]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* bootstrap: Get runtime translations into runtime-po.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
e62f1a89 471999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
150* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
151
bfa74976
RS
152Examples
153
154* RPN Calc:: Reverse polish notation calculator;
155 a first example with no operator precedence.
156* Infix Calc:: Infix (algebraic) notation calculator.
157 Operator precedence is introduced.
158* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 159* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
160* Multi-function Calc:: Calculator with memory and trig functions.
161 It uses multiple data-types for semantic values.
bfa74976
RS
162* Exercises:: Ideas for improving the multi-function calculator.
163
164Reverse Polish Notation Calculator
165
75f5aaea 166* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
167* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
168* Lexer: Rpcalc Lexer. The lexical analyzer.
169* Main: Rpcalc Main. The controlling function.
170* Error: Rpcalc Error. The error reporting function.
171* Gen: Rpcalc Gen. Running Bison on the grammar file.
172* Comp: Rpcalc Compile. Run the C compiler on the output code.
173
174Grammar Rules for @code{rpcalc}
175
13863333
AD
176* Rpcalc Input::
177* Rpcalc Line::
178* Rpcalc Expr::
bfa74976 179
342b8b6e
AD
180Location Tracking Calculator: @code{ltcalc}
181
182* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
183* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
184* Lexer: Ltcalc Lexer. The lexical analyzer.
185
bfa74976
RS
186Multi-Function Calculator: @code{mfcalc}
187
188* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
189* Rules: Mfcalc Rules. Grammar rules for the calculator.
190* Symtab: Mfcalc Symtab. Symbol table management subroutines.
191
192Bison Grammar Files
193
194* Grammar Outline:: Overall layout of the grammar file.
195* Symbols:: Terminal and nonterminal symbols.
196* Rules:: How to write grammar rules.
197* Recursion:: Writing recursive rules.
198* Semantics:: Semantic values and actions.
93dd49ab 199* Locations:: Locations and actions.
bfa74976
RS
200* Declarations:: All kinds of Bison declarations are described here.
201* Multiple Parsers:: Putting more than one Bison parser in one program.
202
203Outline of a Bison Grammar
204
93dd49ab 205* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
206* Bison Declarations:: Syntax and usage of the Bison declarations section.
207* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 208* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
209
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
228* Token Decl:: Declaring terminal symbols.
229* Precedence Decl:: Declaring terminals with precedence and associativity.
230* Union Decl:: Declaring the set of all semantic value types.
231* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 232* Initial Action Decl:: Code run before parsing starts.
72f889cc 233* Destructor Decl:: Declaring how symbols are freed.
d6328241 234* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
235* Start Decl:: Specifying the start symbol.
236* Pure Decl:: Requesting a reentrant parser.
237* Decl Summary:: Table of all Bison declarations.
238
239Parser C-Language Interface
240
241* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 242* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
f7ab6a50
PE
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
95923bd6 254* Token Locations:: How @code{yylex} must return the text location
bfa74976 255 (line number, etc.) of the token, if the
93dd49ab 256 actions want that.
bfa74976
RS
257* Pure Calling:: How the calling convention differs
258 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
259
13863333 260The Bison Parser Algorithm
bfa74976
RS
261
262* Look-Ahead:: Parser looks one token ahead when deciding what to do.
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
268* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
270* Stack Overflow:: What happens when stack gets full. How to avoid it.
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
279Handling Context Dependencies
280
281* Semantic Tokens:: Token parsing can depend on the semantic context.
282* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
283* Tie-in Recovery:: Lexical tie-ins have implications for how
284 error recovery rules must be written.
285
93dd49ab 286Debugging Your Parser
ec3bc396
AD
287
288* Understanding:: Understanding the structure of your parser.
289* Tracing:: Tracing the execution of your parser.
290
bfa74976
RS
291Invoking Bison
292
13863333 293* Bison Options:: All the options described in detail,
c827f760 294 in alphabetical order by short options.
bfa74976 295* Option Cross Key:: Alphabetical list of long options.
93dd49ab 296* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 297
12545799
AD
298C++ Language Interface
299
300* C++ Parsers:: The interface to generate C++ parser classes
301* A Complete C++ Example:: Demonstrating their use
302
303C++ Parsers
304
305* C++ Bison Interface:: Asking for C++ parser generation
306* C++ Semantic Values:: %union vs. C++
307* C++ Location Values:: The position and location classes
308* C++ Parser Interface:: Instantiating and running the parser
309* C++ Scanner Interface:: Exchanges between yylex and parse
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
d1a1114f
AD
319Frequently Asked Questions
320
321* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 322* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 323* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 324* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 325
f2b5126e
PB
326Copying This Manual
327
328* GNU Free Documentation License:: License for copying this manual.
329
342b8b6e 330@end detailmenu
bfa74976
RS
331@end menu
332
342b8b6e 333@node Introduction
bfa74976
RS
334@unnumbered Introduction
335@cindex introduction
336
337@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 338grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
339program to parse that grammar. Once you are proficient with Bison,
340you may use it to develop a wide range of language parsers, from those
341used in simple desk calculators to complex programming languages.
342
343Bison is upward compatible with Yacc: all properly-written Yacc grammars
344ought to work with Bison with no change. Anyone familiar with Yacc
345should be able to use Bison with little trouble. You need to be fluent in
346C programming in order to use Bison or to understand this manual.
347
348We begin with tutorial chapters that explain the basic concepts of using
349Bison and show three explained examples, each building on the last. If you
350don't know Bison or Yacc, start by reading these chapters. Reference
351chapters follow which describe specific aspects of Bison in detail.
352
931c7513
RS
353Bison was written primarily by Robert Corbett; Richard Stallman made it
354Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 355multi-character string literals and other features.
931c7513 356
df1af54c 357This edition corresponds to version @value{VERSION} of Bison.
bfa74976 358
342b8b6e 359@node Conditions
bfa74976
RS
360@unnumbered Conditions for Using Bison
361
a31239f1 362As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 363@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 364Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 365parsers could be used only in programs that were free software.
a31239f1 366
c827f760
PE
367The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
368compiler, have never
9ecbd125 369had such a requirement. They could always be used for nonfree
a31239f1
RS
370software. The reason Bison was different was not due to a special
371policy decision; it resulted from applying the usual General Public
372License to all of the Bison source code.
373
374The output of the Bison utility---the Bison parser file---contains a
375verbatim copy of a sizable piece of Bison, which is the code for the
376@code{yyparse} function. (The actions from your grammar are inserted
377into this function at one point, but the rest of the function is not
c827f760
PE
378changed.) When we applied the @acronym{GPL} terms to the code for
379@code{yyparse},
a31239f1
RS
380the effect was to restrict the use of Bison output to free software.
381
382We didn't change the terms because of sympathy for people who want to
383make software proprietary. @strong{Software should be free.} But we
384concluded that limiting Bison's use to free software was doing little to
385encourage people to make other software free. So we decided to make the
386practical conditions for using Bison match the practical conditions for
c827f760 387using the other @acronym{GNU} tools.
bfa74976 388
eda42934 389This exception applies only when Bison is generating C code for an
c827f760
PE
390@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
391as usual. You can
262aa8dd
PE
392tell whether the exception applies to your @samp{.c} output file by
393inspecting it to see whether it says ``As a special exception, when
394this file is copied by Bison into a Bison output file, you may use
395that output file without restriction.''
396
c67a198d 397@include gpl.texi
bfa74976 398
342b8b6e 399@node Concepts
bfa74976
RS
400@chapter The Concepts of Bison
401
402This chapter introduces many of the basic concepts without which the
403details of Bison will not make sense. If you do not already know how to
404use Bison or Yacc, we suggest you start by reading this chapter carefully.
405
406@menu
407* Language and Grammar:: Languages and context-free grammars,
408 as mathematical ideas.
409* Grammar in Bison:: How we represent grammars for Bison's sake.
410* Semantic Values:: Each token or syntactic grouping can have
411 a semantic value (the value of an integer,
412 the name of an identifier, etc.).
413* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 414* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 415* Locations Overview:: Tracking Locations.
bfa74976
RS
416* Bison Parser:: What are Bison's input and output,
417 how is the output used?
418* Stages:: Stages in writing and running Bison grammars.
419* Grammar Layout:: Overall structure of a Bison grammar file.
420@end menu
421
342b8b6e 422@node Language and Grammar
bfa74976
RS
423@section Languages and Context-Free Grammars
424
bfa74976
RS
425@cindex context-free grammar
426@cindex grammar, context-free
427In order for Bison to parse a language, it must be described by a
428@dfn{context-free grammar}. This means that you specify one or more
429@dfn{syntactic groupings} and give rules for constructing them from their
430parts. For example, in the C language, one kind of grouping is called an
431`expression'. One rule for making an expression might be, ``An expression
432can be made of a minus sign and another expression''. Another would be,
433``An expression can be an integer''. As you can see, rules are often
434recursive, but there must be at least one rule which leads out of the
435recursion.
