcalc Decl
bfa74976
RS
2167@subsection Declarations for @code{mfcalc}
2168
2169Here are the C and Bison declarations for the multi-function calculator.
2170
2171@smallexample
18b519c0 2172@group
bfa74976 2173%@{
38a92d50
PE
2174 #include <math.h> /* For math functions, cos(), sin(), etc. */
2175 #include "calc.h" /* Contains definition of `symrec'. */
2176 int yylex (void);
2177 void yyerror (char const *);
bfa74976 2178%@}
18b519c0
AD
2179@end group
2180@group
bfa74976 2181%union @{
38a92d50
PE
2182 double val; /* For returning numbers. */
2183 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2184@}
18b519c0 2185@end group
38a92d50
PE
2186%token <val> NUM /* Simple double precision number. */
2187%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2188%type <val> exp
2189
18b519c0 2190@group
bfa74976
RS
2191%right '='
2192%left '-' '+'
2193%left '*' '/'
38a92d50
PE
2194%left NEG /* negation--unary minus */
2195%right '^' /* exponentiation */
18b519c0 2196@end group
38a92d50 2197%% /* The grammar follows. */
bfa74976
RS
2198@end smallexample
2199
2200The above grammar introduces only two new features of the Bison language.
2201These features allow semantic values to have various data types
2202(@pxref{Multiple Types, ,More Than One Value Type}).
2203
2204The @code{%union} declaration specifies the entire list of possible types;
2205this is instead of defining @code{YYSTYPE}. The allowable types are now
2206double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2207the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2208
2209Since values can now have various types, it is necessary to associate a
2210type with each grammar symbol whose semantic value is used. These symbols
2211are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2212declarations are augmented with information about their data type (placed
2213between angle brackets).
2214
704a47c4
AD
2215The Bison construct @code{%type} is used for declaring nonterminal
2216symbols, just as @code{%token} is used for declaring token types. We
2217have not used @code{%type} before because nonterminal symbols are
2218normally declared implicitly by the rules that define them. But
2219@code{exp} must be declared explicitly so we can specify its value type.
2220@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2221
342b8b6e 2222@node Mfcalc Rules
bfa74976
RS
2223@subsection Grammar Rules for @code{mfcalc}
2224
2225Here are the grammar rules for the multi-function calculator.
2226Most of them are copied directly from @code{calc}; three rules,
2227those which mention @code{VAR} or @code{FNCT}, are new.
2228
2229@smallexample
18b519c0 2230@group
bfa74976
RS
2231input: /* empty */
2232 | input line
2233;
18b519c0 2234@end group
bfa74976 2235
18b519c0 2236@group
bfa74976
RS
2237line:
2238 '\n'
2239 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2240 | error '\n' @{ yyerrok; @}
2241;
18b519c0 2242@end group
bfa74976 2243
18b519c0 2244@group
bfa74976
RS
2245exp: NUM @{ $$ = $1; @}
2246 | VAR @{ $$ = $1->value.var; @}
2247 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2248 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2249 | exp '+' exp @{ $$ = $1 + $3; @}
2250 | exp '-' exp @{ $$ = $1 - $3; @}
2251 | exp '*' exp @{ $$ = $1 * $3; @}
2252 | exp '/' exp @{ $$ = $1 / $3; @}
2253 | '-' exp %prec NEG @{ $$ = -$2; @}
2254 | exp '^' exp @{ $$ = pow ($1, $3); @}
2255 | '(' exp ')' @{ $$ = $2; @}
2256;
18b519c0 2257@end group
38a92d50 2258/* End of grammar. */
bfa74976
RS
2259%%
2260@end smallexample
2261
342b8b6e 2262@node Mfcalc Symtab
bfa74976
RS
2263@subsection The @code{mfcalc} Symbol Table
2264@cindex symbol table example
2265
2266The multi-function calculator requires a symbol table to keep track of the
2267names and meanings of variables and functions. This doesn't affect the
2268grammar rules (except for the actions) or the Bison declarations, but it
2269requires some additional C functions for support.
2270
2271The symbol table itself consists of a linked list of records. Its
2272definition, which is kept in the header @file{calc.h}, is as follows. It
2273provides for either functions or variables to be placed in the table.
2274
2275@smallexample
2276@group
38a92d50 2277/* Function type. */
32dfccf8 2278typedef double (*func_t) (double);
72f889cc 2279@end group
32dfccf8 2280
72f889cc 2281@group
38a92d50 2282/* Data type for links in the chain of symbols. */
bfa74976
RS
2283struct symrec
2284@{
38a92d50 2285 char *name; /* name of symbol */
bfa74976 2286 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2287 union
2288 @{
38a92d50
PE
2289 double var; /* value of a VAR */
2290 func_t fnctptr; /* value of a FNCT */
bfa74976 2291 @} value;
38a92d50 2292 struct symrec *next; /* link field */
bfa74976
RS
2293@};
2294@end group
2295
2296@group
2297typedef struct symrec symrec;
2298
38a92d50 2299/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2300extern symrec *sym_table;
2301
a730d142 2302symrec *putsym (char const *, int);
38a92d50 2303symrec *getsym (char const *);
bfa74976
RS
2304@end group
2305@end smallexample
2306
2307The new version of @code{main} includes a call to @code{init_table}, a
2308function that initializes the symbol table. Here it is, and
2309@code{init_table} as well:
2310
2311@smallexample
bfa74976
RS
2312#include <stdio.h>
2313
18b519c0 2314@group
38a92d50 2315/* Called by yyparse on error. */
13863333 2316void
38a92d50 2317yyerror (char const *s)
bfa74976
RS
2318@{
2319 printf ("%s\n", s);
2320@}
18b519c0 2321@end group
bfa74976 2322
18b519c0 2323@group
bfa74976
RS
2324struct init
2325@{
38a92d50
PE
2326 char const *fname;
2327 double (*fnct) (double);
bfa74976
RS
2328@};
2329@end group
2330
2331@group
38a92d50 2332struct init const arith_fncts[] =
13863333 2333@{
32dfccf8
AD
2334 "sin", sin,
2335 "cos", cos,
13863333 2336 "atan", atan,
32dfccf8
AD
2337 "ln", log,
2338 "exp", exp,
13863333
AD
2339 "sqrt", sqrt,
2340 0, 0
2341@};
18b519c0 2342@end group
bfa74976 2343
18b519c0 2344@group
bfa74976 2345/* The symbol table: a chain of `struct symrec'. */
38a92d50 2346symrec *sym_table;
bfa74976
RS
2347@end group
2348
2349@group
72d2299c 2350/* Put arithmetic functions in table. */
13863333
AD
2351void
2352init_table (void)
bfa74976
RS
2353@{
2354 int i;
2355 symrec *ptr;
2356 for (i = 0; arith_fncts[i].fname != 0; i++)
2357 @{
2358 ptr = putsym (arith_fncts[i].fname, FNCT);
2359 ptr->value.fnctptr = arith_fncts[i].fnct;
2360 @}
2361@}
2362@end group
38a92d50
PE
2363
2364@group
2365int
2366main (void)
2367@{
2368 init_table ();
2369 return yyparse ();
2370@}
2371@end group
bfa74976
RS
2372@end smallexample
2373
2374By simply editing the initialization list and adding the necessary include
2375files, you can add additional functions to the calculator.
2376
2377Two important functions allow look-up and installation of symbols in the
2378symbol table. The function @code{putsym} is passed a name and the type
2379(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2380linked to the front of the list, and a pointer to the object is returned.
2381The function @code{getsym} is passed the name of the symbol to look up. If
2382found, a pointer to that symbol is returned; otherwise zero is returned.
2383
2384@smallexample
2385symrec *
38a92d50 2386putsym (char const *sym_name, int sym_type)
bfa74976
RS
2387@{
2388 symrec *ptr;
2389 ptr = (symrec *) malloc (sizeof (symrec));
2390 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2391 strcpy (ptr->name,sym_name);
2392 ptr->type = sym_type;
72d2299c 2393 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2394 ptr->next = (struct symrec *)sym_table;
2395 sym_table = ptr;
2396 return ptr;
2397@}
2398
2399symrec *
38a92d50 2400getsym (char const *sym_name)
bfa74976
RS
2401@{
2402 symrec *ptr;
2403 for (ptr = sym_table; ptr != (symrec *) 0;
2404 ptr = (symrec *)ptr->next)
2405 if (strcmp (ptr->name,sym_name) == 0)
2406 return ptr;
2407 return 0;
2408@}
2409@end smallexample
2410
2411The function @code{yylex} must now recognize variables, numeric values, and
2412the single-character arithmetic operators. Strings of alphanumeric
14ded682 2413characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2414functions depending on what the symbol table says about them.
2415
2416The string is passed to @code{getsym} for look up in the symbol table. If
2417the name appears in the table, a pointer to its location and its type
2418(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2419already in the table, then it is installed as a @code{VAR} using
2420@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2421returned to @code{yyparse}.
bfa74976
RS
2422
2423No change is needed in the handling of numeric values and arithmetic
2424operators in @code{yylex}.
2425
2426@smallexample
2427@group
2428#include <ctype.h>
18b519c0 2429@end group
13863333 2430
18b519c0 2431@group
13863333
AD
2432int
2433yylex (void)
bfa74976
RS
2434@{
2435 int c;
2436
72d2299c 2437 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2438 while ((c = getchar ()) == ' ' || c == '\t');
2439
2440 if (c == EOF)
2441 return 0;
2442@end group
2443
2444@group
2445 /* Char starts a number => parse the number. */
2446 if (c == '.' || isdigit (c))
2447 @{
2448 ungetc (c, stdin);
2449 scanf ("%lf", &yylval.val);
2450 return NUM;
2451 @}
2452@end group
2453
2454@group
2455 /* Char starts an identifier => read the name. */
2456 if (isalpha (c))
2457 @{
2458 symrec *s;
2459 static char *symbuf = 0;
2460 static int length = 0;
2461 int i;
2462@end group
2463
2464@group
2465 /* Initially make the buffer long enough
2466 for a 40-character symbol name. */
2467 if (length == 0)
2468 length = 40, symbuf = (char *)malloc (length + 1);
2469
2470 i = 0;
2471 do
2472@end group
2473@group
2474 @{
2475 /* If buffer is full, make it bigger. */
2476 if (i == length)
2477 @{
2478 length *= 2;
18b519c0 2479 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2480 @}
2481 /* Add this character to the buffer. */
2482 symbuf[i++] = c;
2483 /* Get another character. */
2484 c = getchar ();
2485 @}
2486@end group
2487@group
72d2299c 2488 while (isalnum (c));
bfa74976
RS
2489
2490 ungetc (c, stdin);
2491 symbuf[i] = '\0';
2492@end group
2493
2494@group
2495 s = getsym (symbuf);
2496 if (s == 0)
2497 s = putsym (symbuf, VAR);
2498 yylval.tptr = s;
2499 return s->type;
2500 @}
2501
2502 /* Any other character is a token by itself. */
2503 return c;
2504@}
2505@end group
2506@end smallexample
2507
72d2299c 2508This program is both powerful and flexible. You may easily add new
704a47c4
AD
2509functions, and it is a simple job to modify this code to install
2510predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2511
342b8b6e 2512@node Exercises
bfa74976
RS
2513@section Exercises
2514@cindex exercises
2515
2516@enumerate
2517@item
2518Add some new functions from @file{math.h} to the initialization list.
2519
2520@item
2521Add another array that contains constants and their values. Then
2522modify @code{init_table} to add these constants to the symbol table.
2523It will be easiest to give the constants type @code{VAR}.
2524
2525@item
2526Make the program report an error if the user refers to an
2527uninitialized variable in any way except to store a value in it.
2528@end enumerate
2529
342b8b6e 2530@node Grammar File
bfa74976
RS
2531@chapter Bison Grammar Files
2532
2533Bison takes as input a context-free grammar specification and produces a
2534C-language function that recognizes correct instances of the grammar.
2535
2536The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2537@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2538
2539@menu
2540* Grammar Outline:: Overall layout of the grammar file.
2541* Symbols:: Terminal and nonterminal symbols.
2542* Rules:: How to write grammar rules.
2543* Recursion:: Writing recursive rules.
2544* Semantics:: Semantic values and actions.
847bf1f5 2545* Locations:: Locations and actions.
bfa74976
RS
2546* Declarations:: All kinds of Bison declarations are described here.
2547* Multiple Parsers:: Putting more than one Bison parser in one program.
2548@end menu
2549
342b8b6e 2550@node Grammar Outline
bfa74976
RS
2551@section Outline of a Bison Grammar
2552
2553A Bison grammar file has four main sections, shown here with the
2554appropriate delimiters:
2555
2556@example
2557%@{
38a92d50 2558 @var{Prologue}
bfa74976
RS
2559%@}
2560
2561@var{Bison declarations}
2562
2563%%
2564@var{Grammar rules}
2565%%
2566
75f5aaea 2567@var{Epilogue}
bfa74976
RS
2568@end example
2569
2570Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2571As a @acronym{GNU} extension, @samp{//} introduces a comment that
2572continues until end of line.
bfa74976
RS
2573
2574@menu
75f5aaea 2575* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2576* Bison Declarations:: Syntax and usage of the Bison declarations section.
2577* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2578* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2579@end menu
2580
38a92d50 2581@node Prologue
75f5aaea
MA
2582@subsection The prologue
2583@cindex declarations section
2584@cindex Prologue
2585@cindex declarations
bfa74976 2586
08e49d20 2587The @var{Prologue} section contains macro definitions and
bfa74976
RS
2588declarations of functions and variables that are used in the actions in the
2589grammar rules. These are copied to the beginning of the parser file so
2590that they precede the definition of @code{yyparse}. You can use
2591@samp{#include} to get the declarations from a header file. If you don't
2592need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2593delimiters that bracket this section.
2594
c732d2c6
AD
2595You may have more than one @var{Prologue} section, intermixed with the
2596@var{Bison declarations}. This allows you to have C and Bison
2597declarations that refer to each other. For example, the @code{%union}
2598declaration may use types defined in a header file, and you may wish to
2599prototype functions that take arguments of type @code{YYSTYPE}. This
2600can be done with two @var{Prologue} blocks, one before and one after the
2601@code{%union} declaration.
2602
2603@smallexample
2604%@{
38a92d50
PE
2605 #include <stdio.h>
2606 #include "ptypes.h"
c732d2c6
AD
2607%@}
2608
2609%union @{
779e7ceb 2610 long int n;
c732d2c6
AD
2611 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2612@}
2613
2614%@{
38a92d50
PE
2615 static void print_token_value (FILE *, int, YYSTYPE);
2616 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2617%@}
2618
2619@dots{}
2620@end smallexample
2621
342b8b6e 2622@node Bison Declarations
bfa74976
RS
2623@subsection The Bison Declarations Section
2624@cindex Bison declarations (introduction)
2625@cindex declarations, Bison (introduction)
2626
2627The @var{Bison declarations} section contains declarations that define
2628terminal and nonterminal symbols, specify precedence, and so on.
2629In some simple grammars you may not need any declarations.
2630@xref{Declarations, ,Bison Declarations}.
2631
342b8b6e 2632@node Grammar Rules
bfa74976
RS
2633@subsection The Grammar Rules Section
2634@cindex grammar rules section
2635@cindex rules section for grammar
2636
2637The @dfn{grammar rules} section contains one or more Bison grammar
2638rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2639
2640There must always be at least one grammar rule, and the first
2641@samp{%%} (which precedes the grammar rules) may never be omitted even
2642if it is the first thing in the file.
2643
38a92d50 2644@node Epilogue
75f5aaea 2645@subsection The epilogue
bfa74976 2646@cindex additional C code section
75f5aaea 2647@cindex epilogue
bfa74976
RS
2648@cindex C code, section for additional
2649
08e49d20
PE
2650The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2651the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2652place to put anything that you want to have in the parser file but which need
2653not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2654definitions of @code{yylex} and @code{yyerror} often go here. Because
2655C requires functions to be declared before being used, you often need
2656to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2657even if you define them in the Epilogue.
75f5aaea 2658@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2659
2660If the last section is empty, you may omit the @samp{%%} that separates it
2661from the grammar rules.
2662
38a92d50
PE
2663The Bison parser itself contains many macros and identifiers whose
2664names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2665good idea to avoid using any such names (except those documented in this
75f5aaea 2666manual) in the epilogue of the grammar file.
bfa74976 2667
342b8b6e 2668@node Symbols
bfa74976
RS
2669@section Symbols, Terminal and Nonterminal
2670@cindex nonterminal symbol
2671@cindex terminal symbol
2672@cindex token type
2673@cindex symbol
2674
2675@dfn{Symbols} in Bison grammars represent the grammatical classifications
2676of the language.
2677
2678A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2679class of syntactically equivalent tokens. You use the symbol in grammar
2680rules to mean that a token in that class is allowed. The symbol is
2681represented in the Bison parser by a numeric code, and the @code{yylex}
2682function returns a token type code to indicate what kind of token has been
2683read. You don't need to know what the code value is; you can use the
2684symbol to stand for it.
2685
2686A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2687groupings. The symbol name is used in writing grammar rules. By convention,
2688it should be all lower case.
2689
2690Symbol names can contain letters, digits (not at the beginning),
2691underscores and periods. Periods make sense only in nonterminals.
2692
931c7513 2693There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2694
2695@itemize @bullet
2696@item
2697A @dfn{named token type} is written with an identifier, like an
c827f760 2698identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2699such name must be defined with a Bison declaration such as
2700@code{%token}. @xref{Token Decl, ,Token Type Names}.
2701
2702@item
2703@cindex character token
2704@cindex literal token
2705@cindex single-character literal
931c7513
RS
2706A @dfn{character token type} (or @dfn{literal character token}) is
2707written in the grammar using the same syntax used in C for character
2708constants; for example, @code{'+'} is a character token type. A
2709character token type doesn't need to be declared unless you need to
2710specify its semantic value data type (@pxref{Value Type, ,Data Types of
2711Semantic Values}), associativity, or precedence (@pxref{Precedence,
2712,Operator Precedence}).
bfa74976
RS
2713
2714By convention, a character token type is used only to represent a
2715token that consists of that particular character. Thus, the token
2716type @code{'+'} is used to represent the character @samp{+} as a
2717token. Nothing enforces this convention, but if you depart from it,
2718your program will confuse other readers.
2719
2720All the usual escape sequences used in character literals in C can be
2721used in Bison as well, but you must not use the null character as a
72d2299c
PE
2722character literal because its numeric code, zero, signifies
2723end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2724for @code{yylex}}). Also, unlike standard C, trigraphs have no
2725special meaning in Bison character literals, nor is backslash-newline
2726allowed.
931c7513
RS
2727
2728@item
2729@cindex string token
2730@cindex literal string token
9ecbd125 2731@cindex multicharacter literal
931c7513
RS
2732A @dfn{literal string token} is written like a C string constant; for
2733example, @code{"<="} is a literal string token. A literal string token
2734doesn't need to be declared unless you need to specify its semantic
14ded682 2735value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2736(@pxref{Precedence}).
2737
2738You can associate the literal string token with a symbolic name as an
2739alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2740Declarations}). If you don't do that, the lexical analyzer has to
2741retrieve the token number for the literal string token from the
2742@code{yytname} table (@pxref{Calling Convention}).
2743
c827f760 2744@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2745
2746By convention, a literal string token is used only to represent a token
2747that consists of that particular string. Thus, you should use the token
2748type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2749does not enforce this convention, but if you depart from it, people who
931c7513
RS
2750read your program will be confused.
2751
2752All the escape sequences used in string literals in C can be used in
92ac3705
PE
2753Bison as well, except that you must not use a null character within a
2754string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2755meaning in Bison string literals, nor is backslash-newline allowed. A
2756literal string token must contain two or more characters; for a token
2757containing just one character, use a character token (see above).
bfa74976
RS
2758@end itemize
2759
2760How you choose to write a terminal symbol has no effect on its
2761grammatical meaning. That depends only on where it appears in rules and
2762on when the parser function returns that symbol.
2763
72d2299c
PE
2764The value returned by @code{yylex} is always one of the terminal
2765symbols, except that a zero or negative value signifies end-of-input.
2766Whichever way you write the token type in the grammar rules, you write
2767it the same way in the definition of @code{yylex}. The numeric code
2768for a character token type is simply the positive numeric code of the
2769character, so @code{yylex} can use the identical value to generate the
2770requisite code, though you may need to convert it to @code{unsigned
2771char} to avoid sign-extension on hosts where @code{char} is signed.
2772Each named token type becomes a C macro in
bfa74976 2773the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2774(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2775@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2776
2777If @code{yylex} is defined in a separate file, you need to arrange for the
2778token-type macro definitions to be available there. Use the @samp{-d}
2779option when you run Bison, so that it will write these macro definitions
2780into a separate header file @file{@var{name}.tab.h} which you can include
2781in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2782
72d2299c
PE
2783If you want to write a grammar that is portable to any Standard C
2784host, you must use only non-null character tokens taken from the basic
c827f760 2785execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2786digits, the 52 lower- and upper-case English letters, and the
2787characters in the following C-language string:
2788
2789@example
2790"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2791@end example
2792
2793The @code{yylex} function and Bison must use a consistent character
2794set and encoding for character tokens. For example, if you run Bison in an
c827f760 2795@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2796in an environment that uses an incompatible character set like
c827f760
PE
2797@acronym{EBCDIC}, the resulting program may not work because the
2798tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2799character tokens. It is standard
e966383b 2800practice for software distributions to contain C source files that
c827f760
PE
2801were generated by Bison in an @acronym{ASCII} environment, so installers on
2802platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2803files before compiling them.
2804
bfa74976
RS
2805The symbol @code{error} is a terminal symbol reserved for error recovery
2806(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2807In particular, @code{yylex} should never return this value. The default
2808value of the error token is 256, unless you explicitly assigned 256 to
2809one of your tokens with a @code{%token} declaration.
bfa74976 2810
342b8b6e 2811@node Rules
bfa74976
RS
2812@section Syntax of Grammar Rules
2813@cindex rule syntax
2814@cindex grammar rule syntax
2815@cindex syntax of grammar rules
2816
2817A Bison grammar rule has the following general form:
2818
2819@example
e425e872 2820@group
bfa74976
RS
2821@var{result}: @var{components}@dots{}
2822 ;
e425e872 2823@end group
bfa74976
RS
2824@end example
2825
2826@noindent
9ecbd125 2827where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2828and @var{components} are various terminal and nonterminal symbols that
13863333 2829are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2830
2831For example,
2832
2833@example
2834@group
2835exp: exp '+' exp
2836 ;
2837@end group
2838@end example
2839
2840@noindent
2841says that two groupings of type @code{exp}, with a @samp{+} token in between,
2842can be combined into a larger grouping of type @code{exp}.
2843
72d2299c
PE
2844White space in rules is significant only to separate symbols. You can add
2845extra white space as you wish.
bfa74976
RS
2846
2847Scattered among the components can be @var{actions} that determine
2848the semantics of the rule. An action looks like this:
2849
2850@example
2851@{@var{C statements}@}
2852@end example
2853
2854@noindent
2855Usually there is only one action and it follows the components.
2856@xref{Actions}.
2857
2858@findex |
2859Multiple rules for the same @var{result} can be written separately or can
2860be joined with the vertical-bar character @samp{|} as follows:
2861
2862@ifinfo
2863@example
2864@var{result}: @var{rule1-components}@dots{}
2865 | @var{rule2-components}@dots{}
2866 @dots{}
2867 ;
2868@end example
2869@end ifinfo
2870@iftex
2871@example
2872@group
2873@var{result}: @var{rule1-components}@dots{}
2874 | @var{rule2-components}@dots{}
2875 @dots{}
2876 ;
2877@end group
2878@end example
2879@end iftex
2880
2881@noindent
2882They are still considered distinct rules even when joined in this way.
2883
2884If @var{components} in a rule is empty, it means that @var{result} can
2885match the empty string. For example, here is how to define a
2886comma-separated sequence of zero or more @code{exp} groupings:
2887
2888@example
2889@group
2890expseq: /* empty */
2891 | expseq1
2892 ;
2893@end group
2894
2895@group
2896expseq1: exp
2897 | expseq1 ',' exp
2898 ;
2899@end group
2900@end example
2901
2902@noindent
2903It is customary to write a comment @samp{/* empty */} in each rule
2904with no components.
2905
342b8b6e 2906@node Recursion
bfa74976
RS
2907@section Recursive Rules
2908@cindex recursive rule
2909
2910A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2911also on its right hand side. Nearly all Bison grammars need to use
2912recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2913of a particular thing. Consider this recursive definition of a
2914comma-separated sequence of one or more expressions:
bfa74976
RS
2915
2916@example
2917@group
2918expseq1: exp
2919 | expseq1 ',' exp
2920 ;
2921@end group
2922@end example
2923
2924@cindex left recursion
2925@cindex right recursion
2926@noindent
2927Since the recursive use of @code{expseq1} is the leftmost symbol in the
2928right hand side, we call this @dfn{left recursion}. By contrast, here
2929the same construct is defined using @dfn{right recursion}:
2930
2931@example
2932@group
2933expseq1: exp
2934 | exp ',' expseq1
2935 ;
2936@end group
2937@end example
2938
2939@noindent
ec3bc396
AD
2940Any kind of sequence can be defined using either left recursion or right
2941recursion, but you should always use left recursion, because it can
2942parse a sequence of any number of elements with bounded stack space.
2943Right recursion uses up space on the Bison stack in proportion to the
2944number of elements in the sequence, because all the elements must be
2945shifted onto the stack before the rule can be applied even once.
2946@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2947of this.
bfa74976
RS
2948
2949@cindex mutual recursion
2950@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2951rule does not appear directly on its right hand side, but does appear
2952in rules for other nonterminals which do appear on its right hand
13863333 2953side.
bfa74976
RS
2954
2955For example:
2956
2957@example
2958@group
2959expr: primary
2960 | primary '+' primary
2961 ;
2962@end group
2963
2964@group
2965primary: constant
2966 | '(' expr ')'
2967 ;
2968@end group
2969@end example
2970
2971@noindent
2972defines two mutually-recursive nonterminals, since each refers to the
2973other.
