]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Avoid undefined behavior that accessed just before the start of an array.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
32c29292 471999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
32c29292
JD
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
150* GLR Semantic Actions:: Deferred semantic actions have special concerns.
151* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 152
bfa74976
RS
153Examples
154
155* RPN Calc:: Reverse polish notation calculator;
156 a first example with no operator precedence.
157* Infix Calc:: Infix (algebraic) notation calculator.
158 Operator precedence is introduced.
159* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 160* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
161* Multi-function Calc:: Calculator with memory and trig functions.
162 It uses multiple data-types for semantic values.
bfa74976
RS
163* Exercises:: Ideas for improving the multi-function calculator.
164
165Reverse Polish Notation Calculator
166
75f5aaea 167* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
168* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
169* Lexer: Rpcalc Lexer. The lexical analyzer.
170* Main: Rpcalc Main. The controlling function.
171* Error: Rpcalc Error. The error reporting function.
172* Gen: Rpcalc Gen. Running Bison on the grammar file.
173* Comp: Rpcalc Compile. Run the C compiler on the output code.
174
175Grammar Rules for @code{rpcalc}
176
13863333
AD
177* Rpcalc Input::
178* Rpcalc Line::
179* Rpcalc Expr::
bfa74976 180
342b8b6e
AD
181Location Tracking Calculator: @code{ltcalc}
182
183* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
184* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
185* Lexer: Ltcalc Lexer. The lexical analyzer.
186
bfa74976
RS
187Multi-Function Calculator: @code{mfcalc}
188
189* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
190* Rules: Mfcalc Rules. Grammar rules for the calculator.
191* Symtab: Mfcalc Symtab. Symbol table management subroutines.
192
193Bison Grammar Files
194
195* Grammar Outline:: Overall layout of the grammar file.
196* Symbols:: Terminal and nonterminal symbols.
197* Rules:: How to write grammar rules.
198* Recursion:: Writing recursive rules.
199* Semantics:: Semantic values and actions.
93dd49ab 200* Locations:: Locations and actions.
bfa74976
RS
201* Declarations:: All kinds of Bison declarations are described here.
202* Multiple Parsers:: Putting more than one Bison parser in one program.
203
204Outline of a Bison Grammar
205
93dd49ab 206* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
207* Bison Declarations:: Syntax and usage of the Bison declarations section.
208* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 209* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
210
211Defining Language Semantics
212
213* Value Type:: Specifying one data type for all semantic values.
214* Multiple Types:: Specifying several alternative data types.
215* Actions:: An action is the semantic definition of a grammar rule.
216* Action Types:: Specifying data types for actions to operate on.
217* Mid-Rule Actions:: Most actions go at the end of a rule.
218 This says when, why and how to use the exceptional
219 action in the middle of a rule.
220
93dd49ab
PE
221Tracking Locations
222
223* Location Type:: Specifying a data type for locations.
224* Actions and Locations:: Using locations in actions.
225* Location Default Action:: Defining a general way to compute locations.
226
bfa74976
RS
227Bison Declarations
228
b50d2359 229* Require Decl:: Requiring a Bison version.
bfa74976
RS
230* Token Decl:: Declaring terminal symbols.
231* Precedence Decl:: Declaring terminals with precedence and associativity.
232* Union Decl:: Declaring the set of all semantic value types.
233* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 234* Initial Action Decl:: Code run before parsing starts.
72f889cc 235* Destructor Decl:: Declaring how symbols are freed.
d6328241 236* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
237* Start Decl:: Specifying the start symbol.
238* Pure Decl:: Requesting a reentrant parser.
239* Decl Summary:: Table of all Bison declarations.
240
241Parser C-Language Interface
242
243* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 244* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
f7ab6a50
PE
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
95923bd6 256* Token Locations:: How @code{yylex} must return the text location
bfa74976 257 (line number, etc.) of the token, if the
93dd49ab 258 actions want that.
bfa74976
RS
259* Pure Calling:: How the calling convention differs
260 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
261
13863333 262The Bison Parser Algorithm
bfa74976
RS
263
264* Look-Ahead:: Parser looks one token ahead when deciding what to do.
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
270* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 271* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 272* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
273
274Operator Precedence
275
276* Why Precedence:: An example showing why precedence is needed.
277* Using Precedence:: How to specify precedence in Bison grammars.
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
281Handling Context Dependencies
282
283* Semantic Tokens:: Token parsing can depend on the semantic context.
284* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
285* Tie-in Recovery:: Lexical tie-ins have implications for how
286 error recovery rules must be written.
287
93dd49ab 288Debugging Your Parser
ec3bc396
AD
289
290* Understanding:: Understanding the structure of your parser.
291* Tracing:: Tracing the execution of your parser.
292
bfa74976
RS
293Invoking Bison
294
13863333 295* Bison Options:: All the options described in detail,
c827f760 296 in alphabetical order by short options.
bfa74976 297* Option Cross Key:: Alphabetical list of long options.
93dd49ab 298* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 299
12545799
AD
300C++ Language Interface
301
302* C++ Parsers:: The interface to generate C++ parser classes
303* A Complete C++ Example:: Demonstrating their use
304
305C++ Parsers
306
307* C++ Bison Interface:: Asking for C++ parser generation
308* C++ Semantic Values:: %union vs. C++
309* C++ Location Values:: The position and location classes
310* C++ Parser Interface:: Instantiating and running the parser
311* C++ Scanner Interface:: Exchanges between yylex and parse
312
313A Complete C++ Example
314
315* Calc++ --- C++ Calculator:: The specifications
316* Calc++ Parsing Driver:: An active parsing context
317* Calc++ Parser:: A parser class
318* Calc++ Scanner:: A pure C++ Flex scanner
319* Calc++ Top Level:: Conducting the band
320
d1a1114f
AD
321Frequently Asked Questions
322
1a059451 323* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 324* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 325* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 326* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 327
f2b5126e
PB
328Copying This Manual
329
330* GNU Free Documentation License:: License for copying this manual.
331
342b8b6e 332@end detailmenu
bfa74976
RS
333@end menu
334
342b8b6e 335@node Introduction
bfa74976
RS
336@unnumbered Introduction
337@cindex introduction
338
339@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 340grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
341program to parse that grammar. Once you are proficient with Bison,
342you may use it to develop a wide range of language parsers, from those
343used in simple desk calculators to complex programming languages.
344
345Bison is upward compatible with Yacc: all properly-written Yacc grammars
346ought to work with Bison with no change. Anyone familiar with Yacc
347should be able to use Bison with little trouble. You need to be fluent in
348C programming in order to use Bison or to understand this manual.
349
350We begin with tutorial chapters that explain the basic concepts of using
351Bison and show three explained examples, each building on the last. If you
352don't know Bison or Yacc, start by reading these chapters. Reference
353chapters follow which describe specific aspects of Bison in detail.
354
931c7513
RS
355Bison was written primarily by Robert Corbett; Richard Stallman made it
356Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 357multi-character string literals and other features.
931c7513 358
df1af54c 359This edition corresponds to version @value{VERSION} of Bison.
bfa74976 360
342b8b6e 361@node Conditions
bfa74976
RS
362@unnumbered Conditions for Using Bison
363
a31239f1 364As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 365@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 366Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 367parsers could be used only in programs that were free software.
a31239f1 368
c827f760
PE
369The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
370compiler, have never
9ecbd125 371had such a requirement. They could always be used for nonfree
a31239f1
RS
372software. The reason Bison was different was not due to a special
373policy decision; it resulted from applying the usual General Public
374License to all of the Bison source code.
375
376The output of the Bison utility---the Bison parser file---contains a
377verbatim copy of a sizable piece of Bison, which is the code for the
378@code{yyparse} function. (The actions from your grammar are inserted
379into this function at one point, but the rest of the function is not
c827f760
PE
380changed.) When we applied the @acronym{GPL} terms to the code for
381@code{yyparse},
a31239f1
RS
382the effect was to restrict the use of Bison output to free software.
383
384We didn't change the terms because of sympathy for people who want to
385make software proprietary. @strong{Software should be free.} But we
386concluded that limiting Bison's use to free software was doing little to
387encourage people to make other software free. So we decided to make the
388practical conditions for using Bison match the practical conditions for
c827f760 389using the other @acronym{GNU} tools.
bfa74976 390
eda42934 391This exception applies only when Bison is generating C code for an
c827f760
PE
392@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
393as usual. You can
262aa8dd
PE
394tell whether the exception applies to your @samp{.c} output file by
395inspecting it to see whether it says ``As a special exception, when
396this file is copied by Bison into a Bison output file, you may use
397that output file without restriction.''
398
c67a198d 399@include gpl.texi
bfa74976 400
342b8b6e 401@node Concepts
bfa74976
RS
402@chapter The Concepts of Bison
403
404This chapter introduces many of the basic concepts without which the
405details of Bison will not make sense. If you do not already know how to
406use Bison or Yacc, we suggest you start by reading this chapter carefully.
407
408@menu
409* Language and Grammar:: Languages and context-free grammars,
410 as mathematical ideas.
411* Grammar in Bison:: How we represent grammars for Bison's sake.
412* Semantic Values:: Each token or syntactic grouping can have
413 a semantic value (the value of an integer,
414 the name of an identifier, etc.).
415* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 416* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 417* Locations Overview:: Tracking Locations.
bfa74976
RS
418* Bison Parser:: What are Bison's input and output,
419 how is the output used?
420* Stages:: Stages in writing and running Bison grammars.
421* Grammar Layout:: Overall structure of a Bison grammar file.
422@end menu
423
342b8b6e 424@node Language and Grammar
bfa74976
RS
425@section Languages and Context-Free Grammars
426
bfa74976
RS
427@cindex context-free grammar
428@cindex grammar, context-free
429In order for Bison to parse a language, it must be described by a
430@dfn{context-free grammar}. This means that you specify one or more
431@dfn{syntactic groupings} and give rules for constructing them from their
432parts. For example, in the C language, one kind of grouping is called an
433`expression'. One rule for making an expression might be, ``An expression
434can be made of a minus sign and another expression''. Another would be,
435``An expression can be an integer''. As you can see, rules are often
436recursive, but there must be at least one rule which leads out of the
437recursion.
438
c827f760 439@cindex @acronym{BNF}
bfa74976
RS
440@cindex Backus-Naur form
441The most common formal system for presenting such rules for humans to read
c827f760
PE
442is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
443order to specify the language Algol 60. Any grammar expressed in
444@acronym{BNF} is a context-free grammar. The input to Bison is
445essentially machine-readable @acronym{BNF}.
bfa74976 446
c827f760
PE
447@cindex @acronym{LALR}(1) grammars
448@cindex @acronym{LR}(1) grammars
676385e2
PH
449There are various important subclasses of context-free grammar. Although it
450can handle almost all context-free grammars, Bison is optimized for what
c827f760 451are called @acronym{LALR}(1) grammars.
676385e2 452In brief, in these grammars, it must be possible to
bfa74976
RS
453tell how to parse any portion of an input string with just a single
454token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
455@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
456restrictions that are
bfa74976 457hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
458@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
459@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
460more information on this.
bfa74976 461
c827f760
PE
462@cindex @acronym{GLR} parsing
463@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 464@cindex ambiguous grammars
9d9b8b70 465@cindex nondeterministic parsing
9501dc6e
AD
466
467Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
468roughly that the next grammar rule to apply at any point in the input is
469uniquely determined by the preceding input and a fixed, finite portion
470(called a @dfn{look-ahead}) of the remaining input. A context-free
471grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 472apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 473grammars can be @dfn{nondeterministic}, meaning that no fixed
9501dc6e
AD
474look-ahead always suffices to determine the next grammar rule to apply.
475With the proper declarations, Bison is also able to parse these more
476general context-free grammars, using a technique known as @acronym{GLR}
477parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
478are able to handle any context-free grammar for which the number of
479possible parses of any given string is finite.
676385e2 480
bfa74976
RS
481@cindex symbols (abstract)
482@cindex token
483@cindex syntactic grouping
484@cindex grouping, syntactic
9501dc6e
AD
485In the formal grammatical rules for a language, each kind of syntactic
486unit or grouping is named by a @dfn{symbol}. Those which are built by
487grouping smaller constructs according to grammatical rules are called
bfa74976
RS
488@dfn{nonterminal symbols}; those which can't be subdivided are called
489@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
490corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 491corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
492
493We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
494nonterminal, mean. The tokens of C are identifiers, constants (numeric
495and string), and the various keywords, arithmetic operators and
496punctuation marks. So the terminal symbols of a grammar for C include
497`identifier', `number', `string', plus one symbol for each keyword,
498operator or punctuation mark: `if', `return', `const', `static', `int',
499`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
500(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
501lexicography, not grammar.)
502
503Here is a simple C function subdivided into tokens:
504
9edcd895
AD
505@ifinfo
506@example
507int /* @r{keyword `int'} */
14d4662b 508square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
509 @r{identifier, close-paren} */
510@{ /* @r{open-brace} */
511 return x * x; /* @r{keyword `return', identifier, asterisk,
512 identifier, semicolon} */
513@} /* @r{close-brace} */
514@end example
515@end ifinfo
516@ifnotinfo
bfa74976
RS
517@example
518int /* @r{keyword `int'} */
14d4662b 519square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 520@{ /* @r{open-brace} */
9edcd895 521 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
522@} /* @r{close-brace} */
523@end example
9edcd895 524@end ifnotinfo
bfa74976
RS
525
526The syntactic groupings of C include the expression, the statement, the
527declaration, and the function definition. These are represented in the
528grammar of C by nonterminal symbols `expression', `statement',
529`declaration' and `function definition'. The full grammar uses dozens of
530additional language constructs, each with its own nonterminal symbol, in
531order to express the meanings of these four. The example above is a
532function definition; it contains one declaration, and one statement. In
533the statement, each @samp{x} is an expression and so is @samp{x * x}.
534
535Each nonterminal symbol must have grammatical rules showing how it is made
536out of simpler constructs. For example, one kind of C statement is the
537@code{return} statement; this would be described with a grammar rule which
538reads informally as follows:
539
540@quotation
541A `statement' can be made of a `return' keyword, an `expression' and a
542`semicolon'.
543@end quotation
544
545@noindent
546There would be many other rules for `statement', one for each kind of
547statement in C.
548
549@cindex start symbol
550One nonterminal symbol must be distinguished as the special one which
551defines a complete utterance in the language. It is called the @dfn{start
552symbol}. In a compiler, this means a complete input program. In the C
553language, the nonterminal symbol `sequence of definitions and declarations'
554plays this role.
555
556For example, @samp{1 + 2} is a valid C expression---a valid part of a C
557program---but it is not valid as an @emph{entire} C program. In the
558context-free grammar of C, this follows from the fact that `expression' is
559not the start symbol.
560
561The Bison parser reads a sequence of tokens as its input, and groups the
562tokens using the grammar rules. If the input is valid, the end result is
563that the entire token sequence reduces to a single grouping whose symbol is
564the grammar's start symbol. If we use a grammar for C, the entire input
565must be a `sequence of definitions and declarations'. If not, the parser
566reports a syntax error.
567
342b8b6e 568@node Grammar in Bison
bfa74976
RS
569@section From Formal Rules to Bison Input
570@cindex Bison grammar
571@cindex grammar, Bison
572@cindex formal grammar
573
574A formal grammar is a mathematical construct. To define the language
575for Bison, you must write a file expressing the grammar in Bison syntax:
576a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
577
578A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 579as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
580in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
581
582The Bison representation for a terminal symbol is also called a @dfn{token
583type}. Token types as well can be represented as C-like identifiers. By
584convention, these identifiers should be upper case to distinguish them from
585nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
586@code{RETURN}. A terminal symbol that stands for a particular keyword in
587the language should be named after that keyword converted to upper case.
588The terminal symbol @code{error} is reserved for error recovery.
931c7513 589@xref{Symbols}.
bfa74976
RS
590
591A terminal symbol can also be represented as a character literal, just like
592a C character constant. You should do this whenever a token is just a
593single character (parenthesis, plus-sign, etc.): use that same character in
594a literal as the terminal symbol for that token.
595
931c7513
RS
596A third way to represent a terminal symbol is with a C string constant
597containing several characters. @xref{Symbols}, for more information.
598
bfa74976
RS
599The grammar rules also have an expression in Bison syntax. For example,
600here is the Bison rule for a C @code{return} statement. The semicolon in
601quotes is a literal character token, representing part of the C syntax for
602the statement; the naked semicolon, and the colon, are Bison punctuation
603used in every rule.
604
605@example
606stmt: RETURN expr ';'
607 ;
608@end example
609
610@noindent
611@xref{Rules, ,Syntax of Grammar Rules}.
612
342b8b6e 613@node Semantic Values
bfa74976
RS
614@section Semantic Values
615@cindex semantic value
616@cindex value, semantic
617
618A formal grammar selects tokens only by their classifications: for example,
619if a rule mentions the terminal symbol `integer constant', it means that
620@emph{any} integer constant is grammatically valid in that position. The
621precise value of the constant is irrelevant to how to parse the input: if
622@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 623grammatical.
bfa74976
RS
624
625But the precise value is very important for what the input means once it is
626parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6273989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
628has both a token type and a @dfn{semantic value}. @xref{Semantics,
629,Defining Language Semantics},
bfa74976
RS
630for details.
631
632The token type is a terminal symbol defined in the grammar, such as
633@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
634you need to know to decide where the token may validly appear and how to
635group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 636except their types.
bfa74976
RS
637
638The semantic value has all the rest of the information about the
639meaning of the token, such as the value of an integer, or the name of an
640identifier. (A token such as @code{','} which is just punctuation doesn't
641need to have any semantic value.)
642
643For example, an input token might be classified as token type
644@code{INTEGER} and have the semantic value 4. Another input token might
645have the same token type @code{INTEGER} but value 3989. When a grammar
646rule says that @code{INTEGER} is allowed, either of these tokens is
647acceptable because each is an @code{INTEGER}. When the parser accepts the
648token, it keeps track of the token's semantic value.
649
650Each grouping can also have a semantic value as well as its nonterminal
651symbol. For example, in a calculator, an expression typically has a
652semantic value that is a number. In a compiler for a programming
653language, an expression typically has a semantic value that is a tree
654structure describing the meaning of the expression.
655
342b8b6e 656@node Semantic Actions
bfa74976
RS
657@section Semantic Actions
658@cindex semantic actions
659@cindex actions, semantic
660
661In order to be useful, a program must do more than parse input; it must
662also produce some output based on the input. In a Bison grammar, a grammar
663rule can have an @dfn{action} made up of C statements. Each time the
664parser recognizes a match for that rule, the action is executed.
665@xref{Actions}.
13863333 666
bfa74976
RS
667Most of the time, the purpose of an action is to compute the semantic value
668of the whole construct from the semantic values of its parts. For example,
669suppose we have a rule which says an expression can be the sum of two
670expressions. When the parser recognizes such a sum, each of the
671subexpressions has a semantic value which describes how it was built up.
672The action for this rule should create a similar sort of value for the
673newly recognized larger expression.
674
675For example, here is a rule that says an expression can be the sum of
676two subexpressions:
677
678@example
679expr: expr '+' expr @{ $$ = $1 + $3; @}
680 ;
681@end example
682
683@noindent
684The action says how to produce the semantic value of the sum expression
685from the values of the two subexpressions.
686
676385e2 687@node GLR Parsers
c827f760
PE
688@section Writing @acronym{GLR} Parsers
689@cindex @acronym{GLR} parsing
690@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
691@findex %glr-parser
692@cindex conflicts
693@cindex shift/reduce conflicts
fa7e68c3 694@cindex reduce/reduce conflicts
676385e2 695
fa7e68c3 696In some grammars, Bison's standard
9501dc6e
AD
697@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
698certain grammar rule at a given point. That is, it may not be able to
699decide (on the basis of the input read so far) which of two possible
700reductions (applications of a grammar rule) applies, or whether to apply
701a reduction or read more of the input and apply a reduction later in the
702input. These are known respectively as @dfn{reduce/reduce} conflicts
703(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
704(@pxref{Shift/Reduce}).
705
706To use a grammar that is not easily modified to be @acronym{LALR}(1), a
707more general parsing algorithm is sometimes necessary. If you include
676385e2 708@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 709(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
710(@acronym{GLR}) parser. These parsers handle Bison grammars that
711contain no unresolved conflicts (i.e., after applying precedence
712declarations) identically to @acronym{LALR}(1) parsers. However, when
713faced with unresolved shift/reduce and reduce/reduce conflicts,
714@acronym{GLR} parsers use the simple expedient of doing both,
715effectively cloning the parser to follow both possibilities. Each of
716the resulting parsers can again split, so that at any given time, there
717can be any number of possible parses being explored. The parsers
676385e2
PH
718proceed in lockstep; that is, all of them consume (shift) a given input
719symbol before any of them proceed to the next. Each of the cloned
720parsers eventually meets one of two possible fates: either it runs into
721a parsing error, in which case it simply vanishes, or it merges with
722another parser, because the two of them have reduced the input to an
723identical set of symbols.
724
725During the time that there are multiple parsers, semantic actions are
726recorded, but not performed. When a parser disappears, its recorded
727semantic actions disappear as well, and are never performed. When a
728reduction makes two parsers identical, causing them to merge, Bison
729records both sets of semantic actions. Whenever the last two parsers
730merge, reverting to the single-parser case, Bison resolves all the
731outstanding actions either by precedences given to the grammar rules
732involved, or by performing both actions, and then calling a designated
733user-defined function on the resulting values to produce an arbitrary
734merged result.
735
fa7e68c3 736@menu
32c29292
JD
737* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
738* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
739* GLR Semantic Actions:: Deferred semantic actions have special concerns.
740* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
741@end menu
742
743@node Simple GLR Parsers
744@subsection Using @acronym{GLR} on Unambiguous Grammars
745@cindex @acronym{GLR} parsing, unambiguous grammars
746@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
747@findex %glr-parser
748@findex %expect-rr
749@cindex conflicts
750@cindex reduce/reduce conflicts
751@cindex shift/reduce conflicts
752
753In the simplest cases, you can use the @acronym{GLR} algorithm
754to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
755Such grammars typically require more than one symbol of look-ahead,
756or (in rare cases) fall into the category of grammars in which the
757@acronym{LALR}(1) algorithm throws away too much information (they are in
758@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
759
760Consider a problem that
761arises in the declaration of enumerated and subrange types in the
762programming language Pascal. Here are some examples:
763
764@example
765type subrange = lo .. hi;
766type enum = (a, b, c);
767@end example
768
769@noindent
770The original language standard allows only numeric
771literals and constant identifiers for the subrange bounds (@samp{lo}
772and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77310206) and many other
774Pascal implementations allow arbitrary expressions there. This gives
775rise to the following situation, containing a superfluous pair of
776parentheses:
777
778@example
779type subrange = (a) .. b;
780@end example
781
782@noindent
783Compare this to the following declaration of an enumerated
784type with only one value:
785
786@example
787type enum = (a);
788@end example
789
790@noindent
791(These declarations are contrived, but they are syntactically
792valid, and more-complicated cases can come up in practical programs.)
793
794These two declarations look identical until the @samp{..} token.
795With normal @acronym{LALR}(1) one-token look-ahead it is not
796possible to decide between the two forms when the identifier
797@samp{a} is parsed. It is, however, desirable
798for a parser to decide this, since in the latter case
799@samp{a} must become a new identifier to represent the enumeration
800value, while in the former case @samp{a} must be evaluated with its
801current meaning, which may be a constant or even a function call.
802
803You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
804to be resolved later, but this typically requires substantial
805contortions in both semantic actions and large parts of the
806grammar, where the parentheses are nested in the recursive rules for
807expressions.
808
809You might think of using the lexer to distinguish between the two
810forms by returning different tokens for currently defined and
811undefined identifiers. But if these declarations occur in a local
812scope, and @samp{a} is defined in an outer scope, then both forms
813are possible---either locally redefining @samp{a}, or using the
814value of @samp{a} from the outer scope. So this approach cannot
815work.
816
e757bb10 817A simple solution to this problem is to declare the parser to
fa7e68c3
PE
818use the @acronym{GLR} algorithm.
819When the @acronym{GLR} parser reaches the critical state, it
820merely splits into two branches and pursues both syntax rules
821simultaneously. Sooner or later, one of them runs into a parsing
822error. If there is a @samp{..} token before the next
823@samp{;}, the rule for enumerated types fails since it cannot
824accept @samp{..} anywhere; otherwise, the subrange type rule
825fails since it requires a @samp{..} token. So one of the branches
826fails silently, and the other one continues normally, performing
827all the intermediate actions that were postponed during the split.
828
829If the input is syntactically incorrect, both branches fail and the parser
830reports a syntax error as usual.
831
832The effect of all this is that the parser seems to ``guess'' the
833correct branch to take, or in other words, it seems to use more
834look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
835for. In this example, @acronym{LALR}(2) would suffice, but also some cases
836that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
837
838In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
839and the current Bison parser even takes exponential time and space
840for some grammars. In practice, this rarely happens, and for many
841grammars it is possible to prove that it cannot happen.
842The present example contains only one conflict between two
843rules, and the type-declaration context containing the conflict
844cannot be nested. So the number of
845branches that can exist at any time is limited by the constant 2,
846and the parsing time is still linear.
847
848Here is a Bison grammar corresponding to the example above. It
849parses a vastly simplified form of Pascal type declarations.
850
851@example
852%token TYPE DOTDOT ID
853
854@group
855%left '+' '-'
856%left '*' '/'
857@end group
858
859%%
860
861@group
862type_decl : TYPE ID '=' type ';'
863 ;
864@end group
865
866@group
867type : '(' id_list ')'
868 | expr DOTDOT expr
869 ;
870@end group
871
872@group
873id_list : ID
874 | id_list ',' ID
875 ;
876@end group
877
878@group
879expr : '(' expr ')'
880 | expr '+' expr
881 | expr '-' expr
882 | expr '*' expr
883 | expr '/' expr
884 | ID
885 ;
886@end group
887@end example
888
889When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
890about one reduce/reduce conflict. In the conflicting situation the
891parser chooses one of the alternatives, arbitrarily the one
892declared first. Therefore the following correct input is not
893recognized:
894
895@example
896type t = (a) .. b;
897@end example
898
899The parser can be turned into a @acronym{GLR} parser, while also telling Bison
900to be silent about the one known reduce/reduce conflict, by
e757bb10 901adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
902@samp{%%}):
903
904@example
905%glr-parser
906%expect-rr 1
907@end example
908
909@noindent
910No change in the grammar itself is required. Now the
911parser recognizes all valid declarations, according to the
912limited syntax above, transparently. In fact, the user does not even
913notice when the parser splits.
914
f8e1c9e5
AD
915So here we have a case where we can use the benefits of @acronym{GLR},
916almost without disadvantages. Even in simple cases like this, however,
917there are at least two potential problems to beware. First, always
918analyze the conflicts reported by Bison to make sure that @acronym{GLR}
919splitting is only done where it is intended. A @acronym{GLR} parser
920splitting inadvertently may cause problems less obvious than an
921@acronym{LALR} parser statically choosing the wrong alternative in a
922conflict. Second, consider interactions with the lexer (@pxref{Semantic
923Tokens}) with great care. Since a split parser consumes tokens without
924performing any actions during the split, the lexer cannot obtain
925information via parser actions. Some cases of lexer interactions can be
926eliminated by using @acronym{GLR} to shift the complications from the
927lexer to the parser. You must check the remaining cases for
928correctness.
929
930In our example, it would be safe for the lexer to return tokens based on
931their current meanings in some symbol table, because no new symbols are
932defined in the middle of a type declaration. Though it is possible for
933a parser to define the enumeration constants as they are parsed, before
934the type declaration is completed, it actually makes no difference since
935they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
936
937@node Merging GLR Parses
938@subsection Using @acronym{GLR} to Resolve Ambiguities
939@cindex @acronym{GLR} parsing, ambiguous grammars
940@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
941@findex %dprec
942@findex %merge
943@cindex conflicts
944@cindex reduce/reduce conflicts
945
2a8d363a 946Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
947
948@example
949%@{
38a92d50
PE
950 #include <stdio.h>
951 #define YYSTYPE char const *
952 int yylex (void);
953 void yyerror (char const *);
676385e2
PH
954%@}
955
956%token TYPENAME ID
957
958%right '='
959%left '+'
960
961%glr-parser
962
963%%
964
fae437e8 965prog :
676385e2
PH
966 | prog stmt @{ printf ("\n"); @}
967 ;
968
969stmt : expr ';' %dprec 1
970 | decl %dprec 2
971 ;
972
2a8d363a 973expr : ID @{ printf ("%s ", $$); @}
fae437e8 974 | TYPENAME '(' expr ')'
2a8d363a
AD
975 @{ printf ("%s <cast> ", $1); @}
976 | expr '+' expr @{ printf ("+ "); @}
977 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
978 ;
979
fae437e8 980decl : TYPENAME declarator ';'
2a8d363a 981 @{ printf ("%s <declare> ", $1); @}
676385e2 982 | TYPENAME declarator '=' expr ';'
2a8d363a 983 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
984 ;
985
2a8d363a 986declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
987 | '(' declarator ')'
988 ;
989@end example
990
991@noindent
992This models a problematic part of the C++ grammar---the ambiguity between
993certain declarations and statements. For example,
994
995@example
996T (x) = y+z;
997@end example
998
999@noindent
1000parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1001(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1002@samp{x} as an @code{ID}).
676385e2 1003Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1004@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1005time it encounters @code{x} in the example above. Since this is a
1006@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1007each choice of resolving the reduce/reduce conflict.
1008Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1009however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1010ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1011the other reduces @code{stmt : decl}, after which both parsers are in an
1012identical state: they've seen @samp{prog stmt} and have the same unprocessed
1013input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1014
1015At this point, the @acronym{GLR} parser requires a specification in the
1016grammar of how to choose between the competing parses.
1017In the example above, the two @code{%dprec}
e757bb10 1018declarations specify that Bison is to give precedence
fa7e68c3 1019to the parse that interprets the example as a
676385e2
PH
1020@code{decl}, which implies that @code{x} is a declarator.
1021The parser therefore prints
1022
1023@example
fae437e8 1024"x" y z + T <init-declare>
676385e2
PH
1025@end example
1026
fa7e68c3
PE
1027The @code{%dprec} declarations only come into play when more than one
1028parse survives. Consider a different input string for this parser:
676385e2
PH
1029
1030@example
1031T (x) + y;
1032@end example
1033
1034@noindent
e757bb10 1035This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1036construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1037Here, there is no ambiguity (this cannot be parsed as a declaration).
1038However, at the time the Bison parser encounters @code{x}, it does not
1039have enough information to resolve the reduce/reduce conflict (again,
1040between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1041case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1042into two, one assuming that @code{x} is an @code{expr}, and the other
1043assuming @code{x} is a @code{declarator}. The second of these parsers
1044then vanishes when it sees @code{+}, and the parser prints
1045
1046@example
fae437e8 1047x T <cast> y +
676385e2
PH
1048@end example
1049
1050Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1051the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1052actions of the two possible parsers, rather than choosing one over the
1053other. To do so, you could change the declaration of @code{stmt} as
1054follows:
1055
1056@example
1057stmt : expr ';' %merge <stmtMerge>
1058 | decl %merge <stmtMerge>
1059 ;
1060@end example
1061
1062@noindent
676385e2
PH
1063and define the @code{stmtMerge} function as:
1064
1065@example
38a92d50
PE
1066static YYSTYPE
1067stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1068@{
1069 printf ("<OR> ");
1070 return "";
1071@}
1072@end example
1073
1074@noindent
1075with an accompanying forward declaration
1076in the C declarations at the beginning of the file:
1077
1078@example
1079%@{
38a92d50 1080 #define YYSTYPE char const *
676385e2
PH
1081 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1082%@}
1083@end example
1084
1085@noindent
fa7e68c3
PE
1086With these declarations, the resulting parser parses the first example
1087as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1088
1089@example
fae437e8 1090"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1091@end example
1092
fa7e68c3 1093Bison requires that all of the
e757bb10 1094productions that participate in any particular merge have identical
fa7e68c3
PE
1095@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1096and the parser will report an error during any parse that results in
1097the offending merge.
9501dc6e 1098
32c29292
JD
1099@node GLR Semantic Actions
1100@subsection GLR Semantic Actions
1101
1102@cindex deferred semantic actions
1103By definition, a deferred semantic action is not performed at the same time as
1104the associated reduction.
1105This raises caveats for several Bison features you might use in a semantic
1106action in a @acronym{GLR} parser.
1107
1108@vindex yychar
1109@cindex @acronym{GLR} parsers and @code{yychar}
1110@vindex yylval
1111@cindex @acronym{GLR} parsers and @code{yylval}
1112@vindex yylloc
1113@cindex @acronym{GLR} parsers and @code{yylloc}
1114In any semantic action, you can examine @code{yychar} to determine the type of
1115the look-ahead token present at the time of the associated reduction.
1116After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1117you can then examine @code{yylval} and @code{yylloc} to determine the
1118look-ahead token's semantic value and location, if any.
1119In a nondeferred semantic action, you can also modify any of these variables to
1120influence syntax analysis.
1121@xref{Look-Ahead, ,Look-Ahead Tokens}.
1122
1123@findex yyclearin
1124@cindex @acronym{GLR} parsers and @code{yyclearin}
1125In a deferred semantic action, it's too late to influence syntax analysis.
1126In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1127shallow copies of the values they had at the time of the associated reduction.
1128For this reason alone, modifying them is dangerous.
1129Moreover, the result of modifying them is undefined and subject to change with
1130future versions of Bison.
1131For example, if a semantic action might be deferred, you should never write it
1132to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1133memory referenced by @code{yylval}.
1134
1135@findex YYERROR
1136@cindex @acronym{GLR} parsers and @code{YYERROR}
1137Another Bison feature requiring special consideration is @code{YYERROR}
1138(@pxref{Action Features}), which you can invoke in any semantic action to
1139initiate error recovery.
1140During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1141the same as its effect in an @acronym{LALR}(1) parser.
1142In a deferred semantic action, its effect is undefined.
1143@c The effect is probably a syntax error at the split point.
1144
fa7e68c3
PE
1145@node Compiler Requirements
1146@subsection Considerations when Compiling @acronym{GLR} Parsers
1147@cindex @code{inline}
9501dc6e 1148@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1149
38a92d50
PE
1150The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1151later. In addition, they use the @code{inline} keyword, which is not
1152C89, but is C99 and is a common extension in pre-C99 compilers. It is
1153up to the user of these parsers to handle
9501dc6e
AD
1154portability issues. For instance, if using Autoconf and the Autoconf
1155macro @code{AC_C_INLINE}, a mere
1156
1157@example
1158%@{
38a92d50 1159 #include <config.h>
9501dc6e
AD
1160%@}
1161@end example
1162
1163@noindent
1164will suffice. Otherwise, we suggest
1165
1166@example
1167%@{
38a92d50
PE
1168 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1169 #define inline
1170 #endif
9501dc6e
AD
1171%@}
1172@end example
676385e2 1173
342b8b6e 1174@node Locations Overview
847bf1f5
AD
1175@section Locations
1176@cindex location
95923bd6
AD
1177@cindex textual location
1178@cindex location, textual
847bf1f5
AD
1179
1180Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1181and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1182the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1183Bison provides a mechanism for handling these locations.