436
c827f760 437@cindex @acronym{BNF}
bfa74976
RS
438@cindex Backus-Naur form
439The most common formal system for presenting such rules for humans to read
c827f760
PE
440is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
441order to specify the language Algol 60. Any grammar expressed in
442@acronym{BNF} is a context-free grammar. The input to Bison is
443essentially machine-readable @acronym{BNF}.
bfa74976 444
c827f760
PE
445@cindex @acronym{LALR}(1) grammars
446@cindex @acronym{LR}(1) grammars
676385e2
PH
447There are various important subclasses of context-free grammar. Although it
448can handle almost all context-free grammars, Bison is optimized for what
c827f760 449are called @acronym{LALR}(1) grammars.
676385e2 450In brief, in these grammars, it must be possible to
bfa74976
RS
451tell how to parse any portion of an input string with just a single
452token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
453@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
454restrictions that are
bfa74976 455hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
456@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
457@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
458more information on this.
bfa74976 459
c827f760
PE
460@cindex @acronym{GLR} parsing
461@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
462@cindex ambiguous grammars
463@cindex non-deterministic parsing
9501dc6e
AD
464
465Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
466roughly that the next grammar rule to apply at any point in the input is
467uniquely determined by the preceding input and a fixed, finite portion
468(called a @dfn{look-ahead}) of the remaining input. A context-free
469grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 470apply the grammar rules to get the same inputs. Even unambiguous
9501dc6e
AD
471grammars can be @dfn{non-deterministic}, meaning that no fixed
472look-ahead always suffices to determine the next grammar rule to apply.
473With the proper declarations, Bison is also able to parse these more
474general context-free grammars, using a technique known as @acronym{GLR}
475parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
476are able to handle any context-free grammar for which the number of
477possible parses of any given string is finite.
676385e2 478
bfa74976
RS
479@cindex symbols (abstract)
480@cindex token
481@cindex syntactic grouping
482@cindex grouping, syntactic
9501dc6e
AD
483In the formal grammatical rules for a language, each kind of syntactic
484unit or grouping is named by a @dfn{symbol}. Those which are built by
485grouping smaller constructs according to grammatical rules are called
bfa74976
RS
486@dfn{nonterminal symbols}; those which can't be subdivided are called
487@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
488corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 489corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
490
491We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
492nonterminal, mean. The tokens of C are identifiers, constants (numeric
493and string), and the various keywords, arithmetic operators and
494punctuation marks. So the terminal symbols of a grammar for C include
495`identifier', `number', `string', plus one symbol for each keyword,
496operator or punctuation mark: `if', `return', `const', `static', `int',
497`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
498(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
499lexicography, not grammar.)
500
501Here is a simple C function subdivided into tokens:
502
9edcd895
AD
503@ifinfo
504@example
505int /* @r{keyword `int'} */
14d4662b 506square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
507 @r{identifier, close-paren} */
508@{ /* @r{open-brace} */
509 return x * x; /* @r{keyword `return', identifier, asterisk,
510 identifier, semicolon} */
511@} /* @r{close-brace} */
512@end example
513@end ifinfo
514@ifnotinfo
bfa74976
RS
515@example
516int /* @r{keyword `int'} */
14d4662b 517square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 518@{ /* @r{open-brace} */
9edcd895 519 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
520@} /* @r{close-brace} */
521@end example
9edcd895 522@end ifnotinfo
bfa74976
RS
523
524The syntactic groupings of C include the expression, the statement, the
525declaration, and the function definition. These are represented in the
526grammar of C by nonterminal symbols `expression', `statement',
527`declaration' and `function definition'. The full grammar uses dozens of
528additional language constructs, each with its own nonterminal symbol, in
529order to express the meanings of these four. The example above is a
530function definition; it contains one declaration, and one statement. In
531the statement, each @samp{x} is an expression and so is @samp{x * x}.
532
533Each nonterminal symbol must have grammatical rules showing how it is made
534out of simpler constructs. For example, one kind of C statement is the
535@code{return} statement; this would be described with a grammar rule which
536reads informally as follows:
537
538@quotation
539A `statement' can be made of a `return' keyword, an `expression' and a
540`semicolon'.
541@end quotation
542
543@noindent
544There would be many other rules for `statement', one for each kind of
545statement in C.
546
547@cindex start symbol
548One nonterminal symbol must be distinguished as the special one which
549defines a complete utterance in the language. It is called the @dfn{start
550symbol}. In a compiler, this means a complete input program. In the C
551language, the nonterminal symbol `sequence of definitions and declarations'
552plays this role.
553
554For example, @samp{1 + 2} is a valid C expression---a valid part of a C
555program---but it is not valid as an @emph{entire} C program. In the
556context-free grammar of C, this follows from the fact that `expression' is
557not the start symbol.
558
559The Bison parser reads a sequence of tokens as its input, and groups the
560tokens using the grammar rules. If the input is valid, the end result is
561that the entire token sequence reduces to a single grouping whose symbol is
562the grammar's start symbol. If we use a grammar for C, the entire input
563must be a `sequence of definitions and declarations'. If not, the parser
564reports a syntax error.
565
342b8b6e 566@node Grammar in Bison
bfa74976
RS
567@section From Formal Rules to Bison Input
568@cindex Bison grammar
569@cindex grammar, Bison
570@cindex formal grammar
571
572A formal grammar is a mathematical construct. To define the language
573for Bison, you must write a file expressing the grammar in Bison syntax:
574a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
575
576A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 577as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
578in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
579
580The Bison representation for a terminal symbol is also called a @dfn{token
581type}. Token types as well can be represented as C-like identifiers. By
582convention, these identifiers should be upper case to distinguish them from
583nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
584@code{RETURN}. A terminal symbol that stands for a particular keyword in
585the language should be named after that keyword converted to upper case.
586The terminal symbol @code{error} is reserved for error recovery.
931c7513 587@xref{Symbols}.
bfa74976
RS
588
589A terminal symbol can also be represented as a character literal, just like
590a C character constant. You should do this whenever a token is just a
591single character (parenthesis, plus-sign, etc.): use that same character in
592a literal as the terminal symbol for that token.
593
931c7513
RS
594A third way to represent a terminal symbol is with a C string constant
595containing several characters. @xref{Symbols}, for more information.
596
bfa74976
RS
597The grammar rules also have an expression in Bison syntax. For example,
598here is the Bison rule for a C @code{return} statement. The semicolon in
599quotes is a literal character token, representing part of the C syntax for
600the statement; the naked semicolon, and the colon, are Bison punctuation
601used in every rule.
602
603@example
604stmt: RETURN expr ';'
605 ;
606@end example
607
608@noindent
609@xref{Rules, ,Syntax of Grammar Rules}.
610
342b8b6e 611@node Semantic Values
bfa74976
RS
612@section Semantic Values
613@cindex semantic value
614@cindex value, semantic
615
616A formal grammar selects tokens only by their classifications: for example,
617if a rule mentions the terminal symbol `integer constant', it means that
618@emph{any} integer constant is grammatically valid in that position. The
619precise value of the constant is irrelevant to how to parse the input: if
620@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 621grammatical.
bfa74976
RS
622
623But the precise value is very important for what the input means once it is
624parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6253989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
626has both a token type and a @dfn{semantic value}. @xref{Semantics,
627,Defining Language Semantics},
bfa74976
RS
628for details.
629
630The token type is a terminal symbol defined in the grammar, such as
631@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
632you need to know to decide where the token may validly appear and how to
633group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 634except their types.
bfa74976
RS
635
636The semantic value has all the rest of the information about the
637meaning of the token, such as the value of an integer, or the name of an
638identifier. (A token such as @code{','} which is just punctuation doesn't
639need to have any semantic value.)
640
641For example, an input token might be classified as token type
642@code{INTEGER} and have the semantic value 4. Another input token might
643have the same token type @code{INTEGER} but value 3989. When a grammar
644rule says that @code{INTEGER} is allowed, either of these tokens is
645acceptable because each is an @code{INTEGER}. When the parser accepts the
646token, it keeps track of the token's semantic value.
647
648Each grouping can also have a semantic value as well as its nonterminal
649symbol. For example, in a calculator, an expression typically has a
650semantic value that is a number. In a compiler for a programming
651language, an expression typically has a semantic value that is a tree
652structure describing the meaning of the expression.
653
342b8b6e 654@node Semantic Actions
bfa74976
RS
655@section Semantic Actions
656@cindex semantic actions
657@cindex actions, semantic
658
659In order to be useful, a program must do more than parse input; it must
660also produce some output based on the input. In a Bison grammar, a grammar
661rule can have an @dfn{action} made up of C statements. Each time the
662parser recognizes a match for that rule, the action is executed.
663@xref{Actions}.