2974
342b8b6e 2975@node Semantics
bfa74976
RS
2976@section Defining Language Semantics
2977@cindex defining language semantics
13863333 2978@cindex language semantics, defining
bfa74976
RS
2979
2980The grammar rules for a language determine only the syntax. The semantics
2981are determined by the semantic values associated with various tokens and
2982groupings, and by the actions taken when various groupings are recognized.
2983
2984For example, the calculator calculates properly because the value
2985associated with each expression is the proper number; it adds properly
2986because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2987the numbers associated with @var{x} and @var{y}.
2988
2989@menu
2990* Value Type:: Specifying one data type for all semantic values.
2991* Multiple Types:: Specifying several alternative data types.
2992* Actions:: An action is the semantic definition of a grammar rule.
2993* Action Types:: Specifying data types for actions to operate on.
2994* Mid-Rule Actions:: Most actions go at the end of a rule.
2995 This says when, why and how to use the exceptional
2996 action in the middle of a rule.
2997@end menu
2998
342b8b6e 2999@node Value Type
bfa74976
RS
3000@subsection Data Types of Semantic Values
3001@cindex semantic value type
3002@cindex value type, semantic
3003@cindex data types of semantic values
3004@cindex default data type
3005
3006In a simple program it may be sufficient to use the same data type for
3007the semantic values of all language constructs. This was true in the
c827f760 3008@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3009Notation Calculator}).
bfa74976
RS
3010
3011Bison's default is to use type @code{int} for all semantic values. To
3012specify some other type, define @code{YYSTYPE} as a macro, like this:
3013
3014@example
3015#define YYSTYPE double
3016@end example
3017
3018@noindent
342b8b6e 3019This macro definition must go in the prologue of the grammar file
75f5aaea 3020(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3021
342b8b6e 3022@node Multiple Types
bfa74976
RS
3023@subsection More Than One Value Type
3024
3025In most programs, you will need different data types for different kinds
3026of tokens and groupings. For example, a numeric constant may need type
779e7ceb 3027@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3028and an identifier might need a pointer to an entry in the symbol table.
3029
3030To use more than one data type for semantic values in one parser, Bison
3031requires you to do two things:
3032
3033@itemize @bullet
3034@item
3035Specify the entire collection of possible data types, with the
704a47c4
AD
3036@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3037Value Types}).
bfa74976
RS
3038
3039@item
14ded682
AD
3040Choose one of those types for each symbol (terminal or nonterminal) for
3041which semantic values are used. This is done for tokens with the
3042@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3043and for groupings with the @code{%type} Bison declaration (@pxref{Type
3044Decl, ,Nonterminal Symbols}).
bfa74976
RS
3045@end itemize
3046
342b8b6e 3047@node Actions
bfa74976
RS
3048@subsection Actions
3049@cindex action
3050@vindex $$
3051@vindex $@var{n}
3052
3053An action accompanies a syntactic rule and contains C code to be executed
3054each time an instance of that rule is recognized. The task of most actions
3055is to compute a semantic value for the grouping built by the rule from the
3056semantic values associated with tokens or smaller groupings.
3057
3058An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3059compound statement in C@. An action can contain any sequence of C
3060statements. Bison does not look for trigraphs, though, so if your C
3061code uses trigraphs you should ensure that they do not affect the
3062nesting of braces or the boundaries of comments, strings, or character
3063literals.
3064
3065An action can be placed at any position in the rule;
704a47c4
AD
3066it is executed at that position. Most rules have just one action at the
3067end of the rule, following all the components. Actions in the middle of
3068a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3069Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3070
3071The C code in an action can refer to the semantic values of the components
3072matched by the rule with the construct @code{$@var{n}}, which stands for
3073the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3074being constructed is @code{$$}. Bison translates both of these
3075constructs into expressions of the appropriate type when it copies the
3076actions into the parser file. @code{$$} is translated to a modifiable
3077lvalue, so it can be assigned to.
bfa74976
RS
3078
3079Here is a typical example:
3080
3081@example
3082@group
3083exp: @dots{}
3084 | exp '+' exp
3085 @{ $$ = $1 + $3; @}
3086@end group
3087@end example
3088
3089@noindent
3090This rule constructs an @code{exp} from two smaller @code{exp} groupings
3091connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3092refer to the semantic values of the two component @code{exp} groupings,
3093which are the first and third symbols on the right hand side of the rule.
3094The sum is stored into @code{$$} so that it becomes the semantic value of
3095the addition-expression just recognized by the rule. If there were a
3096useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3097referred to as @code{$2}.
bfa74976 3098
3ded9a63
AD
3099Note that the vertical-bar character @samp{|} is really a rule
3100separator, and actions are attached to a single rule. This is a
3101difference with tools like Flex, for which @samp{|} stands for either
3102``or'', or ``the same action as that of the next rule''. In the
3103following example, the action is triggered only when @samp{b} is found:
3104
3105@example
3106@group
3107a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3108@end group
3109@end example
3110
bfa74976
RS
3111@cindex default action
3112If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3113@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3114becomes the value of the whole rule. Of course, the default action is
3115valid only if the two data types match. There is no meaningful default
3116action for an empty rule; every empty rule must have an explicit action
3117unless the rule's value does not matter.
bfa74976
RS
3118
3119@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3120to tokens and groupings on the stack @emph{before} those that match the
3121current rule. This is a very risky practice, and to use it reliably
3122you must be certain of the context in which the rule is applied. Here
3123is a case in which you can use this reliably:
3124
3125@example
3126@group
3127foo: expr bar '+' expr @{ @dots{} @}
3128 | expr bar '-' expr @{ @dots{} @}
3129 ;
3130@end group
3131
3132@group
3133bar: /* empty */
3134 @{ previous_expr = $0; @}
3135 ;
3136@end group
3137@end example
3138
3139As long as @code{bar} is used only in the fashion shown here, @code{$0}
3140always refers to the @code{expr} which precedes @code{bar} in the
3141definition of @code{foo}.
3142
342b8b6e 3143@node Action Types
bfa74976
RS
3144@subsection Data Types of Values in Actions
3145@cindex action data types
3146@cindex data types in actions
3147
3148If you have chosen a single data type for semantic values, the @code{$$}
3149and @code{$@var{n}} constructs always have that data type.
3150
3151If you have used @code{%union} to specify a variety of data types, then you
3152must declare a choice among these types for each terminal or nonterminal
3153symbol that can have a semantic value. Then each time you use @code{$$} or
3154@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3155in the rule. In this example,
bfa74976
RS
3156
3157@example
3158@group
3159exp: @dots{}
3160 | exp '+' exp
3161 @{ $$ = $1 + $3; @}
3162@end group
3163@end example
3164
3165@noindent
3166@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3167have the data type declared for the nonterminal symbol @code{exp}. If
3168@code{$2} were used, it would have the data type declared for the
e0c471a9 3169terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3170
3171Alternatively, you can specify the data type when you refer to the value,
3172by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3173reference. For example, if you have defined types as shown here:
3174
3175@example
3176@group
3177%union @{
3178 int itype;
3179 double dtype;
3180@}
3181@end group
3182@end example
3183
3184@noindent
3185then you can write @code{$<itype>1} to refer to the first subunit of the
3186rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3187
342b8b6e 3188@node Mid-Rule Actions
bfa74976
RS
3189@subsection Actions in Mid-Rule
3190@cindex actions in mid-rule
3191@cindex mid-rule actions
3192
3193Occasionally it is useful to put an action in the middle of a rule.
3194These actions are written just like usual end-of-rule actions, but they
3195are executed before the parser even recognizes the following components.
3196
3197A mid-rule action may refer to the components preceding it using
3198@code{$@var{n}}, but it may not refer to subsequent components because
3199it is run before they are parsed.
3200
3201The mid-rule action itself counts as one of the components of the rule.
3202This makes a difference when there is another action later in the same rule
3203(and usually there is another at the end): you have to count the actions
3204along with the symbols when working out which number @var{n} to use in
3205@code{$@var{n}}.
3206
3207The mid-rule action can also have a semantic value. The action can set
3208its value with an assignment to @code{$$}, and actions later in the rule
3209can refer to the value using @code{$@var{n}}. Since there is no symbol
3210to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3211in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3212specify a data type each time you refer to this value.
bfa74976
RS
3213
3214There is no way to set the value of the entire rule with a mid-rule
3215action, because assignments to @code{$$} do not have that effect. The
3216only way to set the value for the entire rule is with an ordinary action
3217at the end of the rule.
3218
3219Here is an example from a hypothetical compiler, handling a @code{let}
3220statement that looks like @samp{let (@var{variable}) @var{statement}} and
3221serves to create a variable named @var{variable} temporarily for the
3222duration of @var{statement}. To parse this construct, we must put
3223@var{variable} into the symbol table while @var{statement} is parsed, then
3224remove it afterward. Here is how it is done:
3225
3226@example
3227@group
3228stmt: LET '(' var ')'
3229 @{ $<context>$ = push_context ();
3230 declare_variable ($3); @}
3231 stmt @{ $$ = $6;
3232 pop_context ($<context>5); @}
3233@end group
3234@end example
3235
3236@noindent
3237As soon as @samp{let (@var{variable})} has been recognized, the first
3238action is run. It saves a copy of the current semantic context (the
3239list of accessible variables) as its semantic value, using alternative
3240@code{context} in the data-type union. Then it calls
3241@code{declare_variable} to add the new variable to that list. Once the
3242first action is finished, the embedded statement @code{stmt} can be
3243parsed. Note that the mid-rule action is component number 5, so the
3244@samp{stmt} is component number 6.
3245
3246After the embedded statement is parsed, its semantic value becomes the
3247value of the entire @code{let}-statement. Then the semantic value from the
3248earlier action is used to restore the prior list of variables. This
3249removes the temporary @code{let}-variable from the list so that it won't
3250appear to exist while the rest of the program is parsed.
3251
3252Taking action before a rule is completely recognized often leads to
3253conflicts since the parser must commit to a parse in order to execute the
3254action. For example, the following two rules, without mid-rule actions,
3255can coexist in a working parser because the parser can shift the open-brace
3256token and look at what follows before deciding whether there is a
3257declaration or not:
3258
3259@example
3260@group
3261compound: '@{' declarations statements '@}'
3262 | '@{' statements '@}'
3263 ;
3264@end group
3265@end example
3266
3267@noindent
3268But when we add a mid-rule action as follows, the rules become nonfunctional:
3269
3270@example
3271@group
3272compound: @{ prepare_for_local_variables (); @}
3273 '@{' declarations statements '@}'
3274@end group
3275@group
3276 | '@{' statements '@}'
3277 ;
3278@end group
3279@end example
3280
3281@noindent
3282Now the parser is forced to decide whether to run the mid-rule action
3283when it has read no farther than the open-brace. In other words, it
3284must commit to using one rule or the other, without sufficient
3285information to do it correctly. (The open-brace token is what is called
3286the @dfn{look-ahead} token at this time, since the parser is still
3287deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3288
3289You might think that you could correct the problem by putting identical
3290actions into the two rules, like this:
3291
3292@example
3293@group
3294compound: @{ prepare_for_local_variables (); @}
3295 '@{' declarations statements '@}'
3296 | @{ prepare_for_local_variables (); @}
3297 '@{' statements '@}'
3298 ;
3299@end group
3300@end example
3301
3302@noindent
3303But this does not help, because Bison does not realize that the two actions
3304are identical. (Bison never tries to understand the C code in an action.)
3305
3306If the grammar is such that a declaration can be distinguished from a
3307statement by the first token (which is true in C), then one solution which
3308does work is to put the action after the open-brace, like this:
3309
3310@example
3311@group
3312compound: '@{' @{ prepare_for_local_variables (); @}
3313 declarations statements '@}'
3314 | '@{' statements '@}'
3315 ;
3316@end group
3317@end example
3318
3319@noindent
3320Now the first token of the following declaration or statement,
3321which would in any case tell Bison which rule to use, can still do so.
3322
3323Another solution is to bury the action inside a nonterminal symbol which
3324serves as a subroutine:
3325
3326@example
3327@group
3328subroutine: /* empty */
3329 @{ prepare_for_local_variables (); @}
3330 ;
3331
3332@end group
3333
3334@group
3335compound: subroutine
3336 '@{' declarations statements '@}'
3337 | subroutine
3338 '@{' statements '@}'
3339 ;
3340@end group
3341@end example
3342
3343@noindent
3344Now Bison can execute the action in the rule for @code{subroutine} without
3345deciding which rule for @code{compound} it will eventually use. Note that
3346the action is now at the end of its rule. Any mid-rule action can be
3347converted to an end-of-rule action in this way, and this is what Bison
3348actually does to implement mid-rule actions.
3349
342b8b6e 3350@node Locations
847bf1f5
AD
3351@section Tracking Locations
3352@cindex location
95923bd6
AD
3353@cindex textual location
3354@cindex location, textual
847bf1f5
AD
3355
3356Though grammar rules and semantic actions are enough to write a fully
72d2299c 3357functional parser, it can be useful to process some additional information,
3e259915
MA
3358especially symbol locations.
3359
704a47c4
AD
3360The way locations are handled is defined by providing a data type, and
3361actions to take when rules are matched.
847bf1f5
AD
3362
3363@menu
3364* Location Type:: Specifying a data type for locations.
3365* Actions and Locations:: Using locations in actions.
3366* Location Default Action:: Defining a general way to compute locations.
3367@end menu
3368
342b8b6e 3369@node Location Type
847bf1f5
AD
3370@subsection Data Type of Locations
3371@cindex data type of locations
3372@cindex default location type
3373
3374Defining a data type for locations is much simpler than for semantic values,
3375since all tokens and groupings always use the same type.
3376
3377The type of locations is specified by defining a macro called @code{YYLTYPE}.
3378When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3379four members:
3380
3381@example
6273355b 3382typedef struct YYLTYPE
847bf1f5
AD
3383@{
3384 int first_line;
3385 int first_column;
3386 int last_line;
3387 int last_column;
6273355b 3388@} YYLTYPE;
847bf1f5
AD
3389@end example
3390
342b8b6e 3391@node Actions and Locations
847bf1f5
AD
3392@subsection Actions and Locations
3393@cindex location actions
3394@cindex actions, location
3395@vindex @@$
3396@vindex @@@var{n}
3397
3398Actions are not only useful for defining language semantics, but also for
3399describing the behavior of the output parser with locations.
3400
3401The most obvious way for building locations of syntactic groupings is very
72d2299c 3402similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3403constructs can be used to access the locations of the elements being matched.
3404The location of the @var{n}th component of the right hand side is
3405@code{@@@var{n}}, while the location of the left hand side grouping is
3406@code{@@$}.
3407
3e259915 3408Here is a basic example using the default data type for locations:
847bf1f5
AD
3409
3410@example
3411@group
3412exp: @dots{}
3e259915 3413 | exp '/' exp
847bf1f5 3414 @{
3e259915
MA
3415 @@$.first_column = @@1.first_column;
3416 @@$.first_line = @@1.first_line;
847bf1f5
AD
3417 @@$.last_column = @@3.last_column;
3418 @@$.last_line = @@3.last_line;
3e259915
MA
3419 if ($3)
3420 $$ = $1 / $3;
3421 else
3422 @{
3423 $$ = 1;
4e03e201
AD
3424 fprintf (stderr,
3425 "Division by zero, l%d,c%d-l%d,c%d",
3426 @@3.first_line, @@3.first_column,
3427 @@3.last_line, @@3.last_column);
3e259915 3428 @}
847bf1f5
AD
3429 @}
3430@end group
3431@end example
3432
3e259915 3433As for semantic values, there is a default action for locations that is
72d2299c 3434run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3435beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3436last symbol.
3e259915 3437
72d2299c 3438With this default action, the location tracking can be fully automatic. The
3e259915
MA
3439example above simply rewrites this way:
3440
3441@example
3442@group
3443exp: @dots{}
3444 | exp '/' exp
3445 @{
3446 if ($3)
3447 $$ = $1 / $3;
3448 else
3449 @{
3450 $$ = 1;
4e03e201
AD
3451 fprintf (stderr,
3452 "Division by zero, l%d,c%d-l%d,c%d",
3453 @@3.first_line, @@3.first_column,
3454 @@3.last_line, @@3.last_column);
3e259915
MA
3455 @}
3456 @}
3457@end group
3458@end example
847bf1f5 3459
342b8b6e 3460@node Location Default Action
847bf1f5
AD
3461@subsection Default Action for Locations
3462@vindex YYLLOC_DEFAULT
3463
72d2299c 3464Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3465locations are much more general than semantic values, there is room in
3466the output parser to redefine the default action to take for each
72d2299c 3467rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3468matched, before the associated action is run. It is also invoked
3469while processing a syntax error, to compute the error's location.
847bf1f5 3470
3e259915 3471Most of the time, this macro is general enough to suppress location
79282c6c 3472dedicated code from semantic actions.
847bf1f5 3473
72d2299c 3474The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3475the location of the grouping (the result of the computation). When a
766de5eb 3476rule is matched, the second parameter identifies locations of
96b93a3d
PE
3477all right hand side elements of the rule being matched, and the third
3478parameter is the size of the rule's right hand side. When processing
766de5eb 3479a syntax error, the second parameter identifies locations of
96b93a3d
PE
3480the symbols that were discarded during error processing, and the third
3481parameter is the number of discarded symbols.
847bf1f5 3482
766de5eb 3483By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3484
766de5eb 3485@smallexample
847bf1f5 3486@group
766de5eb
PE
3487# define YYLLOC_DEFAULT(Current, Rhs, N) \
3488 do \
3489 if (N) \
3490 @{ \
3491 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3492 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3493 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3494 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3495 @} \
3496 else \
3497 @{ \
3498 (Current).first_line = (Current).last_line = \
3499 YYRHSLOC(Rhs, 0).last_line; \
3500 (Current).first_column = (Current).last_column = \
3501 YYRHSLOC(Rhs, 0).last_column; \
3502 @} \
3503 while (0)
847bf1f5 3504@end group
766de5eb 3505@end smallexample
676385e2 3506
766de5eb
PE
3507where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3508in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3509just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3510
3e259915 3511When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3512
3e259915 3513@itemize @bullet
79282c6c 3514@item
72d2299c 3515All arguments are free of side-effects. However, only the first one (the
3e259915 3516result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3517
3e259915 3518@item
766de5eb
PE
3519For consistency with semantic actions, valid indexes within the
3520right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3521valid index, and it refers to the symbol just before the reduction.
3522During error processing @var{n} is always positive.
0ae99356
PE
3523
3524@item
3525Your macro should parenthesize its arguments, if need be, since the
3526actual arguments may not be surrounded by parentheses. Also, your
3527macro should expand to something that can be used as a single
3528statement when it is followed by a semicolon.
3e259915 3529@end itemize
847bf1f5 3530
342b8b6e 3531@node Declarations
bfa74976
RS
3532@section Bison Declarations
3533@cindex declarations, Bison
3534@cindex Bison declarations
3535
3536The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3537used in formulating the grammar and the data types of semantic values.
3538@xref{Symbols}.
3539
3540All token type names (but not single-character literal tokens such as
3541@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3542declared if you need to specify which data type to use for the semantic
3543value (@pxref{Multiple Types, ,More Than One Value Type}).
3544
3545The first rule in the file also specifies the start symbol, by default.
3546If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3547it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3548Grammars}).
bfa74976
RS
3549
3550@menu
3551* Token Decl:: Declaring terminal symbols.
3552* Precedence Decl:: Declaring terminals with precedence and associativity.
3553* Union Decl:: Declaring the set of all semantic value types.
3554* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3555* Initial Action Decl:: Code run before parsing starts.
72f889cc 3556* Destructor Decl:: Declaring how symbols are freed.
d6328241 3557* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3558* Start Decl:: Specifying the start symbol.
3559* Pure Decl:: Requesting a reentrant parser.
3560* Decl Summary:: Table of all Bison declarations.
3561@end menu
3562
342b8b6e 3563@node Token Decl
bfa74976
RS
3564@subsection Token Type Names
3565@cindex declaring token type names
3566@cindex token type names, declaring
931c7513 3567@cindex declaring literal string tokens
bfa74976
RS
3568@findex %token
3569
3570The basic way to declare a token type name (terminal symbol) is as follows:
3571
3572@example
3573%token @var{name}
3574@end example
3575
3576Bison will convert this into a @code{#define} directive in
3577the parser, so that the function @code{yylex} (if it is in this file)
3578can use the name @var{name} to stand for this token type's code.
3579
14ded682
AD
3580Alternatively, you can use @code{%left}, @code{%right}, or
3581@code{%nonassoc} instead of @code{%token}, if you wish to specify
3582associativity and precedence. @xref{Precedence Decl, ,Operator
3583Precedence}.
bfa74976
RS
3584
3585You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3586a decimal or hexadecimal integer value in the field immediately
3587following the token name:
bfa74976
RS
3588
3589@example
3590%token NUM 300
1452af69 3591%token XNUM 0x12d // a GNU extension
bfa74976
RS
3592@end example
3593
3594@noindent
3595It is generally best, however, to let Bison choose the numeric codes for
3596all token types. Bison will automatically select codes that don't conflict
e966383b 3597with each other or with normal characters.
bfa74976
RS
3598
3599In the event that the stack type is a union, you must augment the
3600@code{%token} or other token declaration to include the data type
704a47c4
AD
3601alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3602Than One Value Type}).
bfa74976
RS
3603
3604For example:
3605
3606@example
3607@group
3608%union @{ /* define stack type */
3609 double val;
3610 symrec *tptr;
3611@}
3612%token <val> NUM /* define token NUM and its type */
3613@end group
3614@end example
3615
931c7513
RS
3616You can associate a literal string token with a token type name by
3617writing the literal string at the end of a @code{%token}
3618declaration which declares the name. For example:
3619
3620@example
3621%token arrow "=>"
3622@end example
3623
3624@noindent
3625For example, a grammar for the C language might specify these names with
3626equivalent literal string tokens:
3627
3628@example
3629%token <operator> OR "||"
3630%token <operator> LE 134 "<="
3631%left OR "<="
3632@end example
3633
3634@noindent
3635Once you equate the literal string and the token name, you can use them
3636interchangeably in further declarations or the grammar rules. The
3637@code{yylex} function can use the token name or the literal string to
3638obtain the token type code number (@pxref{Calling Convention}).
3639
342b8b6e 3640@node Precedence Decl
bfa74976
RS
3641@subsection Operator Precedence
3642@cindex precedence declarations
3643@cindex declaring operator precedence
3644@cindex operator precedence, declaring
3645
3646Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3647declare a token and specify its precedence and associativity, all at
3648once. These are called @dfn{precedence declarations}.
704a47c4
AD
3649@xref{Precedence, ,Operator Precedence}, for general information on
3650operator precedence.
bfa74976
RS
3651
3652The syntax of a precedence declaration is the same as that of
3653@code{%token}: either
3654
3655@example
3656%left @var{symbols}@dots{}
3657@end example
3658
3659@noindent
3660or
3661
3662@example
3663%left <@var{type}> @var{symbols}@dots{}
3664@end example
3665
3666And indeed any of these declarations serves the purposes of @code{%token}.
3667But in addition, they specify the associativity and relative precedence for
3668all the @var{symbols}:
3669
3670@itemize @bullet
3671@item
3672The associativity of an operator @var{op} determines how repeated uses
3673of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3674@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3675grouping @var{y} with @var{z} first. @code{%left} specifies
3676left-associativity (grouping @var{x} with @var{y} first) and
3677@code{%right} specifies right-associativity (grouping @var{y} with
3678@var{z} first). @code{%nonassoc} specifies no associativity, which
3679means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3680considered a syntax error.
3681
3682@item
3683The precedence of an operator determines how it nests with other operators.
3684All the tokens declared in a single precedence declaration have equal
3685precedence and nest together according to their associativity.
3686When two tokens declared in different precedence declarations associate,
3687the one declared later has the higher precedence and is grouped first.
3688@end itemize
3689
342b8b6e 3690@node Union Decl
bfa74976
RS
3691@subsection The Collection of Value Types
3692@cindex declaring value types
3693@cindex value types, declaring
3694@findex %union
3695
3696The @code{%union} declaration specifies the entire collection of possible
3697data types for semantic values. The keyword @code{%union} is followed by a
3698pair of braces containing the same thing that goes inside a @code{union} in
13863333 3699C.
bfa74976
RS
3700
3701For example:
3702
3703@example
3704@group
3705%union @{
3706 double val;
3707 symrec *tptr;
3708@}
3709@end group
3710@end example
3711
3712@noindent
3713This says that the two alternative types are @code{double} and @code{symrec
3714*}. They are given names @code{val} and @code{tptr}; these names are used
3715in the @code{%token} and @code{%type} declarations to pick one of the types
3716for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3717
6273355b
PE
3718As an extension to @acronym{POSIX}, a tag is allowed after the
3719@code{union}. For example:
3720
3721@example
3722@group
3723%union value @{
3724 double val;
3725 symrec *tptr;
3726@}
3727@end group
3728@end example
3729
3730specifies the union tag @code{value}, so the corresponding C type is
3731@code{union value}. If you do not specify a tag, it defaults to
3732@code{YYSTYPE}.
3733
3734Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3735a semicolon after the closing brace.
3736
342b8b6e 3737@node Type Decl
bfa74976
RS
3738@subsection Nonterminal Symbols
3739@cindex declaring value types, nonterminals
3740@cindex value types, nonterminals, declaring
3741@findex %type
3742
3743@noindent
3744When you use @code{%union} to specify multiple value types, you must
3745declare the value type of each nonterminal symbol for which values are
3746used. This is done with a @code{%type} declaration, like this:
3747
3748@example
3749%type <@var{type}> @var{nonterminal}@dots{}
3750@end example
3751
3752@noindent
704a47c4
AD
3753Here @var{nonterminal} is the name of a nonterminal symbol, and
3754@var{type} is the name given in the @code{%union} to the alternative
3755that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3756can give any number of nonterminal symbols in the same @code{%type}
3757declaration, if they have the same value type. Use spaces to separate
3758the symbol names.
bfa74976 3759
931c7513
RS
3760You can also declare the value type of a terminal symbol. To do this,
3761use the same @code{<@var{type}>} construction in a declaration for the
3762terminal symbol. All kinds of token declarations allow
3763@code{<@var{type}>}.