1184
72d2299c 1185Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1186associated location, but the type of locations is the same for all tokens and
72d2299c 1187groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1188structure for storing locations (@pxref{Locations}, for more details).
1189
1190Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1191set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1192is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1193@code{@@3}.
1194
1195When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1196of its left hand side (@pxref{Actions}). In the same way, another default
1197action is used for locations. However, the action for locations is general
847bf1f5 1198enough for most cases, meaning there is usually no need to describe for each
72d2299c 1199rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1200grouping, the default behavior of the output parser is to take the beginning
1201of the first symbol, and the end of the last symbol.
1202
342b8b6e 1203@node Bison Parser
bfa74976
RS
1204@section Bison Output: the Parser File
1205@cindex Bison parser
1206@cindex Bison utility
1207@cindex lexical analyzer, purpose
1208@cindex parser
1209
1210When you run Bison, you give it a Bison grammar file as input. The output
1211is a C source file that parses the language described by the grammar.
1212This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1213utility and the Bison parser are two distinct programs: the Bison utility
1214is a program whose output is the Bison parser that becomes part of your
1215program.
1216
1217The job of the Bison parser is to group tokens into groupings according to
1218the grammar rules---for example, to build identifiers and operators into
1219expressions. As it does this, it runs the actions for the grammar rules it
1220uses.
1221
704a47c4
AD
1222The tokens come from a function called the @dfn{lexical analyzer} that
1223you must supply in some fashion (such as by writing it in C). The Bison
1224parser calls the lexical analyzer each time it wants a new token. It
1225doesn't know what is ``inside'' the tokens (though their semantic values
1226may reflect this). Typically the lexical analyzer makes the tokens by
1227parsing characters of text, but Bison does not depend on this.
1228@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1229
1230The Bison parser file is C code which defines a function named
1231@code{yyparse} which implements that grammar. This function does not make
1232a complete C program: you must supply some additional functions. One is
1233the lexical analyzer. Another is an error-reporting function which the
1234parser calls to report an error. In addition, a complete C program must
1235start with a function called @code{main}; you have to provide this, and
1236arrange for it to call @code{yyparse} or the parser will never run.
1237@xref{Interface, ,Parser C-Language Interface}.
1238
f7ab6a50 1239Aside from the token type names and the symbols in the actions you
7093d0f5 1240write, all symbols defined in the Bison parser file itself
bfa74976
RS
1241begin with @samp{yy} or @samp{YY}. This includes interface functions
1242such as the lexical analyzer function @code{yylex}, the error reporting
1243function @code{yyerror} and the parser function @code{yyparse} itself.
1244This also includes numerous identifiers used for internal purposes.
1245Therefore, you should avoid using C identifiers starting with @samp{yy}
1246or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1247this manual. Also, you should avoid using the C identifiers
1248@samp{malloc} and @samp{free} for anything other than their usual
1249meanings.
bfa74976 1250
7093d0f5
AD
1251In some cases the Bison parser file includes system headers, and in
1252those cases your code should respect the identifiers reserved by those
55289366 1253headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1254@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1255declare memory allocators and related types. @code{<libintl.h>} is
1256included if message translation is in use
1257(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1258be included if you define @code{YYDEBUG} to a nonzero value
1259(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1260
342b8b6e 1261@node Stages
bfa74976
RS
1262@section Stages in Using Bison
1263@cindex stages in using Bison
1264@cindex using Bison
1265
1266The actual language-design process using Bison, from grammar specification
1267to a working compiler or interpreter, has these parts:
1268
1269@enumerate
1270@item
1271Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1272(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1273in the language, describe the action that is to be taken when an
1274instance of that rule is recognized. The action is described by a
1275sequence of C statements.
bfa74976
RS
1276
1277@item
704a47c4
AD
1278Write a lexical analyzer to process input and pass tokens to the parser.
1279The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1280Lexical Analyzer Function @code{yylex}}). It could also be produced
1281using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1282
1283@item
1284Write a controlling function that calls the Bison-produced parser.
1285
1286@item
1287Write error-reporting routines.
1288@end enumerate
1289
1290To turn this source code as written into a runnable program, you
1291must follow these steps:
1292
1293@enumerate
1294@item
1295Run Bison on the grammar to produce the parser.
1296
1297@item
1298Compile the code output by Bison, as well as any other source files.
1299
1300@item
1301Link the object files to produce the finished product.
1302@end enumerate
1303
342b8b6e 1304@node Grammar Layout
bfa74976
RS
1305@section The Overall Layout of a Bison Grammar
1306@cindex grammar file
1307@cindex file format
1308@cindex format of grammar file
1309@cindex layout of Bison grammar
1310
1311The input file for the Bison utility is a @dfn{Bison grammar file}. The
1312general form of a Bison grammar file is as follows:
1313
1314@example
1315%@{
08e49d20 1316@var{Prologue}
bfa74976
RS
1317%@}
1318
1319@var{Bison declarations}
1320
1321%%
1322@var{Grammar rules}
1323%%
08e49d20 1324@var{Epilogue}
bfa74976
RS
1325@end example
1326
1327@noindent
1328The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1329in every Bison grammar file to separate the sections.
1330
72d2299c 1331The prologue may define types and variables used in the actions. You can
342b8b6e 1332also use preprocessor commands to define macros used there, and use
bfa74976 1333@code{#include} to include header files that do any of these things.
38a92d50
PE
1334You need to declare the lexical analyzer @code{yylex} and the error
1335printer @code{yyerror} here, along with any other global identifiers
1336used by the actions in the grammar rules.
bfa74976
RS
1337
1338The Bison declarations declare the names of the terminal and nonterminal
1339symbols, and may also describe operator precedence and the data types of
1340semantic values of various symbols.
1341
1342The grammar rules define how to construct each nonterminal symbol from its
1343parts.
1344
38a92d50
PE
1345The epilogue can contain any code you want to use. Often the
1346definitions of functions declared in the prologue go here. In a
1347simple program, all the rest of the program can go here.
bfa74976 1348
342b8b6e 1349@node Examples
bfa74976
RS
1350@chapter Examples
1351@cindex simple examples
1352@cindex examples, simple
1353
1354Now we show and explain three sample programs written using Bison: a
1355reverse polish notation calculator, an algebraic (infix) notation
1356calculator, and a multi-function calculator. All three have been tested
1357under BSD Unix 4.3; each produces a usable, though limited, interactive
1358desk-top calculator.
1359
1360These examples are simple, but Bison grammars for real programming
1361languages are written the same way.
1362@ifinfo
1363You can copy these examples out of the Info file and into a source file
1364to try them.
1365@end ifinfo
1366
1367@menu
1368* RPN Calc:: Reverse polish notation calculator;
1369 a first example with no operator precedence.
1370* Infix Calc:: Infix (algebraic) notation calculator.
1371 Operator precedence is introduced.
1372* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1373* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1374* Multi-function Calc:: Calculator with memory and trig functions.
1375 It uses multiple data-types for semantic values.
1376* Exercises:: Ideas for improving the multi-function calculator.
1377@end menu
1378
342b8b6e 1379@node RPN Calc
bfa74976
RS
1380@section Reverse Polish Notation Calculator
1381@cindex reverse polish notation
1382@cindex polish notation calculator
1383@cindex @code{rpcalc}
1384@cindex calculator, simple
1385
1386The first example is that of a simple double-precision @dfn{reverse polish
1387notation} calculator (a calculator using postfix operators). This example
1388provides a good starting point, since operator precedence is not an issue.
1389The second example will illustrate how operator precedence is handled.
1390
1391The source code for this calculator is named @file{rpcalc.y}. The
1392@samp{.y} extension is a convention used for Bison input files.
1393
1394@menu
75f5aaea 1395* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1396* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1397* Lexer: Rpcalc Lexer. The lexical analyzer.
1398* Main: Rpcalc Main. The controlling function.
1399* Error: Rpcalc Error. The error reporting function.
1400* Gen: Rpcalc Gen. Running Bison on the grammar file.
1401* Comp: Rpcalc Compile. Run the C compiler on the output code.
1402@end menu
1403
342b8b6e 1404@node Rpcalc Decls
bfa74976
RS
1405@subsection Declarations for @code{rpcalc}
1406
1407Here are the C and Bison declarations for the reverse polish notation
1408calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1409
1410@example
72d2299c 1411/* Reverse polish notation calculator. */
bfa74976
RS
1412
1413%@{
38a92d50
PE
1414 #define YYSTYPE double
1415 #include <math.h>
1416 int yylex (void);
1417 void yyerror (char const *);
bfa74976
RS
1418%@}
1419
1420%token NUM
1421
72d2299c 1422%% /* Grammar rules and actions follow. */
bfa74976
RS
1423@end example
1424
75f5aaea 1425The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1426preprocessor directives and two forward declarations.
bfa74976
RS
1427
1428The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1429specifying the C data type for semantic values of both tokens and
1430groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1431Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1432don't define it, @code{int} is the default. Because we specify
1433@code{double}, each token and each expression has an associated value,
1434which is a floating point number.
bfa74976
RS
1435
1436The @code{#include} directive is used to declare the exponentiation
1437function @code{pow}.
1438
38a92d50
PE
1439The forward declarations for @code{yylex} and @code{yyerror} are
1440needed because the C language requires that functions be declared
1441before they are used. These functions will be defined in the
1442epilogue, but the parser calls them so they must be declared in the
1443prologue.
1444
704a47c4
AD
1445The second section, Bison declarations, provides information to Bison
1446about the token types (@pxref{Bison Declarations, ,The Bison
1447Declarations Section}). Each terminal symbol that is not a
1448single-character literal must be declared here. (Single-character
bfa74976
RS
1449literals normally don't need to be declared.) In this example, all the
1450arithmetic operators are designated by single-character literals, so the
1451only terminal symbol that needs to be declared is @code{NUM}, the token
1452type for numeric constants.
1453
342b8b6e 1454@node Rpcalc Rules
bfa74976
RS
1455@subsection Grammar Rules for @code{rpcalc}
1456
1457Here are the grammar rules for the reverse polish notation calculator.
1458
1459@example
1460input: /* empty */
1461 | input line
1462;
1463
1464line: '\n'
18b519c0 1465 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1466;
1467
18b519c0
AD
1468exp: NUM @{ $$ = $1; @}
1469 | exp exp '+' @{ $$ = $1 + $2; @}
1470 | exp exp '-' @{ $$ = $1 - $2; @}
1471 | exp exp '*' @{ $$ = $1 * $2; @}
1472 | exp exp '/' @{ $$ = $1 / $2; @}
1473 /* Exponentiation */
1474 | exp exp '^' @{ $$ = pow ($1, $2); @}
1475 /* Unary minus */
1476 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1477;
1478%%
1479@end example
1480
1481The groupings of the rpcalc ``language'' defined here are the expression
1482(given the name @code{exp}), the line of input (@code{line}), and the
1483complete input transcript (@code{input}). Each of these nonterminal
1484symbols has several alternate rules, joined by the @samp{|} punctuator
1485which is read as ``or''. The following sections explain what these rules
1486mean.
1487
1488The semantics of the language is determined by the actions taken when a
1489grouping is recognized. The actions are the C code that appears inside
1490braces. @xref{Actions}.
1491
1492You must specify these actions in C, but Bison provides the means for
1493passing semantic values between the rules. In each action, the
1494pseudo-variable @code{$$} stands for the semantic value for the grouping
1495that the rule is going to construct. Assigning a value to @code{$$} is the
1496main job of most actions. The semantic values of the components of the
1497rule are referred to as @code{$1}, @code{$2}, and so on.
1498
1499@menu
13863333
AD
1500* Rpcalc Input::
1501* Rpcalc Line::
1502* Rpcalc Expr::
bfa74976
RS
1503@end menu
1504
342b8b6e 1505@node Rpcalc Input
bfa74976
RS
1506@subsubsection Explanation of @code{input}
1507
1508Consider the definition of @code{input}:
1509
1510@example
1511input: /* empty */
1512 | input line
1513;
1514@end example
1515
1516This definition reads as follows: ``A complete input is either an empty
1517string, or a complete input followed by an input line''. Notice that
1518``complete input'' is defined in terms of itself. This definition is said
1519to be @dfn{left recursive} since @code{input} appears always as the
1520leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1521
1522The first alternative is empty because there are no symbols between the
1523colon and the first @samp{|}; this means that @code{input} can match an
1524empty string of input (no tokens). We write the rules this way because it
1525is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1526It's conventional to put an empty alternative first and write the comment
1527@samp{/* empty */} in it.
1528
1529The second alternate rule (@code{input line}) handles all nontrivial input.
1530It means, ``After reading any number of lines, read one more line if
1531possible.'' The left recursion makes this rule into a loop. Since the
1532first alternative matches empty input, the loop can be executed zero or
1533more times.
1534
1535The parser function @code{yyparse} continues to process input until a
1536grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1537input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1538
342b8b6e 1539@node Rpcalc Line
bfa74976
RS
1540@subsubsection Explanation of @code{line}
1541
1542Now consider the definition of @code{line}:
1543
1544@example
1545line: '\n'
1546 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1547;
1548@end example
1549
1550The first alternative is a token which is a newline character; this means
1551that rpcalc accepts a blank line (and ignores it, since there is no
1552action). The second alternative is an expression followed by a newline.
1553This is the alternative that makes rpcalc useful. The semantic value of
1554the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1555question is the first symbol in the alternative. The action prints this
1556value, which is the result of the computation the user asked for.
1557
1558This action is unusual because it does not assign a value to @code{$$}. As
1559a consequence, the semantic value associated with the @code{line} is
1560uninitialized (its value will be unpredictable). This would be a bug if
1561that value were ever used, but we don't use it: once rpcalc has printed the
1562value of the user's input line, that value is no longer needed.
1563
342b8b6e 1564@node Rpcalc Expr
bfa74976
RS
1565@subsubsection Explanation of @code{expr}
1566
1567The @code{exp} grouping has several rules, one for each kind of expression.
1568The first rule handles the simplest expressions: those that are just numbers.
1569The second handles an addition-expression, which looks like two expressions
1570followed by a plus-sign. The third handles subtraction, and so on.
1571
1572@example
1573exp: NUM
1574 | exp exp '+' @{ $$ = $1 + $2; @}
1575 | exp exp '-' @{ $$ = $1 - $2; @}
1576 @dots{}
1577 ;
1578@end example
1579
1580We have used @samp{|} to join all the rules for @code{exp}, but we could
1581equally well have written them separately:
1582
1583@example
1584exp: NUM ;
1585exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1586exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1587 @dots{}
1588@end example
1589
1590Most of the rules have actions that compute the value of the expression in
1591terms of the value of its parts. For example, in the rule for addition,
1592@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1593the second one. The third component, @code{'+'}, has no meaningful
1594associated semantic value, but if it had one you could refer to it as
1595@code{$3}. When @code{yyparse} recognizes a sum expression using this
1596rule, the sum of the two subexpressions' values is produced as the value of
1597the entire expression. @xref{Actions}.
1598
1599You don't have to give an action for every rule. When a rule has no
1600action, Bison by default copies the value of @code{$1} into @code{$$}.
1601This is what happens in the first rule (the one that uses @code{NUM}).
1602
1603The formatting shown here is the recommended convention, but Bison does
72d2299c 1604not require it. You can add or change white space as much as you wish.
bfa74976
RS
1605For example, this:
1606
1607@example
99a9344e 1608exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1609@end example
1610
1611@noindent
1612means the same thing as this:
1613
1614@example
1615exp: NUM
1616 | exp exp '+' @{ $$ = $1 + $2; @}
1617 | @dots{}
99a9344e 1618;
bfa74976
RS
1619@end example
1620
1621@noindent
1622The latter, however, is much more readable.
1623
342b8b6e 1624@node Rpcalc Lexer
bfa74976
RS
1625@subsection The @code{rpcalc} Lexical Analyzer
1626@cindex writing a lexical analyzer
1627@cindex lexical analyzer, writing
1628
704a47c4
AD
1629The lexical analyzer's job is low-level parsing: converting characters
1630or sequences of characters into tokens. The Bison parser gets its
1631tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1632Analyzer Function @code{yylex}}.
bfa74976 1633
c827f760
PE
1634Only a simple lexical analyzer is needed for the @acronym{RPN}
1635calculator. This
bfa74976
RS
1636lexical analyzer skips blanks and tabs, then reads in numbers as
1637@code{double} and returns them as @code{NUM} tokens. Any other character
1638that isn't part of a number is a separate token. Note that the token-code
1639for such a single-character token is the character itself.
1640
1641The return value of the lexical analyzer function is a numeric code which
1642represents a token type. The same text used in Bison rules to stand for
1643this token type is also a C expression for the numeric code for the type.
1644This works in two ways. If the token type is a character literal, then its
e966383b 1645numeric code is that of the character; you can use the same
bfa74976
RS
1646character literal in the lexical analyzer to express the number. If the
1647token type is an identifier, that identifier is defined by Bison as a C
1648macro whose definition is the appropriate number. In this example,
1649therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1650
1964ad8c
AD
1651The semantic value of the token (if it has one) is stored into the
1652global variable @code{yylval}, which is where the Bison parser will look
1653for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1654defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1655,Declarations for @code{rpcalc}}.)
bfa74976 1656
72d2299c
PE
1657A token type code of zero is returned if the end-of-input is encountered.
1658(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1659
1660Here is the code for the lexical analyzer:
1661
1662@example
1663@group
72d2299c 1664/* The lexical analyzer returns a double floating point
e966383b 1665 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1666 of the character read if not a number. It skips all blanks
1667 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1668
1669#include <ctype.h>
1670@end group
1671
1672@group
13863333
AD
1673int
1674yylex (void)
bfa74976
RS
1675@{
1676 int c;
1677
72d2299c 1678 /* Skip white space. */
13863333 1679 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1680 ;
1681@end group
1682@group
72d2299c 1683 /* Process numbers. */
13863333 1684 if (c == '.' || isdigit (c))
bfa74976
RS
1685 @{
1686 ungetc (c, stdin);
1687 scanf ("%lf", &yylval);
1688 return NUM;
1689 @}
1690@end group
1691@group
72d2299c 1692 /* Return end-of-input. */
13863333 1693 if (c == EOF)
bfa74976 1694 return 0;
72d2299c 1695 /* Return a single char. */
13863333 1696 return c;
bfa74976
RS
1697@}
1698@end group
1699@end example
1700
342b8b6e 1701@node Rpcalc Main
bfa74976
RS
1702@subsection The Controlling Function
1703@cindex controlling function
1704@cindex main function in simple example
1705
1706In keeping with the spirit of this example, the controlling function is
1707kept to the bare minimum. The only requirement is that it call
1708@code{yyparse} to start the process of parsing.
1709
1710@example
1711@group
13863333
AD
1712int
1713main (void)
bfa74976 1714@{
13863333 1715 return yyparse ();
bfa74976
RS
1716@}
1717@end group
1718@end example
1719
342b8b6e 1720@node Rpcalc Error
bfa74976
RS
1721@subsection The Error Reporting Routine
1722@cindex error reporting routine
1723
1724When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1725function @code{yyerror} to print an error message (usually but not
6e649e65 1726always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1727@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1728here is the definition we will use:
bfa74976
RS
1729
1730@example
1731@group
1732#include <stdio.h>
1733
38a92d50 1734/* Called by yyparse on error. */
13863333 1735void
38a92d50 1736yyerror (char const *s)
bfa74976 1737@{
4e03e201 1738 fprintf (stderr, "%s\n", s);
bfa74976
RS
1739@}
1740@end group
1741@end example
1742
1743After @code{yyerror} returns, the Bison parser may recover from the error
1744and continue parsing if the grammar contains a suitable error rule
1745(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1746have not written any error rules in this example, so any invalid input will
1747cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1748real calculator, but it is adequate for the first example.
bfa74976 1749
342b8b6e 1750@node Rpcalc Gen
bfa74976
RS
1751@subsection Running Bison to Make the Parser
1752@cindex running Bison (introduction)
1753
ceed8467
AD
1754Before running Bison to produce a parser, we need to decide how to
1755arrange all the source code in one or more source files. For such a
1756simple example, the easiest thing is to put everything in one file. The
1757definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1758end, in the epilogue of the file
75f5aaea 1759(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1760
1761For a large project, you would probably have several source files, and use
1762@code{make} to arrange to recompile them.
1763
1764With all the source in a single file, you use the following command to
1765convert it into a parser file:
1766
1767@example
fa4d969f 1768bison @var{file}.y
bfa74976
RS
1769@end example
1770
1771@noindent
1772In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1773@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1774removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1775Bison contains the source code for @code{yyparse}. The additional
1776functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1777are copied verbatim to the output.
1778
342b8b6e 1779@node Rpcalc Compile
bfa74976
RS
1780@subsection Compiling the Parser File
1781@cindex compiling the parser
1782
1783Here is how to compile and run the parser file:
1784
1785@example
1786@group
1787# @r{List files in current directory.}
9edcd895 1788$ @kbd{ls}
bfa74976
RS
1789rpcalc.tab.c rpcalc.y
1790@end group
1791
1792@group
1793# @r{Compile the Bison parser.}
1794# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1795$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1796@end group
1797
1798@group
1799# @r{List files again.}
9edcd895 1800$ @kbd{ls}
bfa74976
RS
1801rpcalc rpcalc.tab.c rpcalc.y
1802@end group
1803@end example
1804
1805The file @file{rpcalc} now contains the executable code. Here is an
1806example session using @code{rpcalc}.
1807
1808@example
9edcd895
AD
1809$ @kbd{rpcalc}
1810@kbd{4 9 +}
bfa74976 181113
9edcd895 1812@kbd{3 7 + 3 4 5 *+-}
bfa74976 1813-13
9edcd895 1814@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 181513
9edcd895 1816@kbd{5 6 / 4 n +}
bfa74976 1817-3.166666667
9edcd895 1818@kbd{3 4 ^} @r{Exponentiation}
bfa74976 181981
9edcd895
AD
1820@kbd{^D} @r{End-of-file indicator}
1821$
bfa74976
RS
1822@end example
1823
342b8b6e 1824@node Infix Calc
bfa74976
RS
1825@section Infix Notation Calculator: @code{calc}
1826@cindex infix notation calculator
1827@cindex @code{calc}
1828@cindex calculator, infix notation
1829
1830We now modify rpcalc to handle infix operators instead of postfix. Infix
1831notation involves the concept of operator precedence and the need for
1832parentheses nested to arbitrary depth. Here is the Bison code for
1833@file{calc.y}, an infix desk-top calculator.
1834
1835@example
38a92d50 1836/* Infix notation calculator. */
bfa74976
RS
1837
1838%@{
38a92d50
PE
1839 #define YYSTYPE double
1840 #include <math.h>
1841 #include <stdio.h>
1842 int yylex (void);
1843 void yyerror (char const *);
bfa74976
RS
1844%@}
1845
38a92d50 1846/* Bison declarations. */
bfa74976
RS
1847%token NUM
1848%left '-' '+'
1849%left '*' '/'
1850%left NEG /* negation--unary minus */
38a92d50 1851%right '^' /* exponentiation */
bfa74976 1852
38a92d50
PE
1853%% /* The grammar follows. */
1854input: /* empty */
bfa74976
RS
1855 | input line
1856;
1857
1858line: '\n'
1859 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1860;
1861
1862exp: NUM @{ $$ = $1; @}
1863 | exp '+' exp @{ $$ = $1 + $3; @}
1864 | exp '-' exp @{ $$ = $1 - $3; @}
1865 | exp '*' exp @{ $$ = $1 * $3; @}
1866 | exp '/' exp @{ $$ = $1 / $3; @}
1867 | '-' exp %prec NEG @{ $$ = -$2; @}
1868 | exp '^' exp @{ $$ = pow ($1, $3); @}
1869 | '(' exp ')' @{ $$ = $2; @}
1870;
1871%%
1872@end example
1873
1874@noindent
ceed8467
AD
1875The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1876same as before.
bfa74976
RS
1877
1878There are two important new features shown in this code.
1879
1880In the second section (Bison declarations), @code{%left} declares token
1881types and says they are left-associative operators. The declarations
1882@code{%left} and @code{%right} (right associativity) take the place of
1883@code{%token} which is used to declare a token type name without
1884associativity. (These tokens are single-character literals, which
1885ordinarily don't need to be declared. We declare them here to specify
1886the associativity.)
1887
1888Operator precedence is determined by the line ordering of the
1889declarations; the higher the line number of the declaration (lower on
1890the page or screen), the higher the precedence. Hence, exponentiation
1891has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1892by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1893Precedence}.
bfa74976 1894
704a47c4
AD
1895The other important new feature is the @code{%prec} in the grammar
1896section for the unary minus operator. The @code{%prec} simply instructs
1897Bison that the rule @samp{| '-' exp} has the same precedence as
1898@code{NEG}---in this case the next-to-highest. @xref{Contextual
1899Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1900
1901Here is a sample run of @file{calc.y}:
1902
1903@need 500
1904@example
9edcd895
AD
1905$ @kbd{calc}
1906@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19076.880952381
9edcd895 1908@kbd{-56 + 2}
bfa74976 1909-54
9edcd895 1910@kbd{3 ^ 2}
bfa74976
RS
19119
1912@end example
1913
342b8b6e 1914@node Simple Error Recovery
bfa74976
RS
1915@section Simple Error Recovery
1916@cindex error recovery, simple
1917
1918Up to this point, this manual has not addressed the issue of @dfn{error
1919recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1920error. All we have handled is error reporting with @code{yyerror}.
1921Recall that by default @code{yyparse} returns after calling
1922@code{yyerror}. This means that an erroneous input line causes the
1923calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1924
1925The Bison language itself includes the reserved word @code{error}, which
1926may be included in the grammar rules. In the example below it has
1927been added to one of the alternatives for @code{line}:
1928
1929@example
1930@group
1931line: '\n'
1932 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1933 | error '\n' @{ yyerrok; @}
1934;
1935@end group
1936@end example
1937
ceed8467 1938This addition to the grammar allows for simple error recovery in the
6e649e65 1939event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1940read, the error will be recognized by the third rule for @code{line},
1941and parsing will continue. (The @code{yyerror} function is still called
1942upon to print its message as well.) The action executes the statement
1943@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1944that error recovery is complete (@pxref{Error Recovery}). Note the
1945difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1946misprint.
bfa74976
RS
1947
1948This form of error recovery deals with syntax errors. There are other
1949kinds of errors; for example, division by zero, which raises an exception
1950signal that is normally fatal. A real calculator program must handle this
1951signal and use @code{longjmp} to return to @code{main} and resume parsing
1952input lines; it would also have to discard the rest of the current line of
1953input. We won't discuss this issue further because it is not specific to
1954Bison programs.
1955
342b8b6e
AD
1956@node Location Tracking Calc
1957@section Location Tracking Calculator: @code{ltcalc}
1958@cindex location tracking calculator
1959@cindex @code{ltcalc}
1960@cindex calculator, location tracking
1961
9edcd895
AD
1962This example extends the infix notation calculator with location
1963tracking. This feature will be used to improve the error messages. For
1964the sake of clarity, this example is a simple integer calculator, since
1965most of the work needed to use locations will be done in the lexical
72d2299c 1966analyzer.
342b8b6e
AD
1967
1968@menu
1969* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1970* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1971* Lexer: Ltcalc Lexer. The lexical analyzer.
1972@end menu
1973
1974@node Ltcalc Decls
1975@subsection Declarations for @code{ltcalc}
1976
9edcd895
AD
1977The C and Bison declarations for the location tracking calculator are
1978the same as the declarations for the infix notation calculator.
342b8b6e
AD
1979
1980@example
1981/* Location tracking calculator. */
1982
1983%@{
38a92d50
PE
1984 #define YYSTYPE int
1985 #include <math.h>
1986 int yylex (void);
1987 void yyerror (char const *);
342b8b6e
AD
1988%@}
1989
1990/* Bison declarations. */
1991%token NUM
1992
1993%left '-' '+'
1994%left '*' '/'
1995%left NEG
1996%right '^'
1997
38a92d50 1998%% /* The grammar follows. */
342b8b6e
AD
1999@end example
2000
9edcd895
AD
2001@noindent
2002Note there are no declarations specific to locations. Defining a data
2003type for storing locations is not needed: we will use the type provided
2004by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2005four member structure with the following integer fields:
2006@code{first_line}, @code{first_column}, @code{last_line} and
2007@code{last_column}.
342b8b6e
AD
2008
2009@node Ltcalc Rules
2010@subsection Grammar Rules for @code{ltcalc}
2011
9edcd895
AD
2012Whether handling locations or not has no effect on the syntax of your
2013language. Therefore, grammar rules for this example will be very close
2014to those of the previous example: we will only modify them to benefit
2015from the new information.
342b8b6e 2016
9edcd895
AD
2017Here, we will use locations to report divisions by zero, and locate the
2018wrong expressions or subexpressions.
342b8b6e
AD
2019
2020@example
2021@group
2022input : /* empty */
2023 | input line
2024;
2025@end group
2026
2027@group
2028line : '\n'
2029 | exp '\n' @{ printf ("%d\n", $1); @}
2030;
2031@end group
2032
2033@group
2034exp : NUM @{ $$ = $1; @}
2035 | exp '+' exp @{ $$ = $1 + $3; @}
2036 | exp '-' exp @{ $$ = $1 - $3; @}
2037 | exp '*' exp @{ $$ = $1 * $3; @}
2038@end group
342b8b6e 2039@group
9edcd895 2040 | exp '/' exp
342b8b6e
AD
2041 @{
2042 if ($3)
2043 $$ = $1 / $3;
2044 else
2045 @{
2046 $$ = 1;
9edcd895
AD
2047 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2048 @@3.first_line, @@3.first_column,
2049 @@3.last_line, @@3.last_column);
342b8b6e
AD
2050 @}
2051 @}
2052@end group
2053@group
2054 | '-' exp %preg NEG @{ $$ = -$2; @}
2055 | exp '^' exp @{ $$ = pow ($1, $3); @}
2056 | '(' exp ')' @{ $$ = $2; @}
2057@end group
2058@end example
2059
2060This code shows how to reach locations inside of semantic actions, by
2061using the pseudo-variables @code{@@@var{n}} for rule components, and the
2062pseudo-variable @code{@@$} for groupings.
2063
9edcd895
AD
2064We don't need to assign a value to @code{@@$}: the output parser does it
2065automatically. By default, before executing the C code of each action,
2066@code{@@$} is set to range from the beginning of @code{@@1} to the end
2067of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2068can be redefined (@pxref{Location Default Action, , Default Action for
2069Locations}), and for very specific rules, @code{@@$} can be computed by
2070hand.
342b8b6e
AD
2071
2072@node Ltcalc Lexer
2073@subsection The @code{ltcalc} Lexical Analyzer.
2074
9edcd895 2075Until now, we relied on Bison's defaults to enable location
72d2299c 2076tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2077able to feed the parser with the token locations, as it already does for
2078semantic values.
342b8b6e 2079
9edcd895
AD
2080To this end, we must take into account every single character of the
2081input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2082
2083@example
2084@group
2085int
2086yylex (void)
2087@{
2088 int c;
18b519c0 2089@end group
342b8b6e 2090
18b519c0 2091@group
72d2299c 2092 /* Skip white space. */
342b8b6e
AD
2093 while ((c = getchar ()) == ' ' || c == '\t')
2094 ++yylloc.last_column;
18b519c0 2095@end group
342b8b6e 2096
18b519c0 2097@group
72d2299c 2098 /* Step. */
342b8b6e
AD
2099 yylloc.first_line = yylloc.last_line;
2100 yylloc.first_column = yylloc.last_column;
2101@end group
2102
2103@group
72d2299c 2104 /* Process numbers. */
342b8b6e
AD
2105 if (isdigit (c))
2106 @{
2107 yylval = c - '0';
2108 ++yylloc.last_column;
2109 while (isdigit (c = getchar ()))
2110 @{
2111 ++yylloc.last_column;
2112 yylval = yylval * 10 + c - '0';
2113 @}
2114 ungetc (c, stdin);
2115 return NUM;
2116 @}
2117@end group
2118
72d2299c 2119 /* Return end-of-input. */
342b8b6e
AD
2120 if (c == EOF)
2121 return 0;
2122
72d2299c 2123 /* Return a single char, and update location. */
342b8b6e
AD
2124 if (c == '\n')
2125 @{
2126 ++yylloc.last_line;
2127 yylloc.last_column = 0;
2128 @}
2129 else
2130 ++yylloc.last_column;
2131 return c;
2132@}
2133@end example
2134
9edcd895
AD
2135Basically, the lexical analyzer performs the same processing as before:
2136it skips blanks and tabs, and reads numbers or single-character tokens.
2137In addition, it updates @code{yylloc}, the global variable (of type
2138@code{YYLTYPE}) containing the token's location.
342b8b6e 2139
9edcd895 2140Now, each time this function returns a token, the parser has its number
72d2299c 2141as well as its semantic value, and its location in the text. The last
9edcd895
AD
2142needed change is to initialize @code{yylloc}, for example in the
2143controlling function:
342b8b6e
AD
2144
2145@example
9edcd895 2146@group
342b8b6e
AD
2147int
2148main (void)
2149@{
2150 yylloc.first_line = yylloc.last_line = 1;
2151 yylloc.first_column = yylloc.last_column = 0;
2152 return yyparse ();
2153@}
9edcd895 2154@end group
342b8b6e
AD
2155@end example
2156
9edcd895
AD
2157Remember that computing locations is not a matter of syntax. Every
2158character must be associated to a location update, whether it is in
2159valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2160
2161@node Multi-function Calc
bfa74976
RS
2162@section Multi-Function Calculator: @code{mfcalc}
2163@cindex multi-function calculator
2164@cindex @code{mfcalc}
2165@cindex calculator, multi-function
2166
2167Now that the basics of Bison have been discussed, it is time to move on to
2168a more advanced problem. The above calculators provided only five
2169functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2170be nice to have a calculator that provides other mathematical functions such
2171as @code{sin}, @code{cos}, etc.
2172
2173It is easy to add new operators to the infix calculator as long as they are
2174only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2175back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2176adding a new operator. But we want something more flexible: built-in
2177functions whose syntax has this form:
2178
2179@example
2180@var{function_name} (@var{argument})
2181@end example
2182
2183@noindent
2184At the same time, we will add memory to the calculator, by allowing you
2185to create named variables, store values in them, and use them later.
2186Here is a sample session with the multi-function calculator:
2187
2188@example
9edcd895
AD
2189$ @kbd{mfcalc}
2190@kbd{pi = 3.141592653589}
bfa74976 21913.1415926536
9edcd895 2192@kbd{sin(pi)}
bfa74976 21930.0000000000
9edcd895 2194@kbd{alpha = beta1 = 2.3}
bfa74976 21952.3000000000
9edcd895 2196@kbd{alpha}
bfa74976 21972.3000000000
9edcd895 2198@kbd{ln(alpha)}
bfa74976 21990.8329091229
9edcd895 2200@kbd{exp(ln(beta1))}
bfa74976 22012.3000000000
9edcd895 2202$
bfa74976
RS
2203@end example
2204
2205Note that multiple assignment and nested function calls are permitted.
2206
2207@menu
2208* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2209* Rules: Mfcalc Rules. Grammar rules for the calculator.