13863333 664
bfa74976
RS
665Most of the time, the purpose of an action is to compute the semantic value
666of the whole construct from the semantic values of its parts. For example,
667suppose we have a rule which says an expression can be the sum of two
668expressions. When the parser recognizes such a sum, each of the
669subexpressions has a semantic value which describes how it was built up.
670The action for this rule should create a similar sort of value for the
671newly recognized larger expression.
672
673For example, here is a rule that says an expression can be the sum of
674two subexpressions:
675
676@example
677expr: expr '+' expr @{ $$ = $1 + $3; @}
678 ;
679@end example
680
681@noindent
682The action says how to produce the semantic value of the sum expression
683from the values of the two subexpressions.
684
676385e2 685@node GLR Parsers
c827f760
PE
686@section Writing @acronym{GLR} Parsers
687@cindex @acronym{GLR} parsing
688@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
689@findex %glr-parser
690@cindex conflicts
691@cindex shift/reduce conflicts
fa7e68c3 692@cindex reduce/reduce conflicts
676385e2 693
fa7e68c3 694In some grammars, Bison's standard
9501dc6e
AD
695@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
696certain grammar rule at a given point. That is, it may not be able to
697decide (on the basis of the input read so far) which of two possible
698reductions (applications of a grammar rule) applies, or whether to apply
699a reduction or read more of the input and apply a reduction later in the
700input. These are known respectively as @dfn{reduce/reduce} conflicts
701(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
702(@pxref{Shift/Reduce}).
703
704To use a grammar that is not easily modified to be @acronym{LALR}(1), a
705more general parsing algorithm is sometimes necessary. If you include
676385e2 706@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 707(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
708(@acronym{GLR}) parser. These parsers handle Bison grammars that
709contain no unresolved conflicts (i.e., after applying precedence
710declarations) identically to @acronym{LALR}(1) parsers. However, when
711faced with unresolved shift/reduce and reduce/reduce conflicts,
712@acronym{GLR} parsers use the simple expedient of doing both,
713effectively cloning the parser to follow both possibilities. Each of
714the resulting parsers can again split, so that at any given time, there
715can be any number of possible parses being explored. The parsers
676385e2
PH
716proceed in lockstep; that is, all of them consume (shift) a given input
717symbol before any of them proceed to the next. Each of the cloned
718parsers eventually meets one of two possible fates: either it runs into
719a parsing error, in which case it simply vanishes, or it merges with
720another parser, because the two of them have reduced the input to an
721identical set of symbols.
722
723During the time that there are multiple parsers, semantic actions are
724recorded, but not performed. When a parser disappears, its recorded
725semantic actions disappear as well, and are never performed. When a
726reduction makes two parsers identical, causing them to merge, Bison
727records both sets of semantic actions. Whenever the last two parsers
728merge, reverting to the single-parser case, Bison resolves all the
729outstanding actions either by precedences given to the grammar rules
730involved, or by performing both actions, and then calling a designated
731user-defined function on the resulting values to produce an arbitrary
732merged result.
733
fa7e68c3
PE
734@menu
735* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
736* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
737* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
738@end menu
739
740@node Simple GLR Parsers
741@subsection Using @acronym{GLR} on Unambiguous Grammars
742@cindex @acronym{GLR} parsing, unambiguous grammars
743@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
744@findex %glr-parser
745@findex %expect-rr
746@cindex conflicts
747@cindex reduce/reduce conflicts
748@cindex shift/reduce conflicts
749
750In the simplest cases, you can use the @acronym{GLR} algorithm
751to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
752Such grammars typically require more than one symbol of look-ahead,
753or (in rare cases) fall into the category of grammars in which the
754@acronym{LALR}(1) algorithm throws away too much information (they are in
755@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
756
757Consider a problem that
758arises in the declaration of enumerated and subrange types in the
759programming language Pascal. Here are some examples:
760
761@example
762type subrange = lo .. hi;
763type enum = (a, b, c);
764@end example
765
766@noindent
767The original language standard allows only numeric
768literals and constant identifiers for the subrange bounds (@samp{lo}
769and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77010206) and many other
771Pascal implementations allow arbitrary expressions there. This gives
772rise to the following situation, containing a superfluous pair of
773parentheses:
774
775@example
776type subrange = (a) .. b;
777@end example
778
779@noindent
780Compare this to the following declaration of an enumerated
781type with only one value:
782
783@example
784type enum = (a);
785@end example
786
787@noindent
788(These declarations are contrived, but they are syntactically
789valid, and more-complicated cases can come up in practical programs.)
790
791These two declarations look identical until the @samp{..} token.
792With normal @acronym{LALR}(1) one-token look-ahead it is not
793possible to decide between the two forms when the identifier
794@samp{a} is parsed. It is, however, desirable
795for a parser to decide this, since in the latter case
796@samp{a} must become a new identifier to represent the enumeration
797value, while in the former case @samp{a} must be evaluated with its
798current meaning, which may be a constant or even a function call.
799
800You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
801to be resolved later, but this typically requires substantial
802contortions in both semantic actions and large parts of the
803grammar, where the parentheses are nested in the recursive rules for
804expressions.
805
806You might think of using the lexer to distinguish between the two
807forms by returning different tokens for currently defined and
808undefined identifiers. But if these declarations occur in a local
809scope, and @samp{a} is defined in an outer scope, then both forms
810are possible---either locally redefining @samp{a}, or using the
811value of @samp{a} from the outer scope. So this approach cannot
812work.
813
e757bb10 814A simple solution to this problem is to declare the parser to
fa7e68c3
PE
815use the @acronym{GLR} algorithm.
816When the @acronym{GLR} parser reaches the critical state, it
817merely splits into two branches and pursues both syntax rules
818simultaneously. Sooner or later, one of them runs into a parsing
819error. If there is a @samp{..} token before the next
820@samp{;}, the rule for enumerated types fails since it cannot
821accept @samp{..} anywhere; otherwise, the subrange type rule
822fails since it requires a @samp{..} token. So one of the branches
823fails silently, and the other one continues normally, performing
824all the intermediate actions that were postponed during the split.
825
826If the input is syntactically incorrect, both branches fail and the parser
827reports a syntax error as usual.
828
829The effect of all this is that the parser seems to ``guess'' the
830correct branch to take, or in other words, it seems to use more
831look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
832for. In this example, @acronym{LALR}(2) would suffice, but also some cases
833that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
834
835In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
836and the current Bison parser even takes exponential time and space
837for some grammars. In practice, this rarely happens, and for many
838grammars it is possible to prove that it cannot happen.
839The present example contains only one conflict between two
840rules, and the type-declaration context containing the conflict
841cannot be nested. So the number of
842branches that can exist at any time is limited by the constant 2,
843and the parsing time is still linear.
844
845Here is a Bison grammar corresponding to the example above. It
846parses a vastly simplified form of Pascal type declarations.
847
848@example
849%token TYPE DOTDOT ID
850
851@group
852%left '+' '-'
853%left '*' '/'
854@end group
855
856%%
857
858@group
859type_decl : TYPE ID '=' type ';'
860 ;
861@end group
862
863@group
864type : '(' id_list ')'
865 | expr DOTDOT expr
866 ;
867@end group
868
869@group
870id_list : ID
871 | id_list ',' ID
872 ;
873@end group
874
875@group
876expr : '(' expr ')'
877 | expr '+' expr
878 | expr '-' expr
879 | expr '*' expr
880 | expr '/' expr
881 | ID
882 ;
883@end group
884@end example
885
886When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
887about one reduce/reduce conflict. In the conflicting situation the
888parser chooses one of the alternatives, arbitrarily the one
889declared first. Therefore the following correct input is not
890recognized:
891
892@example
893type t = (a) .. b;
894@end example
895
896The parser can be turned into a @acronym{GLR} parser, while also telling Bison
897to be silent about the one known reduce/reduce conflict, by
e757bb10 898adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
899@samp{%%}):
900
901@example
902%glr-parser
903%expect-rr 1
904@end example
905
906@noindent
907No change in the grammar itself is required. Now the
908parser recognizes all valid declarations, according to the
909limited syntax above, transparently. In fact, the user does not even
910notice when the parser splits.
911
912So here we have a case where we can use the benefits of @acronym{GLR}, almost
913without disadvantages. Even in simple cases like this, however, there
914are at least two potential problems to beware.
915First, always analyze the conflicts reported by
916Bison to make sure that @acronym{GLR} splitting is only done where it is
917intended. A @acronym{GLR} parser splitting inadvertently may cause
918problems less obvious than an @acronym{LALR} parser statically choosing the
919wrong alternative in a conflict.
e757bb10 920Second, consider interactions with the lexer (@pxref{Semantic Tokens})
fa7e68c3
PE
921with great care. Since a split parser consumes tokens
922without performing any actions during the split, the lexer cannot
923obtain information via parser actions. Some cases of
924lexer interactions can be eliminated by using @acronym{GLR} to
925shift the complications from the lexer to the parser. You must check
926the remaining cases for correctness.