3764
18d192f0
AD
3765@node Initial Action Decl
3766@subsection Performing Actions before Parsing
3767@findex %initial-action
3768
3769Sometimes your parser needs to perform some initializations before
3770parsing. The @code{%initial-action} directive allows for such arbitrary
3771code.
3772
3773@deffn {Directive} %initial-action @{ @var{code} @}
3774@findex %initial-action
3775Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3776@code{yyparse} is called. The @var{code} may use @code{$$} and
3777@code{@@$} --- initial value and location of the look-ahead --- and the
3778@code{%parse-param}.
18d192f0
AD
3779@end deffn
3780
451364ed
AD
3781For instance, if your locations use a file name, you may use
3782
3783@example
48b16bbc 3784%parse-param @{ char const *file_name @};
451364ed
AD
3785%initial-action
3786@{
b47dbebe 3787 @@$.begin.filename = @@$.end.filename = file_name;
451364ed
AD
3788@};
3789@end example
3790
18d192f0 3791
72f889cc
AD
3792@node Destructor Decl
3793@subsection Freeing Discarded Symbols
3794@cindex freeing discarded symbols
3795@findex %destructor
3796
258b75ca
PE
3797Some symbols can be discarded by the parser. During error
3798recovery (@pxref{Error Recovery}), symbols already pushed
3799on the stack and tokens coming from the rest of the file
3800are discarded until the parser falls on its feet. If the parser
3801runs out of memory, all the symbols on the stack must be discarded.
3802Even if the parser succeeds, it must discard the start symbol.
3803
3804When discarded symbols convey heap based information, this memory is
3805lost. While this behavior can be tolerable for batch parsers, such as
3806in traditional compilers, it is unacceptable for programs like shells
3807or protocol implementations that may parse and execute indefinitely.
3808
3809The @code{%destructor} directive defines code that
3810is called when a symbol is discarded.
72f889cc
AD
3811
3812@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3813@findex %destructor
258b75ca
PE
3814Invoke @var{code} whenever the parser discards one of the
3815@var{symbols}. Within @var{code}, @code{$$} designates the semantic
3816value associated with the discarded symbol. The additional
3817parser parameters are also available
72f889cc
AD
3818(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3819
258b75ca
PE
3820@strong{Warning:} as of Bison 2.1, this feature is still
3821experimental, as there has not been enough user feedback. In particular,
3df37415 3822the syntax might still change.
72f889cc
AD
3823@end deffn
3824
3825For instance:
3826
3827@smallexample
3828%union
3829@{
3830 char *string;
3831@}
3832%token <string> STRING
3833%type <string> string
3834%destructor @{ free ($$); @} STRING string
3835@end smallexample
3836
3837@noindent
258b75ca 3838guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3839its associated memory will be freed.
3840
3841Note that in the future, Bison might also consider that right hand side
3842members that are not mentioned in the action can be destroyed. For
3843instance, in:
3844
3845@smallexample
3846comment: "/*" STRING "*/";
3847@end smallexample
3848
3849@noindent
3850the parser is entitled to destroy the semantic value of the
3851@code{string}. Of course, this will not apply to the default action;
3852compare:
3853
3854@smallexample
3855typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3856typefull: string; // $$ = $1 applies, $1 is not destroyed.
3857@end smallexample
3858
e757bb10
AD
3859@sp 1
3860
3861@cindex discarded symbols
3862@dfn{Discarded symbols} are the following:
3863
3864@itemize
3865@item
3866stacked symbols popped during the first phase of error recovery,
3867@item
3868incoming terminals during the second phase of error recovery,
3869@item
258b75ca
PE
3870the current look-ahead and the entire stack when the parser aborts
3871(either via an explicit call to @code{YYABORT}, or as a consequence of
3872a failed error recovery or of memory exhaustion), and
3873@item
3874the start symbol, when the parser succeeds.
e757bb10
AD
3875@end itemize
3876
3877
342b8b6e 3878@node Expect Decl
bfa74976
RS
3879@subsection Suppressing Conflict Warnings
3880@cindex suppressing conflict warnings
3881@cindex preventing warnings about conflicts
3882@cindex warnings, preventing
3883@cindex conflicts, suppressing warnings of
3884@findex %expect
d6328241 3885@findex %expect-rr
bfa74976
RS
3886
3887Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3888(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3889have harmless shift/reduce conflicts which are resolved in a predictable
3890way and would be difficult to eliminate. It is desirable to suppress
3891the warning about these conflicts unless the number of conflicts
3892changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3893
3894The declaration looks like this:
3895
3896@example
3897%expect @var{n}
3898@end example
3899
7da99ede
AD
3900Here @var{n} is a decimal integer. The declaration says there should be
3901no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3902reduce/reduce conflicts. The usual warning is
7da99ede
AD
3903given if there are either more or fewer conflicts, or if there are any
3904reduce/reduce conflicts.
bfa74976 3905
fa7e68c3 3906For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3907and should be eliminated entirely. Bison will always report
fa7e68c3 3908reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3909both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3910would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3911to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3912parsers, using the declaration:
3913
3914@example
3915%expect-rr @var{n}
3916@end example
3917
bfa74976
RS
3918In general, using @code{%expect} involves these steps:
3919
3920@itemize @bullet
3921@item
3922Compile your grammar without @code{%expect}. Use the @samp{-v} option
3923to get a verbose list of where the conflicts occur. Bison will also
3924print the number of conflicts.
3925
3926@item
3927Check each of the conflicts to make sure that Bison's default
3928resolution is what you really want. If not, rewrite the grammar and
3929go back to the beginning.
3930
3931@item
3932Add an @code{%expect} declaration, copying the number @var{n} from the
3933number which Bison printed.
3934@end itemize
3935
69363a9e
PE
3936Now Bison will stop annoying you if you do not change the number of
3937conflicts, but it will warn you again if changes in the grammar result
3938in more or fewer conflicts.
bfa74976 3939
342b8b6e 3940@node Start Decl
bfa74976
RS
3941@subsection The Start-Symbol
3942@cindex declaring the start symbol
3943@cindex start symbol, declaring
3944@cindex default start symbol
3945@findex %start
3946
3947Bison assumes by default that the start symbol for the grammar is the first
3948nonterminal specified in the grammar specification section. The programmer
3949may override this restriction with the @code{%start} declaration as follows:
3950
3951@example
3952%start @var{symbol}
3953@end example
3954
342b8b6e 3955@node Pure Decl
bfa74976
RS
3956@subsection A Pure (Reentrant) Parser
3957@cindex reentrant parser
3958@cindex pure parser
8c9a50be 3959@findex %pure-parser
bfa74976
RS
3960
3961A @dfn{reentrant} program is one which does not alter in the course of
3962execution; in other words, it consists entirely of @dfn{pure} (read-only)
3963code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3964for example, a non-reentrant program may not be safe to call from a signal
3965handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3966program must be called only within interlocks.
3967
70811b85 3968Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3969suitable for most uses, and it permits compatibility with Yacc. (The
3970standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3971statically allocated variables for communication with @code{yylex},
3972including @code{yylval} and @code{yylloc}.)
bfa74976 3973
70811b85 3974Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3975declaration @code{%pure-parser} says that you want the parser to be
70811b85 3976reentrant. It looks like this:
bfa74976
RS
3977
3978@example
8c9a50be 3979%pure-parser
bfa74976
RS
3980@end example
3981
70811b85
RS
3982The result is that the communication variables @code{yylval} and
3983@code{yylloc} become local variables in @code{yyparse}, and a different
3984calling convention is used for the lexical analyzer function
3985@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3986Parsers}, for the details of this. The variable @code{yynerrs} also
3987becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3988Reporting Function @code{yyerror}}). The convention for calling
3989@code{yyparse} itself is unchanged.
3990
3991Whether the parser is pure has nothing to do with the grammar rules.
3992You can generate either a pure parser or a nonreentrant parser from any
3993valid grammar.
bfa74976 3994
342b8b6e 3995@node Decl Summary
bfa74976
RS
3996@subsection Bison Declaration Summary
3997@cindex Bison declaration summary
3998@cindex declaration summary
3999@cindex summary, Bison declaration
4000
d8988b2f 4001Here is a summary of the declarations used to define a grammar:
bfa74976 4002
18b519c0 4003@deffn {Directive} %union
bfa74976
RS
4004Declare the collection of data types that semantic values may have
4005(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4006@end deffn
bfa74976 4007
18b519c0 4008@deffn {Directive} %token
bfa74976
RS
4009Declare a terminal symbol (token type name) with no precedence
4010or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4011@end deffn
bfa74976 4012
18b519c0 4013@deffn {Directive} %right
bfa74976
RS
4014Declare a terminal symbol (token type name) that is right-associative
4015(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4016@end deffn
bfa74976 4017
18b519c0 4018@deffn {Directive} %left
bfa74976
RS
4019Declare a terminal symbol (token type name) that is left-associative
4020(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4021@end deffn
bfa74976 4022
18b519c0 4023@deffn {Directive} %nonassoc
bfa74976 4024Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4025(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4026Using it in a way that would be associative is a syntax error.
4027@end deffn
4028
91d2c560 4029@ifset defaultprec
39a06c25 4030@deffn {Directive} %default-prec
22fccf95 4031Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4032(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4033@end deffn
91d2c560 4034@end ifset
bfa74976 4035
18b519c0 4036@deffn {Directive} %type
bfa74976
RS
4037Declare the type of semantic values for a nonterminal symbol
4038(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4039@end deffn
bfa74976 4040
18b519c0 4041@deffn {Directive} %start
89cab50d
AD
4042Specify the grammar's start symbol (@pxref{Start Decl, ,The
4043Start-Symbol}).
18b519c0 4044@end deffn
bfa74976 4045
18b519c0 4046@deffn {Directive} %expect
bfa74976
RS
4047Declare the expected number of shift-reduce conflicts
4048(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4049@end deffn
4050
bfa74976 4051
d8988b2f
AD
4052@sp 1
4053@noindent
4054In order to change the behavior of @command{bison}, use the following
4055directives:
4056
18b519c0 4057@deffn {Directive} %debug
4947ebdb
PE
4058In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4059already defined, so that the debugging facilities are compiled.
18b519c0 4060@end deffn
ec3bc396 4061@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4062
18b519c0 4063@deffn {Directive} %defines
4bfd5e4e
PE
4064Write a header file containing macro definitions for the token type
4065names defined in the grammar as well as a few other declarations.
d8988b2f 4066If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4067is named @file{@var{name}.h}.
d8988b2f 4068
4bfd5e4e 4069Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
4070declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
4071(@pxref{Multiple Types, ,More Than One Value Type}) with components
4072that require other definitions, or if you have defined a
4bfd5e4e 4073@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
4074Values}), you need to arrange for these definitions to be propagated to
4075all modules, e.g., by putting them in a
4bfd5e4e
PE
4076prerequisite header that is included both by your parser and by any
4077other module that needs @code{YYSTYPE}.
4078
4079Unless your parser is pure, the output header declares @code{yylval}
4080as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4081Parser}.
4082
4083If you have also used locations, the output header declares
4084@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4085@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4086Locations}.
4087
4088This output file is normally essential if you wish to put the
4089definition of @code{yylex} in a separate source file, because
4090@code{yylex} typically needs to be able to refer to the
4091above-mentioned declarations and to the token type codes.
4092@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4093@end deffn
d8988b2f 4094
18b519c0 4095@deffn {Directive} %destructor
258b75ca 4096Specify how the parser should reclaim the memory associated to
fa7e68c3 4097discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4098@end deffn
72f889cc 4099
18b519c0 4100@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4101Specify a prefix to use for all Bison output file names. The names are
4102chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4103@end deffn
d8988b2f 4104
18b519c0 4105@deffn {Directive} %locations
89cab50d
AD
4106Generate the code processing the locations (@pxref{Action Features,
4107,Special Features for Use in Actions}). This mode is enabled as soon as
4108the grammar uses the special @samp{@@@var{n}} tokens, but if your
4109grammar does not use it, using @samp{%locations} allows for more
6e649e65 4110accurate syntax error messages.
18b519c0 4111@end deffn
89cab50d 4112
18b519c0 4113@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4114Rename the external symbols used in the parser so that they start with
4115@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4116is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4117@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4118possible @code{yylloc}. For example, if you use
4119@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4120and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4121Program}.
18b519c0 4122@end deffn
931c7513 4123
91d2c560 4124@ifset defaultprec
22fccf95
PE
4125@deffn {Directive} %no-default-prec
4126Do not assign a precedence to rules lacking an explicit @code{%prec}
4127modifier (@pxref{Contextual Precedence, ,Context-Dependent
4128Precedence}).
4129@end deffn
91d2c560 4130@end ifset
22fccf95 4131
18b519c0 4132@deffn {Directive} %no-parser
6deb4447
AD
4133Do not include any C code in the parser file; generate tables only. The
4134parser file contains just @code{#define} directives and static variable
4135declarations.
4136
4137This option also tells Bison to write the C code for the grammar actions
fa4d969f 4138into a file named @file{@var{file}.act}, in the form of a
6deb4447 4139brace-surrounded body fit for a @code{switch} statement.
18b519c0 4140@end deffn
6deb4447 4141
18b519c0 4142@deffn {Directive} %no-lines
931c7513
RS
4143Don't generate any @code{#line} preprocessor commands in the parser
4144file. Ordinarily Bison writes these commands in the parser file so that
4145the C compiler and debuggers will associate errors and object code with
4146your source file (the grammar file). This directive causes them to
4147associate errors with the parser file, treating it an independent source
4148file in its own right.
18b519c0 4149@end deffn
931c7513 4150
fa4d969f
PE
4151@deffn {Directive} %output="@var{file}"
4152Specify @var{file} for the parser file.
18b519c0 4153@end deffn
6deb4447 4154
18b519c0 4155@deffn {Directive} %pure-parser
d8988b2f
AD
4156Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4157(Reentrant) Parser}).
18b519c0 4158@end deffn
6deb4447 4159
18b519c0 4160@deffn {Directive} %token-table
931c7513
RS
4161Generate an array of token names in the parser file. The name of the
4162array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4163token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4164three elements of @code{yytname} correspond to the predefined tokens
4165@code{"$end"},
88bce5a2
AD
4166@code{"error"}, and @code{"$undefined"}; after these come the symbols
4167defined in the grammar file.
931c7513 4168
9e0876fb
PE
4169The name in the table includes all the characters needed to represent
4170the token in Bison. For single-character literals and literal
4171strings, this includes the surrounding quoting characters and any
4172escape sequences. For example, the Bison single-character literal
4173@code{'+'} corresponds to a three-character name, represented in C as
4174@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4175corresponds to a five-character name, represented in C as
4176@code{"\"\\\\/\""}.
931c7513 4177
8c9a50be 4178When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4179definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4180@code{YYNRULES}, and @code{YYNSTATES}:
4181
4182@table @code
4183@item YYNTOKENS
4184The highest token number, plus one.
4185@item YYNNTS
9ecbd125 4186The number of nonterminal symbols.
931c7513
RS
4187@item YYNRULES
4188The number of grammar rules,
4189@item YYNSTATES
4190The number of parser states (@pxref{Parser States}).
4191@end table
18b519c0 4192@end deffn
d8988b2f 4193
18b519c0 4194@deffn {Directive} %verbose
d8988b2f
AD
4195Write an extra output file containing verbose descriptions of the
4196parser states and what is done for each type of look-ahead token in
72d2299c 4197that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4198information.
18b519c0 4199@end deffn
d8988b2f 4200
18b519c0 4201@deffn {Directive} %yacc
d8988b2f
AD
4202Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4203including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4204@end deffn
d8988b2f
AD
4205
4206
342b8b6e 4207@node Multiple Parsers
bfa74976
RS
4208@section Multiple Parsers in the Same Program
4209
4210Most programs that use Bison parse only one language and therefore contain
4211only one Bison parser. But what if you want to parse more than one
4212language with the same program? Then you need to avoid a name conflict
4213between different definitions of @code{yyparse}, @code{yylval}, and so on.
4214
4215The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4216(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4217functions and variables of the Bison parser to start with @var{prefix}
4218instead of @samp{yy}. You can use this to give each parser distinct
4219names that do not conflict.
bfa74976
RS
4220
4221The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4222@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4223@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4224the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4225
4226@strong{All the other variables and macros associated with Bison are not
4227renamed.} These others are not global; there is no conflict if the same
4228name is used in different parsers. For example, @code{YYSTYPE} is not
4229renamed, but defining this in different ways in different parsers causes
4230no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4231
4232The @samp{-p} option works by adding macro definitions to the beginning
4233of the parser source file, defining @code{yyparse} as
4234@code{@var{prefix}parse}, and so on. This effectively substitutes one
4235name for the other in the entire parser file.
4236
342b8b6e 4237@node Interface
bfa74976
RS
4238@chapter Parser C-Language Interface
4239@cindex C-language interface
4240@cindex interface
4241
4242The Bison parser is actually a C function named @code{yyparse}. Here we
4243describe the interface conventions of @code{yyparse} and the other
4244functions that it needs to use.
4245
4246Keep in mind that the parser uses many C identifiers starting with
4247@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4248identifier (aside from those in this manual) in an action or in epilogue
4249in the grammar file, you are likely to run into trouble.
bfa74976
RS
4250
4251@menu
4252* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4253* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4254 which reads tokens.
4255* Error Reporting:: You must supply a function @code{yyerror}.
4256* Action Features:: Special features for use in actions.
f7ab6a50
PE
4257* Internationalization:: How to let the parser speak in the user's
4258 native language.
bfa74976
RS
4259@end menu
4260
342b8b6e 4261@node Parser Function
bfa74976
RS
4262@section The Parser Function @code{yyparse}
4263@findex yyparse
4264
4265You call the function @code{yyparse} to cause parsing to occur. This
4266function reads tokens, executes actions, and ultimately returns when it
4267encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4268write an action which directs @code{yyparse} to return immediately
4269without reading further.
bfa74976 4270
2a8d363a
AD
4271
4272@deftypefun int yyparse (void)
bfa74976
RS
4273The value returned by @code{yyparse} is 0 if parsing was successful (return
4274is due to end-of-input).
4275
b47dbebe
PE
4276The value is 1 if parsing failed because of invalid input, i.e., input
4277that contains a syntax error or that causes @code{YYABORT} to be
4278invoked.
4279
4280The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4281@end deftypefun
bfa74976
RS
4282
4283In an action, you can cause immediate return from @code{yyparse} by using
4284these macros:
4285
2a8d363a 4286@defmac YYACCEPT
bfa74976
RS
4287@findex YYACCEPT
4288Return immediately with value 0 (to report success).
2a8d363a 4289@end defmac
bfa74976 4290
2a8d363a 4291@defmac YYABORT
bfa74976
RS
4292@findex YYABORT
4293Return immediately with value 1 (to report failure).
2a8d363a
AD
4294@end defmac
4295
4296If you use a reentrant parser, you can optionally pass additional
4297parameter information to it in a reentrant way. To do so, use the
4298declaration @code{%parse-param}:
4299
feeb0eda 4300@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4301@findex %parse-param
feeb0eda 4302Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4303additional @code{yyparse} argument.
4304The @var{argument-declaration} is used when declaring
feeb0eda
PE
4305functions or prototypes. The last identifier in
4306@var{argument-declaration} must be the argument name.
2a8d363a
AD
4307@end deffn
4308
4309Here's an example. Write this in the parser:
4310
4311@example
feeb0eda
PE
4312%parse-param @{int *nastiness@}
4313%parse-param @{int *randomness@}
2a8d363a
AD
4314@end example
4315
4316@noindent
4317Then call the parser like this:
4318
4319@example
4320@{
4321 int nastiness, randomness;
4322 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4323 value = yyparse (&nastiness, &randomness);
4324 @dots{}
4325@}
4326@end example
4327
4328@noindent
4329In the grammar actions, use expressions like this to refer to the data:
4330
4331@example
4332exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4333@end example
4334
bfa74976 4335
342b8b6e 4336@node Lexical
bfa74976
RS
4337@section The Lexical Analyzer Function @code{yylex}
4338@findex yylex
4339@cindex lexical analyzer
4340
4341The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4342the input stream and returns them to the parser. Bison does not create
4343this function automatically; you must write it so that @code{yyparse} can
4344call it. The function is sometimes referred to as a lexical scanner.
4345
4346In simple programs, @code{yylex} is often defined at the end of the Bison
4347grammar file. If @code{yylex} is defined in a separate source file, you
4348need to arrange for the token-type macro definitions to be available there.
4349To do this, use the @samp{-d} option when you run Bison, so that it will
4350write these macro definitions into a separate header file
4351@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4352that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4353
4354@menu
4355* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4356* Token Values:: How @code{yylex} must return the semantic value
4357 of the token it has read.
95923bd6 4358* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4359 (line number, etc.) of the token, if the
4360 actions want that.
4361* Pure Calling:: How the calling convention differs
4362 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4363@end menu
4364
342b8b6e 4365@node Calling Convention
bfa74976
RS
4366@subsection Calling Convention for @code{yylex}
4367
72d2299c
PE
4368The value that @code{yylex} returns must be the positive numeric code
4369for the type of token it has just found; a zero or negative value
4370signifies end-of-input.
bfa74976
RS
4371
4372When a token is referred to in the grammar rules by a name, that name
4373in the parser file becomes a C macro whose definition is the proper
4374numeric code for that token type. So @code{yylex} can use the name
4375to indicate that type. @xref{Symbols}.
4376
4377When a token is referred to in the grammar rules by a character literal,
4378the numeric code for that character is also the code for the token type.
72d2299c
PE
4379So @code{yylex} can simply return that character code, possibly converted
4380to @code{unsigned char} to avoid sign-extension. The null character
4381must not be used this way, because its code is zero and that
bfa74976
RS
4382signifies end-of-input.
4383
4384Here is an example showing these things:
4385
4386@example
13863333
AD
4387int
4388yylex (void)
bfa74976
RS
4389@{
4390 @dots{}
72d2299c 4391 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4392 return 0;
4393 @dots{}
4394 if (c == '+' || c == '-')
72d2299c 4395 return c; /* Assume token type for `+' is '+'. */
bfa74976 4396 @dots{}
72d2299c 4397 return INT; /* Return the type of the token. */
bfa74976
RS
4398 @dots{}
4399@}
4400@end example
4401
4402@noindent
4403This interface has been designed so that the output from the @code{lex}
4404utility can be used without change as the definition of @code{yylex}.
4405
931c7513
RS
4406If the grammar uses literal string tokens, there are two ways that
4407@code{yylex} can determine the token type codes for them:
4408
4409@itemize @bullet
4410@item
4411If the grammar defines symbolic token names as aliases for the
4412literal string tokens, @code{yylex} can use these symbolic names like
4413all others. In this case, the use of the literal string tokens in
4414the grammar file has no effect on @code{yylex}.
4415
4416@item
9ecbd125 4417@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4418table. The index of the token in the table is the token type's code.
9ecbd125 4419The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4420double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4421token's characters are escaped as necessary to be suitable as input
4422to Bison.
931c7513 4423
9e0876fb
PE
4424Here's code for looking up a multicharacter token in @code{yytname},
4425assuming that the characters of the token are stored in
4426@code{token_buffer}, and assuming that the token does not contain any
4427characters like @samp{"} that require escaping.
931c7513
RS
4428
4429@smallexample
4430for (i = 0; i < YYNTOKENS; i++)
4431 @{
4432 if (yytname[i] != 0
4433 && yytname[i][0] == '"'
68449b3a
PE
4434 && ! strncmp (yytname[i] + 1, token_buffer,
4435 strlen (token_buffer))
931c7513
RS
4436 && yytname[i][strlen (token_buffer) + 1] == '"'
4437 && yytname[i][strlen (token_buffer) + 2] == 0)
4438 break;
4439 @}
4440@end smallexample
4441
4442The @code{yytname} table is generated only if you use the
8c9a50be 4443@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4444@end itemize
4445
342b8b6e 4446@node Token Values
bfa74976
RS
4447@subsection Semantic Values of Tokens
4448
4449@vindex yylval
14ded682 4450In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4451be stored into the global variable @code{yylval}. When you are using
4452just one data type for semantic values, @code{yylval} has that type.
4453Thus, if the type is @code{int} (the default), you might write this in
4454@code{yylex}:
4455
4456@example
4457@group
4458 @dots{}
72d2299c
PE
4459 yylval = value; /* Put value onto Bison stack. */
4460 return INT; /* Return the type of the token. */
bfa74976
RS
4461 @dots{}
4462@end group
4463@end example
4464
4465When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4466made from the @code{%union} declaration (@pxref{Union Decl, ,The
4467Collection of Value Types}). So when you store a token's value, you
4468must use the proper member of the union. If the @code{%union}
4469declaration looks like this:
bfa74976
RS
4470
4471@example
4472@group
4473%union @{
4474 int intval;
4475 double val;
4476 symrec *tptr;
4477@}
4478@end group
4479@end example
4480
4481@noindent
4482then the code in @code{yylex} might look like this:
4483
4484@example
4485@group
4486 @dots{}
72d2299c
PE
4487 yylval.intval = value; /* Put value onto Bison stack. */
4488 return INT; /* Return the type of the token. */
bfa74976
RS
4489 @dots{}
4490@end group
4491@end example
4492
95923bd6
AD
4493@node Token Locations
4494@subsection Textual Locations of Tokens
bfa74976
RS
4495
4496@vindex yylloc
847bf1f5
AD
4497If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4498Tracking Locations}) in actions to keep track of the
89cab50d
AD
4499textual locations of tokens and groupings, then you must provide this
4500information in @code{yylex}. The function @code{yyparse} expects to
4501find the textual location of a token just parsed in the global variable
4502@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4503variable.