2210* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2211@end menu
2212
342b8b6e 2213@node Mfcalc Decl
bfa74976
RS
2214@subsection Declarations for @code{mfcalc}
2215
2216Here are the C and Bison declarations for the multi-function calculator.
2217
2218@smallexample
18b519c0 2219@group
bfa74976 2220%@{
38a92d50
PE
2221 #include <math.h> /* For math functions, cos(), sin(), etc. */
2222 #include "calc.h" /* Contains definition of `symrec'. */
2223 int yylex (void);
2224 void yyerror (char const *);
bfa74976 2225%@}
18b519c0
AD
2226@end group
2227@group
bfa74976 2228%union @{
38a92d50
PE
2229 double val; /* For returning numbers. */
2230 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2231@}
18b519c0 2232@end group
38a92d50
PE
2233%token <val> NUM /* Simple double precision number. */
2234%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2235%type <val> exp
2236
18b519c0 2237@group
bfa74976
RS
2238%right '='
2239%left '-' '+'
2240%left '*' '/'
38a92d50
PE
2241%left NEG /* negation--unary minus */
2242%right '^' /* exponentiation */
18b519c0 2243@end group
38a92d50 2244%% /* The grammar follows. */
bfa74976
RS
2245@end smallexample
2246
2247The above grammar introduces only two new features of the Bison language.
2248These features allow semantic values to have various data types
2249(@pxref{Multiple Types, ,More Than One Value Type}).
2250
2251The @code{%union} declaration specifies the entire list of possible types;
2252this is instead of defining @code{YYSTYPE}. The allowable types are now
2253double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2254the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2255
2256Since values can now have various types, it is necessary to associate a
2257type with each grammar symbol whose semantic value is used. These symbols
2258are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2259declarations are augmented with information about their data type (placed
2260between angle brackets).
2261
704a47c4
AD
2262The Bison construct @code{%type} is used for declaring nonterminal
2263symbols, just as @code{%token} is used for declaring token types. We
2264have not used @code{%type} before because nonterminal symbols are
2265normally declared implicitly by the rules that define them. But
2266@code{exp} must be declared explicitly so we can specify its value type.
2267@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2268
342b8b6e 2269@node Mfcalc Rules
bfa74976
RS
2270@subsection Grammar Rules for @code{mfcalc}
2271
2272Here are the grammar rules for the multi-function calculator.
2273Most of them are copied directly from @code{calc}; three rules,
2274those which mention @code{VAR} or @code{FNCT}, are new.
2275
2276@smallexample
18b519c0 2277@group
bfa74976
RS
2278input: /* empty */
2279 | input line
2280;
18b519c0 2281@end group
bfa74976 2282
18b519c0 2283@group
bfa74976
RS
2284line:
2285 '\n'
2286 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2287 | error '\n' @{ yyerrok; @}
2288;
18b519c0 2289@end group
bfa74976 2290
18b519c0 2291@group
bfa74976
RS
2292exp: NUM @{ $$ = $1; @}
2293 | VAR @{ $$ = $1->value.var; @}
2294 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2295 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2296 | exp '+' exp @{ $$ = $1 + $3; @}
2297 | exp '-' exp @{ $$ = $1 - $3; @}
2298 | exp '*' exp @{ $$ = $1 * $3; @}
2299 | exp '/' exp @{ $$ = $1 / $3; @}
2300 | '-' exp %prec NEG @{ $$ = -$2; @}
2301 | exp '^' exp @{ $$ = pow ($1, $3); @}
2302 | '(' exp ')' @{ $$ = $2; @}
2303;
18b519c0 2304@end group
38a92d50 2305/* End of grammar. */
bfa74976
RS
2306%%
2307@end smallexample
2308
342b8b6e 2309@node Mfcalc Symtab
bfa74976
RS
2310@subsection The @code{mfcalc} Symbol Table
2311@cindex symbol table example
2312
2313The multi-function calculator requires a symbol table to keep track of the
2314names and meanings of variables and functions. This doesn't affect the
2315grammar rules (except for the actions) or the Bison declarations, but it
2316requires some additional C functions for support.
2317
2318The symbol table itself consists of a linked list of records. Its
2319definition, which is kept in the header @file{calc.h}, is as follows. It
2320provides for either functions or variables to be placed in the table.
2321
2322@smallexample
2323@group
38a92d50 2324/* Function type. */
32dfccf8 2325typedef double (*func_t) (double);
72f889cc 2326@end group
32dfccf8 2327
72f889cc 2328@group
38a92d50 2329/* Data type for links in the chain of symbols. */
bfa74976
RS
2330struct symrec
2331@{
38a92d50 2332 char *name; /* name of symbol */
bfa74976 2333 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2334 union
2335 @{
38a92d50
PE
2336 double var; /* value of a VAR */
2337 func_t fnctptr; /* value of a FNCT */
bfa74976 2338 @} value;
38a92d50 2339 struct symrec *next; /* link field */
bfa74976
RS
2340@};
2341@end group
2342
2343@group
2344typedef struct symrec symrec;
2345
38a92d50 2346/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2347extern symrec *sym_table;
2348
a730d142 2349symrec *putsym (char const *, int);
38a92d50 2350symrec *getsym (char const *);
bfa74976
RS
2351@end group
2352@end smallexample
2353
2354The new version of @code{main} includes a call to @code{init_table}, a
2355function that initializes the symbol table. Here it is, and
2356@code{init_table} as well:
2357
2358@smallexample
bfa74976
RS
2359#include <stdio.h>
2360
18b519c0 2361@group
38a92d50 2362/* Called by yyparse on error. */
13863333 2363void
38a92d50 2364yyerror (char const *s)
bfa74976
RS
2365@{
2366 printf ("%s\n", s);
2367@}
18b519c0 2368@end group
bfa74976 2369
18b519c0 2370@group
bfa74976
RS
2371struct init
2372@{
38a92d50
PE
2373 char const *fname;
2374 double (*fnct) (double);
bfa74976
RS
2375@};
2376@end group
2377
2378@group
38a92d50 2379struct init const arith_fncts[] =
13863333 2380@{
32dfccf8
AD
2381 "sin", sin,
2382 "cos", cos,
13863333 2383 "atan", atan,
32dfccf8
AD
2384 "ln", log,
2385 "exp", exp,
13863333
AD
2386 "sqrt", sqrt,
2387 0, 0
2388@};
18b519c0 2389@end group
bfa74976 2390
18b519c0 2391@group
bfa74976 2392/* The symbol table: a chain of `struct symrec'. */
38a92d50 2393symrec *sym_table;
bfa74976
RS
2394@end group
2395
2396@group
72d2299c 2397/* Put arithmetic functions in table. */
13863333
AD
2398void
2399init_table (void)
bfa74976
RS
2400@{
2401 int i;
2402 symrec *ptr;
2403 for (i = 0; arith_fncts[i].fname != 0; i++)
2404 @{
2405 ptr = putsym (arith_fncts[i].fname, FNCT);
2406 ptr->value.fnctptr = arith_fncts[i].fnct;
2407 @}
2408@}
2409@end group
38a92d50
PE
2410
2411@group
2412int
2413main (void)
2414@{
2415 init_table ();
2416 return yyparse ();
2417@}
2418@end group
bfa74976
RS
2419@end smallexample
2420
2421By simply editing the initialization list and adding the necessary include
2422files, you can add additional functions to the calculator.
2423
2424Two important functions allow look-up and installation of symbols in the
2425symbol table. The function @code{putsym} is passed a name and the type
2426(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2427linked to the front of the list, and a pointer to the object is returned.
2428The function @code{getsym} is passed the name of the symbol to look up. If
2429found, a pointer to that symbol is returned; otherwise zero is returned.
2430
2431@smallexample
2432symrec *
38a92d50 2433putsym (char const *sym_name, int sym_type)
bfa74976
RS
2434@{
2435 symrec *ptr;
2436 ptr = (symrec *) malloc (sizeof (symrec));
2437 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2438 strcpy (ptr->name,sym_name);
2439 ptr->type = sym_type;
72d2299c 2440 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2441 ptr->next = (struct symrec *)sym_table;
2442 sym_table = ptr;
2443 return ptr;
2444@}
2445
2446symrec *
38a92d50 2447getsym (char const *sym_name)
bfa74976
RS
2448@{
2449 symrec *ptr;
2450 for (ptr = sym_table; ptr != (symrec *) 0;
2451 ptr = (symrec *)ptr->next)
2452 if (strcmp (ptr->name,sym_name) == 0)
2453 return ptr;
2454 return 0;
2455@}
2456@end smallexample
2457
2458The function @code{yylex} must now recognize variables, numeric values, and
2459the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2460characters with a leading letter are recognized as either variables or
bfa74976
RS
2461functions depending on what the symbol table says about them.
2462
2463The string is passed to @code{getsym} for look up in the symbol table. If
2464the name appears in the table, a pointer to its location and its type
2465(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2466already in the table, then it is installed as a @code{VAR} using
2467@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2468returned to @code{yyparse}.
bfa74976
RS
2469
2470No change is needed in the handling of numeric values and arithmetic
2471operators in @code{yylex}.
2472
2473@smallexample
2474@group
2475#include <ctype.h>
18b519c0 2476@end group
13863333 2477
18b519c0 2478@group
13863333
AD
2479int
2480yylex (void)
bfa74976
RS
2481@{
2482 int c;
2483
72d2299c 2484 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2485 while ((c = getchar ()) == ' ' || c == '\t');
2486
2487 if (c == EOF)
2488 return 0;
2489@end group
2490
2491@group
2492 /* Char starts a number => parse the number. */
2493 if (c == '.' || isdigit (c))
2494 @{
2495 ungetc (c, stdin);
2496 scanf ("%lf", &yylval.val);
2497 return NUM;
2498 @}
2499@end group
2500
2501@group
2502 /* Char starts an identifier => read the name. */
2503 if (isalpha (c))
2504 @{
2505 symrec *s;
2506 static char *symbuf = 0;
2507 static int length = 0;
2508 int i;
2509@end group
2510
2511@group
2512 /* Initially make the buffer long enough
2513 for a 40-character symbol name. */
2514 if (length == 0)
2515 length = 40, symbuf = (char *)malloc (length + 1);
2516
2517 i = 0;
2518 do
2519@end group
2520@group
2521 @{
2522 /* If buffer is full, make it bigger. */
2523 if (i == length)
2524 @{
2525 length *= 2;
18b519c0 2526 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2527 @}
2528 /* Add this character to the buffer. */
2529 symbuf[i++] = c;
2530 /* Get another character. */
2531 c = getchar ();
2532 @}
2533@end group
2534@group
72d2299c 2535 while (isalnum (c));
bfa74976
RS
2536
2537 ungetc (c, stdin);
2538 symbuf[i] = '\0';
2539@end group
2540
2541@group
2542 s = getsym (symbuf);
2543 if (s == 0)
2544 s = putsym (symbuf, VAR);
2545 yylval.tptr = s;
2546 return s->type;
2547 @}
2548
2549 /* Any other character is a token by itself. */
2550 return c;
2551@}
2552@end group
2553@end smallexample
2554
72d2299c 2555This program is both powerful and flexible. You may easily add new
704a47c4
AD
2556functions, and it is a simple job to modify this code to install
2557predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2558
342b8b6e 2559@node Exercises
bfa74976
RS
2560@section Exercises
2561@cindex exercises
2562
2563@enumerate
2564@item
2565Add some new functions from @file{math.h} to the initialization list.
2566
2567@item
2568Add another array that contains constants and their values. Then
2569modify @code{init_table} to add these constants to the symbol table.
2570It will be easiest to give the constants type @code{VAR}.
2571
2572@item
2573Make the program report an error if the user refers to an
2574uninitialized variable in any way except to store a value in it.
2575@end enumerate
2576
342b8b6e 2577@node Grammar File
bfa74976
RS
2578@chapter Bison Grammar Files
2579
2580Bison takes as input a context-free grammar specification and produces a
2581C-language function that recognizes correct instances of the grammar.
2582
2583The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2584@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2585
2586@menu
2587* Grammar Outline:: Overall layout of the grammar file.
2588* Symbols:: Terminal and nonterminal symbols.
2589* Rules:: How to write grammar rules.
2590* Recursion:: Writing recursive rules.
2591* Semantics:: Semantic values and actions.
847bf1f5 2592* Locations:: Locations and actions.
bfa74976
RS
2593* Declarations:: All kinds of Bison declarations are described here.
2594* Multiple Parsers:: Putting more than one Bison parser in one program.
2595@end menu
2596
342b8b6e 2597@node Grammar Outline
bfa74976
RS
2598@section Outline of a Bison Grammar
2599
2600A Bison grammar file has four main sections, shown here with the
2601appropriate delimiters:
2602
2603@example
2604%@{
38a92d50 2605 @var{Prologue}
bfa74976
RS
2606%@}
2607
2608@var{Bison declarations}
2609
2610%%
2611@var{Grammar rules}
2612%%
2613
75f5aaea 2614@var{Epilogue}
bfa74976
RS
2615@end example
2616
2617Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2618As a @acronym{GNU} extension, @samp{//} introduces a comment that
2619continues until end of line.
bfa74976
RS
2620
2621@menu
75f5aaea 2622* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2623* Bison Declarations:: Syntax and usage of the Bison declarations section.
2624* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2625* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2626@end menu
2627
38a92d50 2628@node Prologue
75f5aaea
MA
2629@subsection The prologue
2630@cindex declarations section
2631@cindex Prologue
2632@cindex declarations
bfa74976 2633
f8e1c9e5
AD
2634The @var{Prologue} section contains macro definitions and declarations
2635of functions and variables that are used in the actions in the grammar
2636rules. These are copied to the beginning of the parser file so that
2637they precede the definition of @code{yyparse}. You can use
2638@samp{#include} to get the declarations from a header file. If you
2639don't need any C declarations, you may omit the @samp{%@{} and
2640@samp{%@}} delimiters that bracket this section.
bfa74976 2641
c732d2c6
AD
2642You may have more than one @var{Prologue} section, intermixed with the
2643@var{Bison declarations}. This allows you to have C and Bison
2644declarations that refer to each other. For example, the @code{%union}
2645declaration may use types defined in a header file, and you may wish to
2646prototype functions that take arguments of type @code{YYSTYPE}. This
2647can be done with two @var{Prologue} blocks, one before and one after the
2648@code{%union} declaration.
2649
2650@smallexample
2651%@{
38a92d50
PE
2652 #include <stdio.h>
2653 #include "ptypes.h"
c732d2c6
AD
2654%@}
2655
2656%union @{
779e7ceb 2657 long int n;
c732d2c6
AD
2658 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2659@}
2660
2661%@{
38a92d50
PE
2662 static void print_token_value (FILE *, int, YYSTYPE);
2663 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2664%@}
2665
2666@dots{}
2667@end smallexample
2668
342b8b6e 2669@node Bison Declarations
bfa74976
RS
2670@subsection The Bison Declarations Section
2671@cindex Bison declarations (introduction)
2672@cindex declarations, Bison (introduction)
2673
2674The @var{Bison declarations} section contains declarations that define
2675terminal and nonterminal symbols, specify precedence, and so on.
2676In some simple grammars you may not need any declarations.
2677@xref{Declarations, ,Bison Declarations}.
2678
342b8b6e 2679@node Grammar Rules
bfa74976
RS
2680@subsection The Grammar Rules Section
2681@cindex grammar rules section
2682@cindex rules section for grammar
2683
2684The @dfn{grammar rules} section contains one or more Bison grammar
2685rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2686
2687There must always be at least one grammar rule, and the first
2688@samp{%%} (which precedes the grammar rules) may never be omitted even
2689if it is the first thing in the file.
2690
38a92d50 2691@node Epilogue
75f5aaea 2692@subsection The epilogue
bfa74976 2693@cindex additional C code section
75f5aaea 2694@cindex epilogue
bfa74976
RS
2695@cindex C code, section for additional
2696
08e49d20
PE
2697The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2698the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2699place to put anything that you want to have in the parser file but which need
2700not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2701definitions of @code{yylex} and @code{yyerror} often go here. Because
2702C requires functions to be declared before being used, you often need
2703to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2704even if you define them in the Epilogue.
75f5aaea 2705@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2706
2707If the last section is empty, you may omit the @samp{%%} that separates it
2708from the grammar rules.
2709
f8e1c9e5
AD
2710The Bison parser itself contains many macros and identifiers whose names
2711start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
2712any such names (except those documented in this manual) in the epilogue
2713of the grammar file.
bfa74976 2714
342b8b6e 2715@node Symbols
bfa74976
RS
2716@section Symbols, Terminal and Nonterminal
2717@cindex nonterminal symbol
2718@cindex terminal symbol
2719@cindex token type
2720@cindex symbol
2721
2722@dfn{Symbols} in Bison grammars represent the grammatical classifications
2723of the language.
2724
2725A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2726class of syntactically equivalent tokens. You use the symbol in grammar
2727rules to mean that a token in that class is allowed. The symbol is
2728represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
2729function returns a token type code to indicate what kind of token has
2730been read. You don't need to know what the code value is; you can use
2731the symbol to stand for it.
bfa74976 2732
f8e1c9e5
AD
2733A @dfn{nonterminal symbol} stands for a class of syntactically
2734equivalent groupings. The symbol name is used in writing grammar rules.
2735By convention, it should be all lower case.
bfa74976
RS
2736
2737Symbol names can contain letters, digits (not at the beginning),
2738underscores and periods. Periods make sense only in nonterminals.
2739
931c7513 2740There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2741
2742@itemize @bullet
2743@item
2744A @dfn{named token type} is written with an identifier, like an
c827f760 2745identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2746such name must be defined with a Bison declaration such as
2747@code{%token}. @xref{Token Decl, ,Token Type Names}.
2748
2749@item
2750@cindex character token
2751@cindex literal token
2752@cindex single-character literal
931c7513
RS
2753A @dfn{character token type} (or @dfn{literal character token}) is
2754written in the grammar using the same syntax used in C for character
2755constants; for example, @code{'+'} is a character token type. A
2756character token type doesn't need to be declared unless you need to
2757specify its semantic value data type (@pxref{Value Type, ,Data Types of
2758Semantic Values}), associativity, or precedence (@pxref{Precedence,
2759,Operator Precedence}).
bfa74976
RS
2760
2761By convention, a character token type is used only to represent a
2762token that consists of that particular character. Thus, the token
2763type @code{'+'} is used to represent the character @samp{+} as a
2764token. Nothing enforces this convention, but if you depart from it,
2765your program will confuse other readers.
2766
2767All the usual escape sequences used in character literals in C can be
2768used in Bison as well, but you must not use the null character as a
72d2299c
PE
2769character literal because its numeric code, zero, signifies
2770end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2771for @code{yylex}}). Also, unlike standard C, trigraphs have no
2772special meaning in Bison character literals, nor is backslash-newline
2773allowed.
931c7513
RS
2774
2775@item
2776@cindex string token
2777@cindex literal string token
9ecbd125 2778@cindex multicharacter literal
931c7513
RS
2779A @dfn{literal string token} is written like a C string constant; for
2780example, @code{"<="} is a literal string token. A literal string token
2781doesn't need to be declared unless you need to specify its semantic
14ded682 2782value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2783(@pxref{Precedence}).
2784
2785You can associate the literal string token with a symbolic name as an
2786alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2787Declarations}). If you don't do that, the lexical analyzer has to
2788retrieve the token number for the literal string token from the
2789@code{yytname} table (@pxref{Calling Convention}).
2790
c827f760 2791@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2792
2793By convention, a literal string token is used only to represent a token
2794that consists of that particular string. Thus, you should use the token
2795type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2796does not enforce this convention, but if you depart from it, people who
931c7513
RS
2797read your program will be confused.
2798
2799All the escape sequences used in string literals in C can be used in
92ac3705
PE
2800Bison as well, except that you must not use a null character within a
2801string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2802meaning in Bison string literals, nor is backslash-newline allowed. A
2803literal string token must contain two or more characters; for a token
2804containing just one character, use a character token (see above).
bfa74976
RS
2805@end itemize
2806
2807How you choose to write a terminal symbol has no effect on its
2808grammatical meaning. That depends only on where it appears in rules and
2809on when the parser function returns that symbol.
2810
72d2299c
PE
2811The value returned by @code{yylex} is always one of the terminal
2812symbols, except that a zero or negative value signifies end-of-input.
2813Whichever way you write the token type in the grammar rules, you write
2814it the same way in the definition of @code{yylex}. The numeric code
2815for a character token type is simply the positive numeric code of the
2816character, so @code{yylex} can use the identical value to generate the
2817requisite code, though you may need to convert it to @code{unsigned
2818char} to avoid sign-extension on hosts where @code{char} is signed.
2819Each named token type becomes a C macro in
bfa74976 2820the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2821(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2822@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2823
2824If @code{yylex} is defined in a separate file, you need to arrange for the
2825token-type macro definitions to be available there. Use the @samp{-d}
2826option when you run Bison, so that it will write these macro definitions
2827into a separate header file @file{@var{name}.tab.h} which you can include
2828in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2829
72d2299c 2830If you want to write a grammar that is portable to any Standard C
9d9b8b70 2831host, you must use only nonnull character tokens taken from the basic
c827f760 2832execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2833digits, the 52 lower- and upper-case English letters, and the
2834characters in the following C-language string:
2835
2836@example
2837"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2838@end example
2839
f8e1c9e5
AD
2840The @code{yylex} function and Bison must use a consistent character set
2841and encoding for character tokens. For example, if you run Bison in an
2842@acronym{ASCII} environment, but then compile and run the resulting
2843program in an environment that uses an incompatible character set like
2844@acronym{EBCDIC}, the resulting program may not work because the tables
2845generated by Bison will assume @acronym{ASCII} numeric values for
2846character tokens. It is standard practice for software distributions to
2847contain C source files that were generated by Bison in an
2848@acronym{ASCII} environment, so installers on platforms that are
2849incompatible with @acronym{ASCII} must rebuild those files before
2850compiling them.
e966383b 2851
bfa74976
RS
2852The symbol @code{error} is a terminal symbol reserved for error recovery
2853(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2854In particular, @code{yylex} should never return this value. The default
2855value of the error token is 256, unless you explicitly assigned 256 to
2856one of your tokens with a @code{%token} declaration.
bfa74976 2857
342b8b6e 2858@node Rules
bfa74976
RS
2859@section Syntax of Grammar Rules
2860@cindex rule syntax
2861@cindex grammar rule syntax
2862@cindex syntax of grammar rules
2863
2864A Bison grammar rule has the following general form:
2865
2866@example
e425e872 2867@group
bfa74976
RS
2868@var{result}: @var{components}@dots{}
2869 ;
e425e872 2870@end group
bfa74976
RS
2871@end example
2872
2873@noindent
9ecbd125 2874where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2875and @var{components} are various terminal and nonterminal symbols that
13863333 2876are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2877
2878For example,
2879
2880@example
2881@group
2882exp: exp '+' exp
2883 ;
2884@end group
2885@end example
2886
2887@noindent
2888says that two groupings of type @code{exp}, with a @samp{+} token in between,
2889can be combined into a larger grouping of type @code{exp}.
2890
72d2299c
PE
2891White space in rules is significant only to separate symbols. You can add
2892extra white space as you wish.
bfa74976
RS
2893
2894Scattered among the components can be @var{actions} that determine
2895the semantics of the rule. An action looks like this:
2896
2897@example
2898@{@var{C statements}@}
2899@end example
2900
2901@noindent
2902Usually there is only one action and it follows the components.
2903@xref{Actions}.
2904
2905@findex |
2906Multiple rules for the same @var{result} can be written separately or can
2907be joined with the vertical-bar character @samp{|} as follows:
2908
2909@ifinfo
2910@example
2911@var{result}: @var{rule1-components}@dots{}
2912 | @var{rule2-components}@dots{}
2913 @dots{}
2914 ;
2915@end example
2916@end ifinfo
2917@iftex
2918@example
2919@group
2920@var{result}: @var{rule1-components}@dots{}
2921 | @var{rule2-components}@dots{}
2922 @dots{}
2923 ;
2924@end group
2925@end example
2926@end iftex
2927
2928@noindent
2929They are still considered distinct rules even when joined in this way.
2930
2931If @var{components} in a rule is empty, it means that @var{result} can
2932match the empty string. For example, here is how to define a
2933comma-separated sequence of zero or more @code{exp} groupings:
2934
2935@example
2936@group
2937expseq: /* empty */
2938 | expseq1
2939 ;
2940@end group
2941
2942@group
2943expseq1: exp
2944 | expseq1 ',' exp
2945 ;
2946@end group
2947@end example
2948
2949@noindent
2950It is customary to write a comment @samp{/* empty */} in each rule
2951with no components.
2952
342b8b6e 2953@node Recursion
bfa74976
RS
2954@section Recursive Rules
2955@cindex recursive rule
2956
f8e1c9e5
AD
2957A rule is called @dfn{recursive} when its @var{result} nonterminal
2958appears also on its right hand side. Nearly all Bison grammars need to
2959use recursion, because that is the only way to define a sequence of any
2960number of a particular thing. Consider this recursive definition of a
9ecbd125 2961comma-separated sequence of one or more expressions:
bfa74976
RS
2962
2963@example
2964@group
2965expseq1: exp
2966 | expseq1 ',' exp
2967 ;
2968@end group
2969@end example
2970
2971@cindex left recursion
2972@cindex right recursion
2973@noindent
2974Since the recursive use of @code{expseq1} is the leftmost symbol in the
2975right hand side, we call this @dfn{left recursion}. By contrast, here
2976the same construct is defined using @dfn{right recursion}:
2977
2978@example
2979@group
2980expseq1: exp
2981 | exp ',' expseq1
2982 ;
2983@end group
2984@end example
2985
2986@noindent
ec3bc396
AD
2987Any kind of sequence can be defined using either left recursion or right
2988recursion, but you should always use left recursion, because it can
2989parse a sequence of any number of elements with bounded stack space.
2990Right recursion uses up space on the Bison stack in proportion to the
2991number of elements in the sequence, because all the elements must be
2992shifted onto the stack before the rule can be applied even once.
2993@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2994of this.
bfa74976
RS
2995
2996@cindex mutual recursion
2997@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2998rule does not appear directly on its right hand side, but does appear
2999in rules for other nonterminals which do appear on its right hand
13863333 3000side.
bfa74976
RS
3001
3002For example:
3003
3004@example
3005@group
3006expr: primary
3007 | primary '+' primary
3008 ;
3009@end group
3010
3011@group
3012primary: constant
3013 | '(' expr ')'
3014 ;
3015@end group
3016@end example
3017
3018@noindent
3019defines two mutually-recursive nonterminals, since each refers to the
3020other.
3021
342b8b6e 3022@node Semantics
bfa74976
RS
3023@section Defining Language Semantics
3024@cindex defining language semantics
13863333 3025@cindex language semantics, defining
bfa74976
RS
3026
3027The grammar rules for a language determine only the syntax. The semantics
3028are determined by the semantic values associated with various tokens and
3029groupings, and by the actions taken when various groupings are recognized.
3030
3031For example, the calculator calculates properly because the value
3032associated with each expression is the proper number; it adds properly
3033because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3034the numbers associated with @var{x} and @var{y}.
3035
3036@menu
3037* Value Type:: Specifying one data type for all semantic values.
3038* Multiple Types:: Specifying several alternative data types.
3039* Actions:: An action is the semantic definition of a grammar rule.
3040* Action Types:: Specifying data types for actions to operate on.
3041* Mid-Rule Actions:: Most actions go at the end of a rule.
3042 This says when, why and how to use the exceptional
3043 action in the middle of a rule.
3044@end menu
3045
342b8b6e 3046@node Value Type
bfa74976
RS
3047@subsection Data Types of Semantic Values
3048@cindex semantic value type
3049@cindex value type, semantic
3050@cindex data types of semantic values
3051@cindex default data type
3052
3053In a simple program it may be sufficient to use the same data type for
3054the semantic values of all language constructs. This was true in the
c827f760 3055@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3056Notation Calculator}).
bfa74976
RS
3057
3058Bison's default is to use type @code{int} for all semantic values. To
3059specify some other type, define @code{YYSTYPE} as a macro, like this:
3060
3061@example
3062#define YYSTYPE double
3063@end example
3064
3065@noindent
342b8b6e 3066This macro definition must go in the prologue of the grammar file
75f5aaea 3067(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3068
342b8b6e 3069@node Multiple Types
bfa74976
RS
3070@subsection More Than One Value Type
3071
3072In most programs, you will need different data types for different kinds
3073of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3074@code{int} or @code{long int}, while a string constant needs type
3075@code{char *}, and an identifier might need a pointer to an entry in the
3076symbol table.
bfa74976
RS
3077
3078To use more than one data type for semantic values in one parser, Bison
3079requires you to do two things:
3080
3081@itemize @bullet
3082@item
3083Specify the entire collection of possible data types, with the
704a47c4
AD
3084@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3085Value Types}).
bfa74976
RS
3086
3087@item
14ded682
AD
3088Choose one of those types for each symbol (terminal or nonterminal) for
3089which semantic values are used. This is done for tokens with the
3090@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3091and for groupings with the @code{%type} Bison declaration (@pxref{Type
3092Decl, ,Nonterminal Symbols}).
bfa74976
RS
3093@end itemize
3094
342b8b6e 3095@node Actions
bfa74976
RS
3096@subsection Actions
3097@cindex action
3098@vindex $$
3099@vindex $@var{n}
3100
3101An action accompanies a syntactic rule and contains C code to be executed
3102each time an instance of that rule is recognized. The task of most actions
3103is to compute a semantic value for the grouping built by the rule from the
3104semantic values associated with tokens or smaller groupings.
3105
3106An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3107compound statement in C@. An action can contain any sequence of C
3108statements. Bison does not look for trigraphs, though, so if your C
3109code uses trigraphs you should ensure that they do not affect the
3110nesting of braces or the boundaries of comments, strings, or character
3111literals.
3112
3113An action can be placed at any position in the rule;
704a47c4
AD
3114it is executed at that position. Most rules have just one action at the
3115end of the rule, following all the components. Actions in the middle of
3116a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3117Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3118
3119The C code in an action can refer to the semantic values of the components
3120matched by the rule with the construct @code{$@var{n}}, which stands for
3121the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3122being constructed is @code{$$}. Bison translates both of these
3123constructs into expressions of the appropriate type when it copies the
3124actions into the parser file. @code{$$} is translated to a modifiable
3125lvalue, so it can be assigned to.
bfa74976
RS
3126
3127Here is a typical example:
3128
3129@example
3130@group
3131exp: @dots{}
3132 | exp '+' exp
3133 @{ $$ = $1 + $3; @}
3134@end group
3135@end example
3136
3137@noindent
3138This rule constructs an @code{exp} from two smaller @code{exp} groupings
3139connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3140refer to the semantic values of the two component @code{exp} groupings,
3141which are the first and third symbols on the right hand side of the rule.
3142The sum is stored into @code{$$} so that it becomes the semantic value of
3143the addition-expression just recognized by the rule. If there were a
3144useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3145referred to as @code{$2}.
bfa74976 3146
3ded9a63
AD
3147Note that the vertical-bar character @samp{|} is really a rule
3148separator, and actions are attached to a single rule. This is a
3149difference with tools like Flex, for which @samp{|} stands for either
3150``or'', or ``the same action as that of the next rule''. In the
3151following example, the action is triggered only when @samp{b} is found:
3152
3153@example
3154@group
3155a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3156@end group
3157@end example
3158
bfa74976
RS
3159@cindex default action
3160If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3161@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3162becomes the value of the whole rule. Of course, the default action is
3163valid only if the two data types match. There is no meaningful default
3164action for an empty rule; every empty rule must have an explicit action
3165unless the rule's value does not matter.
bfa74976
RS
3166
3167@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3168to tokens and groupings on the stack @emph{before} those that match the
3169current rule. This is a very risky practice, and to use it reliably
3170you must be certain of the context in which the rule is applied. Here
3171is a case in which you can use this reliably:
3172
3173@example
3174@group
3175foo: expr bar '+' expr @{ @dots{} @}
3176 | expr bar '-' expr @{ @dots{} @}
3177 ;
3178@end group
3179
3180@group
3181bar: /* empty */
3182 @{ previous_expr = $0; @}
3183 ;
3184@end group
3185@end example
3186
3187As long as @code{bar} is used only in the fashion shown here, @code{$0}
3188always refers to the @code{expr} which precedes @code{bar} in the
3189definition of @code{foo}.
3190
32c29292
JD
3191@vindex yylval
3192It is also possible to access the semantic value of the look-ahead token, if
3193any, from a semantic action.
3194This semantic value is stored in @code{yylval}.
3195@xref{Action Features, ,Special Features for Use in Actions}.
3196
342b8b6e 3197@node Action Types
bfa74976
RS
3198@subsection Data Types of Values in Actions
3199@cindex action data types
3200@cindex data types in actions
3201
3202If you have chosen a single data type for semantic values, the @code{$$}
3203and @code{$@var{n}} constructs always have that data type.
3204
3205If you have used @code{%union} to specify a variety of data types, then you
3206must declare a choice among these types for each terminal or nonterminal
3207symbol that can have a semantic value. Then each time you use @code{$$} or
3208@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3209in the rule. In this example,
bfa74976
RS
3210
3211@example
3212@group
3213exp: @dots{}
3214 | exp '+' exp
3215 @{ $$ = $1 + $3; @}
3216@end group
3217@end example
3218
3219@noindent
3220@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3221have the data type declared for the nonterminal symbol @code{exp}. If
3222@code{$2} were used, it would have the data type declared for the
e0c471a9 3223terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3224
3225Alternatively, you can specify the data type when you refer to the value,
3226by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3227reference. For example, if you have defined types as shown here:
3228
3229@example
3230@group
3231%union @{
3232 int itype;
3233 double dtype;
3234@}
3235@end group
3236@end example
3237
3238@noindent
3239then you can write @code{$<itype>1} to refer to the first subunit of the
3240rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3241
342b8b6e 3242@node Mid-Rule Actions
bfa74976
RS
3243@subsection Actions in Mid-Rule
3244@cindex actions in mid-rule
3245@cindex mid-rule actions
3246
3247Occasionally it is useful to put an action in the middle of a rule.
3248These actions are written just like usual end-of-rule actions, but they
3249are executed before the parser even recognizes the following components.
3250
3251A mid-rule action may refer to the components preceding it using
3252@code{$@var{n}}, but it may not refer to subsequent components because
3253it is run before they are parsed.
3254
3255The mid-rule action itself counts as one of the components of the rule.
3256This makes a difference when there is another action later in the same rule
3257(and usually there is another at the end): you have to count the actions
3258along with the symbols when working out which number @var{n} to use in
3259@code{$@var{n}}.
3260
3261The mid-rule action can also have a semantic value. The action can set
3262its value with an assignment to @code{$$}, and actions later in the rule
3263can refer to the value using @code{$@var{n}}. Since there is no symbol
3264to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3265in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3266specify a data type each time you refer to this value.
bfa74976
RS
3267
3268There is no way to set the value of the entire rule with a mid-rule
3269action, because assignments to @code{$$} do not have that effect. The
3270only way to set the value for the entire rule is with an ordinary action
3271at the end of the rule.