927
928In our example, it would be safe for the lexer to return tokens
929based on their current meanings in some symbol table, because no new
930symbols are defined in the middle of a type declaration. Though it
931is possible for a parser to define the enumeration
932constants as they are parsed, before the type declaration is
933completed, it actually makes no difference since they cannot be used
934within the same enumerated type declaration.
935
936@node Merging GLR Parses
937@subsection Using @acronym{GLR} to Resolve Ambiguities
938@cindex @acronym{GLR} parsing, ambiguous grammars
939@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
940@findex %dprec
941@findex %merge
942@cindex conflicts
943@cindex reduce/reduce conflicts
944
2a8d363a 945Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
946
947@example
948%@{
38a92d50
PE
949 #include <stdio.h>
950 #define YYSTYPE char const *
951 int yylex (void);
952 void yyerror (char const *);
676385e2
PH
953%@}
954
955%token TYPENAME ID
956
957%right '='
958%left '+'
959
960%glr-parser
961
962%%
963
fae437e8 964prog :
676385e2
PH
965 | prog stmt @{ printf ("\n"); @}
966 ;
967
968stmt : expr ';' %dprec 1
969 | decl %dprec 2
970 ;
971
2a8d363a 972expr : ID @{ printf ("%s ", $$); @}
fae437e8 973 | TYPENAME '(' expr ')'
2a8d363a
AD
974 @{ printf ("%s <cast> ", $1); @}
975 | expr '+' expr @{ printf ("+ "); @}
976 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
977 ;
978
fae437e8 979decl : TYPENAME declarator ';'
2a8d363a 980 @{ printf ("%s <declare> ", $1); @}
676385e2 981 | TYPENAME declarator '=' expr ';'
2a8d363a 982 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
983 ;
984
2a8d363a 985declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
986 | '(' declarator ')'
987 ;
988@end example
989
990@noindent
991This models a problematic part of the C++ grammar---the ambiguity between
992certain declarations and statements. For example,
993
994@example
995T (x) = y+z;
996@end example
997
998@noindent
999parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1000(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1001@samp{x} as an @code{ID}).
676385e2 1002Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1003@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1004time it encounters @code{x} in the example above. Since this is a
1005@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1006each choice of resolving the reduce/reduce conflict.
1007Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1008however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1009ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1010the other reduces @code{stmt : decl}, after which both parsers are in an
1011identical state: they've seen @samp{prog stmt} and have the same unprocessed
1012input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1013
1014At this point, the @acronym{GLR} parser requires a specification in the
1015grammar of how to choose between the competing parses.
1016In the example above, the two @code{%dprec}
e757bb10 1017declarations specify that Bison is to give precedence
fa7e68c3 1018to the parse that interprets the example as a
676385e2
PH
1019@code{decl}, which implies that @code{x} is a declarator.
1020The parser therefore prints
1021
1022@example
fae437e8 1023"x" y z + T <init-declare>
676385e2
PH
1024@end example
1025
fa7e68c3
PE
1026The @code{%dprec} declarations only come into play when more than one
1027parse survives. Consider a different input string for this parser:
676385e2
PH
1028
1029@example
1030T (x) + y;
1031@end example
1032
1033@noindent
e757bb10 1034This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1035construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1036Here, there is no ambiguity (this cannot be parsed as a declaration).
1037However, at the time the Bison parser encounters @code{x}, it does not
1038have enough information to resolve the reduce/reduce conflict (again,
1039between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1040case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1041into two, one assuming that @code{x} is an @code{expr}, and the other
1042assuming @code{x} is a @code{declarator}. The second of these parsers
1043then vanishes when it sees @code{+}, and the parser prints
1044
1045@example
fae437e8 1046x T <cast> y +
676385e2
PH
1047@end example
1048
1049Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1050the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1051actions of the two possible parsers, rather than choosing one over the
1052other. To do so, you could change the declaration of @code{stmt} as
1053follows:
1054
1055@example
1056stmt : expr ';' %merge <stmtMerge>
1057 | decl %merge <stmtMerge>
1058 ;
1059@end example
1060
1061@noindent
676385e2
PH
1062and define the @code{stmtMerge} function as:
1063
1064@example
38a92d50
PE
1065static YYSTYPE
1066stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1067@{
1068 printf ("<OR> ");
1069 return "";
1070@}
1071@end example
1072
1073@noindent
1074with an accompanying forward declaration
1075in the C declarations at the beginning of the file:
1076
1077@example
1078%@{
38a92d50 1079 #define YYSTYPE char const *
676385e2
PH
1080 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1081%@}
1082@end example
1083
1084@noindent
fa7e68c3
PE
1085With these declarations, the resulting parser parses the first example
1086as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1087
1088@example
fae437e8 1089"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1090@end example
1091
fa7e68c3 1092Bison requires that all of the
e757bb10 1093productions that participate in any particular merge have identical
fa7e68c3
PE
1094@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1095and the parser will report an error during any parse that results in
1096the offending merge.
9501dc6e 1097
fa7e68c3
PE
1098@node Compiler Requirements
1099@subsection Considerations when Compiling @acronym{GLR} Parsers
1100@cindex @code{inline}
9501dc6e 1101@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1102
38a92d50
PE
1103The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1104later. In addition, they use the @code{inline} keyword, which is not
1105C89, but is C99 and is a common extension in pre-C99 compilers. It is
1106up to the user of these parsers to handle
9501dc6e
AD
1107portability issues. For instance, if using Autoconf and the Autoconf
1108macro @code{AC_C_INLINE}, a mere
1109
1110@example
1111%@{
38a92d50 1112 #include <config.h>
9501dc6e
AD
1113%@}
1114@end example
1115
1116@noindent
1117will suffice. Otherwise, we suggest
1118
1119@example
1120%@{
38a92d50
PE
1121 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1122 #define inline
1123 #endif
9501dc6e
AD
1124%@}
1125@end example
676385e2 1126
342b8b6e 1127@node Locations Overview
847bf1f5
AD
1128@section Locations
1129@cindex location
95923bd6
AD
1130@cindex textual location
1131@cindex location, textual
847bf1f5
AD
1132
1133Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1134and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1135the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1136Bison provides a mechanism for handling these locations.
1137
72d2299c 1138Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1139associated location, but the type of locations is the same for all tokens and
72d2299c 1140groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1141structure for storing locations (@pxref{Locations}, for more details).
1142
1143Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1144set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1145is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1146@code{@@3}.
1147
1148When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1149of its left hand side (@pxref{Actions}). In the same way, another default
1150action is used for locations. However, the action for locations is general
847bf1f5 1151enough for most cases, meaning there is usually no need to describe for each
72d2299c 1152rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1153grouping, the default behavior of the output parser is to take the beginning
1154of the first symbol, and the end of the last symbol.
1155
342b8b6e 1156@node Bison Parser
bfa74976
RS
1157@section Bison Output: the Parser File
1158@cindex Bison parser
1159@cindex Bison utility
1160@cindex lexical analyzer, purpose
1161@cindex parser
1162
1163When you run Bison, you give it a Bison grammar file as input. The output
1164is a C source file that parses the language described by the grammar.
1165This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1166utility and the Bison parser are two distinct programs: the Bison utility
1167is a program whose output is the Bison parser that becomes part of your
1168program.
1169
1170The job of the Bison parser is to group tokens into groupings according to
1171the grammar rules---for example, to build identifiers and operators into
1172expressions. As it does this, it runs the actions for the grammar rules it
1173uses.
1174
704a47c4
AD
1175The tokens come from a function called the @dfn{lexical analyzer} that
1176you must supply in some fashion (such as by writing it in C). The Bison
1177parser calls the lexical analyzer each time it wants a new token. It
1178doesn't know what is ``inside'' the tokens (though their semantic values
1179may reflect this). Typically the lexical analyzer makes the tokens by
1180parsing characters of text, but Bison does not depend on this.
1181@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1182
1183The Bison parser file is C code which defines a function named
1184@code{yyparse} which implements that grammar. This function does not make
1185a complete C program: you must supply some additional functions. One is
1186the lexical analyzer. Another is an error-reporting function which the
1187parser calls to report an error. In addition, a complete C program must
1188start with a function called @code{main}; you have to provide this, and
1189arrange for it to call @code{yyparse} or the parser will never run.
1190@xref{Interface, ,Parser C-Language Interface}.
1191
f7ab6a50 1192Aside from the token type names and the symbols in the actions you
7093d0f5 1193write, all symbols defined in the Bison parser file itself
bfa74976
RS
1194begin with @samp{yy} or @samp{YY}. This includes interface functions
1195such as the lexical analyzer function @code{yylex}, the error reporting
1196function @code{yyerror} and the parser function @code{yyparse} itself.
1197This also includes numerous identifiers used for internal purposes.
1198Therefore, you should avoid using C identifiers starting with @samp{yy}
1199or @samp{YY} in the Bison grammar file except for the ones defined in
1200this manual.