4504
4505By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4506initialize the members that are going to be used by the actions. The
4507four members are called @code{first_line}, @code{first_column},
4508@code{last_line} and @code{last_column}. Note that the use of this
4509feature makes the parser noticeably slower.
bfa74976
RS
4510
4511@tindex YYLTYPE
4512The data type of @code{yylloc} has the name @code{YYLTYPE}.
4513
342b8b6e 4514@node Pure Calling
c656404a 4515@subsection Calling Conventions for Pure Parsers
bfa74976 4516
8c9a50be 4517When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4518pure, reentrant parser, the global communication variables @code{yylval}
4519and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4520Parser}.) In such parsers the two global variables are replaced by
4521pointers passed as arguments to @code{yylex}. You must declare them as
4522shown here, and pass the information back by storing it through those
4523pointers.
bfa74976
RS
4524
4525@example
13863333
AD
4526int
4527yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4528@{
4529 @dots{}
4530 *lvalp = value; /* Put value onto Bison stack. */
4531 return INT; /* Return the type of the token. */
4532 @dots{}
4533@}
4534@end example
4535
4536If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4537textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4538this case, omit the second argument; @code{yylex} will be called with
4539only one argument.
4540
e425e872 4541
2a8d363a
AD
4542If you wish to pass the additional parameter data to @code{yylex}, use
4543@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4544Function}).
e425e872 4545
feeb0eda 4546@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4547@findex %lex-param
feeb0eda
PE
4548Declare that @code{argument-declaration} is an additional @code{yylex}
4549argument declaration.
2a8d363a 4550@end deffn
e425e872 4551
2a8d363a 4552For instance:
e425e872
RS
4553
4554@example
feeb0eda
PE
4555%parse-param @{int *nastiness@}
4556%lex-param @{int *nastiness@}
4557%parse-param @{int *randomness@}
e425e872
RS
4558@end example
4559
4560@noindent
2a8d363a 4561results in the following signature:
e425e872
RS
4562
4563@example
2a8d363a
AD
4564int yylex (int *nastiness);
4565int yyparse (int *nastiness, int *randomness);
e425e872
RS
4566@end example
4567
2a8d363a 4568If @code{%pure-parser} is added:
c656404a
RS
4569
4570@example
2a8d363a
AD
4571int yylex (YYSTYPE *lvalp, int *nastiness);
4572int yyparse (int *nastiness, int *randomness);
c656404a
RS
4573@end example
4574
2a8d363a
AD
4575@noindent
4576and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4577
2a8d363a
AD
4578@example
4579int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4580int yyparse (int *nastiness, int *randomness);
4581@end example
931c7513 4582
342b8b6e 4583@node Error Reporting
bfa74976
RS
4584@section The Error Reporting Function @code{yyerror}
4585@cindex error reporting function
4586@findex yyerror
4587@cindex parse error
4588@cindex syntax error
4589
6e649e65 4590The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4591whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4592action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4593macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4594in Actions}).
bfa74976
RS
4595
4596The Bison parser expects to report the error by calling an error
4597reporting function named @code{yyerror}, which you must supply. It is
4598called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4599receives one argument. For a syntax error, the string is normally
4600@w{@code{"syntax error"}}.
bfa74976 4601
2a8d363a
AD
4602@findex %error-verbose
4603If you invoke the directive @code{%error-verbose} in the Bison
4604declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4605Section}), then Bison provides a more verbose and specific error message
6e649e65 4606string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4607
1a059451
PE
4608The parser can detect one other kind of error: memory exhaustion. This
4609can happen when the input contains constructions that are very deeply
bfa74976 4610nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4611parser normally extends its stack automatically up to a very large limit. But
4612if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4613fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4614
4615In some cases diagnostics like @w{@code{"syntax error"}} are
4616translated automatically from English to some other language before
4617they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4618
4619The following definition suffices in simple programs:
4620
4621@example
4622@group
13863333 4623void
38a92d50 4624yyerror (char const *s)
bfa74976
RS
4625@{
4626@end group
4627@group
4628 fprintf (stderr, "%s\n", s);
4629@}
4630@end group
4631@end example
4632
4633After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4634error recovery if you have written suitable error recovery grammar rules
4635(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4636immediately return 1.
4637
93724f13 4638Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4639an access to the current location.
4640This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4641parsers, but not for the Yacc parser, for historical reasons. I.e., if
4642@samp{%locations %pure-parser} is passed then the prototypes for
4643@code{yyerror} are:
4644
4645@example
38a92d50
PE
4646void yyerror (char const *msg); /* Yacc parsers. */
4647void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4648@end example
4649
feeb0eda 4650If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4651
4652@example
b317297e
PE
4653void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4654void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4655@end example
4656
fa7e68c3 4657Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4658convention for absolutely pure parsers, i.e., when the calling
4659convention of @code{yylex} @emph{and} the calling convention of
4660@code{%pure-parser} are pure. I.e.:
4661
4662@example
4663/* Location tracking. */
4664%locations
4665/* Pure yylex. */
4666%pure-parser
feeb0eda 4667%lex-param @{int *nastiness@}
2a8d363a 4668/* Pure yyparse. */
feeb0eda
PE
4669%parse-param @{int *nastiness@}
4670%parse-param @{int *randomness@}
2a8d363a
AD
4671@end example
4672
4673@noindent
4674results in the following signatures for all the parser kinds:
4675
4676@example
4677int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4678int yyparse (int *nastiness, int *randomness);
93724f13
AD
4679void yyerror (YYLTYPE *locp,
4680 int *nastiness, int *randomness,
38a92d50 4681 char const *msg);
2a8d363a
AD
4682@end example
4683
1c0c3e95 4684@noindent
38a92d50
PE
4685The prototypes are only indications of how the code produced by Bison
4686uses @code{yyerror}. Bison-generated code always ignores the returned
4687value, so @code{yyerror} can return any type, including @code{void}.
4688Also, @code{yyerror} can be a variadic function; that is why the
4689message is always passed last.
4690
4691Traditionally @code{yyerror} returns an @code{int} that is always
4692ignored, but this is purely for historical reasons, and @code{void} is
4693preferable since it more accurately describes the return type for
4694@code{yyerror}.
93724f13 4695
bfa74976
RS
4696@vindex yynerrs
4697The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4698reported so far. Normally this variable is global; but if you
704a47c4
AD
4699request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4700then it is a local variable which only the actions can access.
bfa74976 4701
342b8b6e 4702@node Action Features
bfa74976
RS
4703@section Special Features for Use in Actions
4704@cindex summary, action features
4705@cindex action features summary
4706
4707Here is a table of Bison constructs, variables and macros that
4708are useful in actions.
4709
18b519c0 4710@deffn {Variable} $$
bfa74976
RS
4711Acts like a variable that contains the semantic value for the
4712grouping made by the current rule. @xref{Actions}.
18b519c0 4713@end deffn
bfa74976 4714
18b519c0 4715@deffn {Variable} $@var{n}
bfa74976
RS
4716Acts like a variable that contains the semantic value for the
4717@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4718@end deffn
bfa74976 4719
18b519c0 4720@deffn {Variable} $<@var{typealt}>$
bfa74976 4721Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4722specified by the @code{%union} declaration. @xref{Action Types, ,Data
4723Types of Values in Actions}.
18b519c0 4724@end deffn
bfa74976 4725
18b519c0 4726@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4727Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4728union specified by the @code{%union} declaration.
e0c471a9 4729@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4730@end deffn
bfa74976 4731
18b519c0 4732@deffn {Macro} YYABORT;
bfa74976
RS
4733Return immediately from @code{yyparse}, indicating failure.
4734@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4735@end deffn
bfa74976 4736
18b519c0 4737@deffn {Macro} YYACCEPT;
bfa74976
RS
4738Return immediately from @code{yyparse}, indicating success.
4739@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4740@end deffn
bfa74976 4741
18b519c0 4742@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4743@findex YYBACKUP
4744Unshift a token. This macro is allowed only for rules that reduce
4745a single value, and only when there is no look-ahead token.
c827f760 4746It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4747It installs a look-ahead token with token type @var{token} and
4748semantic value @var{value}; then it discards the value that was
4749going to be reduced by this rule.
4750
4751If the macro is used when it is not valid, such as when there is
4752a look-ahead token already, then it reports a syntax error with
4753a message @samp{cannot back up} and performs ordinary error
4754recovery.
4755
4756In either case, the rest of the action is not executed.
18b519c0 4757@end deffn
bfa74976 4758
18b519c0 4759@deffn {Macro} YYEMPTY
bfa74976
RS
4760@vindex YYEMPTY
4761Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4762@end deffn
bfa74976 4763
18b519c0 4764@deffn {Macro} YYERROR;
bfa74976
RS
4765@findex YYERROR
4766Cause an immediate syntax error. This statement initiates error
4767recovery just as if the parser itself had detected an error; however, it
4768does not call @code{yyerror}, and does not print any message. If you
4769want to print an error message, call @code{yyerror} explicitly before
4770the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4771@end deffn
bfa74976 4772
18b519c0 4773@deffn {Macro} YYRECOVERING
bfa74976
RS
4774This macro stands for an expression that has the value 1 when the parser
4775is recovering from a syntax error, and 0 the rest of the time.
4776@xref{Error Recovery}.
18b519c0 4777@end deffn
bfa74976 4778
18b519c0 4779@deffn {Variable} yychar
bfa74976
RS
4780Variable containing the current look-ahead token. (In a pure parser,
4781this is actually a local variable within @code{yyparse}.) When there is
4782no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4783@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4784@end deffn
bfa74976 4785
18b519c0 4786@deffn {Macro} yyclearin;
bfa74976
RS
4787Discard the current look-ahead token. This is useful primarily in
4788error rules. @xref{Error Recovery}.
18b519c0 4789@end deffn
bfa74976 4790
18b519c0 4791@deffn {Macro} yyerrok;
bfa74976 4792Resume generating error messages immediately for subsequent syntax
13863333 4793errors. This is useful primarily in error rules.
bfa74976 4794@xref{Error Recovery}.
18b519c0 4795@end deffn
bfa74976 4796
18b519c0 4797@deffn {Value} @@$
847bf1f5 4798@findex @@$
95923bd6 4799Acts like a structure variable containing information on the textual location
847bf1f5
AD
4800of the grouping made by the current rule. @xref{Locations, ,
4801Tracking Locations}.
bfa74976 4802
847bf1f5
AD
4803@c Check if those paragraphs are still useful or not.
4804
4805@c @example
4806@c struct @{
4807@c int first_line, last_line;
4808@c int first_column, last_column;
4809@c @};
4810@c @end example
4811
4812@c Thus, to get the starting line number of the third component, you would
4813@c use @samp{@@3.first_line}.
bfa74976 4814
847bf1f5
AD
4815@c In order for the members of this structure to contain valid information,
4816@c you must make @code{yylex} supply this information about each token.
4817@c If you need only certain members, then @code{yylex} need only fill in
4818@c those members.
bfa74976 4819
847bf1f5 4820@c The use of this feature makes the parser noticeably slower.
18b519c0 4821@end deffn
847bf1f5 4822
18b519c0 4823@deffn {Value} @@@var{n}
847bf1f5 4824@findex @@@var{n}
95923bd6 4825Acts like a structure variable containing information on the textual location
847bf1f5
AD
4826of the @var{n}th component of the current rule. @xref{Locations, ,
4827Tracking Locations}.
18b519c0 4828@end deffn
bfa74976 4829
f7ab6a50
PE
4830@node Internationalization
4831@section Parser Internationalization
4832@cindex internationalization
4833@cindex i18n
4834@cindex NLS
4835@cindex gettext
4836@cindex bison-po
4837
4838A Bison-generated parser can print diagnostics, including error and
4839tracing messages. By default, they appear in English. However, Bison
4840also supports outputting diagnostics in the user's native language.
4841To make this work, the user should set the usual environment
30757c8c
PE
4842variables. @xref{Users, , The User's View, gettext, GNU
4843@code{gettext} utilities}. For
f7ab6a50
PE
4844example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might set
4845the user's locale to French Canadian using the @acronym{UTF}-8
4846encoding. The exact set of available locales depends on the user's
4847installation.
4848
4849The maintainer of a package that uses a Bison-generated parser enables
4850the internationalization of the parser's output through the following
4851steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4852@acronym{GNU} Automake.
4853
4854@enumerate
4855@item
30757c8c 4856@cindex bison-i18n.m4
f7ab6a50
PE
4857Into the directory containing the @acronym{GNU} Autoconf macros used
4858by the package---often called @file{m4}---copy the
4859@file{bison-i18n.m4} file installed by Bison under
4860@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4861For example:
4862
4863@example
4864cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4865@end example
4866
4867@item
30757c8c
PE
4868@findex BISON_I18N
4869@vindex BISON_LOCALEDIR
4870@vindex YYENABLE_NLS
f7ab6a50
PE
4871In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4872invocation, add an invocation of @code{BISON_I18N}. This macro is
4873defined in the file @file{bison-i18n.m4} that you copied earlier. It
4874causes @samp{configure} to find the value of the
30757c8c
PE
4875@code{BISON_LOCALEDIR} variable, and it defines the source-language
4876symbol @code{YYENABLE_NLS} to enable translations in the
4877Bison-generated parser.
f7ab6a50
PE
4878
4879@item
4880In the @code{main} function of your program, designate the directory
4881containing Bison's runtime message catalog, through a call to
4882@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4883For example:
4884
4885@example
4886bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4887@end example
4888
4889Typically this appears after any other call @code{bindtextdomain
4890(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4891@samp{BISON_LOCALEDIR} to be defined as a string through the
4892@file{Makefile}.
4893
4894@item
4895In the @file{Makefile.am} that controls the compilation of the @code{main}
4896function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
4897either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
4898
4899@example
4900DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4901@end example
4902
4903or:
4904
4905@example
4906AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4907@end example
4908
4909@item
4910Finally, invoke the command @command{autoreconf} to generate the build
4911infrastructure.
4912@end enumerate
4913
bfa74976 4914
342b8b6e 4915@node Algorithm
13863333
AD
4916@chapter The Bison Parser Algorithm
4917@cindex Bison parser algorithm
bfa74976
RS
4918@cindex algorithm of parser
4919@cindex shifting
4920@cindex reduction
4921@cindex parser stack
4922@cindex stack, parser
4923
4924As Bison reads tokens, it pushes them onto a stack along with their
4925semantic values. The stack is called the @dfn{parser stack}. Pushing a
4926token is traditionally called @dfn{shifting}.
4927
4928For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4929@samp{3} to come. The stack will have four elements, one for each token
4930that was shifted.
4931
4932But the stack does not always have an element for each token read. When
4933the last @var{n} tokens and groupings shifted match the components of a
4934grammar rule, they can be combined according to that rule. This is called
4935@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4936single grouping whose symbol is the result (left hand side) of that rule.
4937Running the rule's action is part of the process of reduction, because this
4938is what computes the semantic value of the resulting grouping.
4939
4940For example, if the infix calculator's parser stack contains this:
4941
4942@example
49431 + 5 * 3
4944@end example
4945
4946@noindent
4947and the next input token is a newline character, then the last three
4948elements can be reduced to 15 via the rule:
4949
4950@example
4951expr: expr '*' expr;
4952@end example
4953
4954@noindent
4955Then the stack contains just these three elements:
4956
4957@example
49581 + 15
4959@end example
4960
4961@noindent
4962At this point, another reduction can be made, resulting in the single value
496316. Then the newline token can be shifted.
4964
4965The parser tries, by shifts and reductions, to reduce the entire input down
4966to a single grouping whose symbol is the grammar's start-symbol
4967(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4968
4969This kind of parser is known in the literature as a bottom-up parser.
4970
4971@menu
4972* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4973* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4974* Precedence:: Operator precedence works by resolving conflicts.
4975* Contextual Precedence:: When an operator's precedence depends on context.
4976* Parser States:: The parser is a finite-state-machine with stack.
4977* Reduce/Reduce:: When two rules are applicable in the same situation.
4978* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4979* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 4980* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
4981@end menu
4982
342b8b6e 4983@node Look-Ahead
bfa74976
RS
4984@section Look-Ahead Tokens
4985@cindex look-ahead token
4986
4987The Bison parser does @emph{not} always reduce immediately as soon as the
4988last @var{n} tokens and groupings match a rule. This is because such a
4989simple strategy is inadequate to handle most languages. Instead, when a
4990reduction is possible, the parser sometimes ``looks ahead'' at the next
4991token in order to decide what to do.
4992
4993When a token is read, it is not immediately shifted; first it becomes the
4994@dfn{look-ahead token}, which is not on the stack. Now the parser can
4995perform one or more reductions of tokens and groupings on the stack, while
4996the look-ahead token remains off to the side. When no more reductions
4997should take place, the look-ahead token is shifted onto the stack. This
4998does not mean that all possible reductions have been done; depending on the
4999token type of the look-ahead token, some rules may choose to delay their
5000application.
5001
5002Here is a simple case where look-ahead is needed. These three rules define
5003expressions which contain binary addition operators and postfix unary
5004factorial operators (@samp{!}), and allow parentheses for grouping.
5005
5006@example
5007@group
5008expr: term '+' expr
5009 | term
5010 ;
5011@end group
5012
5013@group
5014term: '(' expr ')'
5015 | term '!'
5016 | NUMBER
5017 ;
5018@end group
5019@end example
5020
5021Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5022should be done? If the following token is @samp{)}, then the first three
5023tokens must be reduced to form an @code{expr}. This is the only valid
5024course, because shifting the @samp{)} would produce a sequence of symbols
5025@w{@code{term ')'}}, and no rule allows this.
5026
5027If the following token is @samp{!}, then it must be shifted immediately so
5028that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5029parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5030@code{expr}. It would then be impossible to shift the @samp{!} because
5031doing so would produce on the stack the sequence of symbols @code{expr
5032'!'}. No rule allows that sequence.
5033
5034@vindex yychar
5035The current look-ahead token is stored in the variable @code{yychar}.
5036@xref{Action Features, ,Special Features for Use in Actions}.
5037
342b8b6e 5038@node Shift/Reduce
bfa74976
RS
5039@section Shift/Reduce Conflicts
5040@cindex conflicts
5041@cindex shift/reduce conflicts
5042@cindex dangling @code{else}
5043@cindex @code{else}, dangling
5044
5045Suppose we are parsing a language which has if-then and if-then-else
5046statements, with a pair of rules like this:
5047
5048@example
5049@group
5050if_stmt:
5051 IF expr THEN stmt
5052 | IF expr THEN stmt ELSE stmt
5053 ;
5054@end group
5055@end example
5056
5057@noindent
5058Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5059terminal symbols for specific keyword tokens.
5060
5061When the @code{ELSE} token is read and becomes the look-ahead token, the
5062contents of the stack (assuming the input is valid) are just right for
5063reduction by the first rule. But it is also legitimate to shift the
5064@code{ELSE}, because that would lead to eventual reduction by the second
5065rule.
5066
5067This situation, where either a shift or a reduction would be valid, is
5068called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5069these conflicts by choosing to shift, unless otherwise directed by
5070operator precedence declarations. To see the reason for this, let's
5071contrast it with the other alternative.
5072
5073Since the parser prefers to shift the @code{ELSE}, the result is to attach
5074the else-clause to the innermost if-statement, making these two inputs
5075equivalent:
5076
5077@example
5078if x then if y then win (); else lose;
5079
5080if x then do; if y then win (); else lose; end;
5081@end example
5082
5083But if the parser chose to reduce when possible rather than shift, the
5084result would be to attach the else-clause to the outermost if-statement,
5085making these two inputs equivalent:
5086
5087@example
5088if x then if y then win (); else lose;
5089
5090if x then do; if y then win (); end; else lose;
5091@end example
5092
5093The conflict exists because the grammar as written is ambiguous: either
5094parsing of the simple nested if-statement is legitimate. The established
5095convention is that these ambiguities are resolved by attaching the
5096else-clause to the innermost if-statement; this is what Bison accomplishes
5097by choosing to shift rather than reduce. (It would ideally be cleaner to
5098write an unambiguous grammar, but that is very hard to do in this case.)
5099This particular ambiguity was first encountered in the specifications of
5100Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5101
5102To avoid warnings from Bison about predictable, legitimate shift/reduce
5103conflicts, use the @code{%expect @var{n}} declaration. There will be no
5104warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5105@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5106
5107The definition of @code{if_stmt} above is solely to blame for the
5108conflict, but the conflict does not actually appear without additional
5109rules. Here is a complete Bison input file that actually manifests the
5110conflict:
5111
5112@example
5113@group
5114%token IF THEN ELSE variable
5115%%
5116@end group
5117@group
5118stmt: expr
5119 | if_stmt
5120 ;
5121@end group
5122
5123@group
5124if_stmt:
5125 IF expr THEN stmt
5126 | IF expr THEN stmt ELSE stmt
5127 ;
5128@end group
5129
5130expr: variable
5131 ;
5132@end example
5133
342b8b6e 5134@node Precedence
bfa74976
RS
5135@section Operator Precedence
5136@cindex operator precedence
5137@cindex precedence of operators
5138
5139Another situation where shift/reduce conflicts appear is in arithmetic
5140expressions. Here shifting is not always the preferred resolution; the
5141Bison declarations for operator precedence allow you to specify when to
5142shift and when to reduce.
5143
5144@menu
5145* Why Precedence:: An example showing why precedence is needed.
5146* Using Precedence:: How to specify precedence in Bison grammars.
5147* Precedence Examples:: How these features are used in the previous example.
5148* How Precedence:: How they work.
5149@end menu
5150
342b8b6e 5151@node Why Precedence
bfa74976
RS
5152@subsection When Precedence is Needed
5153
5154Consider the following ambiguous grammar fragment (ambiguous because the
5155input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5156
5157@example
5158@group
5159expr: expr '-' expr
5160 | expr '*' expr
5161 | expr '<' expr
5162 | '(' expr ')'
5163 @dots{}
5164 ;
5165@end group
5166@end example
5167
5168@noindent
5169Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5170should it reduce them via the rule for the subtraction operator? It
5171depends on the next token. Of course, if the next token is @samp{)}, we
5172must reduce; shifting is invalid because no single rule can reduce the
5173token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5174the next token is @samp{*} or @samp{<}, we have a choice: either
5175shifting or reduction would allow the parse to complete, but with
5176different results.
5177
5178To decide which one Bison should do, we must consider the results. If
5179the next operator token @var{op} is shifted, then it must be reduced
5180first in order to permit another opportunity to reduce the difference.
5181The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5182hand, if the subtraction is reduced before shifting @var{op}, the result
5183is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5184reduce should depend on the relative precedence of the operators
5185@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5186@samp{<}.
bfa74976
RS
5187
5188@cindex associativity
5189What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5190@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5191operators we prefer the former, which is called @dfn{left association}.
5192The latter alternative, @dfn{right association}, is desirable for
5193assignment operators. The choice of left or right association is a
5194matter of whether the parser chooses to shift or reduce when the stack
5195contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5196makes right-associativity.
bfa74976 5197
342b8b6e 5198@node Using Precedence
bfa74976
RS
5199@subsection Specifying Operator Precedence
5200@findex %left
5201@findex %right
5202@findex %nonassoc
5203
5204Bison allows you to specify these choices with the operator precedence
5205declarations @code{%left} and @code{%right}. Each such declaration
5206contains a list of tokens, which are operators whose precedence and
5207associativity is being declared. The @code{%left} declaration makes all
5208those operators left-associative and the @code{%right} declaration makes
5209them right-associative. A third alternative is @code{%nonassoc}, which
5210declares that it is a syntax error to find the same operator twice ``in a
5211row''.
5212
5213The relative precedence of different operators is controlled by the
5214order in which they are declared. The first @code{%left} or
5215@code{%right} declaration in the file declares the operators whose
5216precedence is lowest, the next such declaration declares the operators
5217whose precedence is a little higher, and so on.
5218
342b8b6e 5219@node Precedence Examples
bfa74976
RS
5220@subsection Precedence Examples
5221
5222In our example, we would want the following declarations:
5223
5224@example
5225%left '<'
5226%left '-'
5227%left '*'
5228@end example
5229
5230In a more complete example, which supports other operators as well, we
5231would declare them in groups of equal precedence. For example, @code{'+'} is
5232declared with @code{'-'}:
5233
5234@example
5235%left '<' '>' '=' NE LE GE
5236%left '+' '-'
5237%left '*' '/'
5238@end example
5239
5240@noindent
5241(Here @code{NE} and so on stand for the operators for ``not equal''
5242and so on. We assume that these tokens are more than one character long
5243and therefore are represented by names, not character literals.)
5244
342b8b6e 5245@node How Precedence
bfa74976
RS
5246@subsection How Precedence Works
5247
5248The first effect of the precedence declarations is to assign precedence
5249levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5250precedence levels to certain rules: each rule gets its precedence from
5251the last terminal symbol mentioned in the components. (You can also
5252specify explicitly the precedence of a rule. @xref{Contextual
5253Precedence, ,Context-Dependent Precedence}.)
5254
5255Finally, the resolution of conflicts works by comparing the precedence
5256of the rule being considered with that of the look-ahead token. If the
5257token's precedence is higher, the choice is to shift. If the rule's
5258precedence is higher, the choice is to reduce. If they have equal
5259precedence, the choice is made based on the associativity of that
5260precedence level. The verbose output file made by @samp{-v}
5261(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5262resolved.
bfa74976
RS
5263
5264Not all rules and not all tokens have precedence. If either the rule or
5265the look-ahead token has no precedence, then the default is to shift.
5266
342b8b6e 5267@node Contextual Precedence
bfa74976
RS
5268@section Context-Dependent Precedence
5269@cindex context-dependent precedence
5270@cindex unary operator precedence
5271@cindex precedence, context-dependent
5272@cindex precedence, unary operator
5273@findex %prec
5274
5275Often the precedence of an operator depends on the context. This sounds
5276outlandish at first, but it is really very common. For example, a minus
5277sign typically has a very high precedence as a unary operator, and a
5278somewhat lower precedence (lower than multiplication) as a binary operator.