3272
3273Here is an example from a hypothetical compiler, handling a @code{let}
3274statement that looks like @samp{let (@var{variable}) @var{statement}} and
3275serves to create a variable named @var{variable} temporarily for the
3276duration of @var{statement}. To parse this construct, we must put
3277@var{variable} into the symbol table while @var{statement} is parsed, then
3278remove it afterward. Here is how it is done:
3279
3280@example
3281@group
3282stmt: LET '(' var ')'
3283 @{ $<context>$ = push_context ();
3284 declare_variable ($3); @}
3285 stmt @{ $$ = $6;
3286 pop_context ($<context>5); @}
3287@end group
3288@end example
3289
3290@noindent
3291As soon as @samp{let (@var{variable})} has been recognized, the first
3292action is run. It saves a copy of the current semantic context (the
3293list of accessible variables) as its semantic value, using alternative
3294@code{context} in the data-type union. Then it calls
3295@code{declare_variable} to add the new variable to that list. Once the
3296first action is finished, the embedded statement @code{stmt} can be
3297parsed. Note that the mid-rule action is component number 5, so the
3298@samp{stmt} is component number 6.
3299
3300After the embedded statement is parsed, its semantic value becomes the
3301value of the entire @code{let}-statement. Then the semantic value from the
3302earlier action is used to restore the prior list of variables. This
3303removes the temporary @code{let}-variable from the list so that it won't
3304appear to exist while the rest of the program is parsed.
3305
3306Taking action before a rule is completely recognized often leads to
3307conflicts since the parser must commit to a parse in order to execute the
3308action. For example, the following two rules, without mid-rule actions,
3309can coexist in a working parser because the parser can shift the open-brace
3310token and look at what follows before deciding whether there is a
3311declaration or not:
3312
3313@example
3314@group
3315compound: '@{' declarations statements '@}'
3316 | '@{' statements '@}'
3317 ;
3318@end group
3319@end example
3320
3321@noindent
3322But when we add a mid-rule action as follows, the rules become nonfunctional:
3323
3324@example
3325@group
3326compound: @{ prepare_for_local_variables (); @}
3327 '@{' declarations statements '@}'
3328@end group
3329@group
3330 | '@{' statements '@}'
3331 ;
3332@end group
3333@end example
3334
3335@noindent
3336Now the parser is forced to decide whether to run the mid-rule action
3337when it has read no farther than the open-brace. In other words, it
3338must commit to using one rule or the other, without sufficient
3339information to do it correctly. (The open-brace token is what is called
3340the @dfn{look-ahead} token at this time, since the parser is still
3341deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3342
3343You might think that you could correct the problem by putting identical
3344actions into the two rules, like this:
3345
3346@example
3347@group
3348compound: @{ prepare_for_local_variables (); @}
3349 '@{' declarations statements '@}'
3350 | @{ prepare_for_local_variables (); @}
3351 '@{' statements '@}'
3352 ;
3353@end group
3354@end example
3355
3356@noindent
3357But this does not help, because Bison does not realize that the two actions
3358are identical. (Bison never tries to understand the C code in an action.)
3359
3360If the grammar is such that a declaration can be distinguished from a
3361statement by the first token (which is true in C), then one solution which
3362does work is to put the action after the open-brace, like this:
3363
3364@example
3365@group
3366compound: '@{' @{ prepare_for_local_variables (); @}
3367 declarations statements '@}'
3368 | '@{' statements '@}'
3369 ;
3370@end group
3371@end example
3372
3373@noindent
3374Now the first token of the following declaration or statement,
3375which would in any case tell Bison which rule to use, can still do so.
3376
3377Another solution is to bury the action inside a nonterminal symbol which
3378serves as a subroutine:
3379
3380@example
3381@group
3382subroutine: /* empty */
3383 @{ prepare_for_local_variables (); @}
3384 ;
3385
3386@end group
3387
3388@group
3389compound: subroutine
3390 '@{' declarations statements '@}'
3391 | subroutine
3392 '@{' statements '@}'
3393 ;
3394@end group
3395@end example
3396
3397@noindent
3398Now Bison can execute the action in the rule for @code{subroutine} without
3399deciding which rule for @code{compound} it will eventually use. Note that
3400the action is now at the end of its rule. Any mid-rule action can be
3401converted to an end-of-rule action in this way, and this is what Bison
3402actually does to implement mid-rule actions.
3403
342b8b6e 3404@node Locations
847bf1f5
AD
3405@section Tracking Locations
3406@cindex location
95923bd6
AD
3407@cindex textual location
3408@cindex location, textual
847bf1f5
AD
3409
3410Though grammar rules and semantic actions are enough to write a fully
72d2299c 3411functional parser, it can be useful to process some additional information,
3e259915
MA
3412especially symbol locations.
3413
704a47c4
AD
3414The way locations are handled is defined by providing a data type, and
3415actions to take when rules are matched.
847bf1f5
AD
3416
3417@menu
3418* Location Type:: Specifying a data type for locations.
3419* Actions and Locations:: Using locations in actions.
3420* Location Default Action:: Defining a general way to compute locations.
3421@end menu
3422
342b8b6e 3423@node Location Type
847bf1f5
AD
3424@subsection Data Type of Locations
3425@cindex data type of locations
3426@cindex default location type
3427
3428Defining a data type for locations is much simpler than for semantic values,
3429since all tokens and groupings always use the same type.
3430
3431The type of locations is specified by defining a macro called @code{YYLTYPE}.
3432When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3433four members:
3434
3435@example
6273355b 3436typedef struct YYLTYPE
847bf1f5
AD
3437@{
3438 int first_line;
3439 int first_column;
3440 int last_line;
3441 int last_column;
6273355b 3442@} YYLTYPE;
847bf1f5
AD
3443@end example
3444
342b8b6e 3445@node Actions and Locations
847bf1f5
AD
3446@subsection Actions and Locations
3447@cindex location actions
3448@cindex actions, location
3449@vindex @@$
3450@vindex @@@var{n}
3451
3452Actions are not only useful for defining language semantics, but also for
3453describing the behavior of the output parser with locations.
3454
3455The most obvious way for building locations of syntactic groupings is very
72d2299c 3456similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3457constructs can be used to access the locations of the elements being matched.
3458The location of the @var{n}th component of the right hand side is
3459@code{@@@var{n}}, while the location of the left hand side grouping is
3460@code{@@$}.
3461
3e259915 3462Here is a basic example using the default data type for locations:
847bf1f5
AD
3463
3464@example
3465@group
3466exp: @dots{}
3e259915 3467 | exp '/' exp
847bf1f5 3468 @{
3e259915
MA
3469 @@$.first_column = @@1.first_column;
3470 @@$.first_line = @@1.first_line;
847bf1f5
AD
3471 @@$.last_column = @@3.last_column;
3472 @@$.last_line = @@3.last_line;
3e259915
MA
3473 if ($3)
3474 $$ = $1 / $3;
3475 else
3476 @{
3477 $$ = 1;
4e03e201
AD
3478 fprintf (stderr,
3479 "Division by zero, l%d,c%d-l%d,c%d",
3480 @@3.first_line, @@3.first_column,
3481 @@3.last_line, @@3.last_column);
3e259915 3482 @}
847bf1f5
AD
3483 @}
3484@end group
3485@end example
3486
3e259915 3487As for semantic values, there is a default action for locations that is
72d2299c 3488run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3489beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3490last symbol.
3e259915 3491
72d2299c 3492With this default action, the location tracking can be fully automatic. The
3e259915
MA
3493example above simply rewrites this way:
3494
3495@example
3496@group
3497exp: @dots{}
3498 | exp '/' exp
3499 @{
3500 if ($3)
3501 $$ = $1 / $3;
3502 else
3503 @{
3504 $$ = 1;
4e03e201
AD
3505 fprintf (stderr,
3506 "Division by zero, l%d,c%d-l%d,c%d",
3507 @@3.first_line, @@3.first_column,
3508 @@3.last_line, @@3.last_column);
3e259915
MA
3509 @}
3510 @}
3511@end group
3512@end example
847bf1f5 3513
32c29292
JD
3514@vindex yylloc
3515It is also possible to access the location of the look-ahead token, if any,
3516from a semantic action.
3517This location is stored in @code{yylloc}.
3518@xref{Action Features, ,Special Features for Use in Actions}.
3519
342b8b6e 3520@node Location Default Action
847bf1f5
AD
3521@subsection Default Action for Locations
3522@vindex YYLLOC_DEFAULT
3523
72d2299c 3524Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3525locations are much more general than semantic values, there is room in
3526the output parser to redefine the default action to take for each
72d2299c 3527rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3528matched, before the associated action is run. It is also invoked
3529while processing a syntax error, to compute the error's location.
847bf1f5 3530
3e259915 3531Most of the time, this macro is general enough to suppress location
79282c6c 3532dedicated code from semantic actions.
847bf1f5 3533
72d2299c 3534The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3535the location of the grouping (the result of the computation). When a
766de5eb 3536rule is matched, the second parameter identifies locations of
96b93a3d
PE
3537all right hand side elements of the rule being matched, and the third
3538parameter is the size of the rule's right hand side. When processing
766de5eb 3539a syntax error, the second parameter identifies locations of
96b93a3d
PE
3540the symbols that were discarded during error processing, and the third
3541parameter is the number of discarded symbols.
847bf1f5 3542
766de5eb 3543By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3544
766de5eb 3545@smallexample
847bf1f5 3546@group
766de5eb
PE
3547# define YYLLOC_DEFAULT(Current, Rhs, N) \
3548 do \
3549 if (N) \
3550 @{ \
3551 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3552 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3553 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3554 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3555 @} \
3556 else \
3557 @{ \
3558 (Current).first_line = (Current).last_line = \
3559 YYRHSLOC(Rhs, 0).last_line; \
3560 (Current).first_column = (Current).last_column = \
3561 YYRHSLOC(Rhs, 0).last_column; \
3562 @} \
3563 while (0)
847bf1f5 3564@end group
766de5eb 3565@end smallexample
676385e2 3566
766de5eb
PE
3567where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3568in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3569just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3570
3e259915 3571When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3572
3e259915 3573@itemize @bullet
79282c6c 3574@item
72d2299c 3575All arguments are free of side-effects. However, only the first one (the
3e259915 3576result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3577
3e259915 3578@item
766de5eb
PE
3579For consistency with semantic actions, valid indexes within the
3580right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3581valid index, and it refers to the symbol just before the reduction.
3582During error processing @var{n} is always positive.
0ae99356
PE
3583
3584@item
3585Your macro should parenthesize its arguments, if need be, since the
3586actual arguments may not be surrounded by parentheses. Also, your
3587macro should expand to something that can be used as a single
3588statement when it is followed by a semicolon.
3e259915 3589@end itemize
847bf1f5 3590
342b8b6e 3591@node Declarations
bfa74976
RS
3592@section Bison Declarations
3593@cindex declarations, Bison
3594@cindex Bison declarations
3595
3596The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3597used in formulating the grammar and the data types of semantic values.
3598@xref{Symbols}.
3599
3600All token type names (but not single-character literal tokens such as
3601@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3602declared if you need to specify which data type to use for the semantic
3603value (@pxref{Multiple Types, ,More Than One Value Type}).
3604
3605The first rule in the file also specifies the start symbol, by default.
3606If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3607it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3608Grammars}).
bfa74976
RS
3609
3610@menu
b50d2359 3611* Require Decl:: Requiring a Bison version.
bfa74976
RS
3612* Token Decl:: Declaring terminal symbols.
3613* Precedence Decl:: Declaring terminals with precedence and associativity.
3614* Union Decl:: Declaring the set of all semantic value types.
3615* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3616* Initial Action Decl:: Code run before parsing starts.
72f889cc 3617* Destructor Decl:: Declaring how symbols are freed.
d6328241 3618* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3619* Start Decl:: Specifying the start symbol.
3620* Pure Decl:: Requesting a reentrant parser.
3621* Decl Summary:: Table of all Bison declarations.
3622@end menu
3623
b50d2359
AD
3624@node Require Decl
3625@subsection Require a Version of Bison
3626@cindex version requirement
3627@cindex requiring a version of Bison
3628@findex %require
3629
3630You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
3631the requirement is not met, @command{bison} exits with an error (exit
3632status 63).
b50d2359
AD
3633
3634@example
3635%require "@var{version}"
3636@end example
3637
342b8b6e 3638@node Token Decl
bfa74976
RS
3639@subsection Token Type Names
3640@cindex declaring token type names
3641@cindex token type names, declaring
931c7513 3642@cindex declaring literal string tokens
bfa74976
RS
3643@findex %token
3644
3645The basic way to declare a token type name (terminal symbol) is as follows:
3646
3647@example
3648%token @var{name}
3649@end example
3650
3651Bison will convert this into a @code{#define} directive in
3652the parser, so that the function @code{yylex} (if it is in this file)
3653can use the name @var{name} to stand for this token type's code.
3654
14ded682
AD
3655Alternatively, you can use @code{%left}, @code{%right}, or
3656@code{%nonassoc} instead of @code{%token}, if you wish to specify
3657associativity and precedence. @xref{Precedence Decl, ,Operator
3658Precedence}.
bfa74976
RS
3659
3660You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3661a decimal or hexadecimal integer value in the field immediately
3662following the token name:
bfa74976
RS
3663
3664@example
3665%token NUM 300
1452af69 3666%token XNUM 0x12d // a GNU extension
bfa74976
RS
3667@end example
3668
3669@noindent
3670It is generally best, however, to let Bison choose the numeric codes for
3671all token types. Bison will automatically select codes that don't conflict
e966383b 3672with each other or with normal characters.
bfa74976
RS
3673
3674In the event that the stack type is a union, you must augment the
3675@code{%token} or other token declaration to include the data type
704a47c4
AD
3676alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3677Than One Value Type}).
bfa74976
RS
3678
3679For example:
3680
3681@example
3682@group
3683%union @{ /* define stack type */
3684 double val;
3685 symrec *tptr;
3686@}
3687%token <val> NUM /* define token NUM and its type */
3688@end group
3689@end example
3690
931c7513
RS
3691You can associate a literal string token with a token type name by
3692writing the literal string at the end of a @code{%token}
3693declaration which declares the name. For example:
3694
3695@example
3696%token arrow "=>"
3697@end example
3698
3699@noindent
3700For example, a grammar for the C language might specify these names with
3701equivalent literal string tokens:
3702
3703@example
3704%token <operator> OR "||"
3705%token <operator> LE 134 "<="
3706%left OR "<="
3707@end example
3708
3709@noindent
3710Once you equate the literal string and the token name, you can use them
3711interchangeably in further declarations or the grammar rules. The
3712@code{yylex} function can use the token name or the literal string to
3713obtain the token type code number (@pxref{Calling Convention}).
3714
342b8b6e 3715@node Precedence Decl
bfa74976
RS
3716@subsection Operator Precedence
3717@cindex precedence declarations
3718@cindex declaring operator precedence
3719@cindex operator precedence, declaring
3720
3721Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3722declare a token and specify its precedence and associativity, all at
3723once. These are called @dfn{precedence declarations}.
704a47c4
AD
3724@xref{Precedence, ,Operator Precedence}, for general information on
3725operator precedence.
bfa74976
RS
3726
3727The syntax of a precedence declaration is the same as that of
3728@code{%token}: either
3729
3730@example
3731%left @var{symbols}@dots{}
3732@end example
3733
3734@noindent
3735or
3736
3737@example
3738%left <@var{type}> @var{symbols}@dots{}
3739@end example
3740
3741And indeed any of these declarations serves the purposes of @code{%token}.
3742But in addition, they specify the associativity and relative precedence for
3743all the @var{symbols}:
3744
3745@itemize @bullet
3746@item
3747The associativity of an operator @var{op} determines how repeated uses
3748of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3749@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3750grouping @var{y} with @var{z} first. @code{%left} specifies
3751left-associativity (grouping @var{x} with @var{y} first) and
3752@code{%right} specifies right-associativity (grouping @var{y} with
3753@var{z} first). @code{%nonassoc} specifies no associativity, which
3754means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3755considered a syntax error.
3756
3757@item
3758The precedence of an operator determines how it nests with other operators.
3759All the tokens declared in a single precedence declaration have equal
3760precedence and nest together according to their associativity.
3761When two tokens declared in different precedence declarations associate,
3762the one declared later has the higher precedence and is grouped first.
3763@end itemize
3764
342b8b6e 3765@node Union Decl
bfa74976
RS
3766@subsection The Collection of Value Types
3767@cindex declaring value types
3768@cindex value types, declaring
3769@findex %union
3770
3771The @code{%union} declaration specifies the entire collection of possible
3772data types for semantic values. The keyword @code{%union} is followed by a
3773pair of braces containing the same thing that goes inside a @code{union} in
13863333 3774C.
bfa74976
RS
3775
3776For example:
3777
3778@example
3779@group
3780%union @{
3781 double val;
3782 symrec *tptr;
3783@}
3784@end group
3785@end example
3786
3787@noindent
3788This says that the two alternative types are @code{double} and @code{symrec
3789*}. They are given names @code{val} and @code{tptr}; these names are used
3790in the @code{%token} and @code{%type} declarations to pick one of the types
3791for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3792
6273355b
PE
3793As an extension to @acronym{POSIX}, a tag is allowed after the
3794@code{union}. For example:
3795
3796@example
3797@group
3798%union value @{
3799 double val;
3800 symrec *tptr;
3801@}
3802@end group
3803@end example
3804
3805specifies the union tag @code{value}, so the corresponding C type is
3806@code{union value}. If you do not specify a tag, it defaults to
3807@code{YYSTYPE}.
3808
3809Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3810a semicolon after the closing brace.
3811
342b8b6e 3812@node Type Decl
bfa74976
RS
3813@subsection Nonterminal Symbols
3814@cindex declaring value types, nonterminals
3815@cindex value types, nonterminals, declaring
3816@findex %type
3817
3818@noindent
3819When you use @code{%union} to specify multiple value types, you must
3820declare the value type of each nonterminal symbol for which values are
3821used. This is done with a @code{%type} declaration, like this:
3822
3823@example
3824%type <@var{type}> @var{nonterminal}@dots{}
3825@end example
3826
3827@noindent
704a47c4
AD
3828Here @var{nonterminal} is the name of a nonterminal symbol, and
3829@var{type} is the name given in the @code{%union} to the alternative
3830that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3831can give any number of nonterminal symbols in the same @code{%type}
3832declaration, if they have the same value type. Use spaces to separate
3833the symbol names.
bfa74976 3834
931c7513
RS
3835You can also declare the value type of a terminal symbol. To do this,
3836use the same @code{<@var{type}>} construction in a declaration for the
3837terminal symbol. All kinds of token declarations allow
3838@code{<@var{type}>}.
3839
18d192f0
AD
3840@node Initial Action Decl
3841@subsection Performing Actions before Parsing
3842@findex %initial-action
3843
3844Sometimes your parser needs to perform some initializations before
3845parsing. The @code{%initial-action} directive allows for such arbitrary
3846code.
3847
3848@deffn {Directive} %initial-action @{ @var{code} @}
3849@findex %initial-action
3850Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3851@code{yyparse} is called. The @var{code} may use @code{$$} and
3852@code{@@$} --- initial value and location of the look-ahead --- and the
3853@code{%parse-param}.
18d192f0
AD
3854@end deffn
3855
451364ed
AD
3856For instance, if your locations use a file name, you may use
3857
3858@example
48b16bbc 3859%parse-param @{ char const *file_name @};
451364ed
AD
3860%initial-action
3861@{
4626a15d 3862 @@$.initialize (file_name);
451364ed
AD
3863@};
3864@end example
3865
18d192f0 3866
72f889cc
AD
3867@node Destructor Decl
3868@subsection Freeing Discarded Symbols
3869@cindex freeing discarded symbols
3870@findex %destructor
3871
a85284cf
AD
3872During error recovery (@pxref{Error Recovery}), symbols already pushed
3873on the stack and tokens coming from the rest of the file are discarded
3874until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 3875or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
3876symbols on the stack must be discarded. Even if the parser succeeds, it
3877must discard the start symbol.
258b75ca
PE
3878
3879When discarded symbols convey heap based information, this memory is
3880lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
3881in traditional compilers, it is unacceptable for programs like shells or
3882protocol implementations that may parse and execute indefinitely.
258b75ca 3883
a85284cf
AD
3884The @code{%destructor} directive defines code that is called when a
3885symbol is automatically discarded.
72f889cc
AD
3886
3887@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3888@findex %destructor
4b367315
AD
3889Invoke @var{code} whenever the parser discards one of the @var{symbols}.
3890Within @var{code}, @code{$$} designates the semantic value associated
3891with the discarded symbol. The additional parser parameters are also
3892available (@pxref{Parser Function, , The Parser Function
3893@code{yyparse}}).
72f889cc
AD
3894@end deffn
3895
3896For instance:
3897
3898@smallexample
3899%union
3900@{
3901 char *string;
3902@}
3903%token <string> STRING
3904%type <string> string
3905%destructor @{ free ($$); @} STRING string
3906@end smallexample
3907
3908@noindent
258b75ca 3909guarantees that when a @code{STRING} or a @code{string} is discarded,
72f889cc
AD
3910its associated memory will be freed.
3911
e757bb10
AD
3912@sp 1
3913
3914@cindex discarded symbols
3915@dfn{Discarded symbols} are the following:
3916
3917@itemize
3918@item
3919stacked symbols popped during the first phase of error recovery,
3920@item
3921incoming terminals during the second phase of error recovery,
3922@item
a85284cf 3923the current look-ahead and the entire stack (except the current
9d9b8b70 3924right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
3925@item
3926the start symbol, when the parser succeeds.
e757bb10
AD
3927@end itemize
3928
9d9b8b70
PE
3929The parser can @dfn{return immediately} because of an explicit call to
3930@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
3931exhaustion.
3932
3933Right-hand size symbols of a rule that explicitly triggers a syntax
3934error via @code{YYERROR} are not discarded automatically. As a rule
3935of thumb, destructors are invoked only when user actions cannot manage
a85284cf 3936the memory.
e757bb10 3937
342b8b6e 3938@node Expect Decl
bfa74976
RS
3939@subsection Suppressing Conflict Warnings
3940@cindex suppressing conflict warnings
3941@cindex preventing warnings about conflicts
3942@cindex warnings, preventing
3943@cindex conflicts, suppressing warnings of
3944@findex %expect
d6328241 3945@findex %expect-rr
bfa74976
RS
3946
3947Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3948(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3949have harmless shift/reduce conflicts which are resolved in a predictable
3950way and would be difficult to eliminate. It is desirable to suppress
3951the warning about these conflicts unless the number of conflicts
3952changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3953
3954The declaration looks like this:
3955
3956@example
3957%expect @var{n}
3958@end example
3959
035aa4a0
PE
3960Here @var{n} is a decimal integer. The declaration says there should
3961be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
3962Bison reports an error if the number of shift/reduce conflicts differs
3963from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 3964
035aa4a0
PE
3965For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
3966serious, and should be eliminated entirely. Bison will always report
3967reduce/reduce conflicts for these parsers. With @acronym{GLR}
3968parsers, however, both kinds of conflicts are routine; otherwise,
3969there would be no need to use @acronym{GLR} parsing. Therefore, it is
3970also possible to specify an expected number of reduce/reduce conflicts
3971in @acronym{GLR} parsers, using the declaration:
d6328241
PH
3972
3973@example
3974%expect-rr @var{n}
3975@end example
3976
bfa74976
RS
3977In general, using @code{%expect} involves these steps:
3978
3979@itemize @bullet
3980@item
3981Compile your grammar without @code{%expect}. Use the @samp{-v} option
3982to get a verbose list of where the conflicts occur. Bison will also
3983print the number of conflicts.
3984
3985@item
3986Check each of the conflicts to make sure that Bison's default
3987resolution is what you really want. If not, rewrite the grammar and
3988go back to the beginning.
3989
3990@item
3991Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
3992number which Bison printed. With @acronym{GLR} parsers, add an
3993@code{%expect-rr} declaration as well.
bfa74976
RS
3994@end itemize
3995
035aa4a0
PE
3996Now Bison will warn you if you introduce an unexpected conflict, but
3997will keep silent otherwise.
bfa74976 3998
342b8b6e 3999@node Start Decl
bfa74976
RS
4000@subsection The Start-Symbol
4001@cindex declaring the start symbol
4002@cindex start symbol, declaring
4003@cindex default start symbol
4004@findex %start
4005
4006Bison assumes by default that the start symbol for the grammar is the first
4007nonterminal specified in the grammar specification section. The programmer
4008may override this restriction with the @code{%start} declaration as follows:
4009
4010@example
4011%start @var{symbol}
4012@end example
4013
342b8b6e 4014@node Pure Decl
bfa74976
RS
4015@subsection A Pure (Reentrant) Parser
4016@cindex reentrant parser
4017@cindex pure parser
8c9a50be 4018@findex %pure-parser
bfa74976
RS
4019
4020A @dfn{reentrant} program is one which does not alter in the course of
4021execution; in other words, it consists entirely of @dfn{pure} (read-only)
4022code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4023for example, a nonreentrant program may not be safe to call from a signal
4024handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4025program must be called only within interlocks.
4026
70811b85 4027Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4028suitable for most uses, and it permits compatibility with Yacc. (The
4029standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4030statically allocated variables for communication with @code{yylex},
4031including @code{yylval} and @code{yylloc}.)
bfa74976 4032
70811b85 4033Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 4034declaration @code{%pure-parser} says that you want the parser to be
70811b85 4035reentrant. It looks like this:
bfa74976
RS
4036
4037@example
8c9a50be 4038%pure-parser
bfa74976
RS
4039@end example
4040
70811b85
RS
4041The result is that the communication variables @code{yylval} and
4042@code{yylloc} become local variables in @code{yyparse}, and a different
4043calling convention is used for the lexical analyzer function
4044@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
4045Parsers}, for the details of this. The variable @code{yynerrs} also
4046becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
4047Reporting Function @code{yyerror}}). The convention for calling
4048@code{yyparse} itself is unchanged.
4049
4050Whether the parser is pure has nothing to do with the grammar rules.
4051You can generate either a pure parser or a nonreentrant parser from any
4052valid grammar.
bfa74976 4053
342b8b6e 4054@node Decl Summary
bfa74976
RS
4055@subsection Bison Declaration Summary
4056@cindex Bison declaration summary
4057@cindex declaration summary
4058@cindex summary, Bison declaration
4059
d8988b2f 4060Here is a summary of the declarations used to define a grammar:
bfa74976 4061
18b519c0 4062@deffn {Directive} %union
bfa74976
RS
4063Declare the collection of data types that semantic values may have
4064(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4065@end deffn
bfa74976 4066
18b519c0 4067@deffn {Directive} %token
bfa74976
RS
4068Declare a terminal symbol (token type name) with no precedence
4069or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4070@end deffn
bfa74976 4071
18b519c0 4072@deffn {Directive} %right
bfa74976
RS
4073Declare a terminal symbol (token type name) that is right-associative
4074(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4075@end deffn
bfa74976 4076
18b519c0 4077@deffn {Directive} %left
bfa74976
RS
4078Declare a terminal symbol (token type name) that is left-associative
4079(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4080@end deffn
bfa74976 4081
18b519c0 4082@deffn {Directive} %nonassoc
bfa74976 4083Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4084(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4085Using it in a way that would be associative is a syntax error.
4086@end deffn
4087
91d2c560 4088@ifset defaultprec
39a06c25 4089@deffn {Directive} %default-prec
22fccf95 4090Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4091(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4092@end deffn
91d2c560 4093@end ifset
bfa74976 4094
18b519c0 4095@deffn {Directive} %type
bfa74976
RS
4096Declare the type of semantic values for a nonterminal symbol
4097(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4098@end deffn
bfa74976 4099
18b519c0 4100@deffn {Directive} %start
89cab50d
AD
4101Specify the grammar's start symbol (@pxref{Start Decl, ,The
4102Start-Symbol}).
18b519c0 4103@end deffn
bfa74976 4104
18b519c0 4105@deffn {Directive} %expect
bfa74976
RS
4106Declare the expected number of shift-reduce conflicts
4107(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4108@end deffn
4109
bfa74976 4110
d8988b2f
AD
4111@sp 1
4112@noindent
4113In order to change the behavior of @command{bison}, use the following
4114directives:
4115
18b519c0 4116@deffn {Directive} %debug
4947ebdb
PE
4117In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4118already defined, so that the debugging facilities are compiled.
18b519c0 4119@end deffn
ec3bc396 4120@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4121
18b519c0 4122@deffn {Directive} %defines
4bfd5e4e
PE
4123Write a header file containing macro definitions for the token type
4124names defined in the grammar as well as a few other declarations.
d8988b2f 4125If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4126is named @file{@var{name}.h}.
d8988b2f 4127
4bfd5e4e 4128Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d 4129declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
f8e1c9e5
AD
4130(@pxref{Multiple Types, ,More Than One Value Type}) with components that
4131require other definitions, or if you have defined a @code{YYSTYPE} macro
4132(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
4133arrange for these definitions to be propagated to all modules, e.g., by
4134putting them in a prerequisite header that is included both by your
4135parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
4136
4137Unless your parser is pure, the output header declares @code{yylval}
4138as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4139Parser}.
4140
4141If you have also used locations, the output header declares
4142@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4143@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4144Locations}.
4145
f8e1c9e5
AD
4146This output file is normally essential if you wish to put the definition
4147of @code{yylex} in a separate source file, because @code{yylex}
4148typically needs to be able to refer to the above-mentioned declarations
4149and to the token type codes. @xref{Token Values, ,Semantic Values of
4150Tokens}.
18b519c0 4151@end deffn
d8988b2f 4152
18b519c0 4153@deffn {Directive} %destructor
258b75ca 4154Specify how the parser should reclaim the memory associated to
fa7e68c3 4155discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4156@end deffn
72f889cc 4157
18b519c0 4158@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4159Specify a prefix to use for all Bison output file names. The names are
4160chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4161@end deffn
d8988b2f 4162
18b519c0 4163@deffn {Directive} %locations
89cab50d
AD
4164Generate the code processing the locations (@pxref{Action Features,
4165,Special Features for Use in Actions}). This mode is enabled as soon as
4166the grammar uses the special @samp{@@@var{n}} tokens, but if your
4167grammar does not use it, using @samp{%locations} allows for more
6e649e65 4168accurate syntax error messages.
18b519c0 4169@end deffn
89cab50d 4170
18b519c0 4171@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4172Rename the external symbols used in the parser so that they start with
4173@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4174is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4175@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4176possible @code{yylloc}. For example, if you use
4177@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4178and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4179Program}.
18b519c0 4180@end deffn
931c7513 4181
91d2c560 4182@ifset defaultprec
22fccf95
PE
4183@deffn {Directive} %no-default-prec
4184Do not assign a precedence to rules lacking an explicit @code{%prec}
4185modifier (@pxref{Contextual Precedence, ,Context-Dependent
4186Precedence}).
4187@end deffn
91d2c560 4188@end ifset
22fccf95 4189
18b519c0 4190@deffn {Directive} %no-parser
6deb4447
AD
4191Do not include any C code in the parser file; generate tables only. The
4192parser file contains just @code{#define} directives and static variable
4193declarations.
4194
4195This option also tells Bison to write the C code for the grammar actions
fa4d969f 4196into a file named @file{@var{file}.act}, in the form of a
6deb4447 4197brace-surrounded body fit for a @code{switch} statement.
18b519c0 4198@end deffn
6deb4447 4199
18b519c0 4200@deffn {Directive} %no-lines
931c7513
RS
4201Don't generate any @code{#line} preprocessor commands in the parser
4202file. Ordinarily Bison writes these commands in the parser file so that
4203the C compiler and debuggers will associate errors and object code with
4204your source file (the grammar file). This directive causes them to
4205associate errors with the parser file, treating it an independent source
4206file in its own right.
18b519c0 4207@end deffn
931c7513 4208
fa4d969f
PE
4209@deffn {Directive} %output="@var{file}"
4210Specify @var{file} for the parser file.
18b519c0 4211@end deffn
6deb4447 4212
18b519c0 4213@deffn {Directive} %pure-parser
d8988b2f
AD
4214Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4215(Reentrant) Parser}).
18b519c0 4216@end deffn
6deb4447 4217
b50d2359 4218@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
4219Require version @var{version} or higher of Bison. @xref{Require Decl, ,
4220Require a Version of Bison}.
b50d2359
AD
4221@end deffn
4222
18b519c0 4223@deffn {Directive} %token-table
931c7513
RS
4224Generate an array of token names in the parser file. The name of the
4225array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4226token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4227three elements of @code{yytname} correspond to the predefined tokens
4228@code{"$end"},
88bce5a2
AD
4229@code{"error"}, and @code{"$undefined"}; after these come the symbols
4230defined in the grammar file.
931c7513 4231
9e0876fb
PE
4232The name in the table includes all the characters needed to represent
4233the token in Bison. For single-character literals and literal
4234strings, this includes the surrounding quoting characters and any
4235escape sequences. For example, the Bison single-character literal
4236@code{'+'} corresponds to a three-character name, represented in C as
4237@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
4238corresponds to a five-character name, represented in C as
4239@code{"\"\\\\/\""}.
931c7513 4240
8c9a50be 4241When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4242definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4243@code{YYNRULES}, and @code{YYNSTATES}:
4244
4245@table @code
4246@item YYNTOKENS
4247The highest token number, plus one.
4248@item YYNNTS
9ecbd125 4249The number of nonterminal symbols.
931c7513
RS
4250@item YYNRULES
4251The number of grammar rules,
4252@item YYNSTATES
4253The number of parser states (@pxref{Parser States}).
4254@end table
18b519c0 4255@end deffn
d8988b2f 4256
18b519c0 4257@deffn {Directive} %verbose
d8988b2f
AD
4258Write an extra output file containing verbose descriptions of the
4259parser states and what is done for each type of look-ahead token in
72d2299c 4260that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4261information.
18b519c0 4262@end deffn
d8988b2f 4263
18b519c0 4264@deffn {Directive} %yacc
d8988b2f
AD
4265Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4266including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4267@end deffn
d8988b2f
AD
4268
4269
342b8b6e 4270@node Multiple Parsers
bfa74976
RS
4271@section Multiple Parsers in the Same Program
4272
4273Most programs that use Bison parse only one language and therefore contain
4274only one Bison parser. But what if you want to parse more than one
4275language with the same program? Then you need to avoid a name conflict
4276between different definitions of @code{yyparse}, @code{yylval}, and so on.
4277
4278The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4279(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4280functions and variables of the Bison parser to start with @var{prefix}
4281instead of @samp{yy}. You can use this to give each parser distinct
4282names that do not conflict.
bfa74976
RS
4283
4284The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4285@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4286@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4287the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4288
4289@strong{All the other variables and macros associated with Bison are not
4290renamed.} These others are not global; there is no conflict if the same
4291name is used in different parsers. For example, @code{YYSTYPE} is not
4292renamed, but defining this in different ways in different parsers causes
4293no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4294
4295The @samp{-p} option works by adding macro definitions to the beginning
4296of the parser source file, defining @code{yyparse} as
4297@code{@var{prefix}parse}, and so on. This effectively substitutes one
4298name for the other in the entire parser file.