1201
7093d0f5
AD
1202In some cases the Bison parser file includes system headers, and in
1203those cases your code should respect the identifiers reserved by those
c827f760 1204headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 1205@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
ec3bc396
AD
1206declare memory allocators and related types. Other system headers may
1207be included if you define @code{YYDEBUG} to a nonzero value
1208(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1209
342b8b6e 1210@node Stages
bfa74976
RS
1211@section Stages in Using Bison
1212@cindex stages in using Bison
1213@cindex using Bison
1214
1215The actual language-design process using Bison, from grammar specification
1216to a working compiler or interpreter, has these parts:
1217
1218@enumerate
1219@item
1220Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1221(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1222in the language, describe the action that is to be taken when an
1223instance of that rule is recognized. The action is described by a
1224sequence of C statements.
bfa74976
RS
1225
1226@item
704a47c4
AD
1227Write a lexical analyzer to process input and pass tokens to the parser.
1228The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1229Lexical Analyzer Function @code{yylex}}). It could also be produced
1230using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1231
1232@item
1233Write a controlling function that calls the Bison-produced parser.
1234
1235@item
1236Write error-reporting routines.
1237@end enumerate
1238
1239To turn this source code as written into a runnable program, you
1240must follow these steps:
1241
1242@enumerate
1243@item
1244Run Bison on the grammar to produce the parser.
1245
1246@item
1247Compile the code output by Bison, as well as any other source files.
1248
1249@item
1250Link the object files to produce the finished product.
1251@end enumerate
1252
342b8b6e 1253@node Grammar Layout
bfa74976
RS
1254@section The Overall Layout of a Bison Grammar
1255@cindex grammar file
1256@cindex file format
1257@cindex format of grammar file
1258@cindex layout of Bison grammar
1259
1260The input file for the Bison utility is a @dfn{Bison grammar file}. The
1261general form of a Bison grammar file is as follows:
1262
1263@example
1264%@{
08e49d20 1265@var{Prologue}
bfa74976
RS
1266%@}
1267
1268@var{Bison declarations}
1269
1270%%
1271@var{Grammar rules}
1272%%
08e49d20 1273@var{Epilogue}
bfa74976
RS
1274@end example
1275
1276@noindent
1277The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1278in every Bison grammar file to separate the sections.
1279
72d2299c 1280The prologue may define types and variables used in the actions. You can
342b8b6e 1281also use preprocessor commands to define macros used there, and use
bfa74976 1282@code{#include} to include header files that do any of these things.
38a92d50
PE
1283You need to declare the lexical analyzer @code{yylex} and the error
1284printer @code{yyerror} here, along with any other global identifiers
1285used by the actions in the grammar rules.
bfa74976
RS
1286
1287The Bison declarations declare the names of the terminal and nonterminal
1288symbols, and may also describe operator precedence and the data types of
1289semantic values of various symbols.
1290
1291The grammar rules define how to construct each nonterminal symbol from its
1292parts.
1293
38a92d50
PE
1294The epilogue can contain any code you want to use. Often the
1295definitions of functions declared in the prologue go here. In a
1296simple program, all the rest of the program can go here.
bfa74976 1297
342b8b6e 1298@node Examples
bfa74976
RS
1299@chapter Examples
1300@cindex simple examples
1301@cindex examples, simple
1302
1303Now we show and explain three sample programs written using Bison: a
1304reverse polish notation calculator, an algebraic (infix) notation
1305calculator, and a multi-function calculator. All three have been tested
1306under BSD Unix 4.3; each produces a usable, though limited, interactive
1307desk-top calculator.
1308
1309These examples are simple, but Bison grammars for real programming
1310languages are written the same way.
1311@ifinfo
1312You can copy these examples out of the Info file and into a source file
1313to try them.
1314@end ifinfo
1315
1316@menu
1317* RPN Calc:: Reverse polish notation calculator;
1318 a first example with no operator precedence.
1319* Infix Calc:: Infix (algebraic) notation calculator.
1320 Operator precedence is introduced.
1321* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1322* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1323* Multi-function Calc:: Calculator with memory and trig functions.
1324 It uses multiple data-types for semantic values.
1325* Exercises:: Ideas for improving the multi-function calculator.
1326@end menu
1327
342b8b6e 1328@node RPN Calc
bfa74976
RS
1329@section Reverse Polish Notation Calculator
1330@cindex reverse polish notation
1331@cindex polish notation calculator
1332@cindex @code{rpcalc}
1333@cindex calculator, simple
1334
1335The first example is that of a simple double-precision @dfn{reverse polish
1336notation} calculator (a calculator using postfix operators). This example
1337provides a good starting point, since operator precedence is not an issue.
1338The second example will illustrate how operator precedence is handled.
1339
1340The source code for this calculator is named @file{rpcalc.y}. The
1341@samp{.y} extension is a convention used for Bison input files.
1342
1343@menu
75f5aaea 1344* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1345* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1346* Lexer: Rpcalc Lexer. The lexical analyzer.
1347* Main: Rpcalc Main. The controlling function.
1348* Error: Rpcalc Error. The error reporting function.
1349* Gen: Rpcalc Gen. Running Bison on the grammar file.
1350* Comp: Rpcalc Compile. Run the C compiler on the output code.
1351@end menu
1352
342b8b6e 1353@node Rpcalc Decls
bfa74976
RS
1354@subsection Declarations for @code{rpcalc}
1355
1356Here are the C and Bison declarations for the reverse polish notation
1357calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1358
1359@example
72d2299c 1360/* Reverse polish notation calculator. */
bfa74976
RS
1361
1362%@{
38a92d50
PE
1363 #define YYSTYPE double
1364 #include <math.h>
1365 int yylex (void);
1366 void yyerror (char const *);
bfa74976
RS
1367%@}
1368
1369%token NUM
1370
72d2299c 1371%% /* Grammar rules and actions follow. */
bfa74976
RS
1372@end example
1373
75f5aaea 1374The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1375preprocessor directives and two forward declarations.
bfa74976
RS
1376
1377The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1378specifying the C data type for semantic values of both tokens and
1379groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1380Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1381don't define it, @code{int} is the default. Because we specify
1382@code{double}, each token and each expression has an associated value,
1383which is a floating point number.
bfa74976
RS
1384
1385The @code{#include} directive is used to declare the exponentiation
1386function @code{pow}.
1387
38a92d50
PE
1388The forward declarations for @code{yylex} and @code{yyerror} are
1389needed because the C language requires that functions be declared
1390before they are used. These functions will be defined in the
1391epilogue, but the parser calls them so they must be declared in the
1392prologue.
1393
704a47c4
AD
1394The second section, Bison declarations, provides information to Bison
1395about the token types (@pxref{Bison Declarations, ,The Bison
1396Declarations Section}). Each terminal symbol that is not a
1397single-character literal must be declared here. (Single-character
bfa74976
RS
1398literals normally don't need to be declared.) In this example, all the
1399arithmetic operators are designated by single-character literals, so the
1400only terminal symbol that needs to be declared is @code{NUM}, the token
1401type for numeric constants.
1402
342b8b6e 1403@node Rpcalc Rules
bfa74976
RS
1404@subsection Grammar Rules for @code{rpcalc}
1405
1406Here are the grammar rules for the reverse polish notation calculator.
1407
1408@example
1409input: /* empty */
1410 | input line
1411;
1412
1413line: '\n'
18b519c0 1414 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1415;
1416
18b519c0
AD
1417exp: NUM @{ $$ = $1; @}
1418 | exp exp '+' @{ $$ = $1 + $2; @}
1419 | exp exp '-' @{ $$ = $1 - $2; @}
1420 | exp exp '*' @{ $$ = $1 * $2; @}
1421 | exp exp '/' @{ $$ = $1 / $2; @}
1422 /* Exponentiation */
1423 | exp exp '^' @{ $$ = pow ($1, $2); @}
1424 /* Unary minus */
1425 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1426;
1427%%
1428@end example
1429
1430The groupings of the rpcalc ``language'' defined here are the expression
1431(given the name @code{exp}), the line of input (@code{line}), and the
1432complete input transcript (@code{input}). Each of these nonterminal
1433symbols has several alternate rules, joined by the @samp{|} punctuator
1434which is read as ``or''. The following sections explain what these rules
1435mean.
1436
1437The semantics of the language is determined by the actions taken when a
1438grouping is recognized. The actions are the C code that appears inside
1439braces. @xref{Actions}.
1440
1441You must specify these actions in C, but Bison provides the means for
1442passing semantic values between the rules. In each action, the
1443pseudo-variable @code{$$} stands for the semantic value for the grouping
1444that the rule is going to construct. Assigning a value to @code{$$} is the
1445main job of most actions. The semantic values of the components of the
1446rule are referred to as @code{$1}, @code{$2}, and so on.