5279
5280The Bison precedence declarations, @code{%left}, @code{%right} and
5281@code{%nonassoc}, can only be used once for a given token; so a token has
5282only one precedence declared in this way. For context-dependent
5283precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5284modifier for rules.
bfa74976
RS
5285
5286The @code{%prec} modifier declares the precedence of a particular rule by
5287specifying a terminal symbol whose precedence should be used for that rule.
5288It's not necessary for that symbol to appear otherwise in the rule. The
5289modifier's syntax is:
5290
5291@example
5292%prec @var{terminal-symbol}
5293@end example
5294
5295@noindent
5296and it is written after the components of the rule. Its effect is to
5297assign the rule the precedence of @var{terminal-symbol}, overriding
5298the precedence that would be deduced for it in the ordinary way. The
5299altered rule precedence then affects how conflicts involving that rule
5300are resolved (@pxref{Precedence, ,Operator Precedence}).
5301
5302Here is how @code{%prec} solves the problem of unary minus. First, declare
5303a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5304are no tokens of this type, but the symbol serves to stand for its
5305precedence:
5306
5307@example
5308@dots{}
5309%left '+' '-'
5310%left '*'
5311%left UMINUS
5312@end example
5313
5314Now the precedence of @code{UMINUS} can be used in specific rules:
5315
5316@example
5317@group
5318exp: @dots{}
5319 | exp '-' exp
5320 @dots{}
5321 | '-' exp %prec UMINUS
5322@end group
5323@end example
5324
91d2c560 5325@ifset defaultprec
39a06c25
PE
5326If you forget to append @code{%prec UMINUS} to the rule for unary
5327minus, Bison silently assumes that minus has its usual precedence.
5328This kind of problem can be tricky to debug, since one typically
5329discovers the mistake only by testing the code.
5330
22fccf95 5331The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5332this kind of problem systematically. It causes rules that lack a
5333@code{%prec} modifier to have no precedence, even if the last terminal
5334symbol mentioned in their components has a declared precedence.
5335
22fccf95 5336If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5337for all rules that participate in precedence conflict resolution.
5338Then you will see any shift/reduce conflict until you tell Bison how
5339to resolve it, either by changing your grammar or by adding an
5340explicit precedence. This will probably add declarations to the
5341grammar, but it helps to protect against incorrect rule precedences.
5342
22fccf95
PE
5343The effect of @code{%no-default-prec;} can be reversed by giving
5344@code{%default-prec;}, which is the default.
91d2c560 5345@end ifset
39a06c25 5346
342b8b6e 5347@node Parser States
bfa74976
RS
5348@section Parser States
5349@cindex finite-state machine
5350@cindex parser state
5351@cindex state (of parser)
5352
5353The function @code{yyparse} is implemented using a finite-state machine.
5354The values pushed on the parser stack are not simply token type codes; they
5355represent the entire sequence of terminal and nonterminal symbols at or
5356near the top of the stack. The current state collects all the information
5357about previous input which is relevant to deciding what to do next.
5358
5359Each time a look-ahead token is read, the current parser state together
5360with the type of look-ahead token are looked up in a table. This table
5361entry can say, ``Shift the look-ahead token.'' In this case, it also
5362specifies the new parser state, which is pushed onto the top of the
5363parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5364This means that a certain number of tokens or groupings are taken off
5365the top of the stack, and replaced by one grouping. In other words,
5366that number of states are popped from the stack, and one new state is
5367pushed.
5368
5369There is one other alternative: the table can say that the look-ahead token
5370is erroneous in the current state. This causes error processing to begin
5371(@pxref{Error Recovery}).
5372
342b8b6e 5373@node Reduce/Reduce
bfa74976
RS
5374@section Reduce/Reduce Conflicts
5375@cindex reduce/reduce conflict
5376@cindex conflicts, reduce/reduce
5377
5378A reduce/reduce conflict occurs if there are two or more rules that apply
5379to the same sequence of input. This usually indicates a serious error
5380in the grammar.
5381
5382For example, here is an erroneous attempt to define a sequence
5383of zero or more @code{word} groupings.
5384
5385@example
5386sequence: /* empty */
5387 @{ printf ("empty sequence\n"); @}
5388 | maybeword
5389 | sequence word
5390 @{ printf ("added word %s\n", $2); @}
5391 ;
5392
5393maybeword: /* empty */
5394 @{ printf ("empty maybeword\n"); @}
5395 | word
5396 @{ printf ("single word %s\n", $1); @}
5397 ;
5398@end example
5399
5400@noindent
5401The error is an ambiguity: there is more than one way to parse a single
5402@code{word} into a @code{sequence}. It could be reduced to a
5403@code{maybeword} and then into a @code{sequence} via the second rule.
5404Alternatively, nothing-at-all could be reduced into a @code{sequence}
5405via the first rule, and this could be combined with the @code{word}
5406using the third rule for @code{sequence}.
5407
5408There is also more than one way to reduce nothing-at-all into a
5409@code{sequence}. This can be done directly via the first rule,
5410or indirectly via @code{maybeword} and then the second rule.
5411
5412You might think that this is a distinction without a difference, because it
5413does not change whether any particular input is valid or not. But it does
5414affect which actions are run. One parsing order runs the second rule's
5415action; the other runs the first rule's action and the third rule's action.
5416In this example, the output of the program changes.
5417
5418Bison resolves a reduce/reduce conflict by choosing to use the rule that
5419appears first in the grammar, but it is very risky to rely on this. Every
5420reduce/reduce conflict must be studied and usually eliminated. Here is the
5421proper way to define @code{sequence}:
5422
5423@example
5424sequence: /* empty */
5425 @{ printf ("empty sequence\n"); @}
5426 | sequence word
5427 @{ printf ("added word %s\n", $2); @}
5428 ;
5429@end example
5430
5431Here is another common error that yields a reduce/reduce conflict:
5432
5433@example
5434sequence: /* empty */
5435 | sequence words
5436 | sequence redirects
5437 ;
5438
5439words: /* empty */
5440 | words word
5441 ;
5442
5443redirects:/* empty */
5444 | redirects redirect
5445 ;
5446@end example
5447
5448@noindent
5449The intention here is to define a sequence which can contain either
5450@code{word} or @code{redirect} groupings. The individual definitions of
5451@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5452three together make a subtle ambiguity: even an empty input can be parsed
5453in infinitely many ways!
5454
5455Consider: nothing-at-all could be a @code{words}. Or it could be two
5456@code{words} in a row, or three, or any number. It could equally well be a
5457@code{redirects}, or two, or any number. Or it could be a @code{words}
5458followed by three @code{redirects} and another @code{words}. And so on.
5459
5460Here are two ways to correct these rules. First, to make it a single level
5461of sequence:
5462
5463@example
5464sequence: /* empty */
5465 | sequence word
5466 | sequence redirect
5467 ;
5468@end example
5469
5470Second, to prevent either a @code{words} or a @code{redirects}
5471from being empty:
5472
5473@example
5474sequence: /* empty */
5475 | sequence words
5476 | sequence redirects
5477 ;
5478
5479words: word
5480 | words word
5481 ;
5482
5483redirects:redirect
5484 | redirects redirect
5485 ;
5486@end example
5487
342b8b6e 5488@node Mystery Conflicts
bfa74976
RS
5489@section Mysterious Reduce/Reduce Conflicts
5490
5491Sometimes reduce/reduce conflicts can occur that don't look warranted.
5492Here is an example:
5493
5494@example
5495@group
5496%token ID
5497
5498%%
5499def: param_spec return_spec ','
5500 ;
5501param_spec:
5502 type
5503 | name_list ':' type
5504 ;
5505@end group
5506@group
5507return_spec:
5508 type
5509 | name ':' type
5510 ;
5511@end group
5512@group
5513type: ID
5514 ;
5515@end group
5516@group
5517name: ID
5518 ;
5519name_list:
5520 name
5521 | name ',' name_list
5522 ;
5523@end group
5524@end example
5525
5526It would seem that this grammar can be parsed with only a single token
13863333 5527of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5528a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5529@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5530
c827f760
PE
5531@cindex @acronym{LR}(1)
5532@cindex @acronym{LALR}(1)
bfa74976 5533However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5534@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5535an @code{ID}
bfa74976
RS
5536at the beginning of a @code{param_spec} and likewise at the beginning of
5537a @code{return_spec}, are similar enough that Bison assumes they are the
5538same. They appear similar because the same set of rules would be
5539active---the rule for reducing to a @code{name} and that for reducing to
5540a @code{type}. Bison is unable to determine at that stage of processing
5541that the rules would require different look-ahead tokens in the two
5542contexts, so it makes a single parser state for them both. Combining
5543the two contexts causes a conflict later. In parser terminology, this
c827f760 5544occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5545
5546In general, it is better to fix deficiencies than to document them. But
5547this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5548generators that can handle @acronym{LR}(1) grammars are hard to write
5549and tend to
bfa74976
RS
5550produce parsers that are very large. In practice, Bison is more useful
5551as it is now.
5552
5553When the problem arises, you can often fix it by identifying the two
a220f555
MA
5554parser states that are being confused, and adding something to make them
5555look distinct. In the above example, adding one rule to
bfa74976
RS
5556@code{return_spec} as follows makes the problem go away:
5557
5558@example
5559@group
5560%token BOGUS
5561@dots{}
5562%%
5563@dots{}
5564return_spec:
5565 type
5566 | name ':' type
5567 /* This rule is never used. */
5568 | ID BOGUS
5569 ;
5570@end group
5571@end example
5572
5573This corrects the problem because it introduces the possibility of an
5574additional active rule in the context after the @code{ID} at the beginning of
5575@code{return_spec}. This rule is not active in the corresponding context
5576in a @code{param_spec}, so the two contexts receive distinct parser states.
5577As long as the token @code{BOGUS} is never generated by @code{yylex},
5578the added rule cannot alter the way actual input is parsed.
5579
5580In this particular example, there is another way to solve the problem:
5581rewrite the rule for @code{return_spec} to use @code{ID} directly
5582instead of via @code{name}. This also causes the two confusing
5583contexts to have different sets of active rules, because the one for
5584@code{return_spec} activates the altered rule for @code{return_spec}
5585rather than the one for @code{name}.
5586
5587@example
5588param_spec:
5589 type
5590 | name_list ':' type
5591 ;
5592return_spec:
5593 type
5594 | ID ':' type
5595 ;
5596@end example
5597
e054b190
PE
5598For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5599generators, please see:
5600Frank DeRemer and Thomas Pennello, Efficient Computation of
5601@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5602Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5603pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5604
fae437e8 5605@node Generalized LR Parsing
c827f760
PE
5606@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5607@cindex @acronym{GLR} parsing
5608@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5609@cindex ambiguous grammars
5610@cindex non-deterministic parsing
5611
fae437e8
AD
5612Bison produces @emph{deterministic} parsers that choose uniquely
5613when to reduce and which reduction to apply
8dd162d3 5614based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5615As a result, normal Bison handles a proper subset of the family of
5616context-free languages.
fae437e8 5617Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5618sequence of reductions cannot have deterministic parsers in this sense.
5619The same is true of languages that require more than one symbol of
8dd162d3 5620look-ahead, since the parser lacks the information necessary to make a
676385e2 5621decision at the point it must be made in a shift-reduce parser.
fae437e8 5622Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5623there are languages where Bison's particular choice of how to
5624summarize the input seen so far loses necessary information.
5625
5626When you use the @samp{%glr-parser} declaration in your grammar file,
5627Bison generates a parser that uses a different algorithm, called
c827f760
PE
5628Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5629parser uses the same basic
676385e2
PH
5630algorithm for parsing as an ordinary Bison parser, but behaves
5631differently in cases where there is a shift-reduce conflict that has not
fae437e8 5632been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5633reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5634situation, it
fae437e8 5635effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5636shift or reduction. These parsers then proceed as usual, consuming
5637tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5638and split further, with the result that instead of a sequence of states,
c827f760 5639a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5640
5641In effect, each stack represents a guess as to what the proper parse
5642is. Additional input may indicate that a guess was wrong, in which case
5643the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5644actions generated in each stack are saved, rather than being executed
676385e2 5645immediately. When a stack disappears, its saved semantic actions never
fae437e8 5646get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5647their sets of semantic actions are both saved with the state that
5648results from the reduction. We say that two stacks are equivalent
fae437e8 5649when they both represent the same sequence of states,
676385e2
PH
5650and each pair of corresponding states represents a
5651grammar symbol that produces the same segment of the input token
5652stream.
5653
5654Whenever the parser makes a transition from having multiple
c827f760 5655states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5656algorithm, after resolving and executing the saved-up actions.
5657At this transition, some of the states on the stack will have semantic
5658values that are sets (actually multisets) of possible actions. The
5659parser tries to pick one of the actions by first finding one whose rule
5660has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5661declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5662precedence, but there the same merging function is declared for both
fae437e8 5663rules by the @samp{%merge} declaration,
676385e2
PH
5664Bison resolves and evaluates both and then calls the merge function on
5665the result. Otherwise, it reports an ambiguity.
5666
c827f760
PE
5667It is possible to use a data structure for the @acronym{GLR} parsing tree that
5668permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5669size of the input), any unambiguous (not necessarily
5670@acronym{LALR}(1)) grammar in
fae437e8 5671quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5672context-free grammar in cubic worst-case time. However, Bison currently
5673uses a simpler data structure that requires time proportional to the
5674length of the input times the maximum number of stacks required for any
5675prefix of the input. Thus, really ambiguous or non-deterministic
5676grammars can require exponential time and space to process. Such badly
5677behaving examples, however, are not generally of practical interest.
5678Usually, non-determinism in a grammar is local---the parser is ``in
5679doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5680structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5681grammar, in particular, it is only slightly slower than with the default
5682Bison parser.
5683
fa7e68c3 5684For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5685Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5686Generalised @acronym{LR} Parsers, Royal Holloway, University of
5687London, Department of Computer Science, TR-00-12,
5688@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5689(2000-12-24).
5690
1a059451
PE
5691@node Memory Management
5692@section Memory Management, and How to Avoid Memory Exhaustion
5693@cindex memory exhaustion
5694@cindex memory management
bfa74976
RS
5695@cindex stack overflow
5696@cindex parser stack overflow
5697@cindex overflow of parser stack
5698
1a059451 5699The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5700not reduced. When this happens, the parser function @code{yyparse}
1a059451 5701calls @code{yyerror} and then returns 2.
bfa74976 5702
c827f760 5703Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5704usually results from using a right recursion instead of a left
5705recursion, @xref{Recursion, ,Recursive Rules}.
5706
bfa74976
RS
5707@vindex YYMAXDEPTH
5708By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5709parser stack can become before memory is exhausted. Define the
bfa74976
RS
5710macro with a value that is an integer. This value is the maximum number
5711of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5712
5713The stack space allowed is not necessarily allocated. If you specify a
1a059451 5714large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5715stack at first, and then makes it bigger by stages as needed. This
5716increasing allocation happens automatically and silently. Therefore,
5717you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5718space for ordinary inputs that do not need much stack.
5719
d7e14fc0
PE
5720However, do not allow @code{YYMAXDEPTH} to be a value so large that
5721arithmetic overflow could occur when calculating the size of the stack
5722space. Also, do not allow @code{YYMAXDEPTH} to be less than
5723@code{YYINITDEPTH}.
5724
bfa74976
RS
5725@cindex default stack limit
5726The default value of @code{YYMAXDEPTH}, if you do not define it, is
572710000.
5728
5729@vindex YYINITDEPTH
5730You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5731macro @code{YYINITDEPTH} to a positive integer. For the C
5732@acronym{LALR}(1) parser, this value must be a compile-time constant
5733unless you are assuming C99 or some other target language or compiler
5734that allows variable-length arrays. The default is 200.
5735
1a059451 5736Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5737
d1a1114f 5738@c FIXME: C++ output.
c827f760 5739Because of semantical differences between C and C++, the
1a059451
PE
5740@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5741by C++ compilers. In this precise case (compiling a C parser as C++) you are
5742suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5743this deficiency in a future release.
d1a1114f 5744
342b8b6e 5745@node Error Recovery
bfa74976
RS
5746@chapter Error Recovery
5747@cindex error recovery
5748@cindex recovery from errors
5749
6e649e65 5750It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5751error. For example, a compiler should recover sufficiently to parse the
5752rest of the input file and check it for errors; a calculator should accept
5753another expression.
5754
5755In a simple interactive command parser where each input is one line, it may
5756be sufficient to allow @code{yyparse} to return 1 on error and have the
5757caller ignore the rest of the input line when that happens (and then call
5758@code{yyparse} again). But this is inadequate for a compiler, because it
5759forgets all the syntactic context leading up to the error. A syntax error
5760deep within a function in the compiler input should not cause the compiler
5761to treat the following line like the beginning of a source file.
5762
5763@findex error
5764You can define how to recover from a syntax error by writing rules to
5765recognize the special token @code{error}. This is a terminal symbol that
5766is always defined (you need not declare it) and reserved for error
5767handling. The Bison parser generates an @code{error} token whenever a
5768syntax error happens; if you have provided a rule to recognize this token
13863333 5769in the current context, the parse can continue.
bfa74976
RS
5770
5771For example:
5772
5773@example
5774stmnts: /* empty string */
5775 | stmnts '\n'
5776 | stmnts exp '\n'
5777 | stmnts error '\n'
5778@end example
5779
5780The fourth rule in this example says that an error followed by a newline
5781makes a valid addition to any @code{stmnts}.
5782
5783What happens if a syntax error occurs in the middle of an @code{exp}? The
5784error recovery rule, interpreted strictly, applies to the precise sequence
5785of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5786the middle of an @code{exp}, there will probably be some additional tokens
5787and subexpressions on the stack after the last @code{stmnts}, and there
5788will be tokens to read before the next newline. So the rule is not
5789applicable in the ordinary way.
5790
5791But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5792the semantic context and part of the input. First it discards states
5793and objects from the stack until it gets back to a state in which the
bfa74976 5794@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5795already parsed are discarded, back to the last complete @code{stmnts}.)
5796At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5797look-ahead token is not acceptable to be shifted next, the parser reads
5798tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5799this example, Bison reads and discards input until the next newline so
5800that the fourth rule can apply. Note that discarded symbols are
5801possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5802Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5803
5804The choice of error rules in the grammar is a choice of strategies for
5805error recovery. A simple and useful strategy is simply to skip the rest of
5806the current input line or current statement if an error is detected:
5807
5808@example
72d2299c 5809stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5810@end example
5811
5812It is also useful to recover to the matching close-delimiter of an
5813opening-delimiter that has already been parsed. Otherwise the
5814close-delimiter will probably appear to be unmatched, and generate another,
5815spurious error message:
5816
5817@example
5818primary: '(' expr ')'
5819 | '(' error ')'
5820 @dots{}
5821 ;
5822@end example
5823
5824Error recovery strategies are necessarily guesses. When they guess wrong,
5825one syntax error often leads to another. In the above example, the error
5826recovery rule guesses that an error is due to bad input within one
5827@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5828middle of a valid @code{stmnt}. After the error recovery rule recovers
5829from the first error, another syntax error will be found straightaway,
5830since the text following the spurious semicolon is also an invalid
5831@code{stmnt}.
5832
5833To prevent an outpouring of error messages, the parser will output no error
5834message for another syntax error that happens shortly after the first; only
5835after three consecutive input tokens have been successfully shifted will
5836error messages resume.
5837
5838Note that rules which accept the @code{error} token may have actions, just
5839as any other rules can.
5840
5841@findex yyerrok
5842You can make error messages resume immediately by using the macro
5843@code{yyerrok} in an action. If you do this in the error rule's action, no
5844error messages will be suppressed. This macro requires no arguments;
5845@samp{yyerrok;} is a valid C statement.
5846
5847@findex yyclearin
5848The previous look-ahead token is reanalyzed immediately after an error. If
5849this is unacceptable, then the macro @code{yyclearin} may be used to clear
5850this token. Write the statement @samp{yyclearin;} in the error rule's
5851action.
5852
6e649e65 5853For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5854called that advances the input stream to some point where parsing should
5855once again commence. The next symbol returned by the lexical scanner is
5856probably correct. The previous look-ahead token ought to be discarded
5857with @samp{yyclearin;}.
5858
5859@vindex YYRECOVERING
5860The macro @code{YYRECOVERING} stands for an expression that has the
5861value 1 when the parser is recovering from a syntax error, and 0 the
5862rest of the time. A value of 1 indicates that error messages are
5863currently suppressed for new syntax errors.
5864
342b8b6e 5865@node Context Dependency
bfa74976
RS
5866@chapter Handling Context Dependencies
5867
5868The Bison paradigm is to parse tokens first, then group them into larger
5869syntactic units. In many languages, the meaning of a token is affected by
5870its context. Although this violates the Bison paradigm, certain techniques
5871(known as @dfn{kludges}) may enable you to write Bison parsers for such
5872languages.
5873
5874@menu
5875* Semantic Tokens:: Token parsing can depend on the semantic context.
5876* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5877* Tie-in Recovery:: Lexical tie-ins have implications for how
5878 error recovery rules must be written.
5879@end menu
5880
5881(Actually, ``kludge'' means any technique that gets its job done but is
5882neither clean nor robust.)
5883
342b8b6e 5884@node Semantic Tokens
bfa74976
RS
5885@section Semantic Info in Token Types
5886
5887The C language has a context dependency: the way an identifier is used
5888depends on what its current meaning is. For example, consider this:
5889
5890@example
5891foo (x);
5892@end example
5893
5894This looks like a function call statement, but if @code{foo} is a typedef
5895name, then this is actually a declaration of @code{x}. How can a Bison
5896parser for C decide how to parse this input?
5897
c827f760 5898The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5899@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5900identifier, it looks up the current declaration of the identifier in order
5901to decide which token type to return: @code{TYPENAME} if the identifier is
5902declared as a typedef, @code{IDENTIFIER} otherwise.
5903
5904The grammar rules can then express the context dependency by the choice of
5905token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5906but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5907@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5908is @emph{not} significant, such as in declarations that can shadow a
5909typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5910accepted---there is one rule for each of the two token types.
5911
5912This technique is simple to use if the decision of which kinds of
5913identifiers to allow is made at a place close to where the identifier is
5914parsed. But in C this is not always so: C allows a declaration to
5915redeclare a typedef name provided an explicit type has been specified
5916earlier:
5917
5918@example
3a4f411f
PE
5919typedef int foo, bar;
5920int baz (void)
5921@{
5922 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
5923 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
5924 return foo (bar);
5925@}
bfa74976
RS
5926@end example
5927
5928Unfortunately, the name being declared is separated from the declaration
5929construct itself by a complicated syntactic structure---the ``declarator''.
5930
9ecbd125 5931As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5932all the nonterminal names changed: once for parsing a declaration in
5933which a typedef name can be redefined, and once for parsing a
5934declaration in which that can't be done. Here is a part of the
5935duplication, with actions omitted for brevity:
bfa74976
RS
5936
5937@example
5938initdcl:
5939 declarator maybeasm '='
5940 init
5941 | declarator maybeasm
5942 ;
5943
5944notype_initdcl:
5945 notype_declarator maybeasm '='
5946 init
5947 | notype_declarator maybeasm
5948 ;
5949@end example
5950
5951@noindent
5952Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5953cannot. The distinction between @code{declarator} and
5954@code{notype_declarator} is the same sort of thing.
5955
5956There is some similarity between this technique and a lexical tie-in
5957(described next), in that information which alters the lexical analysis is
5958changed during parsing by other parts of the program. The difference is
5959here the information is global, and is used for other purposes in the
5960program. A true lexical tie-in has a special-purpose flag controlled by
5961the syntactic context.
5962
342b8b6e 5963@node Lexical Tie-ins
bfa74976
RS
5964@section Lexical Tie-ins
5965@cindex lexical tie-in
5966
5967One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5968which is set by Bison actions, whose purpose is to alter the way tokens are
5969parsed.
5970
5971For example, suppose we have a language vaguely like C, but with a special
5972construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5973an expression in parentheses in which all integers are hexadecimal. In
5974particular, the token @samp{a1b} must be treated as an integer rather than
5975as an identifier if it appears in that context. Here is how you can do it:
5976
5977@example
5978@group
5979%@{
38a92d50
PE
5980 int hexflag;
5981 int yylex (void);
5982 void yyerror (char const *);
bfa74976
RS
5983%@}
5984%%
5985@dots{}
5986@end group
5987@group
5988expr: IDENTIFIER
5989 | constant
5990 | HEX '('
5991 @{ hexflag = 1; @}
5992 expr ')'
5993 @{ hexflag = 0;
5994 $$ = $4; @}
5995 | expr '+' expr
5996 @{ $$ = make_sum ($1, $3); @}
5997 @dots{}
5998 ;
5999@end group
6000
6001@group
6002constant:
6003 INTEGER
6004 | STRING
6005 ;
6006@end group
6007@end example
6008
6009@noindent
6010Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6011it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6012with letters are parsed as integers if possible.
6013
342b8b6e
AD
6014The declaration of @code{hexflag} shown in the prologue of the parser file
6015is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6016You must also write the code in @code{yylex} to obey the flag.
bfa74976 6017
342b8b6e 6018@node Tie-in Recovery
bfa74976
RS
6019@section Lexical Tie-ins and Error Recovery
6020
6021Lexical tie-ins make strict demands on any error recovery rules you have.
6022@xref{Error Recovery}.
6023
6024The reason for this is that the purpose of an error recovery rule is to
6025abort the parsing of one construct and resume in some larger construct.