4299
342b8b6e 4300@node Interface
bfa74976
RS
4301@chapter Parser C-Language Interface
4302@cindex C-language interface
4303@cindex interface
4304
4305The Bison parser is actually a C function named @code{yyparse}. Here we
4306describe the interface conventions of @code{yyparse} and the other
4307functions that it needs to use.
4308
4309Keep in mind that the parser uses many C identifiers starting with
4310@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4311identifier (aside from those in this manual) in an action or in epilogue
4312in the grammar file, you are likely to run into trouble.
bfa74976
RS
4313
4314@menu
4315* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4316* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4317 which reads tokens.
4318* Error Reporting:: You must supply a function @code{yyerror}.
4319* Action Features:: Special features for use in actions.
f7ab6a50
PE
4320* Internationalization:: How to let the parser speak in the user's
4321 native language.
bfa74976
RS
4322@end menu
4323
342b8b6e 4324@node Parser Function
bfa74976
RS
4325@section The Parser Function @code{yyparse}
4326@findex yyparse
4327
4328You call the function @code{yyparse} to cause parsing to occur. This
4329function reads tokens, executes actions, and ultimately returns when it
4330encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4331write an action which directs @code{yyparse} to return immediately
4332without reading further.
bfa74976 4333
2a8d363a
AD
4334
4335@deftypefun int yyparse (void)
bfa74976
RS
4336The value returned by @code{yyparse} is 0 if parsing was successful (return
4337is due to end-of-input).
4338
b47dbebe
PE
4339The value is 1 if parsing failed because of invalid input, i.e., input
4340that contains a syntax error or that causes @code{YYABORT} to be
4341invoked.
4342
4343The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 4344@end deftypefun
bfa74976
RS
4345
4346In an action, you can cause immediate return from @code{yyparse} by using
4347these macros:
4348
2a8d363a 4349@defmac YYACCEPT
bfa74976
RS
4350@findex YYACCEPT
4351Return immediately with value 0 (to report success).
2a8d363a 4352@end defmac
bfa74976 4353
2a8d363a 4354@defmac YYABORT
bfa74976
RS
4355@findex YYABORT
4356Return immediately with value 1 (to report failure).
2a8d363a
AD
4357@end defmac
4358
4359If you use a reentrant parser, you can optionally pass additional
4360parameter information to it in a reentrant way. To do so, use the
4361declaration @code{%parse-param}:
4362
feeb0eda 4363@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4364@findex %parse-param
feeb0eda 4365Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4366additional @code{yyparse} argument.
4367The @var{argument-declaration} is used when declaring
feeb0eda
PE
4368functions or prototypes. The last identifier in
4369@var{argument-declaration} must be the argument name.
2a8d363a
AD
4370@end deffn
4371
4372Here's an example. Write this in the parser:
4373
4374@example
feeb0eda
PE
4375%parse-param @{int *nastiness@}
4376%parse-param @{int *randomness@}
2a8d363a
AD
4377@end example
4378
4379@noindent
4380Then call the parser like this:
4381
4382@example
4383@{
4384 int nastiness, randomness;
4385 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4386 value = yyparse (&nastiness, &randomness);
4387 @dots{}
4388@}
4389@end example
4390
4391@noindent
4392In the grammar actions, use expressions like this to refer to the data:
4393
4394@example
4395exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4396@end example
4397
bfa74976 4398
342b8b6e 4399@node Lexical
bfa74976
RS
4400@section The Lexical Analyzer Function @code{yylex}
4401@findex yylex
4402@cindex lexical analyzer
4403
4404The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4405the input stream and returns them to the parser. Bison does not create
4406this function automatically; you must write it so that @code{yyparse} can
4407call it. The function is sometimes referred to as a lexical scanner.
4408
4409In simple programs, @code{yylex} is often defined at the end of the Bison
4410grammar file. If @code{yylex} is defined in a separate source file, you
4411need to arrange for the token-type macro definitions to be available there.
4412To do this, use the @samp{-d} option when you run Bison, so that it will
4413write these macro definitions into a separate header file
4414@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4415that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4416
4417@menu
4418* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4419* Token Values:: How @code{yylex} must return the semantic value
4420 of the token it has read.
95923bd6 4421* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4422 (line number, etc.) of the token, if the
4423 actions want that.
4424* Pure Calling:: How the calling convention differs
4425 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4426@end menu
4427
342b8b6e 4428@node Calling Convention
bfa74976
RS
4429@subsection Calling Convention for @code{yylex}
4430
72d2299c
PE
4431The value that @code{yylex} returns must be the positive numeric code
4432for the type of token it has just found; a zero or negative value
4433signifies end-of-input.
bfa74976
RS
4434
4435When a token is referred to in the grammar rules by a name, that name
4436in the parser file becomes a C macro whose definition is the proper
4437numeric code for that token type. So @code{yylex} can use the name
4438to indicate that type. @xref{Symbols}.
4439
4440When a token is referred to in the grammar rules by a character literal,
4441the numeric code for that character is also the code for the token type.
72d2299c
PE
4442So @code{yylex} can simply return that character code, possibly converted
4443to @code{unsigned char} to avoid sign-extension. The null character
4444must not be used this way, because its code is zero and that
bfa74976
RS
4445signifies end-of-input.
4446
4447Here is an example showing these things:
4448
4449@example
13863333
AD
4450int
4451yylex (void)
bfa74976
RS
4452@{
4453 @dots{}
72d2299c 4454 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4455 return 0;
4456 @dots{}
4457 if (c == '+' || c == '-')
72d2299c 4458 return c; /* Assume token type for `+' is '+'. */
bfa74976 4459 @dots{}
72d2299c 4460 return INT; /* Return the type of the token. */
bfa74976
RS
4461 @dots{}
4462@}
4463@end example
4464
4465@noindent
4466This interface has been designed so that the output from the @code{lex}
4467utility can be used without change as the definition of @code{yylex}.
4468
931c7513
RS
4469If the grammar uses literal string tokens, there are two ways that
4470@code{yylex} can determine the token type codes for them:
4471
4472@itemize @bullet
4473@item
4474If the grammar defines symbolic token names as aliases for the
4475literal string tokens, @code{yylex} can use these symbolic names like
4476all others. In this case, the use of the literal string tokens in
4477the grammar file has no effect on @code{yylex}.
4478
4479@item
9ecbd125 4480@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4481table. The index of the token in the table is the token type's code.
9ecbd125 4482The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 4483double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
4484token's characters are escaped as necessary to be suitable as input
4485to Bison.
931c7513 4486
9e0876fb
PE
4487Here's code for looking up a multicharacter token in @code{yytname},
4488assuming that the characters of the token are stored in
4489@code{token_buffer}, and assuming that the token does not contain any
4490characters like @samp{"} that require escaping.
931c7513
RS
4491
4492@smallexample
4493for (i = 0; i < YYNTOKENS; i++)
4494 @{
4495 if (yytname[i] != 0
4496 && yytname[i][0] == '"'
68449b3a
PE
4497 && ! strncmp (yytname[i] + 1, token_buffer,
4498 strlen (token_buffer))
931c7513
RS
4499 && yytname[i][strlen (token_buffer) + 1] == '"'
4500 && yytname[i][strlen (token_buffer) + 2] == 0)
4501 break;
4502 @}
4503@end smallexample
4504
4505The @code{yytname} table is generated only if you use the
8c9a50be 4506@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4507@end itemize
4508
342b8b6e 4509@node Token Values
bfa74976
RS
4510@subsection Semantic Values of Tokens
4511
4512@vindex yylval
9d9b8b70 4513In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
4514be stored into the global variable @code{yylval}. When you are using
4515just one data type for semantic values, @code{yylval} has that type.
4516Thus, if the type is @code{int} (the default), you might write this in
4517@code{yylex}:
4518
4519@example
4520@group
4521 @dots{}
72d2299c
PE
4522 yylval = value; /* Put value onto Bison stack. */
4523 return INT; /* Return the type of the token. */
bfa74976
RS
4524 @dots{}
4525@end group
4526@end example
4527
4528When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4529made from the @code{%union} declaration (@pxref{Union Decl, ,The
4530Collection of Value Types}). So when you store a token's value, you
4531must use the proper member of the union. If the @code{%union}
4532declaration looks like this:
bfa74976
RS
4533
4534@example
4535@group
4536%union @{
4537 int intval;
4538 double val;
4539 symrec *tptr;
4540@}
4541@end group
4542@end example
4543
4544@noindent
4545then the code in @code{yylex} might look like this:
4546
4547@example
4548@group
4549 @dots{}
72d2299c
PE
4550 yylval.intval = value; /* Put value onto Bison stack. */
4551 return INT; /* Return the type of the token. */
bfa74976
RS
4552 @dots{}
4553@end group
4554@end example
4555
95923bd6
AD
4556@node Token Locations
4557@subsection Textual Locations of Tokens
bfa74976
RS
4558
4559@vindex yylloc
847bf1f5 4560If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
4561Tracking Locations}) in actions to keep track of the textual locations
4562of tokens and groupings, then you must provide this information in
4563@code{yylex}. The function @code{yyparse} expects to find the textual
4564location of a token just parsed in the global variable @code{yylloc}.
4565So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
4566
4567By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4568initialize the members that are going to be used by the actions. The
4569four members are called @code{first_line}, @code{first_column},
4570@code{last_line} and @code{last_column}. Note that the use of this
4571feature makes the parser noticeably slower.
bfa74976
RS
4572
4573@tindex YYLTYPE
4574The data type of @code{yylloc} has the name @code{YYLTYPE}.
4575
342b8b6e 4576@node Pure Calling
c656404a 4577@subsection Calling Conventions for Pure Parsers
bfa74976 4578
8c9a50be 4579When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4580pure, reentrant parser, the global communication variables @code{yylval}
4581and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4582Parser}.) In such parsers the two global variables are replaced by
4583pointers passed as arguments to @code{yylex}. You must declare them as
4584shown here, and pass the information back by storing it through those
4585pointers.
bfa74976
RS
4586
4587@example
13863333
AD
4588int
4589yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4590@{
4591 @dots{}
4592 *lvalp = value; /* Put value onto Bison stack. */
4593 return INT; /* Return the type of the token. */
4594 @dots{}
4595@}
4596@end example
4597
4598If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4599textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4600this case, omit the second argument; @code{yylex} will be called with
4601only one argument.
4602
e425e872 4603
2a8d363a
AD
4604If you wish to pass the additional parameter data to @code{yylex}, use
4605@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4606Function}).
e425e872 4607
feeb0eda 4608@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4609@findex %lex-param
feeb0eda
PE
4610Declare that @code{argument-declaration} is an additional @code{yylex}
4611argument declaration.
2a8d363a 4612@end deffn
e425e872 4613
2a8d363a 4614For instance:
e425e872
RS
4615
4616@example
feeb0eda
PE
4617%parse-param @{int *nastiness@}
4618%lex-param @{int *nastiness@}
4619%parse-param @{int *randomness@}
e425e872
RS
4620@end example
4621
4622@noindent
2a8d363a 4623results in the following signature:
e425e872
RS
4624
4625@example
2a8d363a
AD
4626int yylex (int *nastiness);
4627int yyparse (int *nastiness, int *randomness);
e425e872
RS
4628@end example
4629
2a8d363a 4630If @code{%pure-parser} is added:
c656404a
RS
4631
4632@example
2a8d363a
AD
4633int yylex (YYSTYPE *lvalp, int *nastiness);
4634int yyparse (int *nastiness, int *randomness);
c656404a
RS
4635@end example
4636
2a8d363a
AD
4637@noindent
4638and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4639
2a8d363a
AD
4640@example
4641int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4642int yyparse (int *nastiness, int *randomness);
4643@end example
931c7513 4644
342b8b6e 4645@node Error Reporting
bfa74976
RS
4646@section The Error Reporting Function @code{yyerror}
4647@cindex error reporting function
4648@findex yyerror
4649@cindex parse error
4650@cindex syntax error
4651
6e649e65 4652The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4653whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4654action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4655macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4656in Actions}).
bfa74976
RS
4657
4658The Bison parser expects to report the error by calling an error
4659reporting function named @code{yyerror}, which you must supply. It is
4660called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4661receives one argument. For a syntax error, the string is normally
4662@w{@code{"syntax error"}}.
bfa74976 4663
2a8d363a
AD
4664@findex %error-verbose
4665If you invoke the directive @code{%error-verbose} in the Bison
4666declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4667Section}), then Bison provides a more verbose and specific error message
6e649e65 4668string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4669
1a059451
PE
4670The parser can detect one other kind of error: memory exhaustion. This
4671can happen when the input contains constructions that are very deeply
bfa74976 4672nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4673parser normally extends its stack automatically up to a very large limit. But
4674if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4675fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4676
4677In some cases diagnostics like @w{@code{"syntax error"}} are
4678translated automatically from English to some other language before
4679they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4680
4681The following definition suffices in simple programs:
4682
4683@example
4684@group
13863333 4685void
38a92d50 4686yyerror (char const *s)
bfa74976
RS
4687@{
4688@end group
4689@group
4690 fprintf (stderr, "%s\n", s);
4691@}
4692@end group
4693@end example
4694
4695After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4696error recovery if you have written suitable error recovery grammar rules
4697(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4698immediately return 1.
4699
93724f13 4700Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4701an access to the current location.
4702This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4703parsers, but not for the Yacc parser, for historical reasons. I.e., if
4704@samp{%locations %pure-parser} is passed then the prototypes for
4705@code{yyerror} are:
4706
4707@example
38a92d50
PE
4708void yyerror (char const *msg); /* Yacc parsers. */
4709void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4710@end example
4711
feeb0eda 4712If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4713
4714@example
b317297e
PE
4715void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4716void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4717@end example
4718
fa7e68c3 4719Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4720convention for absolutely pure parsers, i.e., when the calling
4721convention of @code{yylex} @emph{and} the calling convention of
4722@code{%pure-parser} are pure. I.e.:
4723
4724@example
4725/* Location tracking. */
4726%locations
4727/* Pure yylex. */
4728%pure-parser
feeb0eda 4729%lex-param @{int *nastiness@}
2a8d363a 4730/* Pure yyparse. */
feeb0eda
PE
4731%parse-param @{int *nastiness@}
4732%parse-param @{int *randomness@}
2a8d363a
AD
4733@end example
4734
4735@noindent
4736results in the following signatures for all the parser kinds:
4737
4738@example
4739int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4740int yyparse (int *nastiness, int *randomness);
93724f13
AD
4741void yyerror (YYLTYPE *locp,
4742 int *nastiness, int *randomness,
38a92d50 4743 char const *msg);
2a8d363a
AD
4744@end example
4745
1c0c3e95 4746@noindent
38a92d50
PE
4747The prototypes are only indications of how the code produced by Bison
4748uses @code{yyerror}. Bison-generated code always ignores the returned
4749value, so @code{yyerror} can return any type, including @code{void}.
4750Also, @code{yyerror} can be a variadic function; that is why the
4751message is always passed last.
4752
4753Traditionally @code{yyerror} returns an @code{int} that is always
4754ignored, but this is purely for historical reasons, and @code{void} is
4755preferable since it more accurately describes the return type for
4756@code{yyerror}.
93724f13 4757
bfa74976
RS
4758@vindex yynerrs
4759The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 4760reported so far. Normally this variable is global; but if you
704a47c4
AD
4761request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4762then it is a local variable which only the actions can access.
bfa74976 4763
342b8b6e 4764@node Action Features
bfa74976
RS
4765@section Special Features for Use in Actions
4766@cindex summary, action features
4767@cindex action features summary
4768
4769Here is a table of Bison constructs, variables and macros that
4770are useful in actions.
4771
18b519c0 4772@deffn {Variable} $$
bfa74976
RS
4773Acts like a variable that contains the semantic value for the
4774grouping made by the current rule. @xref{Actions}.
18b519c0 4775@end deffn
bfa74976 4776
18b519c0 4777@deffn {Variable} $@var{n}
bfa74976
RS
4778Acts like a variable that contains the semantic value for the
4779@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4780@end deffn
bfa74976 4781
18b519c0 4782@deffn {Variable} $<@var{typealt}>$
bfa74976 4783Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4784specified by the @code{%union} declaration. @xref{Action Types, ,Data
4785Types of Values in Actions}.
18b519c0 4786@end deffn
bfa74976 4787
18b519c0 4788@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4789Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4790union specified by the @code{%union} declaration.
e0c471a9 4791@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4792@end deffn
bfa74976 4793
18b519c0 4794@deffn {Macro} YYABORT;
bfa74976
RS
4795Return immediately from @code{yyparse}, indicating failure.
4796@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4797@end deffn
bfa74976 4798
18b519c0 4799@deffn {Macro} YYACCEPT;
bfa74976
RS
4800Return immediately from @code{yyparse}, indicating success.
4801@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4802@end deffn
bfa74976 4803
18b519c0 4804@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4805@findex YYBACKUP
4806Unshift a token. This macro is allowed only for rules that reduce
4807a single value, and only when there is no look-ahead token.
c827f760 4808It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4809It installs a look-ahead token with token type @var{token} and
4810semantic value @var{value}; then it discards the value that was
4811going to be reduced by this rule.
4812
4813If the macro is used when it is not valid, such as when there is
4814a look-ahead token already, then it reports a syntax error with
4815a message @samp{cannot back up} and performs ordinary error
4816recovery.
4817
4818In either case, the rest of the action is not executed.
18b519c0 4819@end deffn
bfa74976 4820
18b519c0 4821@deffn {Macro} YYEMPTY
bfa74976
RS
4822@vindex YYEMPTY
4823Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4824@end deffn
bfa74976 4825
32c29292
JD
4826@deffn {Macro} YYEOF
4827@vindex YYEOF
4828Value stored in @code{yychar} when the look-ahead is the end of the input
4829stream.
4830@end deffn
4831
18b519c0 4832@deffn {Macro} YYERROR;
bfa74976
RS
4833@findex YYERROR
4834Cause an immediate syntax error. This statement initiates error
4835recovery just as if the parser itself had detected an error; however, it
4836does not call @code{yyerror}, and does not print any message. If you
4837want to print an error message, call @code{yyerror} explicitly before
4838the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4839@end deffn
bfa74976 4840
18b519c0 4841@deffn {Macro} YYRECOVERING
bfa74976
RS
4842This macro stands for an expression that has the value 1 when the parser
4843is recovering from a syntax error, and 0 the rest of the time.
4844@xref{Error Recovery}.
18b519c0 4845@end deffn
bfa74976 4846
18b519c0 4847@deffn {Variable} yychar
32c29292
JD
4848Variable containing either the look-ahead token, or @code{YYEOF} when the
4849look-ahead is the end of the input stream, or @code{YYEMPTY} when no look-ahead
4850has been performed so the next token is not yet known.
4851Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
4852Actions}).
bfa74976 4853@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4854@end deffn
bfa74976 4855
18b519c0 4856@deffn {Macro} yyclearin;
bfa74976 4857Discard the current look-ahead token. This is useful primarily in
32c29292
JD
4858error rules.
4859Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
4860Semantic Actions}).
4861@xref{Error Recovery}.
18b519c0 4862@end deffn
bfa74976 4863
18b519c0 4864@deffn {Macro} yyerrok;
bfa74976 4865Resume generating error messages immediately for subsequent syntax
13863333 4866errors. This is useful primarily in error rules.
bfa74976 4867@xref{Error Recovery}.
18b519c0 4868@end deffn
bfa74976 4869
32c29292
JD
4870@deffn {Variable} yylloc
4871Variable containing the look-ahead token location when @code{yychar} is not set
4872to @code{YYEMPTY} or @code{YYEOF}.
4873Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
4874Actions}).
4875@xref{Actions and Locations, ,Actions and Locations}.
4876@end deffn
4877
4878@deffn {Variable} yylval
4879Variable containing the look-ahead token semantic value when @code{yychar} is
4880not set to @code{YYEMPTY} or @code{YYEOF}.
4881Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
4882Actions}).
4883@xref{Actions, ,Actions}.
4884@end deffn
4885
18b519c0 4886@deffn {Value} @@$
847bf1f5 4887@findex @@$
95923bd6 4888Acts like a structure variable containing information on the textual location
847bf1f5
AD
4889of the grouping made by the current rule. @xref{Locations, ,
4890Tracking Locations}.
bfa74976 4891
847bf1f5
AD
4892@c Check if those paragraphs are still useful or not.
4893
4894@c @example
4895@c struct @{
4896@c int first_line, last_line;
4897@c int first_column, last_column;
4898@c @};
4899@c @end example
4900
4901@c Thus, to get the starting line number of the third component, you would
4902@c use @samp{@@3.first_line}.
bfa74976 4903
847bf1f5
AD
4904@c In order for the members of this structure to contain valid information,
4905@c you must make @code{yylex} supply this information about each token.
4906@c If you need only certain members, then @code{yylex} need only fill in
4907@c those members.
bfa74976 4908
847bf1f5 4909@c The use of this feature makes the parser noticeably slower.
18b519c0 4910@end deffn
847bf1f5 4911
18b519c0 4912@deffn {Value} @@@var{n}
847bf1f5 4913@findex @@@var{n}
95923bd6 4914Acts like a structure variable containing information on the textual location
847bf1f5
AD
4915of the @var{n}th component of the current rule. @xref{Locations, ,
4916Tracking Locations}.
18b519c0 4917@end deffn
bfa74976 4918
f7ab6a50
PE
4919@node Internationalization
4920@section Parser Internationalization
4921@cindex internationalization
4922@cindex i18n
4923@cindex NLS
4924@cindex gettext
4925@cindex bison-po
4926
4927A Bison-generated parser can print diagnostics, including error and
4928tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
4929also supports outputting diagnostics in the user's native language. To
4930make this work, the user should set the usual environment variables.
4931@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
4932For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
4933set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
4934encoding. The exact set of available locales depends on the user's
4935installation.
4936
4937The maintainer of a package that uses a Bison-generated parser enables
4938the internationalization of the parser's output through the following
4939steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4940@acronym{GNU} Automake.
4941
4942@enumerate
4943@item
30757c8c 4944@cindex bison-i18n.m4
f7ab6a50
PE
4945Into the directory containing the @acronym{GNU} Autoconf macros used
4946by the package---often called @file{m4}---copy the
4947@file{bison-i18n.m4} file installed by Bison under
4948@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4949For example:
4950
4951@example
4952cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4953@end example
4954
4955@item
30757c8c
PE
4956@findex BISON_I18N
4957@vindex BISON_LOCALEDIR
4958@vindex YYENABLE_NLS
f7ab6a50
PE
4959In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4960invocation, add an invocation of @code{BISON_I18N}. This macro is
4961defined in the file @file{bison-i18n.m4} that you copied earlier. It
4962causes @samp{configure} to find the value of the
30757c8c
PE
4963@code{BISON_LOCALEDIR} variable, and it defines the source-language
4964symbol @code{YYENABLE_NLS} to enable translations in the
4965Bison-generated parser.
f7ab6a50
PE
4966
4967@item
4968In the @code{main} function of your program, designate the directory
4969containing Bison's runtime message catalog, through a call to
4970@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4971For example:
4972
4973@example
4974bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4975@end example
4976
4977Typically this appears after any other call @code{bindtextdomain
4978(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4979@samp{BISON_LOCALEDIR} to be defined as a string through the
4980@file{Makefile}.
4981
4982@item
4983In the @file{Makefile.am} that controls the compilation of the @code{main}
4984function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
4985either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
4986
4987@example
4988DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4989@end example
4990
4991or:
4992
4993@example
4994AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4995@end example
4996
4997@item
4998Finally, invoke the command @command{autoreconf} to generate the build
4999infrastructure.
5000@end enumerate
5001
bfa74976 5002
342b8b6e 5003@node Algorithm
13863333
AD
5004@chapter The Bison Parser Algorithm
5005@cindex Bison parser algorithm
bfa74976
RS
5006@cindex algorithm of parser
5007@cindex shifting
5008@cindex reduction
5009@cindex parser stack
5010@cindex stack, parser
5011
5012As Bison reads tokens, it pushes them onto a stack along with their
5013semantic values. The stack is called the @dfn{parser stack}. Pushing a
5014token is traditionally called @dfn{shifting}.
5015
5016For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
5017@samp{3} to come. The stack will have four elements, one for each token
5018that was shifted.
5019
5020But the stack does not always have an element for each token read. When
5021the last @var{n} tokens and groupings shifted match the components of a
5022grammar rule, they can be combined according to that rule. This is called
5023@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
5024single grouping whose symbol is the result (left hand side) of that rule.
5025Running the rule's action is part of the process of reduction, because this
5026is what computes the semantic value of the resulting grouping.
5027
5028For example, if the infix calculator's parser stack contains this:
5029
5030@example
50311 + 5 * 3
5032@end example
5033
5034@noindent
5035and the next input token is a newline character, then the last three
5036elements can be reduced to 15 via the rule:
5037
5038@example
5039expr: expr '*' expr;
5040@end example
5041
5042@noindent
5043Then the stack contains just these three elements:
5044
5045@example
50461 + 15
5047@end example
5048
5049@noindent
5050At this point, another reduction can be made, resulting in the single value
505116. Then the newline token can be shifted.
5052
5053The parser tries, by shifts and reductions, to reduce the entire input down
5054to a single grouping whose symbol is the grammar's start-symbol
5055(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
5056
5057This kind of parser is known in the literature as a bottom-up parser.
5058
5059@menu
5060* Look-Ahead:: Parser looks one token ahead when deciding what to do.
5061* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
5062* Precedence:: Operator precedence works by resolving conflicts.
5063* Contextual Precedence:: When an operator's precedence depends on context.
5064* Parser States:: The parser is a finite-state-machine with stack.
5065* Reduce/Reduce:: When two rules are applicable in the same situation.
5066* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 5067* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 5068* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
5069@end menu
5070
342b8b6e 5071@node Look-Ahead
bfa74976
RS
5072@section Look-Ahead Tokens
5073@cindex look-ahead token
5074
5075The Bison parser does @emph{not} always reduce immediately as soon as the
5076last @var{n} tokens and groupings match a rule. This is because such a
5077simple strategy is inadequate to handle most languages. Instead, when a
5078reduction is possible, the parser sometimes ``looks ahead'' at the next
5079token in order to decide what to do.
5080
5081When a token is read, it is not immediately shifted; first it becomes the
5082@dfn{look-ahead token}, which is not on the stack. Now the parser can
5083perform one or more reductions of tokens and groupings on the stack, while
5084the look-ahead token remains off to the side. When no more reductions
5085should take place, the look-ahead token is shifted onto the stack. This
5086does not mean that all possible reductions have been done; depending on the
5087token type of the look-ahead token, some rules may choose to delay their
5088application.
5089
5090Here is a simple case where look-ahead is needed. These three rules define
5091expressions which contain binary addition operators and postfix unary
5092factorial operators (@samp{!}), and allow parentheses for grouping.
5093
5094@example
5095@group
5096expr: term '+' expr
5097 | term
5098 ;
5099@end group
5100
5101@group
5102term: '(' expr ')'
5103 | term '!'
5104 | NUMBER
5105 ;
5106@end group
5107@end example
5108
5109Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5110should be done? If the following token is @samp{)}, then the first three
5111tokens must be reduced to form an @code{expr}. This is the only valid
5112course, because shifting the @samp{)} would produce a sequence of symbols
5113@w{@code{term ')'}}, and no rule allows this.
5114
5115If the following token is @samp{!}, then it must be shifted immediately so
5116that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5117parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5118@code{expr}. It would then be impossible to shift the @samp{!} because
5119doing so would produce on the stack the sequence of symbols @code{expr
5120'!'}. No rule allows that sequence.
5121
5122@vindex yychar
32c29292
JD
5123@vindex yylval
5124@vindex yylloc
5125The look-ahead token is stored in the variable @code{yychar}.
5126Its semantic value and location, if any, are stored in the variables
5127@code{yylval} and @code{yylloc}.
bfa74976
RS
5128@xref{Action Features, ,Special Features for Use in Actions}.
5129
342b8b6e 5130@node Shift/Reduce
bfa74976
RS
5131@section Shift/Reduce Conflicts
5132@cindex conflicts
5133@cindex shift/reduce conflicts
5134@cindex dangling @code{else}
5135@cindex @code{else}, dangling
5136
5137Suppose we are parsing a language which has if-then and if-then-else
5138statements, with a pair of rules like this:
5139
5140@example
5141@group
5142if_stmt:
5143 IF expr THEN stmt
5144 | IF expr THEN stmt ELSE stmt
5145 ;
5146@end group
5147@end example
5148
5149@noindent
5150Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5151terminal symbols for specific keyword tokens.
5152
5153When the @code{ELSE} token is read and becomes the look-ahead token, the
5154contents of the stack (assuming the input is valid) are just right for
5155reduction by the first rule. But it is also legitimate to shift the
5156@code{ELSE}, because that would lead to eventual reduction by the second
5157rule.
5158
5159This situation, where either a shift or a reduction would be valid, is
5160called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5161these conflicts by choosing to shift, unless otherwise directed by
5162operator precedence declarations. To see the reason for this, let's
5163contrast it with the other alternative.
5164
5165Since the parser prefers to shift the @code{ELSE}, the result is to attach
5166the else-clause to the innermost if-statement, making these two inputs
5167equivalent:
5168
5169@example
5170if x then if y then win (); else lose;
5171
5172if x then do; if y then win (); else lose; end;
5173@end example
5174
5175But if the parser chose to reduce when possible rather than shift, the
5176result would be to attach the else-clause to the outermost if-statement,
5177making these two inputs equivalent:
5178
5179@example
5180if x then if y then win (); else lose;
5181
5182if x then do; if y then win (); end; else lose;
5183@end example
5184
5185The conflict exists because the grammar as written is ambiguous: either
5186parsing of the simple nested if-statement is legitimate. The established
5187convention is that these ambiguities are resolved by attaching the
5188else-clause to the innermost if-statement; this is what Bison accomplishes
5189by choosing to shift rather than reduce. (It would ideally be cleaner to
5190write an unambiguous grammar, but that is very hard to do in this case.)
5191This particular ambiguity was first encountered in the specifications of
5192Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5193
5194To avoid warnings from Bison about predictable, legitimate shift/reduce
5195conflicts, use the @code{%expect @var{n}} declaration. There will be no
5196warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5197@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5198
5199The definition of @code{if_stmt} above is solely to blame for the
5200conflict, but the conflict does not actually appear without additional
5201rules. Here is a complete Bison input file that actually manifests the
5202conflict:
5203
5204@example
5205@group
5206%token IF THEN ELSE variable
5207%%
5208@end group
5209@group
5210stmt: expr
5211 | if_stmt
5212 ;
5213@end group
5214
5215@group
5216if_stmt:
5217 IF expr THEN stmt
5218 | IF expr THEN stmt ELSE stmt
5219 ;
5220@end group
5221
5222expr: variable
5223 ;
5224@end example
5225
342b8b6e 5226@node Precedence
bfa74976
RS
5227@section Operator Precedence
5228@cindex operator precedence
5229@cindex precedence of operators
5230
5231Another situation where shift/reduce conflicts appear is in arithmetic
5232expressions. Here shifting is not always the preferred resolution; the
5233Bison declarations for operator precedence allow you to specify when to
5234shift and when to reduce.
5235
5236@menu
5237* Why Precedence:: An example showing why precedence is needed.
5238* Using Precedence:: How to specify precedence in Bison grammars.
5239* Precedence Examples:: How these features are used in the previous example.
5240* How Precedence:: How they work.
5241@end menu
5242
342b8b6e 5243@node Why Precedence
bfa74976
RS
5244@subsection When Precedence is Needed
5245
5246Consider the following ambiguous grammar fragment (ambiguous because the
5247input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5248
5249@example
5250@group
5251expr: expr '-' expr
5252 | expr '*' expr
5253 | expr '<' expr
5254 | '(' expr ')'
5255 @dots{}
5256 ;
5257@end group
5258@end example
5259
5260@noindent
5261Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5262should it reduce them via the rule for the subtraction operator? It
5263depends on the next token. Of course, if the next token is @samp{)}, we
5264must reduce; shifting is invalid because no single rule can reduce the
5265token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5266the next token is @samp{*} or @samp{<}, we have a choice: either
5267shifting or reduction would allow the parse to complete, but with
5268different results.
5269
5270To decide which one Bison should do, we must consider the results. If
5271the next operator token @var{op} is shifted, then it must be reduced
5272first in order to permit another opportunity to reduce the difference.
5273The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5274hand, if the subtraction is reduced before shifting @var{op}, the result
5275is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5276reduce should depend on the relative precedence of the operators
5277@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5278@samp{<}.
bfa74976
RS
5279
5280@cindex associativity
5281What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5282@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5283operators we prefer the former, which is called @dfn{left association}.
5284The latter alternative, @dfn{right association}, is desirable for
5285assignment operators. The choice of left or right association is a
5286matter of whether the parser chooses to shift or reduce when the stack
5287contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5288makes right-associativity.
bfa74976 5289
342b8b6e 5290@node Using Precedence
bfa74976
RS
5291@subsection Specifying Operator Precedence
5292@findex %left
5293@findex %right
5294@findex %nonassoc
5295
5296Bison allows you to specify these choices with the operator precedence
5297declarations @code{%left} and @code{%right}. Each such declaration
5298contains a list of tokens, which are operators whose precedence and
5299associativity is being declared. The @code{%left} declaration makes all
5300those operators left-associative and the @code{%right} declaration makes
5301them right-associative. A third alternative is @code{%nonassoc}, which
5302declares that it is a syntax error to find the same operator twice ``in a
5303row''.
5304
5305The relative precedence of different operators is controlled by the
5306order in which they are declared. The first @code{%left} or
5307@code{%right} declaration in the file declares the operators whose
5308precedence is lowest, the next such declaration declares the operators
5309whose precedence is a little higher, and so on.
5310
342b8b6e 5311@node Precedence Examples
bfa74976
RS
5312@subsection Precedence Examples
5313
5314In our example, we would want the following declarations:
5315
5316@example
5317%left '<'
5318%left '-'
5319%left '*'
5320@end example
5321
5322In a more complete example, which supports other operators as well, we
5323would declare them in groups of equal precedence. For example, @code{'+'} is
5324declared with @code{'-'}:
5325
5326@example
5327%left '<' '>' '=' NE LE GE
5328%left '+' '-'
5329%left '*' '/'
5330@end example
5331
5332@noindent
5333(Here @code{NE} and so on stand for the operators for ``not equal''
5334and so on. We assume that these tokens are more than one character long
5335and therefore are represented by names, not character literals.)
5336
342b8b6e 5337@node How Precedence
bfa74976
RS
5338@subsection How Precedence Works
5339
5340The first effect of the precedence declarations is to assign precedence
5341levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5342precedence levels to certain rules: each rule gets its precedence from
5343the last terminal symbol mentioned in the components. (You can also
5344specify explicitly the precedence of a rule. @xref{Contextual
5345Precedence, ,Context-Dependent Precedence}.)
5346
5347Finally, the resolution of conflicts works by comparing the precedence
5348of the rule being considered with that of the look-ahead token. If the
5349token's precedence is higher, the choice is to shift. If the rule's
5350precedence is higher, the choice is to reduce. If they have equal
5351precedence, the choice is made based on the associativity of that
5352precedence level. The verbose output file made by @samp{-v}
5353(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5354resolved.
bfa74976
RS
5355
5356Not all rules and not all tokens have precedence. If either the rule or
5357the look-ahead token has no precedence, then the default is to shift.