1447
1448@menu
13863333
AD
1449* Rpcalc Input::
1450* Rpcalc Line::
1451* Rpcalc Expr::
bfa74976
RS
1452@end menu
1453
342b8b6e 1454@node Rpcalc Input
bfa74976
RS
1455@subsubsection Explanation of @code{input}
1456
1457Consider the definition of @code{input}:
1458
1459@example
1460input: /* empty */
1461 | input line
1462;
1463@end example
1464
1465This definition reads as follows: ``A complete input is either an empty
1466string, or a complete input followed by an input line''. Notice that
1467``complete input'' is defined in terms of itself. This definition is said
1468to be @dfn{left recursive} since @code{input} appears always as the
1469leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1470
1471The first alternative is empty because there are no symbols between the
1472colon and the first @samp{|}; this means that @code{input} can match an
1473empty string of input (no tokens). We write the rules this way because it
1474is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1475It's conventional to put an empty alternative first and write the comment
1476@samp{/* empty */} in it.
1477
1478The second alternate rule (@code{input line}) handles all nontrivial input.
1479It means, ``After reading any number of lines, read one more line if
1480possible.'' The left recursion makes this rule into a loop. Since the
1481first alternative matches empty input, the loop can be executed zero or
1482more times.
1483
1484The parser function @code{yyparse} continues to process input until a
1485grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1486input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1487
342b8b6e 1488@node Rpcalc Line
bfa74976
RS
1489@subsubsection Explanation of @code{line}
1490
1491Now consider the definition of @code{line}:
1492
1493@example
1494line: '\n'
1495 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1496;
1497@end example
1498
1499The first alternative is a token which is a newline character; this means
1500that rpcalc accepts a blank line (and ignores it, since there is no
1501action). The second alternative is an expression followed by a newline.
1502This is the alternative that makes rpcalc useful. The semantic value of
1503the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1504question is the first symbol in the alternative. The action prints this
1505value, which is the result of the computation the user asked for.
1506
1507This action is unusual because it does not assign a value to @code{$$}. As
1508a consequence, the semantic value associated with the @code{line} is
1509uninitialized (its value will be unpredictable). This would be a bug if
1510that value were ever used, but we don't use it: once rpcalc has printed the
1511value of the user's input line, that value is no longer needed.
1512
342b8b6e 1513@node Rpcalc Expr
bfa74976
RS
1514@subsubsection Explanation of @code{expr}
1515
1516The @code{exp} grouping has several rules, one for each kind of expression.
1517The first rule handles the simplest expressions: those that are just numbers.
1518The second handles an addition-expression, which looks like two expressions
1519followed by a plus-sign. The third handles subtraction, and so on.
1520
1521@example
1522exp: NUM
1523 | exp exp '+' @{ $$ = $1 + $2; @}
1524 | exp exp '-' @{ $$ = $1 - $2; @}
1525 @dots{}
1526 ;
1527@end example
1528
1529We have used @samp{|} to join all the rules for @code{exp}, but we could
1530equally well have written them separately:
1531
1532@example
1533exp: NUM ;
1534exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1535exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1536 @dots{}
1537@end example
1538
1539Most of the rules have actions that compute the value of the expression in
1540terms of the value of its parts. For example, in the rule for addition,
1541@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1542the second one. The third component, @code{'+'}, has no meaningful
1543associated semantic value, but if it had one you could refer to it as
1544@code{$3}. When @code{yyparse} recognizes a sum expression using this
1545rule, the sum of the two subexpressions' values is produced as the value of
1546the entire expression. @xref{Actions}.
1547
1548You don't have to give an action for every rule. When a rule has no
1549action, Bison by default copies the value of @code{$1} into @code{$$}.
1550This is what happens in the first rule (the one that uses @code{NUM}).
1551
1552The formatting shown here is the recommended convention, but Bison does
72d2299c 1553not require it. You can add or change white space as much as you wish.
bfa74976
RS
1554For example, this:
1555
1556@example
99a9344e 1557exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1558@end example
1559
1560@noindent
1561means the same thing as this:
1562
1563@example
1564exp: NUM
1565 | exp exp '+' @{ $$ = $1 + $2; @}
1566 | @dots{}
99a9344e 1567;
bfa74976
RS
1568@end example
1569
1570@noindent
1571The latter, however, is much more readable.
1572
342b8b6e 1573@node Rpcalc Lexer
bfa74976
RS
1574@subsection The @code{rpcalc} Lexical Analyzer
1575@cindex writing a lexical analyzer
1576@cindex lexical analyzer, writing
1577
704a47c4
AD
1578The lexical analyzer's job is low-level parsing: converting characters
1579or sequences of characters into tokens. The Bison parser gets its
1580tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1581Analyzer Function @code{yylex}}.
bfa74976 1582
c827f760
PE
1583Only a simple lexical analyzer is needed for the @acronym{RPN}
1584calculator. This
bfa74976
RS
1585lexical analyzer skips blanks and tabs, then reads in numbers as
1586@code{double} and returns them as @code{NUM} tokens. Any other character
1587that isn't part of a number is a separate token. Note that the token-code
1588for such a single-character token is the character itself.
1589
1590The return value of the lexical analyzer function is a numeric code which
1591represents a token type. The same text used in Bison rules to stand for
1592this token type is also a C expression for the numeric code for the type.
1593This works in two ways. If the token type is a character literal, then its
e966383b 1594numeric code is that of the character; you can use the same
bfa74976
RS
1595character literal in the lexical analyzer to express the number. If the
1596token type is an identifier, that identifier is defined by Bison as a C
1597macro whose definition is the appropriate number. In this example,
1598therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1599
1964ad8c
AD
1600The semantic value of the token (if it has one) is stored into the
1601global variable @code{yylval}, which is where the Bison parser will look
1602for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1603defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1604,Declarations for @code{rpcalc}}.)
bfa74976 1605
72d2299c
PE
1606A token type code of zero is returned if the end-of-input is encountered.
1607(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1608
1609Here is the code for the lexical analyzer:
1610
1611@example
1612@group
72d2299c 1613/* The lexical analyzer returns a double floating point
e966383b 1614 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1615 of the character read if not a number. It skips all blanks
1616 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1617
1618#include <ctype.h>
1619@end group
1620
1621@group
13863333
AD
1622int
1623yylex (void)
bfa74976
RS
1624@{
1625 int c;
1626
72d2299c 1627 /* Skip white space. */
13863333 1628 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1629 ;
1630@end group
1631@group
72d2299c 1632 /* Process numbers. */
13863333 1633 if (c == '.' || isdigit (c))
bfa74976
RS
1634 @{
1635 ungetc (c, stdin);
1636 scanf ("%lf", &yylval);
1637 return NUM;
1638 @}
1639@end group
1640@group
72d2299c 1641 /* Return end-of-input. */
13863333 1642 if (c == EOF)
bfa74976 1643 return 0;
72d2299c 1644 /* Return a single char. */
13863333 1645 return c;
bfa74976
RS
1646@}
1647@end group
1648@end example
1649
342b8b6e 1650@node Rpcalc Main
bfa74976
RS
1651@subsection The Controlling Function
1652@cindex controlling function
1653@cindex main function in simple example
1654
1655In keeping with the spirit of this example, the controlling function is
1656kept to the bare minimum. The only requirement is that it call
1657@code{yyparse} to start the process of parsing.
1658
1659@example
1660@group
13863333
AD
1661int
1662main (void)
bfa74976 1663@{
13863333 1664 return yyparse ();
bfa74976
RS
1665@}
1666@end group
1667@end example
1668
342b8b6e 1669@node Rpcalc Error
bfa74976
RS
1670@subsection The Error Reporting Routine
1671@cindex error reporting routine
1672
1673When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1674function @code{yyerror} to print an error message (usually but not
6e649e65 1675always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1676@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1677here is the definition we will use:
bfa74976
RS
1678
1679@example
1680@group
1681#include <stdio.h>
1682
38a92d50 1683/* Called by yyparse on error. */
13863333 1684void
38a92d50 1685yyerror (char const *s)
bfa74976 1686@{
4e03e201 1687 fprintf (stderr, "%s\n", s);
bfa74976
RS
1688@}
1689@end group
1690@end example
1691
1692After @code{yyerror} returns, the Bison parser may recover from the error
1693and continue parsing if the grammar contains a suitable error rule
1694(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1695have not written any error rules in this example, so any invalid input will
1696cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1697real calculator, but it is adequate for the first example.
bfa74976 1698
342b8b6e 1699@node Rpcalc Gen
bfa74976
RS
1700@subsection Running Bison to Make the Parser
1701@cindex running Bison (introduction)
1702
ceed8467
AD
1703Before running Bison to produce a parser, we need to decide how to
1704arrange all the source code in one or more source files. For such a
1705simple example, the easiest thing is to put everything in one file. The
1706definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1707end, in the epilogue of the file
75f5aaea 1708(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1709
1710For a large project, you would probably have several source files, and use
1711@code{make} to arrange to recompile them.