6026For example, in C-like languages, a typical error recovery rule is to skip
6027tokens until the next semicolon, and then start a new statement, like this:
6028
6029@example
6030stmt: expr ';'
6031 | IF '(' expr ')' stmt @{ @dots{} @}
6032 @dots{}
6033 error ';'
6034 @{ hexflag = 0; @}
6035 ;
6036@end example
6037
6038If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6039construct, this error rule will apply, and then the action for the
6040completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6041remain set for the entire rest of the input, or until the next @code{hex}
6042keyword, causing identifiers to be misinterpreted as integers.
6043
6044To avoid this problem the error recovery rule itself clears @code{hexflag}.
6045
6046There may also be an error recovery rule that works within expressions.
6047For example, there could be a rule which applies within parentheses
6048and skips to the close-parenthesis:
6049
6050@example
6051@group
6052expr: @dots{}
6053 | '(' expr ')'
6054 @{ $$ = $2; @}
6055 | '(' error ')'
6056 @dots{}
6057@end group
6058@end example
6059
6060If this rule acts within the @code{hex} construct, it is not going to abort
6061that construct (since it applies to an inner level of parentheses within
6062the construct). Therefore, it should not clear the flag: the rest of
6063the @code{hex} construct should be parsed with the flag still in effect.
6064
6065What if there is an error recovery rule which might abort out of the
6066@code{hex} construct or might not, depending on circumstances? There is no
6067way you can write the action to determine whether a @code{hex} construct is
6068being aborted or not. So if you are using a lexical tie-in, you had better
6069make sure your error recovery rules are not of this kind. Each rule must
6070be such that you can be sure that it always will, or always won't, have to
6071clear the flag.
6072
ec3bc396
AD
6073@c ================================================== Debugging Your Parser
6074
342b8b6e 6075@node Debugging
bfa74976 6076@chapter Debugging Your Parser
ec3bc396
AD
6077
6078Developing a parser can be a challenge, especially if you don't
6079understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6080Algorithm}). Even so, sometimes a detailed description of the automaton
6081can help (@pxref{Understanding, , Understanding Your Parser}), or
6082tracing the execution of the parser can give some insight on why it
6083behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6084
6085@menu
6086* Understanding:: Understanding the structure of your parser.
6087* Tracing:: Tracing the execution of your parser.
6088@end menu
6089
6090@node Understanding
6091@section Understanding Your Parser
6092
6093As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6094Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6095frequent than one would hope), looking at this automaton is required to
6096tune or simply fix a parser. Bison provides two different
c827f760 6097representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6098file).
6099
6100The textual file is generated when the options @option{--report} or
6101@option{--verbose} are specified, see @xref{Invocation, , Invoking
6102Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6103the parser output file name, and adding @samp{.output} instead.
6104Therefore, if the input file is @file{foo.y}, then the parser file is
6105called @file{foo.tab.c} by default. As a consequence, the verbose
6106output file is called @file{foo.output}.
6107
6108The following grammar file, @file{calc.y}, will be used in the sequel:
6109
6110@example
6111%token NUM STR
6112%left '+' '-'
6113%left '*'
6114%%
6115exp: exp '+' exp
6116 | exp '-' exp
6117 | exp '*' exp
6118 | exp '/' exp
6119 | NUM
6120 ;
6121useless: STR;
6122%%
6123@end example
6124
88bce5a2
AD
6125@command{bison} reports:
6126
6127@example
6128calc.y: warning: 1 useless nonterminal and 1 useless rule
6129calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6130calc.y:11.10-12: warning: useless rule: useless: STR
6131calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6132@end example
6133
6134When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6135creates a file @file{calc.output} with contents detailed below. The
6136order of the output and the exact presentation might vary, but the
6137interpretation is the same.
ec3bc396
AD
6138
6139The first section includes details on conflicts that were solved thanks
6140to precedence and/or associativity:
6141
6142@example
6143Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6144Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6145Conflict in state 8 between rule 2 and token '*' resolved as shift.
6146@exdent @dots{}
6147@end example
6148
6149@noindent
6150The next section lists states that still have conflicts.
6151
6152@example
5a99098d
PE
6153State 8 conflicts: 1 shift/reduce
6154State 9 conflicts: 1 shift/reduce
6155State 10 conflicts: 1 shift/reduce
6156State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6157@end example
6158
6159@noindent
6160@cindex token, useless
6161@cindex useless token
6162@cindex nonterminal, useless
6163@cindex useless nonterminal
6164@cindex rule, useless
6165@cindex useless rule
6166The next section reports useless tokens, nonterminal and rules. Useless
6167nonterminals and rules are removed in order to produce a smaller parser,
6168but useless tokens are preserved, since they might be used by the
6169scanner (note the difference between ``useless'' and ``not used''
6170below):
6171
6172@example
6173Useless nonterminals:
6174 useless
6175
6176Terminals which are not used:
6177 STR
6178
6179Useless rules:
6180#6 useless: STR;
6181@end example
6182
6183@noindent
6184The next section reproduces the exact grammar that Bison used:
6185
6186@example
6187Grammar
6188
6189 Number, Line, Rule
88bce5a2 6190 0 5 $accept -> exp $end
ec3bc396
AD
6191 1 5 exp -> exp '+' exp
6192 2 6 exp -> exp '-' exp
6193 3 7 exp -> exp '*' exp
6194 4 8 exp -> exp '/' exp
6195 5 9 exp -> NUM
6196@end example
6197
6198@noindent
6199and reports the uses of the symbols:
6200
6201@example
6202Terminals, with rules where they appear
6203
88bce5a2 6204$end (0) 0
ec3bc396
AD
6205'*' (42) 3
6206'+' (43) 1
6207'-' (45) 2
6208'/' (47) 4
6209error (256)
6210NUM (258) 5
6211
6212Nonterminals, with rules where they appear
6213
88bce5a2 6214$accept (8)
ec3bc396
AD
6215 on left: 0
6216exp (9)
6217 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6218@end example
6219
6220@noindent
6221@cindex item
6222@cindex pointed rule
6223@cindex rule, pointed
6224Bison then proceeds onto the automaton itself, describing each state
6225with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6226item is a production rule together with a point (marked by @samp{.})
6227that the input cursor.
6228
6229@example
6230state 0
6231
88bce5a2 6232 $accept -> . exp $ (rule 0)
ec3bc396 6233
2a8d363a 6234 NUM shift, and go to state 1
ec3bc396 6235
2a8d363a 6236 exp go to state 2
ec3bc396
AD
6237@end example
6238
6239This reads as follows: ``state 0 corresponds to being at the very
6240beginning of the parsing, in the initial rule, right before the start
6241symbol (here, @code{exp}). When the parser returns to this state right
6242after having reduced a rule that produced an @code{exp}, the control
6243flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6244symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6245the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6246look-ahead triggers a syntax error.''
ec3bc396
AD
6247
6248@cindex core, item set
6249@cindex item set core
6250@cindex kernel, item set
6251@cindex item set core
6252Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6253report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6254at the beginning of any rule deriving an @code{exp}. By default Bison
6255reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6256you want to see more detail you can invoke @command{bison} with
6257@option{--report=itemset} to list all the items, include those that can
6258be derived:
6259
6260@example
6261state 0
6262
88bce5a2 6263 $accept -> . exp $ (rule 0)
ec3bc396
AD
6264 exp -> . exp '+' exp (rule 1)
6265 exp -> . exp '-' exp (rule 2)
6266 exp -> . exp '*' exp (rule 3)
6267 exp -> . exp '/' exp (rule 4)
6268 exp -> . NUM (rule 5)
6269
6270 NUM shift, and go to state 1
6271
6272 exp go to state 2
6273@end example
6274
6275@noindent
6276In the state 1...
6277
6278@example
6279state 1
6280
6281 exp -> NUM . (rule 5)
6282
2a8d363a 6283 $default reduce using rule 5 (exp)
ec3bc396
AD
6284@end example
6285
6286@noindent
8dd162d3 6287the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6288(@samp{$default}), the parser will reduce it. If it was coming from
6289state 0, then, after this reduction it will return to state 0, and will
6290jump to state 2 (@samp{exp: go to state 2}).
6291
6292@example
6293state 2
6294
88bce5a2 6295 $accept -> exp . $ (rule 0)
ec3bc396
AD
6296 exp -> exp . '+' exp (rule 1)
6297 exp -> exp . '-' exp (rule 2)
6298 exp -> exp . '*' exp (rule 3)
6299 exp -> exp . '/' exp (rule 4)
6300
2a8d363a
AD
6301 $ shift, and go to state 3
6302 '+' shift, and go to state 4
6303 '-' shift, and go to state 5
6304 '*' shift, and go to state 6
6305 '/' shift, and go to state 7
ec3bc396
AD
6306@end example
6307
6308@noindent
6309In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6310because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6311@samp{+}, it will be shifted on the parse stack, and the automaton
6312control will jump to state 4, corresponding to the item @samp{exp -> exp
6313'+' . exp}. Since there is no default action, any other token than
6e649e65 6314those listed above will trigger a syntax error.
ec3bc396
AD
6315
6316The state 3 is named the @dfn{final state}, or the @dfn{accepting
6317state}:
6318
6319@example
6320state 3
6321
88bce5a2 6322 $accept -> exp $ . (rule 0)
ec3bc396 6323
2a8d363a 6324 $default accept
ec3bc396
AD
6325@end example
6326
6327@noindent
6328the initial rule is completed (the start symbol and the end
6329of input were read), the parsing exits successfully.
6330
6331The interpretation of states 4 to 7 is straightforward, and is left to
6332the reader.
6333
6334@example
6335state 4
6336
6337 exp -> exp '+' . exp (rule 1)
6338
2a8d363a 6339 NUM shift, and go to state 1
ec3bc396 6340
2a8d363a 6341 exp go to state 8
ec3bc396
AD
6342
6343state 5
6344
6345 exp -> exp '-' . exp (rule 2)
6346
2a8d363a 6347 NUM shift, and go to state 1
ec3bc396 6348
2a8d363a 6349 exp go to state 9
ec3bc396
AD
6350
6351state 6
6352
6353 exp -> exp '*' . exp (rule 3)
6354
2a8d363a 6355 NUM shift, and go to state 1
ec3bc396 6356
2a8d363a 6357 exp go to state 10
ec3bc396
AD
6358
6359state 7
6360
6361 exp -> exp '/' . exp (rule 4)
6362
2a8d363a 6363 NUM shift, and go to state 1
ec3bc396 6364
2a8d363a 6365 exp go to state 11
ec3bc396
AD
6366@end example
6367
5a99098d
PE
6368As was announced in beginning of the report, @samp{State 8 conflicts:
63691 shift/reduce}:
ec3bc396
AD
6370
6371@example
6372state 8
6373
6374 exp -> exp . '+' exp (rule 1)
6375 exp -> exp '+' exp . (rule 1)
6376 exp -> exp . '-' exp (rule 2)
6377 exp -> exp . '*' exp (rule 3)
6378 exp -> exp . '/' exp (rule 4)
6379
2a8d363a
AD
6380 '*' shift, and go to state 6
6381 '/' shift, and go to state 7
ec3bc396 6382
2a8d363a
AD
6383 '/' [reduce using rule 1 (exp)]
6384 $default reduce using rule 1 (exp)
ec3bc396
AD
6385@end example
6386
8dd162d3 6387Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6388either shifting (and going to state 7), or reducing rule 1. The
6389conflict means that either the grammar is ambiguous, or the parser lacks
6390information to make the right decision. Indeed the grammar is
6391ambiguous, as, since we did not specify the precedence of @samp{/}, the
6392sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6393NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6394NUM}, which corresponds to reducing rule 1.
6395
c827f760 6396Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6397arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6398Shift/Reduce Conflicts}. Discarded actions are reported in between
6399square brackets.
6400
6401Note that all the previous states had a single possible action: either
6402shifting the next token and going to the corresponding state, or
6403reducing a single rule. In the other cases, i.e., when shifting
6404@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6405possible, the look-ahead is required to select the action. State 8 is
6406one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6407is shifting, otherwise the action is reducing rule 1. In other words,
6408the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6409look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6410precedence than @samp{+}. More generally, some items are eligible only
6411with some set of possible look-ahead tokens. When run with
6412@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6413
6414@example
6415state 8
6416
6417 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6418 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6419 exp -> exp . '-' exp (rule 2)
6420 exp -> exp . '*' exp (rule 3)
6421 exp -> exp . '/' exp (rule 4)
6422
6423 '*' shift, and go to state 6
6424 '/' shift, and go to state 7
6425
6426 '/' [reduce using rule 1 (exp)]
6427 $default reduce using rule 1 (exp)
6428@end example
6429
6430The remaining states are similar:
6431
6432@example
6433state 9
6434
6435 exp -> exp . '+' exp (rule 1)
6436 exp -> exp . '-' exp (rule 2)
6437 exp -> exp '-' exp . (rule 2)
6438 exp -> exp . '*' exp (rule 3)
6439 exp -> exp . '/' exp (rule 4)
6440
2a8d363a
AD
6441 '*' shift, and go to state 6
6442 '/' shift, and go to state 7
ec3bc396 6443
2a8d363a
AD
6444 '/' [reduce using rule 2 (exp)]
6445 $default reduce using rule 2 (exp)
ec3bc396
AD
6446
6447state 10
6448
6449 exp -> exp . '+' exp (rule 1)
6450 exp -> exp . '-' exp (rule 2)
6451 exp -> exp . '*' exp (rule 3)
6452 exp -> exp '*' exp . (rule 3)
6453 exp -> exp . '/' exp (rule 4)
6454
2a8d363a 6455 '/' shift, and go to state 7
ec3bc396 6456
2a8d363a
AD
6457 '/' [reduce using rule 3 (exp)]
6458 $default reduce using rule 3 (exp)
ec3bc396
AD
6459
6460state 11
6461
6462 exp -> exp . '+' exp (rule 1)
6463 exp -> exp . '-' exp (rule 2)
6464 exp -> exp . '*' exp (rule 3)
6465 exp -> exp . '/' exp (rule 4)
6466 exp -> exp '/' exp . (rule 4)
6467
2a8d363a
AD
6468 '+' shift, and go to state 4
6469 '-' shift, and go to state 5
6470 '*' shift, and go to state 6
6471 '/' shift, and go to state 7
ec3bc396 6472
2a8d363a
AD
6473 '+' [reduce using rule 4 (exp)]
6474 '-' [reduce using rule 4 (exp)]
6475 '*' [reduce using rule 4 (exp)]
6476 '/' [reduce using rule 4 (exp)]
6477 $default reduce using rule 4 (exp)
ec3bc396
AD
6478@end example
6479
6480@noindent
fa7e68c3
PE
6481Observe that state 11 contains conflicts not only due to the lack of
6482precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6483@samp{*}, but also because the
ec3bc396
AD
6484associativity of @samp{/} is not specified.
6485
6486
6487@node Tracing
6488@section Tracing Your Parser
bfa74976
RS
6489@findex yydebug
6490@cindex debugging
6491@cindex tracing the parser
6492
6493If a Bison grammar compiles properly but doesn't do what you want when it
6494runs, the @code{yydebug} parser-trace feature can help you figure out why.
6495
3ded9a63
AD
6496There are several means to enable compilation of trace facilities:
6497
6498@table @asis
6499@item the macro @code{YYDEBUG}
6500@findex YYDEBUG
6501Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6502parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6503@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6504YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6505Prologue}).
6506
6507@item the option @option{-t}, @option{--debug}
6508Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6509,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6510
6511@item the directive @samp{%debug}
6512@findex %debug
6513Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6514Declaration Summary}). This is a Bison extension, which will prove
6515useful when Bison will output parsers for languages that don't use a
c827f760
PE
6516preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6517you, this is
3ded9a63
AD
6518the preferred solution.
6519@end table
6520
6521We suggest that you always enable the debug option so that debugging is
6522always possible.
bfa74976 6523
02a81e05 6524The trace facility outputs messages with macro calls of the form
e2742e46 6525@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6526@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6527arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6528define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6529and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6530
6531Once you have compiled the program with trace facilities, the way to
6532request a trace is to store a nonzero value in the variable @code{yydebug}.
6533You can do this by making the C code do it (in @code{main}, perhaps), or
6534you can alter the value with a C debugger.
6535
6536Each step taken by the parser when @code{yydebug} is nonzero produces a
6537line or two of trace information, written on @code{stderr}. The trace
6538messages tell you these things:
6539
6540@itemize @bullet
6541@item
6542Each time the parser calls @code{yylex}, what kind of token was read.
6543
6544@item
6545Each time a token is shifted, the depth and complete contents of the
6546state stack (@pxref{Parser States}).
6547
6548@item
6549Each time a rule is reduced, which rule it is, and the complete contents
6550of the state stack afterward.
6551@end itemize
6552
6553To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6554produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6555Bison}). This file shows the meaning of each state in terms of
6556positions in various rules, and also what each state will do with each
6557possible input token. As you read the successive trace messages, you
6558can see that the parser is functioning according to its specification in
6559the listing file. Eventually you will arrive at the place where
6560something undesirable happens, and you will see which parts of the
6561grammar are to blame.
bfa74976
RS
6562
6563The parser file is a C program and you can use C debuggers on it, but it's
6564not easy to interpret what it is doing. The parser function is a
6565finite-state machine interpreter, and aside from the actions it executes
6566the same code over and over. Only the values of variables show where in
6567the grammar it is working.
6568
6569@findex YYPRINT
6570The debugging information normally gives the token type of each token
6571read, but not its semantic value. You can optionally define a macro
6572named @code{YYPRINT} to provide a way to print the value. If you define
6573@code{YYPRINT}, it should take three arguments. The parser will pass a
6574standard I/O stream, the numeric code for the token type, and the token
6575value (from @code{yylval}).
6576
6577Here is an example of @code{YYPRINT} suitable for the multi-function
6578calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6579
6580@smallexample
38a92d50
PE
6581%@{
6582 static void print_token_value (FILE *, int, YYSTYPE);
6583 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6584%@}
6585
6586@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6587
6588static void
831d3c99 6589print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6590@{
6591 if (type == VAR)
d3c4e709 6592 fprintf (file, "%s", value.tptr->name);
bfa74976 6593 else if (type == NUM)
d3c4e709 6594 fprintf (file, "%d", value.val);
bfa74976
RS
6595@}
6596@end smallexample
6597
ec3bc396
AD
6598@c ================================================= Invoking Bison
6599
342b8b6e 6600@node Invocation
bfa74976
RS
6601@chapter Invoking Bison
6602@cindex invoking Bison
6603@cindex Bison invocation
6604@cindex options for invoking Bison
6605
6606The usual way to invoke Bison is as follows:
6607
6608@example
6609bison @var{infile}
6610@end example
6611
6612Here @var{infile} is the grammar file name, which usually ends in
6613@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6614with @samp{.tab.c} and removing any leading directory. Thus, the
6615@samp{bison foo.y} file name yields
6616@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6617@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6618C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6619or @file{foo.y++}. Then, the output files will take an extension like
6620the given one as input (respectively @file{foo.tab.cpp} and
6621@file{foo.tab.c++}).
fa4d969f 6622This feature takes effect with all options that manipulate file names like
234a3be3
AD
6623@samp{-o} or @samp{-d}.
6624
6625For example :
6626
6627@example
6628bison -d @var{infile.yxx}
6629@end example
84163231 6630@noindent
72d2299c 6631will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6632
6633@example
b56471a6 6634bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6635@end example
84163231 6636@noindent
234a3be3
AD
6637will produce @file{output.c++} and @file{outfile.h++}.
6638
397ec073
PE
6639For compatibility with @acronym{POSIX}, the standard Bison
6640distribution also contains a shell script called @command{yacc} that
6641invokes Bison with the @option{-y} option.
6642
bfa74976 6643@menu
13863333 6644* Bison Options:: All the options described in detail,
c827f760 6645 in alphabetical order by short options.
bfa74976 6646* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6647* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6648@end menu
6649
342b8b6e 6650@node Bison Options
bfa74976
RS
6651@section Bison Options
6652
6653Bison supports both traditional single-letter options and mnemonic long
6654option names. Long option names are indicated with @samp{--} instead of
6655@samp{-}. Abbreviations for option names are allowed as long as they
6656are unique. When a long option takes an argument, like
6657@samp{--file-prefix}, connect the option name and the argument with
6658@samp{=}.
6659
6660Here is a list of options that can be used with Bison, alphabetized by
6661short option. It is followed by a cross key alphabetized by long
6662option.
6663
89cab50d
AD
6664@c Please, keep this ordered as in `bison --help'.
6665@noindent
6666Operations modes:
6667@table @option
6668@item -h
6669@itemx --help
6670Print a summary of the command-line options to Bison and exit.
bfa74976 6671
89cab50d
AD
6672@item -V
6673@itemx --version
6674Print the version number of Bison and exit.
bfa74976 6675
f7ab6a50
PE
6676@item --print-localedir
6677Print the name of the directory containing locale-dependent data.
6678
89cab50d
AD
6679@need 1750
6680@item -y
6681@itemx --yacc
89cab50d
AD
6682Equivalent to @samp{-o y.tab.c}; the parser output file is called
6683@file{y.tab.c}, and the other outputs are called @file{y.output} and
6684@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6685file name conventions. Thus, the following shell script can substitute
397ec073
PE
6686for Yacc, and the Bison distribution contains such a script for
6687compatibility with @acronym{POSIX}:
bfa74976 6688
89cab50d 6689@example
397ec073 6690#! /bin/sh
26e06a21 6691bison -y "$@@"
89cab50d
AD
6692@end example
6693@end table
6694
6695@noindent
6696Tuning the parser:
6697
6698@table @option
cd5bd6ac
AD
6699@item -S @var{file}
6700@itemx --skeleton=@var{file}
6701Specify the skeleton to use. You probably don't need this option unless
6702you are developing Bison.
6703
89cab50d
AD
6704@item -t
6705@itemx --debug
4947ebdb
PE
6706In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6707already defined, so that the debugging facilities are compiled.
ec3bc396 6708@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6709
6710@item --locations
d8988b2f 6711Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6712
6713@item -p @var{prefix}
6714@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6715Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6716@xref{Decl Summary}.
bfa74976
RS
6717
6718@item -l
6719@itemx --no-lines
6720Don't put any @code{#line} preprocessor commands in the parser file.
6721Ordinarily Bison puts them in the parser file so that the C compiler
6722and debuggers will associate errors with your source file, the
6723grammar file. This option causes them to associate errors with the
95e742f7 6724parser file, treating it as an independent source file in its own right.
bfa74976 6725
931c7513
RS
6726@item -n
6727@itemx --no-parser
d8988b2f 6728Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6729
89cab50d
AD
6730@item -k
6731@itemx --token-table
d8988b2f 6732Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6733@end table
bfa74976 6734
89cab50d
AD
6735@noindent
6736Adjust the output:
bfa74976 6737
89cab50d
AD
6738@table @option
6739@item -d
d8988b2f
AD
6740@itemx --defines
6741Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6742file containing macro definitions for the token type names defined in
4bfd5e4e 6743the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6744
342b8b6e 6745@item --defines=@var{defines-file}
d8988b2f 6746Same as above, but save in the file @var{defines-file}.
342b8b6e 6747
89cab50d
AD
6748@item -b @var{file-prefix}
6749@itemx --file-prefix=@var{prefix}
d8988b2f 6750Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6751for all Bison output file names. @xref{Decl Summary}.
bfa74976 6752
ec3bc396
AD
6753@item -r @var{things}
6754@itemx --report=@var{things}
6755Write an extra output file containing verbose description of the comma
6756separated list of @var{things} among:
6757
6758@table @code
6759@item state
6760Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6761@acronym{LALR} automaton.
ec3bc396 6762
8dd162d3 6763@item look-ahead
ec3bc396 6764Implies @code{state} and augments the description of the automaton with
8dd162d3 6765each rule's look-ahead set.
ec3bc396
AD
6766
6767@item itemset
6768Implies @code{state} and augments the description of the automaton with
6769the full set of items for each state, instead of its core only.
6770@end table
6771
6772For instance, on the following grammar
6773
bfa74976
RS
6774@item -v
6775@itemx --verbose
6deb4447
AD
6776Pretend that @code{%verbose} was specified, i.e, write an extra output
6777file containing verbose descriptions of the grammar and
72d2299c 6778parser. @xref{Decl Summary}.
bfa74976 6779
fa4d969f
PE
6780@item -o @var{file}
6781@itemx --output=@var{file}
6782Specify the @var{file} for the parser file.
bfa74976 6783
fa4d969f 6784The other output files' names are constructed from @var{file} as
d8988b2f 6785described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6786
6787@item -g
c827f760
PE
6788Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6789automaton computed by Bison. If the grammar file is @file{foo.y}, the
6790@acronym{VCG} output file will
342b8b6e
AD
6791be @file{foo.vcg}.
6792
6793@item --graph=@var{graph-file}
72d2299c
PE
6794The behavior of @var{--graph} is the same than @samp{-g}. The only
6795difference is that it has an optional argument which is the name of
fa4d969f 6796the output graph file.
bfa74976
RS
6797@end table
6798
342b8b6e 6799@node Option Cross Key
bfa74976
RS
6800@section Option Cross Key
6801
6802Here is a list of options, alphabetized by long option, to help you find
6803the corresponding short option.