5358
342b8b6e 5359@node Contextual Precedence
bfa74976
RS
5360@section Context-Dependent Precedence
5361@cindex context-dependent precedence
5362@cindex unary operator precedence
5363@cindex precedence, context-dependent
5364@cindex precedence, unary operator
5365@findex %prec
5366
5367Often the precedence of an operator depends on the context. This sounds
5368outlandish at first, but it is really very common. For example, a minus
5369sign typically has a very high precedence as a unary operator, and a
5370somewhat lower precedence (lower than multiplication) as a binary operator.
5371
5372The Bison precedence declarations, @code{%left}, @code{%right} and
5373@code{%nonassoc}, can only be used once for a given token; so a token has
5374only one precedence declared in this way. For context-dependent
5375precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5376modifier for rules.
bfa74976
RS
5377
5378The @code{%prec} modifier declares the precedence of a particular rule by
5379specifying a terminal symbol whose precedence should be used for that rule.
5380It's not necessary for that symbol to appear otherwise in the rule. The
5381modifier's syntax is:
5382
5383@example
5384%prec @var{terminal-symbol}
5385@end example
5386
5387@noindent
5388and it is written after the components of the rule. Its effect is to
5389assign the rule the precedence of @var{terminal-symbol}, overriding
5390the precedence that would be deduced for it in the ordinary way. The
5391altered rule precedence then affects how conflicts involving that rule
5392are resolved (@pxref{Precedence, ,Operator Precedence}).
5393
5394Here is how @code{%prec} solves the problem of unary minus. First, declare
5395a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5396are no tokens of this type, but the symbol serves to stand for its
5397precedence:
5398
5399@example
5400@dots{}
5401%left '+' '-'
5402%left '*'
5403%left UMINUS
5404@end example
5405
5406Now the precedence of @code{UMINUS} can be used in specific rules:
5407
5408@example
5409@group
5410exp: @dots{}
5411 | exp '-' exp
5412 @dots{}
5413 | '-' exp %prec UMINUS
5414@end group
5415@end example
5416
91d2c560 5417@ifset defaultprec
39a06c25
PE
5418If you forget to append @code{%prec UMINUS} to the rule for unary
5419minus, Bison silently assumes that minus has its usual precedence.
5420This kind of problem can be tricky to debug, since one typically
5421discovers the mistake only by testing the code.
5422
22fccf95 5423The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5424this kind of problem systematically. It causes rules that lack a
5425@code{%prec} modifier to have no precedence, even if the last terminal
5426symbol mentioned in their components has a declared precedence.
5427
22fccf95 5428If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5429for all rules that participate in precedence conflict resolution.
5430Then you will see any shift/reduce conflict until you tell Bison how
5431to resolve it, either by changing your grammar or by adding an
5432explicit precedence. This will probably add declarations to the
5433grammar, but it helps to protect against incorrect rule precedences.
5434
22fccf95
PE
5435The effect of @code{%no-default-prec;} can be reversed by giving
5436@code{%default-prec;}, which is the default.
91d2c560 5437@end ifset
39a06c25 5438
342b8b6e 5439@node Parser States
bfa74976
RS
5440@section Parser States
5441@cindex finite-state machine
5442@cindex parser state
5443@cindex state (of parser)
5444
5445The function @code{yyparse} is implemented using a finite-state machine.
5446The values pushed on the parser stack are not simply token type codes; they
5447represent the entire sequence of terminal and nonterminal symbols at or
5448near the top of the stack. The current state collects all the information
5449about previous input which is relevant to deciding what to do next.
5450
5451Each time a look-ahead token is read, the current parser state together
5452with the type of look-ahead token are looked up in a table. This table
5453entry can say, ``Shift the look-ahead token.'' In this case, it also
5454specifies the new parser state, which is pushed onto the top of the
5455parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5456This means that a certain number of tokens or groupings are taken off
5457the top of the stack, and replaced by one grouping. In other words,
5458that number of states are popped from the stack, and one new state is
5459pushed.
5460
5461There is one other alternative: the table can say that the look-ahead token
5462is erroneous in the current state. This causes error processing to begin
5463(@pxref{Error Recovery}).
5464
342b8b6e 5465@node Reduce/Reduce
bfa74976
RS
5466@section Reduce/Reduce Conflicts
5467@cindex reduce/reduce conflict
5468@cindex conflicts, reduce/reduce
5469
5470A reduce/reduce conflict occurs if there are two or more rules that apply
5471to the same sequence of input. This usually indicates a serious error
5472in the grammar.
5473
5474For example, here is an erroneous attempt to define a sequence
5475of zero or more @code{word} groupings.
5476
5477@example
5478sequence: /* empty */
5479 @{ printf ("empty sequence\n"); @}
5480 | maybeword
5481 | sequence word
5482 @{ printf ("added word %s\n", $2); @}
5483 ;
5484
5485maybeword: /* empty */
5486 @{ printf ("empty maybeword\n"); @}
5487 | word
5488 @{ printf ("single word %s\n", $1); @}
5489 ;
5490@end example
5491
5492@noindent
5493The error is an ambiguity: there is more than one way to parse a single
5494@code{word} into a @code{sequence}. It could be reduced to a
5495@code{maybeword} and then into a @code{sequence} via the second rule.
5496Alternatively, nothing-at-all could be reduced into a @code{sequence}
5497via the first rule, and this could be combined with the @code{word}
5498using the third rule for @code{sequence}.
5499
5500There is also more than one way to reduce nothing-at-all into a
5501@code{sequence}. This can be done directly via the first rule,
5502or indirectly via @code{maybeword} and then the second rule.
5503
5504You might think that this is a distinction without a difference, because it
5505does not change whether any particular input is valid or not. But it does
5506affect which actions are run. One parsing order runs the second rule's
5507action; the other runs the first rule's action and the third rule's action.
5508In this example, the output of the program changes.
5509
5510Bison resolves a reduce/reduce conflict by choosing to use the rule that
5511appears first in the grammar, but it is very risky to rely on this. Every
5512reduce/reduce conflict must be studied and usually eliminated. Here is the
5513proper way to define @code{sequence}:
5514
5515@example
5516sequence: /* empty */
5517 @{ printf ("empty sequence\n"); @}
5518 | sequence word
5519 @{ printf ("added word %s\n", $2); @}
5520 ;
5521@end example
5522
5523Here is another common error that yields a reduce/reduce conflict:
5524
5525@example
5526sequence: /* empty */
5527 | sequence words
5528 | sequence redirects
5529 ;
5530
5531words: /* empty */
5532 | words word
5533 ;
5534
5535redirects:/* empty */
5536 | redirects redirect
5537 ;
5538@end example
5539
5540@noindent
5541The intention here is to define a sequence which can contain either
5542@code{word} or @code{redirect} groupings. The individual definitions of
5543@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5544three together make a subtle ambiguity: even an empty input can be parsed
5545in infinitely many ways!
5546
5547Consider: nothing-at-all could be a @code{words}. Or it could be two
5548@code{words} in a row, or three, or any number. It could equally well be a
5549@code{redirects}, or two, or any number. Or it could be a @code{words}
5550followed by three @code{redirects} and another @code{words}. And so on.
5551
5552Here are two ways to correct these rules. First, to make it a single level
5553of sequence:
5554
5555@example
5556sequence: /* empty */
5557 | sequence word
5558 | sequence redirect
5559 ;
5560@end example
5561
5562Second, to prevent either a @code{words} or a @code{redirects}
5563from being empty:
5564
5565@example
5566sequence: /* empty */
5567 | sequence words
5568 | sequence redirects
5569 ;
5570
5571words: word
5572 | words word
5573 ;
5574
5575redirects:redirect
5576 | redirects redirect
5577 ;
5578@end example
5579
342b8b6e 5580@node Mystery Conflicts
bfa74976
RS
5581@section Mysterious Reduce/Reduce Conflicts
5582
5583Sometimes reduce/reduce conflicts can occur that don't look warranted.
5584Here is an example:
5585
5586@example
5587@group
5588%token ID
5589
5590%%
5591def: param_spec return_spec ','
5592 ;
5593param_spec:
5594 type
5595 | name_list ':' type
5596 ;
5597@end group
5598@group
5599return_spec:
5600 type
5601 | name ':' type
5602 ;
5603@end group
5604@group
5605type: ID
5606 ;
5607@end group
5608@group
5609name: ID
5610 ;
5611name_list:
5612 name
5613 | name ',' name_list
5614 ;
5615@end group
5616@end example
5617
5618It would seem that this grammar can be parsed with only a single token
13863333 5619of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5620a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5621@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5622
c827f760
PE
5623@cindex @acronym{LR}(1)
5624@cindex @acronym{LALR}(1)
bfa74976 5625However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5626@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5627an @code{ID}
bfa74976
RS
5628at the beginning of a @code{param_spec} and likewise at the beginning of
5629a @code{return_spec}, are similar enough that Bison assumes they are the
5630same. They appear similar because the same set of rules would be
5631active---the rule for reducing to a @code{name} and that for reducing to
5632a @code{type}. Bison is unable to determine at that stage of processing
5633that the rules would require different look-ahead tokens in the two
5634contexts, so it makes a single parser state for them both. Combining
5635the two contexts causes a conflict later. In parser terminology, this
c827f760 5636occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5637
5638In general, it is better to fix deficiencies than to document them. But
5639this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5640generators that can handle @acronym{LR}(1) grammars are hard to write
5641and tend to
bfa74976
RS
5642produce parsers that are very large. In practice, Bison is more useful
5643as it is now.
5644
5645When the problem arises, you can often fix it by identifying the two
a220f555
MA
5646parser states that are being confused, and adding something to make them
5647look distinct. In the above example, adding one rule to
bfa74976
RS
5648@code{return_spec} as follows makes the problem go away:
5649
5650@example
5651@group
5652%token BOGUS
5653@dots{}
5654%%
5655@dots{}
5656return_spec:
5657 type
5658 | name ':' type
5659 /* This rule is never used. */
5660 | ID BOGUS
5661 ;
5662@end group
5663@end example
5664
5665This corrects the problem because it introduces the possibility of an
5666additional active rule in the context after the @code{ID} at the beginning of
5667@code{return_spec}. This rule is not active in the corresponding context
5668in a @code{param_spec}, so the two contexts receive distinct parser states.
5669As long as the token @code{BOGUS} is never generated by @code{yylex},
5670the added rule cannot alter the way actual input is parsed.
5671
5672In this particular example, there is another way to solve the problem:
5673rewrite the rule for @code{return_spec} to use @code{ID} directly
5674instead of via @code{name}. This also causes the two confusing
5675contexts to have different sets of active rules, because the one for
5676@code{return_spec} activates the altered rule for @code{return_spec}
5677rather than the one for @code{name}.
5678
5679@example
5680param_spec:
5681 type
5682 | name_list ':' type
5683 ;
5684return_spec:
5685 type
5686 | ID ':' type
5687 ;
5688@end example
5689
e054b190
PE
5690For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5691generators, please see:
5692Frank DeRemer and Thomas Pennello, Efficient Computation of
5693@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5694Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5695pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5696
fae437e8 5697@node Generalized LR Parsing
c827f760
PE
5698@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5699@cindex @acronym{GLR} parsing
5700@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 5701@cindex ambiguous grammars
9d9b8b70 5702@cindex nondeterministic parsing
676385e2 5703
fae437e8
AD
5704Bison produces @emph{deterministic} parsers that choose uniquely
5705when to reduce and which reduction to apply
8dd162d3 5706based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5707As a result, normal Bison handles a proper subset of the family of
5708context-free languages.
fae437e8 5709Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5710sequence of reductions cannot have deterministic parsers in this sense.
5711The same is true of languages that require more than one symbol of
8dd162d3 5712look-ahead, since the parser lacks the information necessary to make a
676385e2 5713decision at the point it must be made in a shift-reduce parser.
fae437e8 5714Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5715there are languages where Bison's particular choice of how to
5716summarize the input seen so far loses necessary information.
5717
5718When you use the @samp{%glr-parser} declaration in your grammar file,
5719Bison generates a parser that uses a different algorithm, called
c827f760
PE
5720Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5721parser uses the same basic
676385e2
PH
5722algorithm for parsing as an ordinary Bison parser, but behaves
5723differently in cases where there is a shift-reduce conflict that has not
fae437e8 5724been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5725reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5726situation, it
fae437e8 5727effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5728shift or reduction. These parsers then proceed as usual, consuming
5729tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5730and split further, with the result that instead of a sequence of states,
c827f760 5731a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5732
5733In effect, each stack represents a guess as to what the proper parse
5734is. Additional input may indicate that a guess was wrong, in which case
5735the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5736actions generated in each stack are saved, rather than being executed
676385e2 5737immediately. When a stack disappears, its saved semantic actions never
fae437e8 5738get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5739their sets of semantic actions are both saved with the state that
5740results from the reduction. We say that two stacks are equivalent
fae437e8 5741when they both represent the same sequence of states,
676385e2
PH
5742and each pair of corresponding states represents a
5743grammar symbol that produces the same segment of the input token
5744stream.
5745
5746Whenever the parser makes a transition from having multiple
c827f760 5747states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5748algorithm, after resolving and executing the saved-up actions.
5749At this transition, some of the states on the stack will have semantic
5750values that are sets (actually multisets) of possible actions. The
5751parser tries to pick one of the actions by first finding one whose rule
5752has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5753declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5754precedence, but there the same merging function is declared for both
fae437e8 5755rules by the @samp{%merge} declaration,
676385e2
PH
5756Bison resolves and evaluates both and then calls the merge function on
5757the result. Otherwise, it reports an ambiguity.
5758
c827f760
PE
5759It is possible to use a data structure for the @acronym{GLR} parsing tree that
5760permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5761size of the input), any unambiguous (not necessarily
5762@acronym{LALR}(1)) grammar in
fae437e8 5763quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5764context-free grammar in cubic worst-case time. However, Bison currently
5765uses a simpler data structure that requires time proportional to the
5766length of the input times the maximum number of stacks required for any
9d9b8b70 5767prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
5768grammars can require exponential time and space to process. Such badly
5769behaving examples, however, are not generally of practical interest.
9d9b8b70 5770Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 5771doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5772structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5773grammar, in particular, it is only slightly slower than with the default
5774Bison parser.
5775
fa7e68c3 5776For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5777Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5778Generalised @acronym{LR} Parsers, Royal Holloway, University of
5779London, Department of Computer Science, TR-00-12,
5780@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5781(2000-12-24).
5782
1a059451
PE
5783@node Memory Management
5784@section Memory Management, and How to Avoid Memory Exhaustion
5785@cindex memory exhaustion
5786@cindex memory management
bfa74976
RS
5787@cindex stack overflow
5788@cindex parser stack overflow
5789@cindex overflow of parser stack
5790
1a059451 5791The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5792not reduced. When this happens, the parser function @code{yyparse}
1a059451 5793calls @code{yyerror} and then returns 2.
bfa74976 5794
c827f760 5795Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5796usually results from using a right recursion instead of a left
5797recursion, @xref{Recursion, ,Recursive Rules}.
5798
bfa74976
RS
5799@vindex YYMAXDEPTH
5800By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5801parser stack can become before memory is exhausted. Define the
bfa74976
RS
5802macro with a value that is an integer. This value is the maximum number
5803of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5804
5805The stack space allowed is not necessarily allocated. If you specify a
1a059451 5806large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5807stack at first, and then makes it bigger by stages as needed. This
5808increasing allocation happens automatically and silently. Therefore,
5809you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5810space for ordinary inputs that do not need much stack.
5811
d7e14fc0
PE
5812However, do not allow @code{YYMAXDEPTH} to be a value so large that
5813arithmetic overflow could occur when calculating the size of the stack
5814space. Also, do not allow @code{YYMAXDEPTH} to be less than
5815@code{YYINITDEPTH}.
5816
bfa74976
RS
5817@cindex default stack limit
5818The default value of @code{YYMAXDEPTH}, if you do not define it, is
581910000.
5820
5821@vindex YYINITDEPTH
5822You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5823macro @code{YYINITDEPTH} to a positive integer. For the C
5824@acronym{LALR}(1) parser, this value must be a compile-time constant
5825unless you are assuming C99 or some other target language or compiler
5826that allows variable-length arrays. The default is 200.
5827
1a059451 5828Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5829
d1a1114f 5830@c FIXME: C++ output.
c827f760 5831Because of semantical differences between C and C++, the
1a059451
PE
5832@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5833by C++ compilers. In this precise case (compiling a C parser as C++) you are
5834suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5835this deficiency in a future release.
d1a1114f 5836
342b8b6e 5837@node Error Recovery
bfa74976
RS
5838@chapter Error Recovery
5839@cindex error recovery
5840@cindex recovery from errors
5841
6e649e65 5842It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5843error. For example, a compiler should recover sufficiently to parse the
5844rest of the input file and check it for errors; a calculator should accept
5845another expression.
5846
5847In a simple interactive command parser where each input is one line, it may
5848be sufficient to allow @code{yyparse} to return 1 on error and have the
5849caller ignore the rest of the input line when that happens (and then call
5850@code{yyparse} again). But this is inadequate for a compiler, because it
5851forgets all the syntactic context leading up to the error. A syntax error
5852deep within a function in the compiler input should not cause the compiler
5853to treat the following line like the beginning of a source file.
5854
5855@findex error
5856You can define how to recover from a syntax error by writing rules to
5857recognize the special token @code{error}. This is a terminal symbol that
5858is always defined (you need not declare it) and reserved for error
5859handling. The Bison parser generates an @code{error} token whenever a
5860syntax error happens; if you have provided a rule to recognize this token
13863333 5861in the current context, the parse can continue.
bfa74976
RS
5862
5863For example:
5864
5865@example
5866stmnts: /* empty string */
5867 | stmnts '\n'
5868 | stmnts exp '\n'
5869 | stmnts error '\n'
5870@end example
5871
5872The fourth rule in this example says that an error followed by a newline
5873makes a valid addition to any @code{stmnts}.
5874
5875What happens if a syntax error occurs in the middle of an @code{exp}? The
5876error recovery rule, interpreted strictly, applies to the precise sequence
5877of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5878the middle of an @code{exp}, there will probably be some additional tokens
5879and subexpressions on the stack after the last @code{stmnts}, and there
5880will be tokens to read before the next newline. So the rule is not
5881applicable in the ordinary way.
5882
5883But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5884the semantic context and part of the input. First it discards states
5885and objects from the stack until it gets back to a state in which the
bfa74976 5886@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5887already parsed are discarded, back to the last complete @code{stmnts}.)
5888At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5889look-ahead token is not acceptable to be shifted next, the parser reads
5890tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5891this example, Bison reads and discards input until the next newline so
5892that the fourth rule can apply. Note that discarded symbols are
5893possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5894Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5895
5896The choice of error rules in the grammar is a choice of strategies for
5897error recovery. A simple and useful strategy is simply to skip the rest of
5898the current input line or current statement if an error is detected:
5899
5900@example
72d2299c 5901stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5902@end example
5903
5904It is also useful to recover to the matching close-delimiter of an
5905opening-delimiter that has already been parsed. Otherwise the
5906close-delimiter will probably appear to be unmatched, and generate another,
5907spurious error message:
5908
5909@example
5910primary: '(' expr ')'
5911 | '(' error ')'
5912 @dots{}
5913 ;
5914@end example
5915
5916Error recovery strategies are necessarily guesses. When they guess wrong,
5917one syntax error often leads to another. In the above example, the error
5918recovery rule guesses that an error is due to bad input within one
5919@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5920middle of a valid @code{stmnt}. After the error recovery rule recovers
5921from the first error, another syntax error will be found straightaway,
5922since the text following the spurious semicolon is also an invalid
5923@code{stmnt}.
5924
5925To prevent an outpouring of error messages, the parser will output no error
5926message for another syntax error that happens shortly after the first; only
5927after three consecutive input tokens have been successfully shifted will
5928error messages resume.
5929
5930Note that rules which accept the @code{error} token may have actions, just
5931as any other rules can.
5932
5933@findex yyerrok
5934You can make error messages resume immediately by using the macro
5935@code{yyerrok} in an action. If you do this in the error rule's action, no
5936error messages will be suppressed. This macro requires no arguments;
5937@samp{yyerrok;} is a valid C statement.
5938
5939@findex yyclearin
5940The previous look-ahead token is reanalyzed immediately after an error. If
5941this is unacceptable, then the macro @code{yyclearin} may be used to clear
5942this token. Write the statement @samp{yyclearin;} in the error rule's
5943action.
32c29292 5944@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 5945
6e649e65 5946For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5947called that advances the input stream to some point where parsing should
5948once again commence. The next symbol returned by the lexical scanner is
5949probably correct. The previous look-ahead token ought to be discarded
5950with @samp{yyclearin;}.
5951
5952@vindex YYRECOVERING
5953The macro @code{YYRECOVERING} stands for an expression that has the
5954value 1 when the parser is recovering from a syntax error, and 0 the
5955rest of the time. A value of 1 indicates that error messages are
5956currently suppressed for new syntax errors.
5957
342b8b6e 5958@node Context Dependency
bfa74976
RS
5959@chapter Handling Context Dependencies
5960
5961The Bison paradigm is to parse tokens first, then group them into larger
5962syntactic units. In many languages, the meaning of a token is affected by
5963its context. Although this violates the Bison paradigm, certain techniques
5964(known as @dfn{kludges}) may enable you to write Bison parsers for such
5965languages.
5966
5967@menu
5968* Semantic Tokens:: Token parsing can depend on the semantic context.
5969* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5970* Tie-in Recovery:: Lexical tie-ins have implications for how
5971 error recovery rules must be written.
5972@end menu
5973
5974(Actually, ``kludge'' means any technique that gets its job done but is
5975neither clean nor robust.)
5976
342b8b6e 5977@node Semantic Tokens
bfa74976
RS
5978@section Semantic Info in Token Types
5979
5980The C language has a context dependency: the way an identifier is used
5981depends on what its current meaning is. For example, consider this:
5982
5983@example
5984foo (x);
5985@end example
5986
5987This looks like a function call statement, but if @code{foo} is a typedef
5988name, then this is actually a declaration of @code{x}. How can a Bison
5989parser for C decide how to parse this input?
5990
c827f760 5991The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5992@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5993identifier, it looks up the current declaration of the identifier in order
5994to decide which token type to return: @code{TYPENAME} if the identifier is
5995declared as a typedef, @code{IDENTIFIER} otherwise.
5996
5997The grammar rules can then express the context dependency by the choice of
5998token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5999but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6000@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6001is @emph{not} significant, such as in declarations that can shadow a
6002typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6003accepted---there is one rule for each of the two token types.
6004
6005This technique is simple to use if the decision of which kinds of
6006identifiers to allow is made at a place close to where the identifier is
6007parsed. But in C this is not always so: C allows a declaration to
6008redeclare a typedef name provided an explicit type has been specified
6009earlier:
6010
6011@example
3a4f411f
PE
6012typedef int foo, bar;
6013int baz (void)
6014@{
6015 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
6016 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
6017 return foo (bar);
6018@}
bfa74976
RS
6019@end example
6020
6021Unfortunately, the name being declared is separated from the declaration
6022construct itself by a complicated syntactic structure---the ``declarator''.
6023
9ecbd125 6024As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
6025all the nonterminal names changed: once for parsing a declaration in
6026which a typedef name can be redefined, and once for parsing a
6027declaration in which that can't be done. Here is a part of the
6028duplication, with actions omitted for brevity:
bfa74976
RS
6029
6030@example
6031initdcl:
6032 declarator maybeasm '='
6033 init
6034 | declarator maybeasm
6035 ;
6036
6037notype_initdcl:
6038 notype_declarator maybeasm '='
6039 init
6040 | notype_declarator maybeasm
6041 ;
6042@end example
6043
6044@noindent
6045Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
6046cannot. The distinction between @code{declarator} and
6047@code{notype_declarator} is the same sort of thing.
6048
6049There is some similarity between this technique and a lexical tie-in
6050(described next), in that information which alters the lexical analysis is
6051changed during parsing by other parts of the program. The difference is
6052here the information is global, and is used for other purposes in the
6053program. A true lexical tie-in has a special-purpose flag controlled by
6054the syntactic context.
6055
342b8b6e 6056@node Lexical Tie-ins
bfa74976
RS
6057@section Lexical Tie-ins
6058@cindex lexical tie-in
6059
6060One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
6061which is set by Bison actions, whose purpose is to alter the way tokens are
6062parsed.
6063
6064For example, suppose we have a language vaguely like C, but with a special
6065construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
6066an expression in parentheses in which all integers are hexadecimal. In
6067particular, the token @samp{a1b} must be treated as an integer rather than
6068as an identifier if it appears in that context. Here is how you can do it:
6069
6070@example
6071@group
6072%@{
38a92d50
PE
6073 int hexflag;
6074 int yylex (void);
6075 void yyerror (char const *);
bfa74976
RS
6076%@}
6077%%
6078@dots{}
6079@end group
6080@group
6081expr: IDENTIFIER
6082 | constant
6083 | HEX '('
6084 @{ hexflag = 1; @}
6085 expr ')'
6086 @{ hexflag = 0;
6087 $$ = $4; @}
6088 | expr '+' expr
6089 @{ $$ = make_sum ($1, $3); @}
6090 @dots{}
6091 ;
6092@end group
6093
6094@group
6095constant:
6096 INTEGER
6097 | STRING
6098 ;
6099@end group
6100@end example
6101
6102@noindent
6103Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
6104it is nonzero, all integers are parsed in hexadecimal, and tokens starting
6105with letters are parsed as integers if possible.
6106
342b8b6e
AD
6107The declaration of @code{hexflag} shown in the prologue of the parser file
6108is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6109You must also write the code in @code{yylex} to obey the flag.
bfa74976 6110
342b8b6e 6111@node Tie-in Recovery
bfa74976
RS
6112@section Lexical Tie-ins and Error Recovery
6113
6114Lexical tie-ins make strict demands on any error recovery rules you have.
6115@xref{Error Recovery}.
6116
6117The reason for this is that the purpose of an error recovery rule is to
6118abort the parsing of one construct and resume in some larger construct.
6119For example, in C-like languages, a typical error recovery rule is to skip
6120tokens until the next semicolon, and then start a new statement, like this:
6121
6122@example
6123stmt: expr ';'
6124 | IF '(' expr ')' stmt @{ @dots{} @}
6125 @dots{}
6126 error ';'
6127 @{ hexflag = 0; @}
6128 ;
6129@end example
6130
6131If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6132construct, this error rule will apply, and then the action for the
6133completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6134remain set for the entire rest of the input, or until the next @code{hex}
6135keyword, causing identifiers to be misinterpreted as integers.
6136
6137To avoid this problem the error recovery rule itself clears @code{hexflag}.
6138
6139There may also be an error recovery rule that works within expressions.
6140For example, there could be a rule which applies within parentheses
6141and skips to the close-parenthesis:
6142
6143@example
6144@group
6145expr: @dots{}
6146 | '(' expr ')'
6147 @{ $$ = $2; @}
6148 | '(' error ')'
6149 @dots{}
6150@end group
6151@end example
6152
6153If this rule acts within the @code{hex} construct, it is not going to abort
6154that construct (since it applies to an inner level of parentheses within
6155the construct). Therefore, it should not clear the flag: the rest of
6156the @code{hex} construct should be parsed with the flag still in effect.
6157
6158What if there is an error recovery rule which might abort out of the
6159@code{hex} construct or might not, depending on circumstances? There is no
6160way you can write the action to determine whether a @code{hex} construct is
6161being aborted or not. So if you are using a lexical tie-in, you had better
6162make sure your error recovery rules are not of this kind. Each rule must
6163be such that you can be sure that it always will, or always won't, have to
6164clear the flag.
6165
ec3bc396
AD
6166@c ================================================== Debugging Your Parser
6167
342b8b6e 6168@node Debugging
bfa74976 6169@chapter Debugging Your Parser
ec3bc396
AD
6170
6171Developing a parser can be a challenge, especially if you don't
6172understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6173Algorithm}). Even so, sometimes a detailed description of the automaton
6174can help (@pxref{Understanding, , Understanding Your Parser}), or
6175tracing the execution of the parser can give some insight on why it
6176behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6177
6178@menu
6179* Understanding:: Understanding the structure of your parser.
6180* Tracing:: Tracing the execution of your parser.
6181@end menu
6182
6183@node Understanding
6184@section Understanding Your Parser
6185
6186As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6187Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6188frequent than one would hope), looking at this automaton is required to
6189tune or simply fix a parser. Bison provides two different
c827f760 6190representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6191file).
6192
6193The textual file is generated when the options @option{--report} or
6194@option{--verbose} are specified, see @xref{Invocation, , Invoking
6195Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6196the parser output file name, and adding @samp{.output} instead.
6197Therefore, if the input file is @file{foo.y}, then the parser file is
6198called @file{foo.tab.c} by default. As a consequence, the verbose
6199output file is called @file{foo.output}.
6200
6201The following grammar file, @file{calc.y}, will be used in the sequel:
6202
6203@example
6204%token NUM STR
6205%left '+' '-'
6206%left '*'
6207%%
6208exp: exp '+' exp
6209 | exp '-' exp
6210 | exp '*' exp
6211 | exp '/' exp
6212 | NUM
6213 ;
6214useless: STR;
6215%%
6216@end example
6217
88bce5a2
AD
6218@command{bison} reports:
6219
6220@example
6221calc.y: warning: 1 useless nonterminal and 1 useless rule
6222calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6223calc.y:11.10-12: warning: useless rule: useless: STR
6224calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6225@end example
6226
6227When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6228creates a file @file{calc.output} with contents detailed below. The
6229order of the output and the exact presentation might vary, but the
6230interpretation is the same.
ec3bc396
AD
6231
6232The first section includes details on conflicts that were solved thanks
6233to precedence and/or associativity:
6234
6235@example
6236Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6237Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6238Conflict in state 8 between rule 2 and token '*' resolved as shift.
6239@exdent @dots{}
6240@end example
6241
6242@noindent
6243The next section lists states that still have conflicts.
6244
6245@example
5a99098d
PE
6246State 8 conflicts: 1 shift/reduce
6247State 9 conflicts: 1 shift/reduce
6248State 10 conflicts: 1 shift/reduce
6249State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6250@end example
6251
6252@noindent
6253@cindex token, useless
6254@cindex useless token
6255@cindex nonterminal, useless
6256@cindex useless nonterminal
6257@cindex rule, useless
6258@cindex useless rule
6259The next section reports useless tokens, nonterminal and rules. Useless
6260nonterminals and rules are removed in order to produce a smaller parser,
6261but useless tokens are preserved, since they might be used by the
6262scanner (note the difference between ``useless'' and ``not used''
6263below):
6264
6265@example
6266Useless nonterminals:
6267 useless
6268
6269Terminals which are not used:
6270 STR
6271
6272Useless rules:
6273#6 useless: STR;
6274@end example
6275
6276@noindent
6277The next section reproduces the exact grammar that Bison used:
6278
6279@example
6280Grammar
6281
6282 Number, Line, Rule
88bce5a2 6283 0 5 $accept -> exp $end
ec3bc396
AD
6284 1 5 exp -> exp '+' exp
6285 2 6 exp -> exp '-' exp
6286 3 7 exp -> exp '*' exp
6287 4 8 exp -> exp '/' exp
6288 5 9 exp -> NUM
6289@end example
6290
6291@noindent
6292and reports the uses of the symbols:
6293
6294@example
6295Terminals, with rules where they appear
6296
88bce5a2 6297$end (0) 0
ec3bc396
AD
6298'*' (42) 3
6299'+' (43) 1
6300'-' (45) 2
6301'/' (47) 4
6302error (256)
6303NUM (258) 5
6304
6305Nonterminals, with rules where they appear
6306
88bce5a2 6307$accept (8)
ec3bc396
AD
6308 on left: 0
6309exp (9)
6310 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6311@end example
6312
6313@noindent
6314@cindex item
6315@cindex pointed rule
6316@cindex rule, pointed
6317Bison then proceeds onto the automaton itself, describing each state
6318with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6319item is a production rule together with a point (marked by @samp{.})
6320that the input cursor.
6321
6322@example
6323state 0
6324
88bce5a2 6325 $accept -> . exp $ (rule 0)
ec3bc396 6326
2a8d363a 6327 NUM shift, and go to state 1
ec3bc396 6328
2a8d363a 6329 exp go to state 2
ec3bc396
AD
6330@end example
6331
6332This reads as follows: ``state 0 corresponds to being at the very
6333beginning of the parsing, in the initial rule, right before the start
6334symbol (here, @code{exp}). When the parser returns to this state right
6335after having reduced a rule that produced an @code{exp}, the control
6336flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6337symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6338the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6339look-ahead triggers a syntax error.''
ec3bc396
AD
6340
6341@cindex core, item set
6342@cindex item set core
6343@cindex kernel, item set
6344@cindex item set core
6345Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6346report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6347at the beginning of any rule deriving an @code{exp}. By default Bison
6348reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6349you want to see more detail you can invoke @command{bison} with
6350@option{--report=itemset} to list all the items, include those that can
6351be derived:
6352
6353@example
6354state 0
6355
88bce5a2 6356 $accept -> . exp $ (rule 0)
ec3bc396
AD
6357 exp -> . exp '+' exp (rule 1)
6358 exp -> . exp '-' exp (rule 2)
6359 exp -> . exp '*' exp (rule 3)
6360 exp -> . exp '/' exp (rule 4)
6361 exp -> . NUM (rule 5)
6362
6363 NUM shift, and go to state 1
6364
6365 exp go to state 2
6366@end example
6367
6368@noindent
6369In the state 1...
6370
6371@example
6372state 1
6373
6374 exp -> NUM . (rule 5)
6375
2a8d363a 6376 $default reduce using rule 5 (exp)
ec3bc396
AD
6377@end example
6378
6379@noindent
8dd162d3 6380the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6381(@samp{$default}), the parser will reduce it. If it was coming from
6382state 0, then, after this reduction it will return to state 0, and will
6383jump to state 2 (@samp{exp: go to state 2}).
6384
6385@example
6386state 2
6387
88bce5a2 6388 $accept -> exp . $ (rule 0)
ec3bc396
AD
6389 exp -> exp . '+' exp (rule 1)
6390 exp -> exp . '-' exp (rule 2)
6391 exp -> exp . '*' exp (rule 3)
6392 exp -> exp . '/' exp (rule 4)
6393
2a8d363a
AD
6394 $ shift, and go to state 3
6395 '+' shift, and go to state 4
6396 '-' shift, and go to state 5
6397 '*' shift, and go to state 6
6398 '/' shift, and go to state 7
ec3bc396
AD
6399@end example
6400
6401@noindent
6402In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6403because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6404@samp{+}, it will be shifted on the parse stack, and the automaton
6405control will jump to state 4, corresponding to the item @samp{exp -> exp
6406'+' . exp}. Since there is no default action, any other token than
6e649e65 6407those listed above will trigger a syntax error.
ec3bc396
AD
6408
6409The state 3 is named the @dfn{final state}, or the @dfn{accepting
6410state}:
6411
6412@example
6413state 3
6414
88bce5a2 6415 $accept -> exp $ . (rule 0)
ec3bc396 6416
2a8d363a 6417 $default accept
ec3bc396
AD
6418@end example
6419
6420@noindent
6421the initial rule is completed (the start symbol and the end
6422of input were read), the parsing exits successfully.