1712
1713With all the source in a single file, you use the following command to
1714convert it into a parser file:
1715
1716@example
1717bison @var{file_name}.y
1718@end example
1719
1720@noindent
1721In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1722@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1723removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1724Bison contains the source code for @code{yyparse}. The additional
1725functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1726are copied verbatim to the output.
1727
342b8b6e 1728@node Rpcalc Compile
bfa74976
RS
1729@subsection Compiling the Parser File
1730@cindex compiling the parser
1731
1732Here is how to compile and run the parser file:
1733
1734@example
1735@group
1736# @r{List files in current directory.}
9edcd895 1737$ @kbd{ls}
bfa74976
RS
1738rpcalc.tab.c rpcalc.y
1739@end group
1740
1741@group
1742# @r{Compile the Bison parser.}
1743# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1744$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1745@end group
1746
1747@group
1748# @r{List files again.}
9edcd895 1749$ @kbd{ls}
bfa74976
RS
1750rpcalc rpcalc.tab.c rpcalc.y
1751@end group
1752@end example
1753
1754The file @file{rpcalc} now contains the executable code. Here is an
1755example session using @code{rpcalc}.
1756
1757@example
9edcd895
AD
1758$ @kbd{rpcalc}
1759@kbd{4 9 +}
bfa74976 176013
9edcd895 1761@kbd{3 7 + 3 4 5 *+-}
bfa74976 1762-13
9edcd895 1763@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 176413
9edcd895 1765@kbd{5 6 / 4 n +}
bfa74976 1766-3.166666667
9edcd895 1767@kbd{3 4 ^} @r{Exponentiation}
bfa74976 176881
9edcd895
AD
1769@kbd{^D} @r{End-of-file indicator}
1770$
bfa74976
RS
1771@end example
1772
342b8b6e 1773@node Infix Calc
bfa74976
RS
1774@section Infix Notation Calculator: @code{calc}
1775@cindex infix notation calculator
1776@cindex @code{calc}
1777@cindex calculator, infix notation
1778
1779We now modify rpcalc to handle infix operators instead of postfix. Infix
1780notation involves the concept of operator precedence and the need for
1781parentheses nested to arbitrary depth. Here is the Bison code for
1782@file{calc.y}, an infix desk-top calculator.
1783
1784@example
38a92d50 1785/* Infix notation calculator. */
bfa74976
RS
1786
1787%@{
38a92d50
PE
1788 #define YYSTYPE double
1789 #include <math.h>
1790 #include <stdio.h>
1791 int yylex (void);
1792 void yyerror (char const *);
bfa74976
RS
1793%@}
1794
38a92d50 1795/* Bison declarations. */
bfa74976
RS
1796%token NUM
1797%left '-' '+'
1798%left '*' '/'
1799%left NEG /* negation--unary minus */
38a92d50 1800%right '^' /* exponentiation */
bfa74976 1801
38a92d50
PE
1802%% /* The grammar follows. */
1803input: /* empty */
bfa74976
RS
1804 | input line
1805;
1806
1807line: '\n'
1808 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1809;
1810
1811exp: NUM @{ $$ = $1; @}
1812 | exp '+' exp @{ $$ = $1 + $3; @}
1813 | exp '-' exp @{ $$ = $1 - $3; @}
1814 | exp '*' exp @{ $$ = $1 * $3; @}
1815 | exp '/' exp @{ $$ = $1 / $3; @}
1816 | '-' exp %prec NEG @{ $$ = -$2; @}
1817 | exp '^' exp @{ $$ = pow ($1, $3); @}
1818 | '(' exp ')' @{ $$ = $2; @}
1819;
1820%%
1821@end example
1822
1823@noindent
ceed8467
AD
1824The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1825same as before.
bfa74976
RS
1826
1827There are two important new features shown in this code.
1828
1829In the second section (Bison declarations), @code{%left} declares token
1830types and says they are left-associative operators. The declarations
1831@code{%left} and @code{%right} (right associativity) take the place of
1832@code{%token} which is used to declare a token type name without
1833associativity. (These tokens are single-character literals, which
1834ordinarily don't need to be declared. We declare them here to specify
1835the associativity.)
1836
1837Operator precedence is determined by the line ordering of the
1838declarations; the higher the line number of the declaration (lower on
1839the page or screen), the higher the precedence. Hence, exponentiation
1840has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1841by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1842Precedence}.
bfa74976 1843
704a47c4
AD
1844The other important new feature is the @code{%prec} in the grammar
1845section for the unary minus operator. The @code{%prec} simply instructs
1846Bison that the rule @samp{| '-' exp} has the same precedence as
1847@code{NEG}---in this case the next-to-highest. @xref{Contextual
1848Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1849
1850Here is a sample run of @file{calc.y}:
1851
1852@need 500
1853@example
9edcd895
AD
1854$ @kbd{calc}
1855@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18566.880952381
9edcd895 1857@kbd{-56 + 2}
bfa74976 1858-54
9edcd895 1859@kbd{3 ^ 2}
bfa74976
RS
18609
1861@end example
1862
342b8b6e 1863@node Simple Error Recovery
bfa74976
RS
1864@section Simple Error Recovery
1865@cindex error recovery, simple
1866
1867Up to this point, this manual has not addressed the issue of @dfn{error
1868recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1869error. All we have handled is error reporting with @code{yyerror}.
1870Recall that by default @code{yyparse} returns after calling
1871@code{yyerror}. This means that an erroneous input line causes the
1872calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1873
1874The Bison language itself includes the reserved word @code{error}, which
1875may be included in the grammar rules. In the example below it has
1876been added to one of the alternatives for @code{line}:
1877
1878@example
1879@group
1880line: '\n'
1881 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1882 | error '\n' @{ yyerrok; @}
1883;
1884@end group
1885@end example
1886
ceed8467 1887This addition to the grammar allows for simple error recovery in the
6e649e65 1888event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1889read, the error will be recognized by the third rule for @code{line},
1890and parsing will continue. (The @code{yyerror} function is still called
1891upon to print its message as well.) The action executes the statement
1892@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1893that error recovery is complete (@pxref{Error Recovery}). Note the
1894difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1895misprint.
bfa74976
RS
1896
1897This form of error recovery deals with syntax errors. There are other
1898kinds of errors; for example, division by zero, which raises an exception
1899signal that is normally fatal. A real calculator program must handle this
1900signal and use @code{longjmp} to return to @code{main} and resume parsing
1901input lines; it would also have to discard the rest of the current line of
1902input. We won't discuss this issue further because it is not specific to
1903Bison programs.
1904
342b8b6e
AD
1905@node Location Tracking Calc
1906@section Location Tracking Calculator: @code{ltcalc}
1907@cindex location tracking calculator
1908@cindex @code{ltcalc}
1909@cindex calculator, location tracking
1910
9edcd895
AD
1911This example extends the infix notation calculator with location
1912tracking. This feature will be used to improve the error messages. For
1913the sake of clarity, this example is a simple integer calculator, since
1914most of the work needed to use locations will be done in the lexical
72d2299c 1915analyzer.
342b8b6e
AD
1916
1917@menu
1918* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1919* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1920* Lexer: Ltcalc Lexer. The lexical analyzer.
1921@end menu
1922
1923@node Ltcalc Decls
1924@subsection Declarations for @code{ltcalc}
1925
9edcd895
AD
1926The C and Bison declarations for the location tracking calculator are
1927the same as the declarations for the infix notation calculator.
342b8b6e
AD
1928
1929@example
1930/* Location tracking calculator. */
1931
1932%@{
38a92d50
PE
1933 #define YYSTYPE int
1934 #include <math.h>
1935 int yylex (void);
1936 void yyerror (char const *);
342b8b6e
AD
1937%@}
1938
1939/* Bison declarations. */
1940%token NUM
1941
1942%left '-' '+'
1943%left '*' '/'
1944%left NEG
1945%right '^'
1946
38a92d50 1947%% /* The grammar follows. */
342b8b6e
AD
1948@end example
1949
9edcd895
AD
1950@noindent
1951Note there are no declarations specific to locations. Defining a data
1952type for storing locations is not needed: we will use the type provided
1953by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1954four member structure with the following integer fields:
1955@code{first_line}, @code{first_column}, @code{last_line} and
1956@code{last_column}.
342b8b6e
AD
1957
1958@node Ltcalc Rules
1959@subsection Grammar Rules for @code{ltcalc}
1960
9edcd895
AD
1961Whether handling locations or not has no effect on the syntax of your
1962language. Therefore, grammar rules for this example will be very close
1963to those of the previous example: we will only modify them to benefit
1964from the new information.
342b8b6e 1965
9edcd895
AD
1966Here, we will use locations to report divisions by zero, and locate the
1967wrong expressions or subexpressions.