6804
6805@tex
6806\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6807
6808{\tt
6809\line{ --debug \leaderfill -t}
6810\line{ --defines \leaderfill -d}
6811\line{ --file-prefix \leaderfill -b}
342b8b6e 6812\line{ --graph \leaderfill -g}
ff51d159 6813\line{ --help \leaderfill -h}
bfa74976
RS
6814\line{ --name-prefix \leaderfill -p}
6815\line{ --no-lines \leaderfill -l}
931c7513 6816\line{ --no-parser \leaderfill -n}
d8988b2f 6817\line{ --output \leaderfill -o}
f7ab6a50 6818\line{ --print-localedir}
931c7513 6819\line{ --token-table \leaderfill -k}
bfa74976
RS
6820\line{ --verbose \leaderfill -v}
6821\line{ --version \leaderfill -V}
6822\line{ --yacc \leaderfill -y}
6823}
6824@end tex
6825
6826@ifinfo
6827@example
6828--debug -t
342b8b6e 6829--defines=@var{defines-file} -d
bfa74976 6830--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6831--graph=@var{graph-file} -d
ff51d159 6832--help -h
931c7513 6833--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6834--no-lines -l
931c7513 6835--no-parser -n
d8988b2f 6836--output=@var{outfile} -o @var{outfile}
f7ab6a50 6837--print-localedir
931c7513 6838--token-table -k
bfa74976
RS
6839--verbose -v
6840--version -V
8c9a50be 6841--yacc -y
bfa74976
RS
6842@end example
6843@end ifinfo
6844
93dd49ab
PE
6845@node Yacc Library
6846@section Yacc Library
6847
6848The Yacc library contains default implementations of the
6849@code{yyerror} and @code{main} functions. These default
6850implementations are normally not useful, but @acronym{POSIX} requires
6851them. To use the Yacc library, link your program with the
6852@option{-ly} option. Note that Bison's implementation of the Yacc
6853library is distributed under the terms of the @acronym{GNU} General
6854Public License (@pxref{Copying}).
6855
6856If you use the Yacc library's @code{yyerror} function, you should
6857declare @code{yyerror} as follows:
6858
6859@example
6860int yyerror (char const *);
6861@end example
6862
6863Bison ignores the @code{int} value returned by this @code{yyerror}.
6864If you use the Yacc library's @code{main} function, your
6865@code{yyparse} function should have the following type signature:
6866
6867@example
6868int yyparse (void);
6869@end example
6870
12545799
AD
6871@c ================================================= C++ Bison
6872
6873@node C++ Language Interface
6874@chapter C++ Language Interface
6875
6876@menu
6877* C++ Parsers:: The interface to generate C++ parser classes
6878* A Complete C++ Example:: Demonstrating their use
6879@end menu
6880
6881@node C++ Parsers
6882@section C++ Parsers
6883
6884@menu
6885* C++ Bison Interface:: Asking for C++ parser generation
6886* C++ Semantic Values:: %union vs. C++
6887* C++ Location Values:: The position and location classes
6888* C++ Parser Interface:: Instantiating and running the parser
6889* C++ Scanner Interface:: Exchanges between yylex and parse
6890@end menu
6891
6892@node C++ Bison Interface
6893@subsection C++ Bison Interface
6894@c - %skeleton "lalr1.cc"
6895@c - Always pure
6896@c - initial action
6897
e054b190 6898The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
6899it, you may either pass the option @option{--skeleton=lalr1.cc} to
6900Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
6901grammar preamble. When run, @command{bison} will create several
6902files:
6903@table @file
6904@item position.hh
6905@itemx location.hh
6906The definition of the classes @code{position} and @code{location},
6907used for location tracking. @xref{C++ Location Values}.
6908
6909@item stack.hh
6910An auxiliary class @code{stack} used by the parser.
6911
fa4d969f
PE
6912@item @var{file}.hh
6913@itemx @var{file}.cc
12545799 6914The declaration and implementation of the C++ parser class.
fa4d969f 6915@var{file} is the name of the output file. It follows the same
12545799
AD
6916rules as with regular C parsers.
6917
fa4d969f 6918Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
6919work without the parser class declaration. Therefore, you must either
6920pass @option{-d}/@option{--defines} to @command{bison}, or use the
6921@samp{%defines} directive.
6922@end table
6923
6924All these files are documented using Doxygen; run @command{doxygen}
6925for a complete and accurate documentation.
6926
6927@node C++ Semantic Values
6928@subsection C++ Semantic Values
6929@c - No objects in unions
6930@c - YSTYPE
6931@c - Printer and destructor
6932
6933The @code{%union} directive works as for C, see @ref{Union Decl, ,The
6934Collection of Value Types}. In particular it produces a genuine
6935@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
6936within pseudo-unions (similar to Boost variants) might be implemented to
6937alleviate these issues.}, which have a few specific features in C++.
12545799
AD
6938@itemize @minus
6939@item
fb9712a9
AD
6940The type @code{YYSTYPE} is defined but its use is discouraged: rather
6941you should refer to the parser's encapsulated type
6942@code{yy::parser::semantic_type}.
12545799
AD
6943@item
6944Non POD (Plain Old Data) types cannot be used. C++ forbids any
6945instance of classes with constructors in unions: only @emph{pointers}
6946to such objects are allowed.
6947@end itemize
6948
6949Because objects have to be stored via pointers, memory is not
6950reclaimed automatically: using the @code{%destructor} directive is the
6951only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
6952Symbols}.
6953
6954
6955@node C++ Location Values
6956@subsection C++ Location Values
6957@c - %locations
6958@c - class Position
6959@c - class Location
b47dbebe 6960@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
6961
6962When the directive @code{%locations} is used, the C++ parser supports
6963location tracking, see @ref{Locations, , Locations Overview}. Two
6964auxiliary classes define a @code{position}, a single point in a file,
6965and a @code{location}, a range composed of a pair of
6966@code{position}s (possibly spanning several files).
6967
fa4d969f 6968@deftypemethod {position} {std::string*} file
12545799
AD
6969The name of the file. It will always be handled as a pointer, the
6970parser will never duplicate nor deallocate it. As an experimental
6971feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 6972"filename_type" "@var{type}"}.
12545799
AD
6973@end deftypemethod
6974
6975@deftypemethod {position} {unsigned int} line
6976The line, starting at 1.
6977@end deftypemethod
6978
6979@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
6980Advance by @var{height} lines, resetting the column number.
6981@end deftypemethod
6982
6983@deftypemethod {position} {unsigned int} column
6984The column, starting at 0.
6985@end deftypemethod
6986
6987@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
6988Advance by @var{width} columns, without changing the line number.
6989@end deftypemethod
6990
6991@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
6992@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
6993@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
6994@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
6995Various forms of syntactic sugar for @code{columns}.
6996@end deftypemethod
6997
6998@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
6999Report @var{p} on @var{o} like this:
fa4d969f
PE
7000@samp{@var{file}:@var{line}.@var{column}}, or
7001@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7002@end deftypemethod
7003
7004@deftypemethod {location} {position} begin
7005@deftypemethodx {location} {position} end
7006The first, inclusive, position of the range, and the first beyond.
7007@end deftypemethod
7008
7009@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7010@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7011Advance the @code{end} position.
7012@end deftypemethod
7013
7014@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7015@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7016@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7017Various forms of syntactic sugar.
7018@end deftypemethod
7019
7020@deftypemethod {location} {void} step ()
7021Move @code{begin} onto @code{end}.
7022@end deftypemethod
7023
7024
7025@node C++ Parser Interface
7026@subsection C++ Parser Interface
7027@c - define parser_class_name
7028@c - Ctor
7029@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7030@c debug_stream.
7031@c - Reporting errors
7032
7033The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7034declare and define the parser class in the namespace @code{yy}. The
7035class name defaults to @code{parser}, but may be changed using
7036@samp{%define "parser_class_name" "@var{name}"}. The interface of
7037this class is detailled below. It can be extended using the
7038@code{%parse-param} feature: its semantics is slightly changed since
7039it describes an additional member of the parser class, and an
7040additional argument for its constructor.
7041
8a0adb01
AD
7042@defcv {Type} {parser} {semantic_value_type}
7043@defcvx {Type} {parser} {location_value_type}
12545799 7044The types for semantics value and locations.
8a0adb01 7045@end defcv
12545799
AD
7046
7047@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7048Build a new parser object. There are no arguments by default, unless
7049@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7050@end deftypemethod
7051
7052@deftypemethod {parser} {int} parse ()
7053Run the syntactic analysis, and return 0 on success, 1 otherwise.
7054@end deftypemethod
7055
7056@deftypemethod {parser} {std::ostream&} debug_stream ()
7057@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7058Get or set the stream used for tracing the parsing. It defaults to
7059@code{std::cerr}.
7060@end deftypemethod
7061
7062@deftypemethod {parser} {debug_level_type} debug_level ()
7063@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7064Get or set the tracing level. Currently its value is either 0, no trace,
7065or non-zero, full tracing.
7066@end deftypemethod
7067
7068@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7069The definition for this member function must be supplied by the user:
7070the parser uses it to report a parser error occurring at @var{l},
7071described by @var{m}.
7072@end deftypemethod
7073
7074
7075@node C++ Scanner Interface
7076@subsection C++ Scanner Interface
7077@c - prefix for yylex.
7078@c - Pure interface to yylex
7079@c - %lex-param
7080
7081The parser invokes the scanner by calling @code{yylex}. Contrary to C
7082parsers, C++ parsers are always pure: there is no point in using the
7083@code{%pure-parser} directive. Therefore the interface is as follows.
7084
7085@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7086Return the next token. Its type is the return value, its semantic
7087value and location being @var{yylval} and @var{yylloc}. Invocations of
7088@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7089@end deftypemethod
7090
7091
7092@node A Complete C++ Example
7093@section A Complete C++ Example
7094
7095This section demonstrates the use of a C++ parser with a simple but
7096complete example. This example should be available on your system,
7097ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7098focuses on the use of Bison, therefore the design of the various C++
7099classes is very naive: no accessors, no encapsulation of members etc.
7100We will use a Lex scanner, and more precisely, a Flex scanner, to
7101demonstrate the various interaction. A hand written scanner is
7102actually easier to interface with.
7103
7104@menu
7105* Calc++ --- C++ Calculator:: The specifications
7106* Calc++ Parsing Driver:: An active parsing context
7107* Calc++ Parser:: A parser class
7108* Calc++ Scanner:: A pure C++ Flex scanner
7109* Calc++ Top Level:: Conducting the band
7110@end menu
7111
7112@node Calc++ --- C++ Calculator
7113@subsection Calc++ --- C++ Calculator
7114
7115Of course the grammar is dedicated to arithmetics, a single
7116expression, possibily preceded by variable assignments. An
7117environment containing possibly predefined variables such as
7118@code{one} and @code{two}, is exchanged with the parser. An example
7119of valid input follows.
7120
7121@example
7122three := 3
7123seven := one + two * three
7124seven * seven
7125@end example
7126
7127@node Calc++ Parsing Driver
7128@subsection Calc++ Parsing Driver
7129@c - An env
7130@c - A place to store error messages
7131@c - A place for the result
7132
7133To support a pure interface with the parser (and the scanner) the
7134technique of the ``parsing context'' is convenient: a structure
7135containing all the data to exchange. Since, in addition to simply
7136launch the parsing, there are several auxiliary tasks to execute (open
7137the file for parsing, instantiate the parser etc.), we recommend
7138transforming the simple parsing context structure into a fully blown
7139@dfn{parsing driver} class.
7140
7141The declaration of this driver class, @file{calc++-driver.hh}, is as
7142follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7143required standard library components, and the declaration of the parser
7144class.
12545799 7145
1c59e0a1 7146@comment file: calc++-driver.hh
12545799
AD
7147@example
7148#ifndef CALCXX_DRIVER_HH
7149# define CALCXX_DRIVER_HH
7150# include <string>
7151# include <map>
fb9712a9 7152# include "calc++-parser.hh"
12545799
AD
7153@end example
7154
12545799
AD
7155
7156@noindent
7157Then comes the declaration of the scanning function. Flex expects
7158the signature of @code{yylex} to be defined in the macro
7159@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7160factor both as follows.
1c59e0a1
AD
7161
7162@comment file: calc++-driver.hh
12545799
AD
7163@example
7164// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7165# define YY_DECL \
fb9712a9
AD
7166 int yylex (yy::calcxx_parser::semantic_type* yylval, \
7167 yy::calcxx_parser::location_type* yylloc, \
7168 calcxx_driver& driver)
12545799
AD
7169// ... and declare it for the parser's sake.
7170YY_DECL;
7171@end example
7172
7173@noindent
7174The @code{calcxx_driver} class is then declared with its most obvious
7175members.
7176
1c59e0a1 7177@comment file: calc++-driver.hh
12545799
AD
7178@example
7179// Conducting the whole scanning and parsing of Calc++.
7180class calcxx_driver
7181@{
7182public:
7183 calcxx_driver ();
7184 virtual ~calcxx_driver ();
7185
7186 std::map<std::string, int> variables;
7187
7188 int result;
7189@end example
7190
7191@noindent
7192To encapsulate the coordination with the Flex scanner, it is useful to
7193have two members function to open and close the scanning phase.
7194members.
7195
1c59e0a1 7196@comment file: calc++-driver.hh
12545799
AD
7197@example
7198 // Handling the scanner.
7199 void scan_begin ();
7200 void scan_end ();
7201 bool trace_scanning;
7202@end example
7203
7204@noindent
7205Similarly for the parser itself.
7206
1c59e0a1 7207@comment file: calc++-driver.hh
12545799
AD
7208@example
7209 // Handling the parser.
7210 void parse (const std::string& f);
7211 std::string file;
7212 bool trace_parsing;
7213@end example
7214
7215@noindent
7216To demonstrate pure handling of parse errors, instead of simply
7217dumping them on the standard error output, we will pass them to the
7218compiler driver using the following two member functions. Finally, we
7219close the class declaration and CPP guard.
7220
1c59e0a1 7221@comment file: calc++-driver.hh
12545799
AD
7222@example
7223 // Error handling.
7224 void error (const yy::location& l, const std::string& m);
7225 void error (const std::string& m);
7226@};
7227#endif // ! CALCXX_DRIVER_HH
7228@end example
7229
7230The implementation of the driver is straightforward. The @code{parse}
7231member function deserves some attention. The @code{error} functions
7232are simple stubs, they should actually register the located error
7233messages and set error state.
7234
1c59e0a1 7235@comment file: calc++-driver.cc
12545799
AD
7236@example
7237#include "calc++-driver.hh"
7238#include "calc++-parser.hh"
7239
7240calcxx_driver::calcxx_driver ()
7241 : trace_scanning (false), trace_parsing (false)
7242@{
7243 variables["one"] = 1;
7244 variables["two"] = 2;
7245@}
7246
7247calcxx_driver::~calcxx_driver ()
7248@{
7249@}
7250
7251void
7252calcxx_driver::parse (const std::string &f)
7253@{
7254 file = f;
7255 scan_begin ();
7256 yy::calcxx_parser parser (*this);
7257 parser.set_debug_level (trace_parsing);
7258 parser.parse ();
7259 scan_end ();
7260@}
7261
7262void
7263calcxx_driver::error (const yy::location& l, const std::string& m)
7264@{
7265 std::cerr << l << ": " << m << std::endl;
7266@}
7267
7268void
7269calcxx_driver::error (const std::string& m)
7270@{
7271 std::cerr << m << std::endl;
7272@}
7273@end example
7274
7275@node Calc++ Parser
7276@subsection Calc++ Parser
7277
7278The parser definition file @file{calc++-parser.yy} starts by asking
fb9712a9
AD
7279for the C++ LALR(1) skeleton, the creation of the parser header file, and
7280specifies the name of the parser class.
1c59e0a1
AD
7281
7282@comment file: calc++-parser.yy
12545799
AD
7283@example
7284%skeleton "lalr1.cc" /* -*- C++ -*- */
12545799 7285%defines
fb9712a9
AD
7286%define "parser_class_name" "calcxx_parser"
7287@end example
7288
7289@noindent
7290Then come the declarations/inclusions needed to define the
7291@code{%union}. Because the parser uses the parsing driver and
7292reciprocally, both cannot include the header of the other. Because the
7293driver's header needs detailed knowledge about the parser class (in
7294particular its inner types), it is the parser's header which will simply
7295use a forward declaration of the driver.
7296
7297@comment file: calc++-parser.yy
7298@example
12545799
AD
7299%@{
7300# include <string>
fb9712a9 7301class calcxx_driver;
12545799
AD
7302%@}
7303@end example
7304
7305@noindent
7306The driver is passed by reference to the parser and to the scanner.
7307This provides a simple but effective pure interface, not relying on
7308global variables.
7309
1c59e0a1 7310@comment file: calc++-parser.yy
12545799
AD
7311@example
7312// The parsing context.
7313%parse-param @{ calcxx_driver& driver @}
7314%lex-param @{ calcxx_driver& driver @}
7315@end example
7316
7317@noindent
7318Then we request the location tracking feature, and initialize the
7319first location's file name. Afterwards new locations are computed
7320relatively to the previous locations: the file name will be
7321automatically propagated.
7322
1c59e0a1 7323@comment file: calc++-parser.yy
12545799
AD
7324@example
7325%locations
7326%initial-action
7327@{
7328 // Initialize the initial location.
b47dbebe 7329 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7330@};
7331@end example
7332
7333@noindent
7334Use the two following directives to enable parser tracing and verbose
7335error messages.
7336
1c59e0a1 7337@comment file: calc++-parser.yy
12545799
AD
7338@example
7339%debug
7340%error-verbose
7341@end example
7342
7343@noindent
7344Semantic values cannot use ``real'' objects, but only pointers to
7345them.
7346
1c59e0a1 7347@comment file: calc++-parser.yy
12545799
AD
7348@example
7349// Symbols.
7350%union
7351@{
7352 int ival;
7353 std::string *sval;
7354@};
7355@end example
7356
fb9712a9
AD
7357@noindent
7358The code between @samp{%@{} and @samp{%@}} after the introduction of the
7359@samp{%union} is output in the @file{*.cc} file; it needs detailed
7360knowledge about the driver.
7361
7362@comment file: calc++-parser.yy
7363@example
7364%@{
7365# include "calc++-driver.hh"
7366%@}
7367@end example
7368
7369
12545799
AD
7370@noindent
7371The token numbered as 0 corresponds to end of file; the following line
7372allows for nicer error messages referring to ``end of file'' instead
7373of ``$end''. Similarly user friendly named are provided for each
7374symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7375avoid name clashes.
7376
1c59e0a1 7377@comment file: calc++-parser.yy
12545799 7378@example
fb9712a9
AD
7379%token END 0 "end of file"
7380%token ASSIGN ":="
7381%token <sval> IDENTIFIER "identifier"
7382%token <ival> NUMBER "number"
7383%type <ival> exp "expression"
12545799
AD
7384@end example
7385
7386@noindent
7387To enable memory deallocation during error recovery, use
7388@code{%destructor}.
7389
1c59e0a1 7390@comment file: calc++-parser.yy
12545799
AD
7391@example
7392%printer @{ debug_stream () << *$$; @} "identifier"
7393%destructor @{ delete $$; @} "identifier"
7394
7395%printer @{ debug_stream () << $$; @} "number" "expression"
7396@end example
7397
7398@noindent
7399The grammar itself is straightforward.
7400
1c59e0a1 7401@comment file: calc++-parser.yy
12545799
AD
7402@example
7403%%
7404%start unit;
7405unit: assignments exp @{ driver.result = $2; @};
7406
7407assignments: assignments assignment @{@}
7408 | /* Nothing. */ @{@};
7409
fb9712a9 7410assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7411
7412%left '+' '-';
7413%left '*' '/';
7414exp: exp '+' exp @{ $$ = $1 + $3; @}
7415 | exp '-' exp @{ $$ = $1 - $3; @}
7416 | exp '*' exp @{ $$ = $1 * $3; @}
7417 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7418 | "identifier" @{ $$ = driver.variables[*$1]; @}
7419 | "number" @{ $$ = $1; @};
12545799
AD
7420%%
7421@end example
7422
7423@noindent
7424Finally the @code{error} member function registers the errors to the
7425driver.
7426
1c59e0a1 7427@comment file: calc++-parser.yy
12545799
AD
7428@example
7429void
1c59e0a1
AD
7430yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7431 const std::string& m)
12545799
AD
7432@{
7433 driver.error (l, m);
7434@}
7435@end example
7436
7437@node Calc++ Scanner
7438@subsection Calc++ Scanner
7439
7440The Flex scanner first includes the driver declaration, then the
7441parser's to get the set of defined tokens.
7442
1c59e0a1 7443@comment file: calc++-scanner.ll
12545799
AD
7444@example
7445%@{ /* -*- C++ -*- */
04098407
PE
7446# include <cstdlib>
7447# include <errno.h>
7448# include <limits.h>
12545799
AD
7449# include <string>
7450# include "calc++-driver.hh"
7451# include "calc++-parser.hh"
7452%@}
7453@end example
7454
7455@noindent
7456Because there is no @code{#include}-like feature we don't need
7457@code{yywrap}, we don't need @code{unput} either, and we parse an
7458actual file, this is not an interactive session with the user.
7459Finally we enable the scanner tracing features.
7460
1c59e0a1 7461@comment file: calc++-scanner.ll
12545799
AD
7462@example
7463%option noyywrap nounput batch debug
7464@end example
7465
7466@noindent
7467Abbreviations allow for more readable rules.
7468
1c59e0a1 7469@comment file: calc++-scanner.ll
12545799
AD
7470@example
7471id [a-zA-Z][a-zA-Z_0-9]*
7472int [0-9]+
7473blank [ \t]
7474@end example
7475
7476@noindent
7477The following paragraph suffices to track locations acurately. Each
7478time @code{yylex} is invoked, the begin position is moved onto the end
7479position. Then when a pattern is matched, the end position is
7480advanced of its width. In case it matched ends of lines, the end
7481cursor is adjusted, and each time blanks are matched, the begin cursor
7482is moved onto the end cursor to effectively ignore the blanks
7483preceding tokens. Comments would be treated equally.
7484
1c59e0a1 7485@comment file: calc++-scanner.ll
12545799 7486@example
828c373b
AD
7487%@{
7488# define YY_USER_ACTION yylloc->columns (yyleng);
7489%@}
12545799
AD
7490%%
7491%@{
7492 yylloc->step ();
12545799
AD
7493%@}
7494@{blank@}+ yylloc->step ();
7495[\n]+ yylloc->lines (yyleng); yylloc->step ();
7496@end example
7497
7498@noindent
fb9712a9
AD
7499The rules are simple, just note the use of the driver to report errors.
7500It is convenient to use a typedef to shorten
7501@code{yy::calcxx_parser::token::identifier} into
7502@code{token::identifier} for isntance.
12545799 7503
1c59e0a1 7504@comment file: calc++-scanner.ll
12545799 7505@example
fb9712a9
AD
7506%@{
7507 typedef yy::calcxx_parser::token token;
7508%@}
7509
12545799 7510[-+*/] return yytext[0];
fb9712a9 7511":=" return token::ASSIGN;
04098407
PE
7512@{int@} @{
7513 errno = 0;
7514 long n = strtol (yytext, NULL, 10);
7515 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7516 driver.error (*yylloc, "integer is out of range");
7517 yylval->ival = n;
fb9712a9 7518 return token::NUMBER;
04098407 7519@}
fb9712a9 7520@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7521. driver.error (*yylloc, "invalid character");
7522%%
7523@end example
7524
7525@noindent
7526Finally, because the scanner related driver's member function depend
7527on the scanner's data, it is simpler to implement them in this file.
7528
1c59e0a1 7529@comment file: calc++-scanner.ll
12545799
AD
7530@example
7531void
7532calcxx_driver::scan_begin ()
7533@{
7534 yy_flex_debug = trace_scanning;
7535 if (!(yyin = fopen (file.c_str (), "r")))
7536 error (std::string ("cannot open ") + file);
7537@}
7538
7539void
7540calcxx_driver::scan_end ()
7541@{
7542 fclose (yyin);
7543@}
7544@end example
7545
7546@node Calc++ Top Level
7547@subsection Calc++ Top Level
7548
7549The top level file, @file{calc++.cc}, poses no problem.
7550
1c59e0a1 7551@comment file: calc++.cc
12545799
AD
7552@example
7553#include <iostream>
7554#include "calc++-driver.hh"
7555
7556int
fa4d969f 7557main (int argc, char *argv[])
12545799
AD
7558@{
7559 calcxx_driver driver;
7560 for (++argv; argv[0]; ++argv)
7561 if (*argv == std::string ("-p"))
7562 driver.trace_parsing = true;
7563 else if (*argv == std::string ("-s"))
7564 driver.trace_scanning = true;
7565 else
7566 @{
7567 driver.parse (*argv);
7568 std::cout << driver.result << std::endl;
7569 @}
7570@}
7571@end example
7572
7573@c ================================================= FAQ
d1a1114f
AD
7574
7575@node FAQ
7576@chapter Frequently Asked Questions
7577@cindex frequently asked questions
7578@cindex questions
7579
7580Several questions about Bison come up occasionally. Here some of them
7581are addressed.
7582
7583@menu
1a059451 7584* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7585* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7586* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7587* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7588@end menu
7589
1a059451
PE
7590@node Memory Exhausted
7591@section Memory Exhausted
d1a1114f
AD
7592
7593@display
1a059451 7594My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7595message. What can I do?
7596@end display
7597
7598This question is already addressed elsewhere, @xref{Recursion,
7599,Recursive Rules}.
7600
e64fec0a
PE
7601@node How Can I Reset the Parser
7602@section How Can I Reset the Parser
5b066063 7603
0e14ad77
PE
7604The following phenomenon has several symptoms, resulting in the
7605following typical questions:
5b066063
AD
7606
7607@display
7608I invoke @code{yyparse} several times, and on correct input it works
7609properly; but when a parse error is found, all the other calls fail
0e14ad77 7610too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7611@end display
7612
7613@noindent
7614or
7615
7616@display
0e14ad77 7617My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7618which case I run @code{yyparse} from @code{yyparse}. This fails
7619although I did specify I needed a @code{%pure-parser}.
7620@end display
7621
0e14ad77
PE
7622These problems typically come not from Bison itself, but from
7623Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7624speed, they might not notice a change of input file. As a
7625demonstration, consider the following source file,
7626@file{first-line.l}:
7627
7628@verbatim
7629%{
7630#include <stdio.h>
7631#include <stdlib.h>
7632%}
7633%%
7634.*\n ECHO; return 1;
7635%%
7636int
0e14ad77 7637yyparse (char const *file)
5b066063
AD
7638{
7639 yyin = fopen (file, "r");
7640 if (!yyin)
7641 exit (2);
fa7e68c3 7642 /* One token only. */
5b066063 7643 yylex ();
0e14ad77 7644 if (fclose (yyin) != 0)
5b066063
AD
7645 exit (3);
7646 return 0;
7647}
7648
7649int
0e14ad77 7650main (void)
5b066063
AD
7651{
7652 yyparse ("input");
7653 yyparse ("input");
7654 return 0;
7655}
7656@end verbatim
7657
7658@noindent
7659If the file @file{input} contains
7660
7661@verbatim
7662input:1: Hello,
7663input:2: World!