6423
6424The interpretation of states 4 to 7 is straightforward, and is left to
6425the reader.
6426
6427@example
6428state 4
6429
6430 exp -> exp '+' . exp (rule 1)
6431
2a8d363a 6432 NUM shift, and go to state 1
ec3bc396 6433
2a8d363a 6434 exp go to state 8
ec3bc396
AD
6435
6436state 5
6437
6438 exp -> exp '-' . exp (rule 2)
6439
2a8d363a 6440 NUM shift, and go to state 1
ec3bc396 6441
2a8d363a 6442 exp go to state 9
ec3bc396
AD
6443
6444state 6
6445
6446 exp -> exp '*' . exp (rule 3)
6447
2a8d363a 6448 NUM shift, and go to state 1
ec3bc396 6449
2a8d363a 6450 exp go to state 10
ec3bc396
AD
6451
6452state 7
6453
6454 exp -> exp '/' . exp (rule 4)
6455
2a8d363a 6456 NUM shift, and go to state 1
ec3bc396 6457
2a8d363a 6458 exp go to state 11
ec3bc396
AD
6459@end example
6460
5a99098d
PE
6461As was announced in beginning of the report, @samp{State 8 conflicts:
64621 shift/reduce}:
ec3bc396
AD
6463
6464@example
6465state 8
6466
6467 exp -> exp . '+' exp (rule 1)
6468 exp -> exp '+' exp . (rule 1)
6469 exp -> exp . '-' exp (rule 2)
6470 exp -> exp . '*' exp (rule 3)
6471 exp -> exp . '/' exp (rule 4)
6472
2a8d363a
AD
6473 '*' shift, and go to state 6
6474 '/' shift, and go to state 7
ec3bc396 6475
2a8d363a
AD
6476 '/' [reduce using rule 1 (exp)]
6477 $default reduce using rule 1 (exp)
ec3bc396
AD
6478@end example
6479
8dd162d3 6480Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6481either shifting (and going to state 7), or reducing rule 1. The
6482conflict means that either the grammar is ambiguous, or the parser lacks
6483information to make the right decision. Indeed the grammar is
6484ambiguous, as, since we did not specify the precedence of @samp{/}, the
6485sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6486NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6487NUM}, which corresponds to reducing rule 1.
6488
c827f760 6489Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6490arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6491Shift/Reduce Conflicts}. Discarded actions are reported in between
6492square brackets.
6493
6494Note that all the previous states had a single possible action: either
6495shifting the next token and going to the corresponding state, or
6496reducing a single rule. In the other cases, i.e., when shifting
6497@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6498possible, the look-ahead is required to select the action. State 8 is
6499one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6500is shifting, otherwise the action is reducing rule 1. In other words,
6501the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6502look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6503precedence than @samp{+}. More generally, some items are eligible only
6504with some set of possible look-ahead tokens. When run with
6505@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6506
6507@example
6508state 8
6509
6510 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6511 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6512 exp -> exp . '-' exp (rule 2)
6513 exp -> exp . '*' exp (rule 3)
6514 exp -> exp . '/' exp (rule 4)
6515
6516 '*' shift, and go to state 6
6517 '/' shift, and go to state 7
6518
6519 '/' [reduce using rule 1 (exp)]
6520 $default reduce using rule 1 (exp)
6521@end example
6522
6523The remaining states are similar:
6524
6525@example
6526state 9
6527
6528 exp -> exp . '+' exp (rule 1)
6529 exp -> exp . '-' exp (rule 2)
6530 exp -> exp '-' exp . (rule 2)
6531 exp -> exp . '*' exp (rule 3)
6532 exp -> exp . '/' exp (rule 4)
6533
2a8d363a
AD
6534 '*' shift, and go to state 6
6535 '/' shift, and go to state 7
ec3bc396 6536
2a8d363a
AD
6537 '/' [reduce using rule 2 (exp)]
6538 $default reduce using rule 2 (exp)
ec3bc396
AD
6539
6540state 10
6541
6542 exp -> exp . '+' exp (rule 1)
6543 exp -> exp . '-' exp (rule 2)
6544 exp -> exp . '*' exp (rule 3)
6545 exp -> exp '*' exp . (rule 3)
6546 exp -> exp . '/' exp (rule 4)
6547
2a8d363a 6548 '/' shift, and go to state 7
ec3bc396 6549
2a8d363a
AD
6550 '/' [reduce using rule 3 (exp)]
6551 $default reduce using rule 3 (exp)
ec3bc396
AD
6552
6553state 11
6554
6555 exp -> exp . '+' exp (rule 1)
6556 exp -> exp . '-' exp (rule 2)
6557 exp -> exp . '*' exp (rule 3)
6558 exp -> exp . '/' exp (rule 4)
6559 exp -> exp '/' exp . (rule 4)
6560
2a8d363a
AD
6561 '+' shift, and go to state 4
6562 '-' shift, and go to state 5
6563 '*' shift, and go to state 6
6564 '/' shift, and go to state 7
ec3bc396 6565
2a8d363a
AD
6566 '+' [reduce using rule 4 (exp)]
6567 '-' [reduce using rule 4 (exp)]
6568 '*' [reduce using rule 4 (exp)]
6569 '/' [reduce using rule 4 (exp)]
6570 $default reduce using rule 4 (exp)
ec3bc396
AD
6571@end example
6572
6573@noindent
fa7e68c3
PE
6574Observe that state 11 contains conflicts not only due to the lack of
6575precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6576@samp{*}, but also because the
ec3bc396
AD
6577associativity of @samp{/} is not specified.
6578
6579
6580@node Tracing
6581@section Tracing Your Parser
bfa74976
RS
6582@findex yydebug
6583@cindex debugging
6584@cindex tracing the parser
6585
6586If a Bison grammar compiles properly but doesn't do what you want when it
6587runs, the @code{yydebug} parser-trace feature can help you figure out why.
6588
3ded9a63
AD
6589There are several means to enable compilation of trace facilities:
6590
6591@table @asis
6592@item the macro @code{YYDEBUG}
6593@findex YYDEBUG
6594Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6595parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6596@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6597YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6598Prologue}).
6599
6600@item the option @option{-t}, @option{--debug}
6601Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6602,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6603
6604@item the directive @samp{%debug}
6605@findex %debug
6606Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6607Declaration Summary}). This is a Bison extension, which will prove
6608useful when Bison will output parsers for languages that don't use a
c827f760
PE
6609preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6610you, this is
3ded9a63
AD
6611the preferred solution.
6612@end table
6613
6614We suggest that you always enable the debug option so that debugging is
6615always possible.
bfa74976 6616
02a81e05 6617The trace facility outputs messages with macro calls of the form
e2742e46 6618@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6619@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6620arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6621define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6622and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6623
6624Once you have compiled the program with trace facilities, the way to
6625request a trace is to store a nonzero value in the variable @code{yydebug}.
6626You can do this by making the C code do it (in @code{main}, perhaps), or
6627you can alter the value with a C debugger.
6628
6629Each step taken by the parser when @code{yydebug} is nonzero produces a
6630line or two of trace information, written on @code{stderr}. The trace
6631messages tell you these things:
6632
6633@itemize @bullet
6634@item
6635Each time the parser calls @code{yylex}, what kind of token was read.
6636
6637@item
6638Each time a token is shifted, the depth and complete contents of the
6639state stack (@pxref{Parser States}).
6640
6641@item
6642Each time a rule is reduced, which rule it is, and the complete contents
6643of the state stack afterward.
6644@end itemize
6645
6646To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6647produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6648Bison}). This file shows the meaning of each state in terms of
6649positions in various rules, and also what each state will do with each
6650possible input token. As you read the successive trace messages, you
6651can see that the parser is functioning according to its specification in
6652the listing file. Eventually you will arrive at the place where
6653something undesirable happens, and you will see which parts of the
6654grammar are to blame.
bfa74976
RS
6655
6656The parser file is a C program and you can use C debuggers on it, but it's
6657not easy to interpret what it is doing. The parser function is a
6658finite-state machine interpreter, and aside from the actions it executes
6659the same code over and over. Only the values of variables show where in
6660the grammar it is working.
6661
6662@findex YYPRINT
6663The debugging information normally gives the token type of each token
6664read, but not its semantic value. You can optionally define a macro
6665named @code{YYPRINT} to provide a way to print the value. If you define
6666@code{YYPRINT}, it should take three arguments. The parser will pass a
6667standard I/O stream, the numeric code for the token type, and the token
6668value (from @code{yylval}).
6669
6670Here is an example of @code{YYPRINT} suitable for the multi-function
6671calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6672
6673@smallexample
38a92d50
PE
6674%@{
6675 static void print_token_value (FILE *, int, YYSTYPE);
6676 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6677%@}
6678
6679@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6680
6681static void
831d3c99 6682print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6683@{
6684 if (type == VAR)
d3c4e709 6685 fprintf (file, "%s", value.tptr->name);
bfa74976 6686 else if (type == NUM)
d3c4e709 6687 fprintf (file, "%d", value.val);
bfa74976
RS
6688@}
6689@end smallexample
6690
ec3bc396
AD
6691@c ================================================= Invoking Bison
6692
342b8b6e 6693@node Invocation
bfa74976
RS
6694@chapter Invoking Bison
6695@cindex invoking Bison
6696@cindex Bison invocation
6697@cindex options for invoking Bison
6698
6699The usual way to invoke Bison is as follows:
6700
6701@example
6702bison @var{infile}
6703@end example
6704
6705Here @var{infile} is the grammar file name, which usually ends in
6706@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
6707with @samp{.tab.c} and removing any leading directory. Thus, the
6708@samp{bison foo.y} file name yields
6709@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
6710@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 6711C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6712or @file{foo.y++}. Then, the output files will take an extension like
6713the given one as input (respectively @file{foo.tab.cpp} and
6714@file{foo.tab.c++}).
fa4d969f 6715This feature takes effect with all options that manipulate file names like
234a3be3
AD
6716@samp{-o} or @samp{-d}.
6717
6718For example :
6719
6720@example
6721bison -d @var{infile.yxx}
6722@end example
84163231 6723@noindent
72d2299c 6724will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6725
6726@example
b56471a6 6727bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6728@end example
84163231 6729@noindent
234a3be3
AD
6730will produce @file{output.c++} and @file{outfile.h++}.
6731
397ec073
PE
6732For compatibility with @acronym{POSIX}, the standard Bison
6733distribution also contains a shell script called @command{yacc} that
6734invokes Bison with the @option{-y} option.
6735
bfa74976 6736@menu
13863333 6737* Bison Options:: All the options described in detail,
c827f760 6738 in alphabetical order by short options.
bfa74976 6739* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6740* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6741@end menu
6742
342b8b6e 6743@node Bison Options
bfa74976
RS
6744@section Bison Options
6745
6746Bison supports both traditional single-letter options and mnemonic long
6747option names. Long option names are indicated with @samp{--} instead of
6748@samp{-}. Abbreviations for option names are allowed as long as they
6749are unique. When a long option takes an argument, like
6750@samp{--file-prefix}, connect the option name and the argument with
6751@samp{=}.
6752
6753Here is a list of options that can be used with Bison, alphabetized by
6754short option. It is followed by a cross key alphabetized by long
6755option.
6756
89cab50d
AD
6757@c Please, keep this ordered as in `bison --help'.
6758@noindent
6759Operations modes:
6760@table @option
6761@item -h
6762@itemx --help
6763Print a summary of the command-line options to Bison and exit.
bfa74976 6764
89cab50d
AD
6765@item -V
6766@itemx --version
6767Print the version number of Bison and exit.
bfa74976 6768
f7ab6a50
PE
6769@item --print-localedir
6770Print the name of the directory containing locale-dependent data.
6771
89cab50d
AD
6772@item -y
6773@itemx --yacc
54662697
PE
6774Act more like the traditional Yacc command. This can cause
6775different diagnostics to be generated, and may change behavior in
6776other minor ways. Most importantly, imitate Yacc's output
6777file name conventions, so that the parser output file is called
89cab50d 6778@file{y.tab.c}, and the other outputs are called @file{y.output} and
54662697 6779@file{y.tab.h}. Thus, the following shell script can substitute
397ec073
PE
6780for Yacc, and the Bison distribution contains such a script for
6781compatibility with @acronym{POSIX}:
bfa74976 6782
89cab50d 6783@example
397ec073 6784#! /bin/sh
26e06a21 6785bison -y "$@@"
89cab50d 6786@end example
54662697
PE
6787
6788The @option{-y}/@option{--yacc} option is intended for use with
6789traditional Yacc grammars. If your grammar uses a Bison extension
6790like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
6791this option is specified.
6792
89cab50d
AD
6793@end table
6794
6795@noindent
6796Tuning the parser:
6797
6798@table @option
cd5bd6ac
AD
6799@item -S @var{file}
6800@itemx --skeleton=@var{file}
6801Specify the skeleton to use. You probably don't need this option unless
6802you are developing Bison.
6803
89cab50d
AD
6804@item -t
6805@itemx --debug
4947ebdb
PE
6806In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6807already defined, so that the debugging facilities are compiled.
ec3bc396 6808@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6809
6810@item --locations
d8988b2f 6811Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6812
6813@item -p @var{prefix}
6814@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6815Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6816@xref{Decl Summary}.
bfa74976
RS
6817
6818@item -l
6819@itemx --no-lines
6820Don't put any @code{#line} preprocessor commands in the parser file.
6821Ordinarily Bison puts them in the parser file so that the C compiler
6822and debuggers will associate errors with your source file, the
6823grammar file. This option causes them to associate errors with the
95e742f7 6824parser file, treating it as an independent source file in its own right.
bfa74976 6825
931c7513
RS
6826@item -n
6827@itemx --no-parser
d8988b2f 6828Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6829
89cab50d
AD
6830@item -k
6831@itemx --token-table
d8988b2f 6832Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6833@end table
bfa74976 6834
89cab50d
AD
6835@noindent
6836Adjust the output:
bfa74976 6837
89cab50d
AD
6838@table @option
6839@item -d
d8988b2f
AD
6840@itemx --defines
6841Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6842file containing macro definitions for the token type names defined in
4bfd5e4e 6843the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6844
342b8b6e 6845@item --defines=@var{defines-file}
d8988b2f 6846Same as above, but save in the file @var{defines-file}.
342b8b6e 6847
89cab50d
AD
6848@item -b @var{file-prefix}
6849@itemx --file-prefix=@var{prefix}
d8988b2f 6850Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6851for all Bison output file names. @xref{Decl Summary}.
bfa74976 6852
ec3bc396
AD
6853@item -r @var{things}
6854@itemx --report=@var{things}
6855Write an extra output file containing verbose description of the comma
6856separated list of @var{things} among:
6857
6858@table @code
6859@item state
6860Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6861@acronym{LALR} automaton.
ec3bc396 6862
8dd162d3 6863@item look-ahead
ec3bc396 6864Implies @code{state} and augments the description of the automaton with
8dd162d3 6865each rule's look-ahead set.
ec3bc396
AD
6866
6867@item itemset
6868Implies @code{state} and augments the description of the automaton with
6869the full set of items for each state, instead of its core only.
6870@end table
6871
6872For instance, on the following grammar
6873
bfa74976
RS
6874@item -v
6875@itemx --verbose
6deb4447
AD
6876Pretend that @code{%verbose} was specified, i.e, write an extra output
6877file containing verbose descriptions of the grammar and
72d2299c 6878parser. @xref{Decl Summary}.
bfa74976 6879
fa4d969f
PE
6880@item -o @var{file}
6881@itemx --output=@var{file}
6882Specify the @var{file} for the parser file.
bfa74976 6883
fa4d969f 6884The other output files' names are constructed from @var{file} as
d8988b2f 6885described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6886
6887@item -g
c827f760
PE
6888Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6889automaton computed by Bison. If the grammar file is @file{foo.y}, the
6890@acronym{VCG} output file will
342b8b6e
AD
6891be @file{foo.vcg}.
6892
6893@item --graph=@var{graph-file}
72d2299c
PE
6894The behavior of @var{--graph} is the same than @samp{-g}. The only
6895difference is that it has an optional argument which is the name of
fa4d969f 6896the output graph file.
bfa74976
RS
6897@end table
6898
342b8b6e 6899@node Option Cross Key
bfa74976
RS
6900@section Option Cross Key
6901
6902Here is a list of options, alphabetized by long option, to help you find
6903the corresponding short option.
6904
6905@tex
6906\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6907
6908{\tt
6909\line{ --debug \leaderfill -t}
6910\line{ --defines \leaderfill -d}
6911\line{ --file-prefix \leaderfill -b}
342b8b6e 6912\line{ --graph \leaderfill -g}
ff51d159 6913\line{ --help \leaderfill -h}
bfa74976
RS
6914\line{ --name-prefix \leaderfill -p}
6915\line{ --no-lines \leaderfill -l}
931c7513 6916\line{ --no-parser \leaderfill -n}
d8988b2f 6917\line{ --output \leaderfill -o}
f7ab6a50 6918\line{ --print-localedir}
931c7513 6919\line{ --token-table \leaderfill -k}
bfa74976
RS
6920\line{ --verbose \leaderfill -v}
6921\line{ --version \leaderfill -V}
6922\line{ --yacc \leaderfill -y}
6923}
6924@end tex
6925
6926@ifinfo
6927@example
6928--debug -t
342b8b6e 6929--defines=@var{defines-file} -d
bfa74976 6930--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6931--graph=@var{graph-file} -d
ff51d159 6932--help -h
931c7513 6933--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6934--no-lines -l
931c7513 6935--no-parser -n
d8988b2f 6936--output=@var{outfile} -o @var{outfile}
f7ab6a50 6937--print-localedir
931c7513 6938--token-table -k
bfa74976
RS
6939--verbose -v
6940--version -V
8c9a50be 6941--yacc -y
bfa74976
RS
6942@end example
6943@end ifinfo
6944
93dd49ab
PE
6945@node Yacc Library
6946@section Yacc Library
6947
6948The Yacc library contains default implementations of the
6949@code{yyerror} and @code{main} functions. These default
6950implementations are normally not useful, but @acronym{POSIX} requires
6951them. To use the Yacc library, link your program with the
6952@option{-ly} option. Note that Bison's implementation of the Yacc
6953library is distributed under the terms of the @acronym{GNU} General
6954Public License (@pxref{Copying}).
6955
6956If you use the Yacc library's @code{yyerror} function, you should
6957declare @code{yyerror} as follows:
6958
6959@example
6960int yyerror (char const *);
6961@end example
6962
6963Bison ignores the @code{int} value returned by this @code{yyerror}.
6964If you use the Yacc library's @code{main} function, your
6965@code{yyparse} function should have the following type signature:
6966
6967@example
6968int yyparse (void);
6969@end example
6970
12545799
AD
6971@c ================================================= C++ Bison
6972
6973@node C++ Language Interface
6974@chapter C++ Language Interface
6975
6976@menu
6977* C++ Parsers:: The interface to generate C++ parser classes
6978* A Complete C++ Example:: Demonstrating their use
6979@end menu
6980
6981@node C++ Parsers
6982@section C++ Parsers
6983
6984@menu
6985* C++ Bison Interface:: Asking for C++ parser generation
6986* C++ Semantic Values:: %union vs. C++
6987* C++ Location Values:: The position and location classes
6988* C++ Parser Interface:: Instantiating and running the parser
6989* C++ Scanner Interface:: Exchanges between yylex and parse
6990@end menu
6991
6992@node C++ Bison Interface
6993@subsection C++ Bison Interface
6994@c - %skeleton "lalr1.cc"
6995@c - Always pure
6996@c - initial action
6997
e054b190 6998The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
6999it, you may either pass the option @option{--skeleton=lalr1.cc} to
7000Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
7001grammar preamble. When run, @command{bison} will create several
7002files:
7003@table @file
7004@item position.hh
7005@itemx location.hh
7006The definition of the classes @code{position} and @code{location},
7007used for location tracking. @xref{C++ Location Values}.
7008
7009@item stack.hh
7010An auxiliary class @code{stack} used by the parser.
7011
fa4d969f
PE
7012@item @var{file}.hh
7013@itemx @var{file}.cc
12545799 7014The declaration and implementation of the C++ parser class.
fa4d969f 7015@var{file} is the name of the output file. It follows the same
12545799
AD
7016rules as with regular C parsers.
7017
fa4d969f 7018Note that @file{@var{file}.hh} is @emph{mandatory}, the C++ cannot
12545799
AD
7019work without the parser class declaration. Therefore, you must either
7020pass @option{-d}/@option{--defines} to @command{bison}, or use the
7021@samp{%defines} directive.
7022@end table
7023
7024All these files are documented using Doxygen; run @command{doxygen}
7025for a complete and accurate documentation.
7026
7027@node C++ Semantic Values
7028@subsection C++ Semantic Values
7029@c - No objects in unions
7030@c - YSTYPE
7031@c - Printer and destructor
7032
7033The @code{%union} directive works as for C, see @ref{Union Decl, ,The
7034Collection of Value Types}. In particular it produces a genuine
7035@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
7036within pseudo-unions (similar to Boost variants) might be implemented to
7037alleviate these issues.}, which have a few specific features in C++.
12545799
AD
7038@itemize @minus
7039@item
fb9712a9
AD
7040The type @code{YYSTYPE} is defined but its use is discouraged: rather
7041you should refer to the parser's encapsulated type
7042@code{yy::parser::semantic_type}.
12545799
AD
7043@item
7044Non POD (Plain Old Data) types cannot be used. C++ forbids any
7045instance of classes with constructors in unions: only @emph{pointers}
7046to such objects are allowed.
7047@end itemize
7048
7049Because objects have to be stored via pointers, memory is not
7050reclaimed automatically: using the @code{%destructor} directive is the
7051only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
7052Symbols}.
7053
7054
7055@node C++ Location Values
7056@subsection C++ Location Values
7057@c - %locations
7058@c - class Position
7059@c - class Location
b47dbebe 7060@c - %define "filename_type" "const symbol::Symbol"
12545799
AD
7061
7062When the directive @code{%locations} is used, the C++ parser supports
7063location tracking, see @ref{Locations, , Locations Overview}. Two
7064auxiliary classes define a @code{position}, a single point in a file,
7065and a @code{location}, a range composed of a pair of
7066@code{position}s (possibly spanning several files).
7067
fa4d969f 7068@deftypemethod {position} {std::string*} file
12545799
AD
7069The name of the file. It will always be handled as a pointer, the
7070parser will never duplicate nor deallocate it. As an experimental
7071feature you may change it to @samp{@var{type}*} using @samp{%define
b47dbebe 7072"filename_type" "@var{type}"}.
12545799
AD
7073@end deftypemethod
7074
7075@deftypemethod {position} {unsigned int} line
7076The line, starting at 1.
7077@end deftypemethod
7078
7079@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
7080Advance by @var{height} lines, resetting the column number.
7081@end deftypemethod
7082
7083@deftypemethod {position} {unsigned int} column
7084The column, starting at 0.
7085@end deftypemethod
7086
7087@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
7088Advance by @var{width} columns, without changing the line number.
7089@end deftypemethod
7090
7091@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
7092@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
7093@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
7094@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
7095Various forms of syntactic sugar for @code{columns}.
7096@end deftypemethod
7097
7098@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
7099Report @var{p} on @var{o} like this:
fa4d969f
PE
7100@samp{@var{file}:@var{line}.@var{column}}, or
7101@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
7102@end deftypemethod
7103
7104@deftypemethod {location} {position} begin
7105@deftypemethodx {location} {position} end
7106The first, inclusive, position of the range, and the first beyond.
7107@end deftypemethod
7108
7109@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
7110@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
7111Advance the @code{end} position.
7112@end deftypemethod
7113
7114@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7115@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7116@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7117Various forms of syntactic sugar.
7118@end deftypemethod
7119
7120@deftypemethod {location} {void} step ()
7121Move @code{begin} onto @code{end}.
7122@end deftypemethod
7123
7124
7125@node C++ Parser Interface
7126@subsection C++ Parser Interface
7127@c - define parser_class_name
7128@c - Ctor
7129@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7130@c debug_stream.
7131@c - Reporting errors
7132
7133The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7134declare and define the parser class in the namespace @code{yy}. The
7135class name defaults to @code{parser}, but may be changed using
7136@samp{%define "parser_class_name" "@var{name}"}. The interface of
9d9b8b70 7137this class is detailed below. It can be extended using the
12545799
AD
7138@code{%parse-param} feature: its semantics is slightly changed since
7139it describes an additional member of the parser class, and an
7140additional argument for its constructor.
7141
8a0adb01
AD
7142@defcv {Type} {parser} {semantic_value_type}
7143@defcvx {Type} {parser} {location_value_type}
12545799 7144The types for semantics value and locations.
8a0adb01 7145@end defcv
12545799
AD
7146
7147@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7148Build a new parser object. There are no arguments by default, unless
7149@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7150@end deftypemethod
7151
7152@deftypemethod {parser} {int} parse ()
7153Run the syntactic analysis, and return 0 on success, 1 otherwise.
7154@end deftypemethod
7155
7156@deftypemethod {parser} {std::ostream&} debug_stream ()
7157@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7158Get or set the stream used for tracing the parsing. It defaults to
7159@code{std::cerr}.
7160@end deftypemethod
7161
7162@deftypemethod {parser} {debug_level_type} debug_level ()
7163@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7164Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 7165or nonzero, full tracing.
12545799
AD
7166@end deftypemethod
7167
7168@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7169The definition for this member function must be supplied by the user:
7170the parser uses it to report a parser error occurring at @var{l},
7171described by @var{m}.
7172@end deftypemethod
7173
7174
7175@node C++ Scanner Interface
7176@subsection C++ Scanner Interface
7177@c - prefix for yylex.
7178@c - Pure interface to yylex
7179@c - %lex-param
7180
7181The parser invokes the scanner by calling @code{yylex}. Contrary to C
7182parsers, C++ parsers are always pure: there is no point in using the
7183@code{%pure-parser} directive. Therefore the interface is as follows.
7184
7185@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7186Return the next token. Its type is the return value, its semantic
7187value and location being @var{yylval} and @var{yylloc}. Invocations of
7188@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7189@end deftypemethod
7190
7191
7192@node A Complete C++ Example
7193@section A Complete C++ Example
7194
7195This section demonstrates the use of a C++ parser with a simple but
7196complete example. This example should be available on your system,
7197ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7198focuses on the use of Bison, therefore the design of the various C++
7199classes is very naive: no accessors, no encapsulation of members etc.
7200We will use a Lex scanner, and more precisely, a Flex scanner, to
7201demonstrate the various interaction. A hand written scanner is
7202actually easier to interface with.
7203
7204@menu
7205* Calc++ --- C++ Calculator:: The specifications
7206* Calc++ Parsing Driver:: An active parsing context
7207* Calc++ Parser:: A parser class
7208* Calc++ Scanner:: A pure C++ Flex scanner
7209* Calc++ Top Level:: Conducting the band
7210@end menu
7211
7212@node Calc++ --- C++ Calculator
7213@subsection Calc++ --- C++ Calculator
7214
7215Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 7216expression, possibly preceded by variable assignments. An
12545799
AD
7217environment containing possibly predefined variables such as
7218@code{one} and @code{two}, is exchanged with the parser. An example
7219of valid input follows.
7220
7221@example
7222three := 3
7223seven := one + two * three
7224seven * seven
7225@end example
7226
7227@node Calc++ Parsing Driver
7228@subsection Calc++ Parsing Driver
7229@c - An env
7230@c - A place to store error messages
7231@c - A place for the result
7232
7233To support a pure interface with the parser (and the scanner) the
7234technique of the ``parsing context'' is convenient: a structure
7235containing all the data to exchange. Since, in addition to simply
7236launch the parsing, there are several auxiliary tasks to execute (open
7237the file for parsing, instantiate the parser etc.), we recommend
7238transforming the simple parsing context structure into a fully blown
7239@dfn{parsing driver} class.
7240
7241The declaration of this driver class, @file{calc++-driver.hh}, is as
7242follows. The first part includes the CPP guard and imports the
fb9712a9
AD
7243required standard library components, and the declaration of the parser
7244class.
12545799 7245
1c59e0a1 7246@comment file: calc++-driver.hh
12545799
AD
7247@example
7248#ifndef CALCXX_DRIVER_HH
7249# define CALCXX_DRIVER_HH
7250# include <string>
7251# include <map>
fb9712a9 7252# include "calc++-parser.hh"
12545799
AD
7253@end example
7254
12545799
AD
7255
7256@noindent
7257Then comes the declaration of the scanning function. Flex expects
7258the signature of @code{yylex} to be defined in the macro
7259@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7260factor both as follows.
1c59e0a1
AD
7261
7262@comment file: calc++-driver.hh
12545799
AD
7263@example
7264// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7265# define YY_DECL \
fb9712a9
AD
7266 int yylex (yy::calcxx_parser::semantic_type* yylval, \
7267 yy::calcxx_parser::location_type* yylloc, \
7268 calcxx_driver& driver)
12545799
AD
7269// ... and declare it for the parser's sake.
7270YY_DECL;
7271@end example
7272
7273@noindent
7274The @code{calcxx_driver} class is then declared with its most obvious
7275members.
7276
1c59e0a1 7277@comment file: calc++-driver.hh
12545799
AD
7278@example
7279// Conducting the whole scanning and parsing of Calc++.
7280class calcxx_driver
7281@{
7282public:
7283 calcxx_driver ();
7284 virtual ~calcxx_driver ();
7285
7286 std::map<std::string, int> variables;
7287
7288 int result;
7289@end example
7290
7291@noindent
7292To encapsulate the coordination with the Flex scanner, it is useful to
7293have two members function to open and close the scanning phase.
7294members.
7295
1c59e0a1 7296@comment file: calc++-driver.hh
12545799
AD
7297@example
7298 // Handling the scanner.
7299 void scan_begin ();
7300 void scan_end ();
7301 bool trace_scanning;
7302@end example
7303
7304@noindent
7305Similarly for the parser itself.
7306
1c59e0a1 7307@comment file: calc++-driver.hh
12545799
AD
7308@example
7309 // Handling the parser.
7310 void parse (const std::string& f);
7311 std::string file;
7312 bool trace_parsing;
7313@end example
7314
7315@noindent
7316To demonstrate pure handling of parse errors, instead of simply
7317dumping them on the standard error output, we will pass them to the
7318compiler driver using the following two member functions. Finally, we
7319close the class declaration and CPP guard.
7320
1c59e0a1 7321@comment file: calc++-driver.hh
12545799
AD
7322@example
7323 // Error handling.
7324 void error (const yy::location& l, const std::string& m);
7325 void error (const std::string& m);
7326@};
7327#endif // ! CALCXX_DRIVER_HH
7328@end example
7329
7330The implementation of the driver is straightforward. The @code{parse}
7331member function deserves some attention. The @code{error} functions
7332are simple stubs, they should actually register the located error
7333messages and set error state.
7334
1c59e0a1 7335@comment file: calc++-driver.cc
12545799
AD
7336@example
7337#include "calc++-driver.hh"
7338#include "calc++-parser.hh"
7339
7340calcxx_driver::calcxx_driver ()
7341 : trace_scanning (false), trace_parsing (false)
7342@{
7343 variables["one"] = 1;
7344 variables["two"] = 2;
7345@}
7346
7347calcxx_driver::~calcxx_driver ()
7348@{
7349@}
7350
7351void
7352calcxx_driver::parse (const std::string &f)
7353@{
7354 file = f;
7355 scan_begin ();
7356 yy::calcxx_parser parser (*this);
7357 parser.set_debug_level (trace_parsing);
7358 parser.parse ();
7359 scan_end ();
7360@}
7361
7362void
7363calcxx_driver::error (const yy::location& l, const std::string& m)
7364@{
7365 std::cerr << l << ": " << m << std::endl;
7366@}
7367
7368void
7369calcxx_driver::error (const std::string& m)
7370@{
7371 std::cerr << m << std::endl;
7372@}
7373@end example
7374
7375@node Calc++ Parser
7376@subsection Calc++ Parser
7377
b50d2359
AD
7378The parser definition file @file{calc++-parser.yy} starts by asking for
7379the C++ LALR(1) skeleton, the creation of the parser header file, and
7380specifies the name of the parser class. Because the C++ skeleton
7381changed several times, it is safer to require the version you designed
7382the grammar for.
1c59e0a1
AD
7383
7384@comment file: calc++-parser.yy
12545799
AD
7385@example
7386%skeleton "lalr1.cc" /* -*- C++ -*- */
b50d2359 7387%require "2.1a"
12545799 7388%defines
fb9712a9
AD
7389%define "parser_class_name" "calcxx_parser"
7390@end example
7391
7392@noindent
7393Then come the declarations/inclusions needed to define the
7394@code{%union}. Because the parser uses the parsing driver and
7395reciprocally, both cannot include the header of the other. Because the
7396driver's header needs detailed knowledge about the parser class (in
7397particular its inner types), it is the parser's header which will simply
7398use a forward declaration of the driver.
7399
7400@comment file: calc++-parser.yy
7401@example
12545799
AD
7402%@{
7403# include <string>
fb9712a9 7404class calcxx_driver;
12545799
AD
7405%@}
7406@end example
7407
7408@noindent
7409The driver is passed by reference to the parser and to the scanner.
7410This provides a simple but effective pure interface, not relying on
7411global variables.
7412
1c59e0a1 7413@comment file: calc++-parser.yy
12545799
AD
7414@example
7415// The parsing context.
7416%parse-param @{ calcxx_driver& driver @}
7417%lex-param @{ calcxx_driver& driver @}
7418@end example
7419
7420@noindent
7421Then we request the location tracking feature, and initialize the
7422first location's file name. Afterwards new locations are computed
7423relatively to the previous locations: the file name will be
7424automatically propagated.
7425
1c59e0a1 7426@comment file: calc++-parser.yy
12545799
AD
7427@example
7428%locations
7429%initial-action
7430@{
7431 // Initialize the initial location.
b47dbebe 7432 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
7433@};
7434@end example
7435
7436@noindent
7437Use the two following directives to enable parser tracing and verbose
7438error messages.
7439
1c59e0a1 7440@comment file: calc++-parser.yy
12545799
AD
7441@example
7442%debug
7443%error-verbose
7444@end example
7445
7446@noindent
7447Semantic values cannot use ``real'' objects, but only pointers to
7448them.
7449
1c59e0a1 7450@comment file: calc++-parser.yy
12545799
AD
7451@example
7452// Symbols.
7453%union
7454@{
7455 int ival;
7456 std::string *sval;
7457@};
7458@end example
7459
fb9712a9
AD
7460@noindent
7461The code between @samp{%@{} and @samp{%@}} after the introduction of the
7462@samp{%union} is output in the @file{*.cc} file; it needs detailed
7463knowledge about the driver.
7464
7465@comment file: calc++-parser.yy
7466@example
7467%@{
7468# include "calc++-driver.hh"
7469%@}
7470@end example
7471
7472
12545799
AD
7473@noindent
7474The token numbered as 0 corresponds to end of file; the following line
7475allows for nicer error messages referring to ``end of file'' instead
7476of ``$end''. Similarly user friendly named are provided for each
7477symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7478avoid name clashes.
7479
1c59e0a1 7480@comment file: calc++-parser.yy
12545799 7481@example
fb9712a9
AD
7482%token END 0 "end of file"
7483%token ASSIGN ":="
7484%token <sval> IDENTIFIER "identifier"
7485%token <ival> NUMBER "number"
7486%type <ival> exp "expression"
12545799
AD
7487@end example
7488
7489@noindent
7490To enable memory deallocation during error recovery, use
7491@code{%destructor}.
7492
1c59e0a1 7493@comment file: calc++-parser.yy
12545799
AD
7494@example
7495%printer @{ debug_stream () << *$$; @} "identifier"
7496%destructor @{ delete $$; @} "identifier"
7497
7498%printer @{ debug_stream () << $$; @} "number" "expression"
7499@end example
7500
7501@noindent
7502The grammar itself is straightforward.
7503
1c59e0a1 7504@comment file: calc++-parser.yy
12545799
AD
7505@example
7506%%
7507%start unit;
7508unit: assignments exp @{ driver.result = $2; @};
7509
7510assignments: assignments assignment @{@}
9d9b8b70 7511 | /* Nothing. */ @{@};
12545799 7512
fb9712a9 7513assignment: "identifier" ":=" exp @{ driver.variables[*$1] = $3; @};
12545799
AD
7514
7515%left '+' '-';
7516%left '*' '/';
7517exp: exp '+' exp @{ $$ = $1 + $3; @}
7518 | exp '-' exp @{ $$ = $1 - $3; @}
7519 | exp '*' exp @{ $$ = $1 * $3; @}
7520 | exp '/' exp @{ $$ = $1 / $3; @}
fb9712a9
AD
7521 | "identifier" @{ $$ = driver.variables[*$1]; @}
7522 | "number" @{ $$ = $1; @};
12545799
AD
7523%%
7524@end example
7525
7526@noindent
7527Finally the @code{error} member function registers the errors to the
7528driver.
7529
1c59e0a1 7530@comment file: calc++-parser.yy
12545799
AD
7531@example
7532void
1c59e0a1
AD
7533yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7534 const std::string& m)
12545799
AD
7535@{
7536 driver.error (l, m);
7537@}
7538@end example
7539
7540@node Calc++ Scanner
7541@subsection Calc++ Scanner
7542
7543The Flex scanner first includes the driver declaration, then the
7544parser's to get the set of defined tokens.
7545
1c59e0a1 7546@comment file: calc++-scanner.ll
12545799
AD
7547@example
7548%@{ /* -*- C++ -*- */
04098407
PE
7549# include <cstdlib>
7550# include <errno.h>
7551# include <limits.h>
12545799
AD
7552# include <string>
7553# include "calc++-driver.hh"
7554# include "calc++-parser.hh"
7555%@}
7556@end example
7557
7558@noindent
7559Because there is no @code{#include}-like feature we don't need
7560@code{yywrap}, we don't need @code{unput} either, and we parse an
7561actual file, this is not an interactive session with the user.
7562Finally we enable the scanner tracing features.
7563
1c59e0a1 7564@comment file: calc++-scanner.ll
12545799
AD
7565@example
7566%option noyywrap nounput batch debug
7567@end example
7568
7569@noindent
7570Abbreviations allow for more readable rules.
7571
1c59e0a1 7572@comment file: calc++-scanner.ll
12545799
AD
7573@example
7574id [a-zA-Z][a-zA-Z_0-9]*
7575int [0-9]+
7576blank [ \t]
7577@end example
7578
7579@noindent
9d9b8b70 7580The following paragraph suffices to track locations accurately. Each
12545799
AD
7581time @code{yylex} is invoked, the begin position is moved onto the end
7582position. Then when a pattern is matched, the end position is
7583advanced of its width. In case it matched ends of lines, the end
7584cursor is adjusted, and each time blanks are matched, the begin cursor
7585is moved onto the end cursor to effectively ignore the blanks
7586preceding tokens. Comments would be treated equally.
7587
1c59e0a1 7588@comment file: calc++-scanner.ll
12545799 7589@example
828c373b
AD
7590%@{
7591# define YY_USER_ACTION yylloc->columns (yyleng);
7592%@}
12545799
AD
7593%%
7594%@{
7595 yylloc->step ();
12545799
AD
7596%@}
7597@{blank@}+ yylloc->step ();
7598[\n]+ yylloc->lines (yyleng); yylloc->step ();
7599@end example
7600
7601@noindent
fb9712a9
AD
7602The rules are simple, just note the use of the driver to report errors.
7603It is convenient to use a typedef to shorten
7604@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 7605@code{token::identifier} for instance.
12545799 7606
1c59e0a1 7607@comment file: calc++-scanner.ll
12545799 7608@example
fb9712a9
AD
7609%@{
7610 typedef yy::calcxx_parser::token token;
7611%@}
7612
12545799 7613[-+*/] return yytext[0];
fb9712a9 7614":=" return token::ASSIGN;
04098407
PE
7615@{int@} @{
7616 errno = 0;
7617 long n = strtol (yytext, NULL, 10);
7618 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
7619 driver.error (*yylloc, "integer is out of range");
7620 yylval->ival = n;
fb9712a9 7621 return token::NUMBER;
04098407 7622@}
fb9712a9 7623@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
7624. driver.error (*yylloc, "invalid character");
7625%%
7626@end example
7627
7628@noindent
7629Finally, because the scanner related driver's member function depend
7630on the scanner's data, it is simpler to implement them in this file.
7631
1c59e0a1 7632@comment file: calc++-scanner.ll
12545799
AD
7633@example
7634void
7635calcxx_driver::scan_begin ()
7636@{
7637 yy_flex_debug = trace_scanning;
7638 if (!(yyin = fopen (file.c_str (), "r")))
7639 error (std::string ("cannot open ") + file);
7640@}
7641
7642void
7643calcxx_driver::scan_end ()
7644@{
7645 fclose (yyin);
7646@}
7647@end example
7648
7649@node Calc++ Top Level
7650@subsection Calc++ Top Level
7651
7652The top level file, @file{calc++.cc}, poses no problem.
7653
1c59e0a1 7654@comment file: calc++.cc
12545799
AD
7655@example
7656#include <iostream>
7657#include "calc++-driver.hh"
7658
7659int
fa4d969f 7660main (int argc, char *argv[])
12545799
AD
7661@{
7662 calcxx_driver driver;
7663 for (++argv; argv[0]; ++argv)
7664 if (*argv == std::string ("-p"))
7665 driver.trace_parsing = true;
7666 else if (*argv == std::string ("-s"))
7667 driver.trace_scanning = true;
7668 else
7669 @{
7670 driver.parse (*argv);
7671 std::cout << driver.result << std::endl;
7672 @}
7673@}
7674@end example
7675
7676@c ================================================= FAQ
d1a1114f
AD
7677
7678@node FAQ
7679@chapter Frequently Asked Questions
7680@cindex frequently asked questions
7681@cindex questions
7682
7683Several questions about Bison come up occasionally. Here some of them
7684are addressed.
7685
7686@menu
1a059451 7687* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7688* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7689* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7690* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7691@end menu
7692
1a059451
PE
7693@node Memory Exhausted
7694@section Memory Exhausted
d1a1114f
AD
7695
7696@display
1a059451 7697My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7698message. What can I do?
7699@end display
7700
7701This question is already addressed elsewhere, @xref{Recursion,
7702,Recursive Rules}.
7703
e64fec0a
PE
7704@node How Can I Reset the Parser
7705@section How Can I Reset the Parser
5b066063 7706
0e14ad77
PE
7707The following phenomenon has several symptoms, resulting in the
7708following typical questions:
5b066063
AD
7709
7710@display
7711I invoke @code{yyparse} several times, and on correct input it works
7712properly; but when a parse error is found, all the other calls fail
0e14ad77 7713too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7714@end display
7715
7716@noindent
7717or
7718
7719@display
0e14ad77 7720My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7721which case I run @code{yyparse} from @code{yyparse}. This fails
7722although I did specify I needed a @code{%pure-parser}.
7723@end display
7724
0e14ad77
PE
7725These problems typically come not from Bison itself, but from
7726Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7727speed, they might not notice a change of input file. As a
7728demonstration, consider the following source file,
7729@file{first-line.l}:
7730
7731@verbatim
7732%{
7733#include <stdio.h>
7734#include <stdlib.h>
7735%}
7736%%
7737.*\n ECHO; return 1;
7738%%
7739int
0e14ad77 7740yyparse (char const *file)
5b066063
AD
7741{
7742 yyin = fopen (file, "r");
7743 if (!yyin)
7744 exit (2);
fa7e68c3 7745 /* One token only. */
5b066063 7746 yylex ();
0e14ad77 7747 if (fclose (yyin) != 0)
5b066063
AD
7748 exit (3);
7749 return 0;
7750}
7751
7752int
0e14ad77 7753main (void)
5b066063
AD
7754{
7755 yyparse ("input");
7756 yyparse ("input");
7757 return 0;
7758}
7759@end verbatim
7760
7761@noindent
7762If the file @file{input} contains
7763
7764@verbatim
7765input:1: Hello,
7766input:2: World!
7767@end verbatim
7768
7769@noindent
0e14ad77 7770then instead of getting the first line twice, you get:
5b066063
AD
7771
7772@example
7773$ @kbd{flex -ofirst-line.c first-line.l}
7774$ @kbd{gcc -ofirst-line first-line.c -ll}
7775$ @kbd{./first-line}
7776input:1: Hello,
7777input:2: World!
7778@end example
7779
0e14ad77
PE
7780Therefore, whenever you change @code{yyin}, you must tell the
7781Lex-generated scanner to discard its current buffer and switch to the
7782new one. This depends upon your implementation of Lex; see its
7783documentation for more. For Flex, it suffices to call
7784@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7785Flex-generated scanner needs to read from several input streams to
7786handle features like include files, you might consider using Flex
7787functions like @samp{yy_switch_to_buffer} that manipulate multiple
7788input buffers.
5b066063 7789
b165c324
AD
7790If your Flex-generated scanner uses start conditions (@pxref{Start
7791conditions, , Start conditions, flex, The Flex Manual}), you might
7792also want to reset the scanner's state, i.e., go back to the initial
7793start condition, through a call to @samp{BEGIN (0)}.
7794
fef4cb51
AD
7795@node Strings are Destroyed
7796@section Strings are Destroyed
7797
7798@display
c7e441b4 7799My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7800them. Instead of reporting @samp{"foo", "bar"}, it reports
7801@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7802@end display
7803
7804This error is probably the single most frequent ``bug report'' sent to
7805Bison lists, but is only concerned with a misunderstanding of the role
7806of scanner. Consider the following Lex code:
7807
7808@verbatim
7809%{
7810#include <stdio.h>
7811char *yylval = NULL;
7812%}
7813%%
7814.* yylval = yytext; return 1;
7815\n /* IGNORE */
7816%%
7817int
7818main ()
7819{
fa7e68c3 7820 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7821 char *fst = (yylex (), yylval);
7822 char *snd = (yylex (), yylval);
7823 printf ("\"%s\", \"%s\"\n", fst, snd);
7824 return 0;
7825}
7826@end verbatim
7827
7828If you compile and run this code, you get:
7829
7830@example
7831$ @kbd{flex -osplit-lines.c split-lines.l}
7832$ @kbd{gcc -osplit-lines split-lines.c -ll}
7833$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7834"one
7835two", "two"
7836@end example
7837
7838@noindent
7839this is because @code{yytext} is a buffer provided for @emph{reading}
7840in the action, but if you want to keep it, you have to duplicate it
7841(e.g., using @code{strdup}). Note that the output may depend on how
7842your implementation of Lex handles @code{yytext}. For instance, when
7843given the Lex compatibility option @option{-l} (which triggers the
7844option @samp{%array}) Flex generates a different behavior:
7845
7846@example
7847$ @kbd{flex -l -osplit-lines.c split-lines.l}
7848$ @kbd{gcc -osplit-lines split-lines.c -ll}
7849$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7850"two", "two"
7851@end example
7852
7853
2fa09258
AD
7854@node Implementing Gotos/Loops
7855@section Implementing Gotos/Loops
a06ea4aa
AD
7856
7857@display
7858My simple calculator supports variables, assignments, and functions,
2fa09258 7859but how can I implement gotos, or loops?
a06ea4aa
AD
7860@end display
7861
7862Although very pedagogical, the examples included in the document blur
a1c84f45 7863the distinction to make between the parser---whose job is to recover
a06ea4aa 7864the structure of a text and to transmit it to subsequent modules of
a1c84f45 7865the program---and the processing (such as the execution) of this
a06ea4aa
AD
7866structure. This works well with so called straight line programs,
7867i.e., precisely those that have a straightforward execution model:
7868execute simple instructions one after the others.
7869
7870@cindex abstract syntax tree
7871@cindex @acronym{AST}
7872If you want a richer model, you will probably need to use the parser
7873to construct a tree that does represent the structure it has
7874recovered; this tree is usually called the @dfn{abstract syntax tree},
7875or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7876traversing it in various ways, will enable treatments such as its
7877execution or its translation, which will result in an interpreter or a
7878compiler.
7879
7880This topic is way beyond the scope of this manual, and the reader is
7881invited to consult the dedicated literature.
7882
7883
7884
d1a1114f
AD
7885@c ================================================= Table of Symbols
7886
342b8b6e 7887@node Table of Symbols
bfa74976
RS
7888@appendix Bison Symbols
7889@cindex Bison symbols, table of
7890@cindex symbols in Bison, table of
7891
18b519c0 7892@deffn {Variable} @@$
3ded9a63 7893In an action, the location of the left-hand side of the rule.
88bce5a2 7894@xref{Locations, , Locations Overview}.
18b519c0 7895@end deffn
3ded9a63 7896
18b519c0 7897@deffn {Variable} @@@var{n}
3ded9a63
AD
7898In an action, the location of the @var{n}-th symbol of the right-hand
7899side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7900@end deffn
3ded9a63 7901
18b519c0 7902@deffn {Variable} $$
3ded9a63
AD
7903In an action, the semantic value of the left-hand side of the rule.
7904@xref{Actions}.
18b519c0 7905@end deffn
3ded9a63 7906
18b519c0 7907@deffn {Variable} $@var{n}
3ded9a63
AD
7908In an action, the semantic value of the @var{n}-th symbol of the
7909right-hand side of the rule. @xref{Actions}.
18b519c0 7910@end deffn
3ded9a63 7911
dd8d9022
AD
7912@deffn {Delimiter} %%
7913Delimiter used to separate the grammar rule section from the
7914Bison declarations section or the epilogue.
7915@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7916@end deffn
bfa74976 7917
dd8d9022
AD
7918@c Don't insert spaces, or check the DVI output.
7919@deffn {Delimiter} %@{@var{code}%@}
7920All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7921the output file uninterpreted. Such code forms the prologue of the input
7922file. @xref{Grammar Outline, ,Outline of a Bison
7923Grammar}.
18b519c0 7924@end deffn
bfa74976 7925
dd8d9022
AD
7926@deffn {Construct} /*@dots{}*/
7927Comment delimiters, as in C.
18b519c0 7928@end deffn
bfa74976 7929
dd8d9022
AD
7930@deffn {Delimiter} :
7931Separates a rule's result from its components. @xref{Rules, ,Syntax of
7932Grammar Rules}.
18b519c0 7933@end deffn
bfa74976 7934
dd8d9022
AD
7935@deffn {Delimiter} ;
7936Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7937@end deffn
bfa74976 7938
dd8d9022
AD
7939@deffn {Delimiter} |
7940Separates alternate rules for the same result nonterminal.
7941@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7942@end deffn
bfa74976 7943
dd8d9022
AD
7944@deffn {Symbol} $accept
7945The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7946$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7947Start-Symbol}. It cannot be used in the grammar.
18b519c0 7948@end deffn
bfa74976 7949
18b519c0 7950@deffn {Directive} %debug
6deb4447 7951Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7952@end deffn
6deb4447 7953
91d2c560 7954@ifset defaultprec
22fccf95
PE
7955@deffn {Directive} %default-prec
7956Assign a precedence to rules that lack an explicit @samp{%prec}
7957modifier. @xref{Contextual Precedence, ,Context-Dependent
7958Precedence}.
39a06c25 7959@end deffn
91d2c560 7960@end ifset
39a06c25 7961
18b519c0 7962@deffn {Directive} %defines
6deb4447
AD
7963Bison declaration to create a header file meant for the scanner.
7964@xref{Decl Summary}.
18b519c0 7965@end deffn
6deb4447 7966
18b519c0 7967@deffn {Directive} %destructor
258b75ca 7968Specify how the parser should reclaim the memory associated to
fa7e68c3 7969discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7970@end deffn
72f889cc 7971
18b519c0 7972@deffn {Directive} %dprec
676385e2 7973Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7974time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7975@acronym{GLR} Parsers}.
18b519c0 7976@end deffn
676385e2 7977
dd8d9022
AD
7978@deffn {Symbol} $end
7979The predefined token marking the end of the token stream. It cannot be
7980used in the grammar.
7981@end deffn
7982
7983@deffn {Symbol} error
7984A token name reserved for error recovery. This token may be used in
7985grammar rules so as to allow the Bison parser to recognize an error in
7986the grammar without halting the process. In effect, a sentence
7987containing an error may be recognized as valid. On a syntax error, the
7988token @code{error} becomes the current look-ahead token. Actions
7989corresponding to @code{error} are then executed, and the look-ahead
7990token is reset to the token that originally caused the violation.
7991@xref{Error Recovery}.
18d192f0
AD
7992@end deffn
7993
18b519c0 7994@deffn {Directive} %error-verbose
2a8d363a
AD
7995Bison declaration to request verbose, specific error message strings
7996when @code{yyerror} is called.
18b519c0 7997@end deffn
2a8d363a 7998
18b519c0 7999@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 8000Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 8001Summary}.
18b519c0 8002@end deffn
d8988b2f 8003
18b519c0 8004@deffn {Directive} %glr-parser
c827f760
PE
8005Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
8006Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8007@end deffn
676385e2 8008
dd8d9022
AD
8009@deffn {Directive} %initial-action
8010Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
8011@end deffn
8012
18b519c0 8013@deffn {Directive} %left
bfa74976
RS
8014Bison declaration to assign left associativity to token(s).
8015@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8016@end deffn
bfa74976 8017
feeb0eda 8018@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
8019Bison declaration to specifying an additional parameter that
8020@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
8021for Pure Parsers}.
18b519c0 8022@end deffn
2a8d363a 8023
18b519c0 8024@deffn {Directive} %merge
676385e2 8025Bison declaration to assign a merging function to a rule. If there is a
fae437e8 8026reduce/reduce conflict with a rule having the same merging function, the
676385e2 8027function is applied to the two semantic values to get a single result.
c827f760 8028@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 8029@end deffn
676385e2 8030
18b519c0 8031@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 8032Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 8033@end deffn
d8988b2f 8034
91d2c560 8035@ifset defaultprec
22fccf95
PE
8036@deffn {Directive} %no-default-prec
8037Do not assign a precedence to rules that lack an explicit @samp{%prec}
8038modifier. @xref{Contextual Precedence, ,Context-Dependent
8039Precedence}.
8040@end deffn
91d2c560 8041@end ifset
22fccf95 8042
18b519c0 8043@deffn {Directive} %no-lines
931c7513
RS
8044Bison declaration to avoid generating @code{#line} directives in the
8045parser file. @xref{Decl Summary}.
18b519c0 8046@end deffn
931c7513 8047
18b519c0 8048@deffn {Directive} %nonassoc
9d9b8b70 8049Bison declaration to assign nonassociativity to token(s).
bfa74976 8050@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8051@end deffn
bfa74976 8052
fa4d969f 8053@deffn {Directive} %output="@var{file}"
72d2299c 8054Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 8055Summary}.
18b519c0 8056@end deffn
d8988b2f 8057
feeb0eda 8058@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
8059Bison declaration to specifying an additional parameter that
8060@code{yyparse} should accept. @xref{Parser Function,, The Parser
8061Function @code{yyparse}}.
18b519c0 8062@end deffn
2a8d363a 8063
18b519c0 8064@deffn {Directive} %prec
bfa74976
RS
8065Bison declaration to assign a precedence to a specific rule.
8066@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 8067@end deffn
bfa74976 8068
18b519c0 8069@deffn {Directive} %pure-parser
bfa74976
RS
8070Bison declaration to request a pure (reentrant) parser.
8071@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 8072@end deffn
bfa74976 8073
b50d2359 8074@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
8075Require version @var{version} or higher of Bison. @xref{Require Decl, ,
8076Require a Version of Bison}.
b50d2359
AD
8077@end deffn
8078
18b519c0 8079@deffn {Directive} %right
bfa74976
RS
8080Bison declaration to assign right associativity to token(s).
8081@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 8082@end deffn
bfa74976 8083
18b519c0 8084@deffn {Directive} %start
704a47c4
AD
8085Bison declaration to specify the start symbol. @xref{Start Decl, ,The
8086Start-Symbol}.
18b519c0 8087@end deffn
bfa74976 8088
18b519c0 8089@deffn {Directive} %token
bfa74976
RS
8090Bison declaration to declare token(s) without specifying precedence.
8091@xref{Token Decl, ,Token Type Names}.
18b519c0 8092@end deffn
bfa74976 8093
18b519c0 8094@deffn {Directive} %token-table
931c7513
RS
8095Bison declaration to include a token name table in the parser file.
8096@xref{Decl Summary}.
18b519c0 8097@end deffn
931c7513 8098
18b519c0 8099@deffn {Directive} %type
704a47c4
AD
8100Bison declaration to declare nonterminals. @xref{Type Decl,
8101,Nonterminal Symbols}.
18b519c0 8102@end deffn
bfa74976 8103
dd8d9022
AD
8104@deffn {Symbol} $undefined
8105The predefined token onto which all undefined values returned by
8106@code{yylex} are mapped. It cannot be used in the grammar, rather, use
8107@code{error}.
8108@end deffn
8109
18b519c0 8110@deffn {Directive} %union
bfa74976
RS
8111Bison declaration to specify several possible data types for semantic
8112values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 8113@end deffn
bfa74976 8114
dd8d9022
AD
8115@deffn {Macro} YYABORT
8116Macro to pretend that an unrecoverable syntax error has occurred, by
8117making @code{yyparse} return 1 immediately. The error reporting
8118function @code{yyerror} is not called. @xref{Parser Function, ,The
8119Parser Function @code{yyparse}}.
8120@end deffn
3ded9a63 8121
dd8d9022
AD
8122@deffn {Macro} YYACCEPT
8123Macro to pretend that a complete utterance of the language has been
8124read, by making @code{yyparse} return 0 immediately.
8125@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8126@end deffn
bfa74976 8127
dd8d9022
AD
8128@deffn {Macro} YYBACKUP
8129Macro to discard a value from the parser stack and fake a look-ahead
8130token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8131@end deffn
bfa74976 8132
dd8d9022 8133@deffn {Variable} yychar
32c29292 8134External integer variable that contains the integer value of the
dd8d9022
AD
8135look-ahead token. (In a pure parser, it is a local variable within
8136@code{yyparse}.) Error-recovery rule actions may examine this variable.
8137@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 8138@end deffn
bfa74976 8139
dd8d9022
AD
8140@deffn {Variable} yyclearin
8141Macro used in error-recovery rule actions. It clears the previous
8142look-ahead token. @xref{Error Recovery}.
18b519c0 8143@end deffn
bfa74976 8144
dd8d9022
AD
8145@deffn {Macro} YYDEBUG
8146Macro to define to equip the parser with tracing code. @xref{Tracing,
8147,Tracing Your Parser}.
18b519c0 8148@end deffn
bfa74976 8149
dd8d9022
AD
8150@deffn {Variable} yydebug
8151External integer variable set to zero by default. If @code{yydebug}
8152is given a nonzero value, the parser will output information on input
8153symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8154@end deffn
bfa74976 8155
dd8d9022
AD
8156@deffn {Macro} yyerrok
8157Macro to cause parser to recover immediately to its normal mode
8158after a syntax error. @xref{Error Recovery}.
8159@end deffn
8160
8161@deffn {Macro} YYERROR
8162Macro to pretend that a syntax error has just been detected: call
8163@code{yyerror} and then perform normal error recovery if possible
8164(@pxref{Error Recovery}), or (if recovery is impossible) make
8165@code{yyparse} return 1. @xref{Error Recovery}.
8166@end deffn
8167
8168@deffn {Function} yyerror
8169User-supplied function to be called by @code{yyparse} on error.
8170@xref{Error Reporting, ,The Error
8171Reporting Function @code{yyerror}}.
8172@end deffn
8173
8174@deffn {Macro} YYERROR_VERBOSE
8175An obsolete macro that you define with @code{#define} in the prologue
8176to request verbose, specific error message strings
8177when @code{yyerror} is called. It doesn't matter what definition you
8178use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8179@code{%error-verbose} is preferred.
8180@end deffn
8181
8182@deffn {Macro} YYINITDEPTH
8183Macro for specifying the initial size of the parser stack.
1a059451 8184@xref{Memory Management}.
dd8d9022
AD
8185@end deffn
8186
8187@deffn {Function} yylex
8188User-supplied lexical analyzer function, called with no arguments to get
8189the next token. @xref{Lexical, ,The Lexical Analyzer Function
8190@code{yylex}}.
8191@end deffn
8192
8193@deffn {Macro} YYLEX_PARAM
8194An obsolete macro for specifying an extra argument (or list of extra
32c29292 8195arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
8196macro is deprecated, and is supported only for Yacc like parsers.
8197@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8198@end deffn
8199
8200@deffn {Variable} yylloc
8201External variable in which @code{yylex} should place the line and column
8202numbers associated with a token. (In a pure parser, it is a local
8203variable within @code{yyparse}, and its address is passed to
32c29292
JD
8204@code{yylex}.)
8205You can ignore this variable if you don't use the @samp{@@} feature in the
8206grammar actions.
8207@xref{Token Locations, ,Textual Locations of Tokens}.
8208In semantic actions, it stores the location of the look-ahead token.
8209@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
8210@end deffn
8211
8212@deffn {Type} YYLTYPE
8213Data type of @code{yylloc}; by default, a structure with four
8214members. @xref{Location Type, , Data Types of Locations}.
8215@end deffn
8216
8217@deffn {Variable} yylval
8218External variable in which @code{yylex} should place the semantic
8219value associated with a token. (In a pure parser, it is a local
8220variable within @code{yyparse}, and its address is passed to
32c29292
JD
8221@code{yylex}.)
8222@xref{Token Values, ,Semantic Values of Tokens}.
8223In semantic actions, it stores the semantic value of the look-ahead token.
8224@xref{Actions, ,Actions}.
dd8d9022
AD
8225@end deffn
8226
8227@deffn {Macro} YYMAXDEPTH
1a059451
PE
8228Macro for specifying the maximum size of the parser stack. @xref{Memory
8229Management}.
dd8d9022
AD
8230@end deffn
8231
8232@deffn {Variable} yynerrs
8a2800e7 8233Global variable which Bison increments each time it reports a syntax error.
dd8d9022
AD
8234(In a pure parser, it is a local variable within @code{yyparse}.)
8235@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8236@end deffn
8237
8238@deffn {Function} yyparse
8239The parser function produced by Bison; call this function to start
8240parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8241@end deffn
8242
8243@deffn {Macro} YYPARSE_PARAM
8244An obsolete macro for specifying the name of a parameter that
8245@code{yyparse} should accept. The use of this macro is deprecated, and
8246is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8247Conventions for Pure Parsers}.
8248@end deffn
8249
8250@deffn {Macro} YYRECOVERING
8251Macro whose value indicates whether the parser is recovering from a
8252syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8253@end deffn
8254
8255@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8256Macro used to control the use of @code{alloca} when the C
8257@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8258the parser will use @code{malloc} to extend its stacks. If defined to
82591, the parser will use @code{alloca}. Values other than 0 and 1 are
8260reserved for future Bison extensions. If not defined,
8261@code{YYSTACK_USE_ALLOCA} defaults to 0.
8262
55289366 8263In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
8264limited stack and with unreliable stack-overflow checking, you should
8265set @code{YYMAXDEPTH} to a value that cannot possibly result in
8266unchecked stack overflow on any of your target hosts when
8267@code{alloca} is called. You can inspect the code that Bison
8268generates in order to determine the proper numeric values. This will
8269require some expertise in low-level implementation details.
dd8d9022
AD
8270@end deffn
8271
8272@deffn {Type} YYSTYPE
8273Data type of semantic values; @code{int} by default.
8274@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8275@end deffn
bfa74976 8276
342b8b6e 8277@node Glossary
bfa74976
RS
8278@appendix Glossary
8279@cindex glossary
8280
8281@table @asis
c827f760
PE
8282@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8283Formal method of specifying context-free grammars originally proposed
8284by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8285committee document contributing to what became the Algol 60 report.
8286@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8287
8288@item Context-free grammars
8289Grammars specified as rules that can be applied regardless of context.
8290Thus, if there is a rule which says that an integer can be used as an
8291expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8292permitted. @xref{Language and Grammar, ,Languages and Context-Free
8293Grammars}.
bfa74976
RS
8294
8295@item Dynamic allocation
8296Allocation of memory that occurs during execution, rather than at
8297compile time or on entry to a function.
8298
8299@item Empty string
8300Analogous to the empty set in set theory, the empty string is a
8301character string of length zero.
8302
8303@item Finite-state stack machine
8304A ``machine'' that has discrete states in which it is said to exist at
8305each instant in time. As input to the machine is processed, the
8306machine moves from state to state as specified by the logic of the
8307machine. In the case of the parser, the input is the language being
8308parsed, and the states correspond to various stages in the grammar
c827f760 8309rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8310
c827f760 8311@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8312A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8313that are not @acronym{LALR}(1). It resolves situations that Bison's
8314usual @acronym{LALR}(1)
676385e2
PH
8315algorithm cannot by effectively splitting off multiple parsers, trying all
8316possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8317right context. @xref{Generalized LR Parsing, ,Generalized
8318@acronym{LR} Parsing}.
676385e2 8319
bfa74976
RS
8320@item Grouping
8321A language construct that is (in general) grammatically divisible;
c827f760 8322for example, `expression' or `declaration' in C@.
bfa74976
RS
8323@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8324
8325@item Infix operator
8326An arithmetic operator that is placed between the operands on which it
8327performs some operation.
8328
8329@item Input stream
8330A continuous flow of data between devices or programs.
8331
8332@item Language construct
8333One of the typical usage schemas of the language. For example, one of
8334the constructs of the C language is the @code{if} statement.
8335@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8336
8337@item Left associativity
8338Operators having left associativity are analyzed from left to right:
8339@samp{a+b+c} first computes @samp{a+b} and then combines with
8340@samp{c}. @xref{Precedence, ,Operator Precedence}.
8341
8342@item Left recursion
89cab50d
AD
8343A rule whose result symbol is also its first component symbol; for
8344example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8345Rules}.
bfa74976
RS
8346
8347@item Left-to-right parsing
8348Parsing a sentence of a language by analyzing it token by token from
c827f760 8349left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8350
8351@item Lexical analyzer (scanner)
8352A function that reads an input stream and returns tokens one by one.
8353@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8354
8355@item Lexical tie-in
8356A flag, set by actions in the grammar rules, which alters the way
8357tokens are parsed. @xref{Lexical Tie-ins}.
8358
931c7513 8359@item Literal string token
14ded682 8360A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8361
bfa74976 8362@item Look-ahead token
89cab50d
AD
8363A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8364Tokens}.
bfa74976 8365
c827f760 8366@item @acronym{LALR}(1)
bfa74976 8367The class of context-free grammars that Bison (like most other parser
c827f760
PE
8368generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8369Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8370
c827f760 8371@item @acronym{LR}(1)
bfa74976
RS
8372The class of context-free grammars in which at most one token of
8373look-ahead is needed to disambiguate the parsing of any piece of input.
8374
8375@item Nonterminal symbol
8376A grammar symbol standing for a grammatical construct that can
8377be expressed through rules in terms of smaller constructs; in other
8378words, a construct that is not a token. @xref{Symbols}.
8379
bfa74976
RS
8380@item Parser
8381A function that recognizes valid sentences of a language by analyzing
8382the syntax structure of a set of tokens passed to it from a lexical
8383analyzer.
8384
8385@item Postfix operator
8386An arithmetic operator that is placed after the operands upon which it
8387performs some operation.
8388
8389@item Reduction
8390Replacing a string of nonterminals and/or terminals with a single
89cab50d 8391nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8392Parser Algorithm}.
bfa74976
RS
8393
8394@item Reentrant
8395A reentrant subprogram is a subprogram which can be in invoked any
8396number of times in parallel, without interference between the various
8397invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8398
8399@item Reverse polish notation
8400A language in which all operators are postfix operators.
8401
8402@item Right recursion
89cab50d
AD
8403A rule whose result symbol is also its last component symbol; for
8404example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8405Rules}.
bfa74976
RS
8406
8407@item Semantics
8408In computer languages, the semantics are specified by the actions
8409taken for each instance of the language, i.e., the meaning of
8410each statement. @xref{Semantics, ,Defining Language Semantics}.
8411
8412@item Shift
8413A parser is said to shift when it makes the choice of analyzing
8414further input from the stream rather than reducing immediately some
c827f760 8415already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8416
8417@item Single-character literal
8418A single character that is recognized and interpreted as is.
8419@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8420
8421@item Start symbol
8422The nonterminal symbol that stands for a complete valid utterance in
8423the language being parsed. The start symbol is usually listed as the
13863333 8424first nonterminal symbol in a language specification.
bfa74976
RS
8425@xref{Start Decl, ,The Start-Symbol}.
8426
8427@item Symbol table
8428A data structure where symbol names and associated data are stored
8429during parsing to allow for recognition and use of existing
8430information in repeated uses of a symbol. @xref{Multi-function Calc}.
8431
6e649e65
PE
8432@item Syntax error
8433An error encountered during parsing of an input stream due to invalid
8434syntax. @xref{Error Recovery}.
8435
bfa74976
RS
8436@item Token
8437A basic, grammatically indivisible unit of a language. The symbol
8438that describes a token in the grammar is a terminal symbol.
8439The input of the Bison parser is a stream of tokens which comes from
8440the lexical analyzer. @xref{Symbols}.
8441
8442@item Terminal symbol
89cab50d
AD
8443A grammar symbol that has no rules in the grammar and therefore is
8444grammatically indivisible. The piece of text it represents is a token.
8445@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8446@end table
8447
342b8b6e 8448@node Copying This Manual
f2b5126e 8449@appendix Copying This Manual
f9a8293a 8450
f2b5126e
PB
8451@menu
8452* GNU Free Documentation License:: License for copying this manual.
8453@end menu
f9a8293a 8454
f2b5126e
PB
8455@include fdl.texi
8456
342b8b6e 8457@node Index
bfa74976
RS
8458@unnumbered Index
8459
8460@printindex cp
8461
bfa74976 8462@bye
a06ea4aa
AD
8463
8464@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8465@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8466@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8467@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8468@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8469@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8470@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8471@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8472@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8473@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8474@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8475@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8476@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8477@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8478@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8479@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8480@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8481@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8482@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8483@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8484@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 8485@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa
AD
8486@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8487@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8488@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8489@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8490@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8491@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8492@c LocalWords: YYSTACK DVI fdl printindex