7664@end verbatim
7665
7666@noindent
0e14ad77 7667then instead of getting the first line twice, you get:
5b066063
AD
7668
7669@example
7670$ @kbd{flex -ofirst-line.c first-line.l}
7671$ @kbd{gcc -ofirst-line first-line.c -ll}
7672$ @kbd{./first-line}
7673input:1: Hello,
7674input:2: World!
7675@end example
7676
0e14ad77
PE
7677Therefore, whenever you change @code{yyin}, you must tell the
7678Lex-generated scanner to discard its current buffer and switch to the
7679new one. This depends upon your implementation of Lex; see its
7680documentation for more. For Flex, it suffices to call
7681@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7682Flex-generated scanner needs to read from several input streams to
7683handle features like include files, you might consider using Flex
7684functions like @samp{yy_switch_to_buffer} that manipulate multiple
7685input buffers.
5b066063 7686
b165c324
AD
7687If your Flex-generated scanner uses start conditions (@pxref{Start
7688conditions, , Start conditions, flex, The Flex Manual}), you might
7689also want to reset the scanner's state, i.e., go back to the initial
7690start condition, through a call to @samp{BEGIN (0)}.
7691
fef4cb51
AD
7692@node Strings are Destroyed
7693@section Strings are Destroyed
7694
7695@display
c7e441b4 7696My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7697them. Instead of reporting @samp{"foo", "bar"}, it reports
7698@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7699@end display
7700
7701This error is probably the single most frequent ``bug report'' sent to
7702Bison lists, but is only concerned with a misunderstanding of the role
7703of scanner. Consider the following Lex code:
7704
7705@verbatim
7706%{
7707#include <stdio.h>
7708char *yylval = NULL;
7709%}
7710%%
7711.* yylval = yytext; return 1;
7712\n /* IGNORE */
7713%%
7714int
7715main ()
7716{
fa7e68c3 7717 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7718 char *fst = (yylex (), yylval);
7719 char *snd = (yylex (), yylval);
7720 printf ("\"%s\", \"%s\"\n", fst, snd);
7721 return 0;
7722}
7723@end verbatim
7724
7725If you compile and run this code, you get:
7726
7727@example
7728$ @kbd{flex -osplit-lines.c split-lines.l}
7729$ @kbd{gcc -osplit-lines split-lines.c -ll}
7730$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7731"one
7732two", "two"
7733@end example
7734
7735@noindent
7736this is because @code{yytext} is a buffer provided for @emph{reading}
7737in the action, but if you want to keep it, you have to duplicate it
7738(e.g., using @code{strdup}). Note that the output may depend on how
7739your implementation of Lex handles @code{yytext}. For instance, when
7740given the Lex compatibility option @option{-l} (which triggers the
7741option @samp{%array}) Flex generates a different behavior:
7742
7743@example
7744$ @kbd{flex -l -osplit-lines.c split-lines.l}
7745$ @kbd{gcc -osplit-lines split-lines.c -ll}
7746$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7747"two", "two"
7748@end example
7749
7750
2fa09258
AD
7751@node Implementing Gotos/Loops
7752@section Implementing Gotos/Loops
a06ea4aa
AD
7753
7754@display
7755My simple calculator supports variables, assignments, and functions,
2fa09258 7756but how can I implement gotos, or loops?
a06ea4aa
AD
7757@end display
7758
7759Although very pedagogical, the examples included in the document blur
a1c84f45 7760the distinction to make between the parser---whose job is to recover
a06ea4aa 7761the structure of a text and to transmit it to subsequent modules of
a1c84f45 7762the program---and the processing (such as the execution) of this
a06ea4aa
AD
7763structure. This works well with so called straight line programs,
7764i.e., precisely those that have a straightforward execution model:
7765execute simple instructions one after the others.
7766
7767@cindex abstract syntax tree
7768@cindex @acronym{AST}
7769If you want a richer model, you will probably need to use the parser
7770to construct a tree that does represent the structure it has
7771recovered; this tree is usually called the @dfn{abstract syntax tree},
7772or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7773traversing it in various ways, will enable treatments such as its
7774execution or its translation, which will result in an interpreter or a
7775compiler.
7776
7777This topic is way beyond the scope of this manual, and the reader is
7778invited to consult the dedicated literature.
7779
7780
7781
d1a1114f
AD
7782@c ================================================= Table of Symbols
7783
342b8b6e 7784@node Table of Symbols
bfa74976
RS
7785@appendix Bison Symbols
7786@cindex Bison symbols, table of
7787@cindex symbols in Bison, table of
7788
18b519c0 7789@deffn {Variable} @@$
3ded9a63 7790In an action, the location of the left-hand side of the rule.
88bce5a2 7791@xref{Locations, , Locations Overview}.
18b519c0 7792@end deffn
3ded9a63 7793
18b519c0 7794@deffn {Variable} @@@var{n}
3ded9a63
AD
7795In an action, the location of the @var{n}-th symbol of the right-hand
7796side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7797@end deffn
3ded9a63 7798
18b519c0 7799@deffn {Variable} $$
3ded9a63
AD
7800In an action, the semantic value of the left-hand side of the rule.
7801@xref{Actions}.
18b519c0 7802@end deffn
3ded9a63 7803
18b519c0 7804@deffn {Variable} $@var{n}
3ded9a63
AD
7805In an action, the semantic value of the @var{n}-th symbol of the
7806right-hand side of the rule. @xref{Actions}.
18b519c0 7807@end deffn
3ded9a63 7808
dd8d9022
AD
7809@deffn {Delimiter} %%
7810Delimiter used to separate the grammar rule section from the
7811Bison declarations section or the epilogue.
7812@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7813@end deffn
bfa74976 7814
dd8d9022
AD
7815@c Don't insert spaces, or check the DVI output.
7816@deffn {Delimiter} %@{@var{code}%@}
7817All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7818the output file uninterpreted. Such code forms the prologue of the input
7819file. @xref{Grammar Outline, ,Outline of a Bison
7820Grammar}.
18b519c0 7821@end deffn
bfa74976 7822
dd8d9022
AD
7823@deffn {Construct} /*@dots{}*/
7824Comment delimiters, as in C.
18b519c0 7825@end deffn
bfa74976 7826
dd8d9022
AD
7827@deffn {Delimiter} :
7828Separates a rule's result from its components. @xref{Rules, ,Syntax of
7829Grammar Rules}.
18b519c0 7830@end deffn
bfa74976 7831
dd8d9022
AD
7832@deffn {Delimiter} ;
7833Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7834@end deffn
bfa74976 7835
dd8d9022
AD
7836@deffn {Delimiter} |
7837Separates alternate rules for the same result nonterminal.
7838@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7839@end deffn
bfa74976 7840
dd8d9022
AD
7841@deffn {Symbol} $accept
7842The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7843$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7844Start-Symbol}. It cannot be used in the grammar.
18b519c0 7845@end deffn
bfa74976 7846
18b519c0 7847@deffn {Directive} %debug
6deb4447 7848Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7849@end deffn
6deb4447 7850
91d2c560 7851@ifset defaultprec
22fccf95
PE
7852@deffn {Directive} %default-prec
7853Assign a precedence to rules that lack an explicit @samp{%prec}
7854modifier. @xref{Contextual Precedence, ,Context-Dependent
7855Precedence}.
39a06c25 7856@end deffn
91d2c560 7857@end ifset
39a06c25 7858
18b519c0 7859@deffn {Directive} %defines
6deb4447
AD
7860Bison declaration to create a header file meant for the scanner.
7861@xref{Decl Summary}.
18b519c0 7862@end deffn
6deb4447 7863
18b519c0 7864@deffn {Directive} %destructor
258b75ca 7865Specify how the parser should reclaim the memory associated to
fa7e68c3 7866discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7867@end deffn
72f889cc 7868
18b519c0 7869@deffn {Directive} %dprec
676385e2 7870Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7871time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7872@acronym{GLR} Parsers}.
18b519c0 7873@end deffn
676385e2 7874
dd8d9022
AD
7875@deffn {Symbol} $end
7876The predefined token marking the end of the token stream. It cannot be
7877used in the grammar.
7878@end deffn
7879
7880@deffn {Symbol} error
7881A token name reserved for error recovery. This token may be used in
7882grammar rules so as to allow the Bison parser to recognize an error in
7883the grammar without halting the process. In effect, a sentence
7884containing an error may be recognized as valid. On a syntax error, the
7885token @code{error} becomes the current look-ahead token. Actions
7886corresponding to @code{error} are then executed, and the look-ahead
7887token is reset to the token that originally caused the violation.
7888@xref{Error Recovery}.
18d192f0
AD
7889@end deffn
7890
18b519c0 7891@deffn {Directive} %error-verbose
2a8d363a
AD
7892Bison declaration to request verbose, specific error message strings
7893when @code{yyerror} is called.
18b519c0 7894@end deffn
2a8d363a 7895
18b519c0 7896@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7897Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7898Summary}.
18b519c0 7899@end deffn
d8988b2f 7900
18b519c0 7901@deffn {Directive} %glr-parser
c827f760
PE
7902Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7903Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7904@end deffn
676385e2 7905
dd8d9022
AD
7906@deffn {Directive} %initial-action
7907Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
7908@end deffn
7909
18b519c0 7910@deffn {Directive} %left
bfa74976
RS
7911Bison declaration to assign left associativity to token(s).
7912@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7913@end deffn
bfa74976 7914
feeb0eda 7915@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7916Bison declaration to specifying an additional parameter that
7917@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7918for Pure Parsers}.
18b519c0 7919@end deffn
2a8d363a 7920
18b519c0 7921@deffn {Directive} %merge
676385e2 7922Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7923reduce/reduce conflict with a rule having the same merging function, the
676385e2 7924function is applied to the two semantic values to get a single result.
c827f760 7925@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7926@end deffn
676385e2 7927
18b519c0 7928@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7929Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7930@end deffn
d8988b2f 7931
91d2c560 7932@ifset defaultprec
22fccf95
PE
7933@deffn {Directive} %no-default-prec
7934Do not assign a precedence to rules that lack an explicit @samp{%prec}
7935modifier. @xref{Contextual Precedence, ,Context-Dependent
7936Precedence}.
7937@end deffn
91d2c560 7938@end ifset
22fccf95 7939
18b519c0 7940@deffn {Directive} %no-lines
931c7513
RS
7941Bison declaration to avoid generating @code{#line} directives in the
7942parser file. @xref{Decl Summary}.
18b519c0 7943@end deffn
931c7513 7944
18b519c0 7945@deffn {Directive} %nonassoc
14ded682 7946Bison declaration to assign non-associativity to token(s).
bfa74976 7947@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7948@end deffn
bfa74976 7949
fa4d969f 7950@deffn {Directive} %output="@var{file}"
72d2299c 7951Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7952Summary}.
18b519c0 7953@end deffn
d8988b2f 7954
feeb0eda 7955@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7956Bison declaration to specifying an additional parameter that
7957@code{yyparse} should accept. @xref{Parser Function,, The Parser
7958Function @code{yyparse}}.
18b519c0 7959@end deffn
2a8d363a 7960
18b519c0 7961@deffn {Directive} %prec
bfa74976
RS
7962Bison declaration to assign a precedence to a specific rule.
7963@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7964@end deffn
bfa74976 7965
18b519c0 7966@deffn {Directive} %pure-parser
bfa74976
RS
7967Bison declaration to request a pure (reentrant) parser.
7968@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7969@end deffn
bfa74976 7970
18b519c0 7971@deffn {Directive} %right
bfa74976
RS
7972Bison declaration to assign right associativity to token(s).
7973@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7974@end deffn
bfa74976 7975
18b519c0 7976@deffn {Directive} %start
704a47c4
AD
7977Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7978Start-Symbol}.
18b519c0 7979@end deffn
bfa74976 7980
18b519c0 7981@deffn {Directive} %token
bfa74976
RS
7982Bison declaration to declare token(s) without specifying precedence.
7983@xref{Token Decl, ,Token Type Names}.
18b519c0 7984@end deffn
bfa74976 7985
18b519c0 7986@deffn {Directive} %token-table
931c7513
RS
7987Bison declaration to include a token name table in the parser file.
7988@xref{Decl Summary}.
18b519c0 7989@end deffn
931c7513 7990
18b519c0 7991@deffn {Directive} %type
704a47c4
AD
7992Bison declaration to declare nonterminals. @xref{Type Decl,
7993,Nonterminal Symbols}.
18b519c0 7994@end deffn
bfa74976 7995
dd8d9022
AD
7996@deffn {Symbol} $undefined
7997The predefined token onto which all undefined values returned by
7998@code{yylex} are mapped. It cannot be used in the grammar, rather, use
7999@code{error}.
8000@end deffn
8001
18b519c0 8002@deffn {Directive} %union
bfa74976
RS
8003Bison declaration to specify several possible data types for semantic
8004values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8005@end deffn
bfa74976 8006
dd8d9022
AD
8007@deffn {Macro} YYABORT
8008Macro to pretend that an unrecoverable syntax error has occurred, by
8009making @code{yyparse} return 1 immediately. The error reporting
8010function @code{yyerror} is not called. @xref{Parser Function, ,The
8011Parser Function @code{yyparse}}.
8012@end deffn
3ded9a63 8013
dd8d9022
AD
8014@deffn {Macro} YYACCEPT
8015Macro to pretend that a complete utterance of the language has been
8016read, by making @code{yyparse} return 0 immediately.
8017@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8018@end deffn
bfa74976 8019
dd8d9022
AD
8020@deffn {Macro} YYBACKUP
8021Macro to discard a value from the parser stack and fake a look-ahead
8022token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8023@end deffn
bfa74976 8024
dd8d9022
AD
8025@deffn {Variable} yychar
8026External integer variable that contains the integer value of the current
8027look-ahead token. (In a pure parser, it is a local variable within
8028@code{yyparse}.) Error-recovery rule actions may examine this variable.
8029@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8030@end deffn
bfa74976 8031
dd8d9022
AD
8032@deffn {Variable} yyclearin
8033Macro used in error-recovery rule actions. It clears the previous
8034look-ahead token. @xref{Error Recovery}.
18b519c0 8035@end deffn
bfa74976 8036
dd8d9022
AD
8037@deffn {Macro} YYDEBUG
8038Macro to define to equip the parser with tracing code. @xref{Tracing,
8039,Tracing Your Parser}.
18b519c0 8040@end deffn
bfa74976 8041
dd8d9022
AD
8042@deffn {Variable} yydebug
8043External integer variable set to zero by default. If @code{yydebug}
8044is given a nonzero value, the parser will output information on input
8045symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8046@end deffn
bfa74976 8047
dd8d9022
AD
8048@deffn {Macro} yyerrok
8049Macro to cause parser to recover immediately to its normal mode
8050after a syntax error. @xref{Error Recovery}.
8051@end deffn
8052
8053@deffn {Macro} YYERROR
8054Macro to pretend that a syntax error has just been detected: call
8055@code{yyerror} and then perform normal error recovery if possible
8056(@pxref{Error Recovery}), or (if recovery is impossible) make
8057@code{yyparse} return 1. @xref{Error Recovery}.
8058@end deffn
8059
8060@deffn {Function} yyerror
8061User-supplied function to be called by @code{yyparse} on error.
8062@xref{Error Reporting, ,The Error
8063Reporting Function @code{yyerror}}.
8064@end deffn
8065
8066@deffn {Macro} YYERROR_VERBOSE
8067An obsolete macro that you define with @code{#define} in the prologue
8068to request verbose, specific error message strings
8069when @code{yyerror} is called. It doesn't matter what definition you
8070use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8071@code{%error-verbose} is preferred.
8072@end deffn
8073
8074@deffn {Macro} YYINITDEPTH
8075Macro for specifying the initial size of the parser stack.
1a059451 8076@xref{Memory Management}.
dd8d9022
AD
8077@end deffn
8078
8079@deffn {Function} yylex
8080User-supplied lexical analyzer function, called with no arguments to get
8081the next token. @xref{Lexical, ,The Lexical Analyzer Function
8082@code{yylex}}.
8083@end deffn
8084
8085@deffn {Macro} YYLEX_PARAM
8086An obsolete macro for specifying an extra argument (or list of extra
8087arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
8088macro is deprecated, and is supported only for Yacc like parsers.
8089@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8090@end deffn
8091
8092@deffn {Variable} yylloc
8093External variable in which @code{yylex} should place the line and column
8094numbers associated with a token. (In a pure parser, it is a local
8095variable within @code{yyparse}, and its address is passed to
8096@code{yylex}.) You can ignore this variable if you don't use the
8097@samp{@@} feature in the grammar actions. @xref{Token Locations,
8098,Textual Locations of Tokens}.
8099@end deffn
8100
8101@deffn {Type} YYLTYPE
8102Data type of @code{yylloc}; by default, a structure with four
8103members. @xref{Location Type, , Data Types of Locations}.
8104@end deffn
8105
8106@deffn {Variable} yylval
8107External variable in which @code{yylex} should place the semantic
8108value associated with a token. (In a pure parser, it is a local
8109variable within @code{yyparse}, and its address is passed to
8110@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
8111@end deffn
8112
8113@deffn {Macro} YYMAXDEPTH
1a059451
PE
8114Macro for specifying the maximum size of the parser stack. @xref{Memory
8115Management}.
dd8d9022
AD
8116@end deffn
8117
8118@deffn {Variable} yynerrs
8a2800e7 8119Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8120(In a pure parser, it is a local variable within @code{yyparse}.)
8121@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8122@end deffn
8123
8124@deffn {Function} yyparse
8125The parser function produced by Bison; call this function to start
8126parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8127@end deffn
8128
8129@deffn {Macro} YYPARSE_PARAM
8130An obsolete macro for specifying the name of a parameter that
8131@code{yyparse} should accept. The use of this macro is deprecated, and
8132is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8133Conventions for Pure Parsers}.
8134@end deffn
8135
8136@deffn {Macro} YYRECOVERING
8137Macro whose value indicates whether the parser is recovering from a
8138syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8139@end deffn
8140
8141@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8142Macro used to control the use of @code{alloca} when the C
8143@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8144the parser will use @code{malloc} to extend its stacks. If defined to
81451, the parser will use @code{alloca}. Values other than 0 and 1 are
8146reserved for future Bison extensions. If not defined,
8147@code{YYSTACK_USE_ALLOCA} defaults to 0.
8148
55289366 8149In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8150limited stack and with unreliable stack-overflow checking, you should
8151set @code{YYMAXDEPTH} to a value that cannot possibly result in
8152unchecked stack overflow on any of your target hosts when
8153@code{alloca} is called. You can inspect the code that Bison
8154generates in order to determine the proper numeric values. This will
8155require some expertise in low-level implementation details.
dd8d9022
AD
8156@end deffn
8157
8158@deffn {Type} YYSTYPE
8159Data type of semantic values; @code{int} by default.
8160@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8161@end deffn
bfa74976 8162
342b8b6e 8163@node Glossary
bfa74976
RS
8164@appendix Glossary
8165@cindex glossary
8166
8167@table @asis
c827f760
PE
8168@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8169Formal method of specifying context-free grammars originally proposed
8170by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8171committee document contributing to what became the Algol 60 report.
8172@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8173
8174@item Context-free grammars
8175Grammars specified as rules that can be applied regardless of context.
8176Thus, if there is a rule which says that an integer can be used as an
8177expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8178permitted. @xref{Language and Grammar, ,Languages and Context-Free
8179Grammars}.
bfa74976
RS
8180
8181@item Dynamic allocation
8182Allocation of memory that occurs during execution, rather than at
8183compile time or on entry to a function.
8184
8185@item Empty string
8186Analogous to the empty set in set theory, the empty string is a
8187character string of length zero.
8188
8189@item Finite-state stack machine
8190A ``machine'' that has discrete states in which it is said to exist at
8191each instant in time. As input to the machine is processed, the
8192machine moves from state to state as specified by the logic of the
8193machine. In the case of the parser, the input is the language being
8194parsed, and the states correspond to various stages in the grammar
c827f760 8195rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8196
c827f760 8197@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8198A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8199that are not @acronym{LALR}(1). It resolves situations that Bison's
8200usual @acronym{LALR}(1)
676385e2
PH
8201algorithm cannot by effectively splitting off multiple parsers, trying all
8202possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8203right context. @xref{Generalized LR Parsing, ,Generalized
8204@acronym{LR} Parsing}.
676385e2 8205
bfa74976
RS
8206@item Grouping
8207A language construct that is (in general) grammatically divisible;
c827f760 8208for example, `expression' or `declaration' in C@.
bfa74976
RS
8209@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8210
8211@item Infix operator
8212An arithmetic operator that is placed between the operands on which it
8213performs some operation.
8214
8215@item Input stream
8216A continuous flow of data between devices or programs.
8217
8218@item Language construct
8219One of the typical usage schemas of the language. For example, one of
8220the constructs of the C language is the @code{if} statement.
8221@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8222
8223@item Left associativity
8224Operators having left associativity are analyzed from left to right:
8225@samp{a+b+c} first computes @samp{a+b} and then combines with
8226@samp{c}. @xref{Precedence, ,Operator Precedence}.
8227
8228@item Left recursion
89cab50d
AD
8229A rule whose result symbol is also its first component symbol; for
8230example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8231Rules}.
bfa74976
RS
8232
8233@item Left-to-right parsing
8234Parsing a sentence of a language by analyzing it token by token from
c827f760 8235left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8236
8237@item Lexical analyzer (scanner)
8238A function that reads an input stream and returns tokens one by one.
8239@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8240
8241@item Lexical tie-in
8242A flag, set by actions in the grammar rules, which alters the way
8243tokens are parsed. @xref{Lexical Tie-ins}.
8244
931c7513 8245@item Literal string token
14ded682 8246A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8247
bfa74976 8248@item Look-ahead token
89cab50d
AD
8249A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8250Tokens}.
bfa74976 8251
c827f760 8252@item @acronym{LALR}(1)
bfa74976 8253The class of context-free grammars that Bison (like most other parser
c827f760
PE
8254generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8255Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8256
c827f760 8257@item @acronym{LR}(1)
bfa74976
RS
8258The class of context-free grammars in which at most one token of
8259look-ahead is needed to disambiguate the parsing of any piece of input.
8260
8261@item Nonterminal symbol
8262A grammar symbol standing for a grammatical construct that can
8263be expressed through rules in terms of smaller constructs; in other
8264words, a construct that is not a token. @xref{Symbols}.
8265
bfa74976
RS
8266@item Parser
8267A function that recognizes valid sentences of a language by analyzing
8268the syntax structure of a set of tokens passed to it from a lexical
8269analyzer.
8270
8271@item Postfix operator
8272An arithmetic operator that is placed after the operands upon which it
8273performs some operation.
8274
8275@item Reduction
8276Replacing a string of nonterminals and/or terminals with a single
89cab50d 8277nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8278Parser Algorithm}.
bfa74976
RS
8279
8280@item Reentrant
8281A reentrant subprogram is a subprogram which can be in invoked any
8282number of times in parallel, without interference between the various
8283invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8284
8285@item Reverse polish notation
8286A language in which all operators are postfix operators.
8287
8288@item Right recursion
89cab50d
AD
8289A rule whose result symbol is also its last component symbol; for
8290example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8291Rules}.
bfa74976
RS
8292
8293@item Semantics
8294In computer languages, the semantics are specified by the actions
8295taken for each instance of the language, i.e., the meaning of
8296each statement. @xref{Semantics, ,Defining Language Semantics}.
8297
8298@item Shift
8299A parser is said to shift when it makes the choice of analyzing
8300further input from the stream rather than reducing immediately some
c827f760 8301already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8302
8303@item Single-character literal
8304A single character that is recognized and interpreted as is.
8305@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8306
8307@item Start symbol
8308The nonterminal symbol that stands for a complete valid utterance in
8309the language being parsed. The start symbol is usually listed as the
13863333 8310first nonterminal symbol in a language specification.
bfa74976
RS
8311@xref{Start Decl, ,The Start-Symbol}.
8312
8313@item Symbol table
8314A data structure where symbol names and associated data are stored
8315during parsing to allow for recognition and use of existing
8316information in repeated uses of a symbol. @xref{Multi-function Calc}.
8317
6e649e65
PE
8318@item Syntax error
8319An error encountered during parsing of an input stream due to invalid
8320syntax. @xref{Error Recovery}.
8321
bfa74976
RS
8322@item Token
8323A basic, grammatically indivisible unit of a language. The symbol
8324that describes a token in the grammar is a terminal symbol.
8325The input of the Bison parser is a stream of tokens which comes from
8326the lexical analyzer. @xref{Symbols}.
8327
8328@item Terminal symbol
89cab50d
AD
8329A grammar symbol that has no rules in the grammar and therefore is
8330grammatically indivisible. The piece of text it represents is a token.
8331@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8332@end table
8333
342b8b6e 8334@node Copying This Manual
f2b5126e 8335@appendix Copying This Manual
f9a8293a 8336
f2b5126e
PB
8337@menu
8338* GNU Free Documentation License:: License for copying this manual.
8339@end menu
f9a8293a 8340
f2b5126e
PB
8341@include fdl.texi
8342
342b8b6e 8343@node Index
bfa74976
RS
8344@unnumbered Index
8345
8346@printindex cp
8347
bfa74976 8348@bye
a06ea4aa
AD
8349
8350@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8351@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8352@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8353@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8354@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8355@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8356@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8357@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8358@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8359@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8360@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8361@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8362@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8363@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8364@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8365@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8366@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8367@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8368@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8369@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8370@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
8371@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
8372@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8373@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8374@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8375@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8376@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8377@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8378@c LocalWords: YYSTACK DVI fdl printindex