342b8b6e
AD
1968
1969@example
1970@group
1971input : /* empty */
1972 | input line
1973;
1974@end group
1975
1976@group
1977line : '\n'
1978 | exp '\n' @{ printf ("%d\n", $1); @}
1979;
1980@end group
1981
1982@group
1983exp : NUM @{ $$ = $1; @}
1984 | exp '+' exp @{ $$ = $1 + $3; @}
1985 | exp '-' exp @{ $$ = $1 - $3; @}
1986 | exp '*' exp @{ $$ = $1 * $3; @}
1987@end group
342b8b6e 1988@group
9edcd895 1989 | exp '/' exp
342b8b6e
AD
1990 @{
1991 if ($3)
1992 $$ = $1 / $3;
1993 else
1994 @{
1995 $$ = 1;
9edcd895
AD
1996 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1997 @@3.first_line, @@3.first_column,
1998 @@3.last_line, @@3.last_column);
342b8b6e
AD
1999 @}
2000 @}
2001@end group
2002@group
2003 | '-' exp %preg NEG @{ $$ = -$2; @}
2004 | exp '^' exp @{ $$ = pow ($1, $3); @}
2005 | '(' exp ')' @{ $$ = $2; @}
2006@end group
2007@end example
2008
2009This code shows how to reach locations inside of semantic actions, by
2010using the pseudo-variables @code{@@@var{n}} for rule components, and the
2011pseudo-variable @code{@@$} for groupings.
2012
9edcd895
AD
2013We don't need to assign a value to @code{@@$}: the output parser does it
2014automatically. By default, before executing the C code of each action,
2015@code{@@$} is set to range from the beginning of @code{@@1} to the end
2016of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2017can be redefined (@pxref{Location Default Action, , Default Action for
2018Locations}), and for very specific rules, @code{@@$} can be computed by
2019hand.
342b8b6e
AD
2020
2021@node Ltcalc Lexer
2022@subsection The @code{ltcalc} Lexical Analyzer.
2023
9edcd895 2024Until now, we relied on Bison's defaults to enable location
72d2299c 2025tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2026able to feed the parser with the token locations, as it already does for
2027semantic values.
342b8b6e 2028
9edcd895
AD
2029To this end, we must take into account every single character of the
2030input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2031
2032@example
2033@group
2034int
2035yylex (void)
2036@{
2037 int c;
18b519c0 2038@end group
342b8b6e 2039
18b519c0 2040@group
72d2299c 2041 /* Skip white space. */
342b8b6e
AD
2042 while ((c = getchar ()) == ' ' || c == '\t')
2043 ++yylloc.last_column;
18b519c0 2044@end group
342b8b6e 2045
18b519c0 2046@group
72d2299c 2047 /* Step. */
342b8b6e
AD
2048 yylloc.first_line = yylloc.last_line;
2049 yylloc.first_column = yylloc.last_column;
2050@end group
2051
2052@group
72d2299c 2053 /* Process numbers. */
342b8b6e
AD
2054 if (isdigit (c))
2055 @{
2056 yylval = c - '0';
2057 ++yylloc.last_column;
2058 while (isdigit (c = getchar ()))
2059 @{
2060 ++yylloc.last_column;
2061 yylval = yylval * 10 + c - '0';
2062 @}
2063 ungetc (c, stdin);
2064 return NUM;
2065 @}
2066@end group
2067
72d2299c 2068 /* Return end-of-input. */
342b8b6e
AD
2069 if (c == EOF)
2070 return 0;
2071
72d2299c 2072 /* Return a single char, and update location. */
342b8b6e
AD
2073 if (c == '\n')
2074 @{
2075 ++yylloc.last_line;
2076 yylloc.last_column = 0;
2077 @}
2078 else
2079 ++yylloc.last_column;
2080 return c;
2081@}
2082@end example
2083
9edcd895
AD
2084Basically, the lexical analyzer performs the same processing as before:
2085it skips blanks and tabs, and reads numbers or single-character tokens.
2086In addition, it updates @code{yylloc}, the global variable (of type
2087@code{YYLTYPE}) containing the token's location.
342b8b6e 2088
9edcd895 2089Now, each time this function returns a token, the parser has its number
72d2299c 2090as well as its semantic value, and its location in the text. The last
9edcd895
AD
2091needed change is to initialize @code{yylloc}, for example in the
2092controlling function:
342b8b6e
AD
2093
2094@example
9edcd895 2095@group
342b8b6e
AD
2096int
2097main (void)
2098@{
2099 yylloc.first_line = yylloc.last_line = 1;
2100 yylloc.first_column = yylloc.last_column = 0;
2101 return yyparse ();
2102@}
9edcd895 2103@end group
342b8b6e
AD
2104@end example
2105
9edcd895
AD
2106Remember that computing locations is not a matter of syntax. Every
2107character must be associated to a location update, whether it is in
2108valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2109
2110@node Multi-function Calc
bfa74976
RS
2111@section Multi-Function Calculator: @code{mfcalc}
2112@cindex multi-function calculator
2113@cindex @code{mfcalc}
2114@cindex calculator, multi-function
2115
2116Now that the basics of Bison have been discussed, it is time to move on to
2117a more advanced problem. The above calculators provided only five
2118functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2119be nice to have a calculator that provides other mathematical functions such
2120as @code{sin}, @code{cos}, etc.
2121
2122It is easy to add new operators to the infix calculator as long as they are
2123only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2124back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2125adding a new operator. But we want something more flexible: built-in
2126functions whose syntax has this form:
2127
2128@example
2129@var{function_name} (@var{argument})
2130@end example
2131
2132@noindent
2133At the same time, we will add memory to the calculator, by allowing you
2134to create named variables, store values in them, and use them later.
2135Here is a sample session with the multi-function calculator:
2136
2137@example
9edcd895
AD
2138$ @kbd{mfcalc}
2139@kbd{pi = 3.141592653589}
bfa74976 21403.1415926536
9edcd895 2141@kbd{sin(pi)}
bfa74976 21420.0000000000
9edcd895 2143@kbd{alpha = beta1 = 2.3}
bfa74976 21442.3000000000
9edcd895 2145@kbd{alpha}
bfa74976 21462.3000000000
9edcd895 2147@kbd{ln(alpha)}
bfa74976 21480.8329091229
9edcd895 2149@kbd{exp(ln(beta1))}
bfa74976 21502.3000000000
9edcd895 2151$
bfa74976
RS
2152@end example
2153
2154Note that multiple assignment and nested function calls are permitted.
2155
2156@menu
2157* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2158* Rules: Mfcalc Rules. Grammar rules for the calculator.
2159* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2160@end menu
2161
342b8b6e 2162@node Mfcalc Decl
bfa74976
RS
2163@subsection Declarations for @code{mfcalc}
2164
2165Here are the C and Bison declarations for the multi-function calculator.
2166
2167@smallexample
18b519c0 2168@group
bfa74976 2169%@{
38a92d50
PE
2170 #include <math.h> /* For math functions, cos(), sin(), etc. */
2171 #include "calc.h" /* Contains definition of `symrec'. */
2172 int yylex (void);
2173 void yyerror (char const *);
bfa74976 2174%@}
18b519c0
AD
2175@end group
2176@group
bfa74976 2177%union @{
38a92d50
PE
2178 double val; /* For returning numbers. */
2179 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2180@}
18b519c0 2181@end group
38a92d50
PE
2182%token <val> NUM /* Simple double precision number. */
2183%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2184%type <val> exp
2185
18b519c0 2186@group
bfa74976
RS
2187%right '='
2188%left '-' '+'
2189%left '*' '/'
38a92d50
PE
2190%left NEG /* negation--unary minus */
2191%right '^' /* exponentiation */
18b519c0 2192@end group
38a92d50 2193%% /* The grammar follows. */
bfa74976
RS
2194@end smallexample
2195
2196The above grammar introduces only two new features of the Bison language.
2197These features allow semantic values to have various data types
2198(@pxref{Multiple Types, ,More Than One Value Type}).
2199
2200The @code{%union} declaration specifies the entire list of possible types;
2201this is instead of defining @code{YYSTYPE}. The allowable types are now
2202double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2203the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2204
2205Since values can now have various types, it is necessary to associate a
2206type with each grammar symbol whose semantic value is used. These symbols
2207are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2208declarations are augmented with information about their data type (placed
2209between angle brackets).
2210
704a47c4
AD
2211The Bison construct @code{%type} is used for declaring nonterminal
2212symbols, just as @code{%token} is used for declaring token types. We
2213have not used @code{%type} before because nonterminal symbols are
2214normally declared implicitly by the rules that define them. But
2215@code{exp} must be declared explicitly so we can specify its value type.
2216@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2217
342b8b6e 2218@node Mfcalc Rules
bfa74976
RS
2219@subsection Grammar Rules for @code{mfcalc}
2220
2221Here are the grammar rules for the multi-function calculator.
2222Most of them are copied directly from @code{calc}; three rules,
2223those which mention @code{VAR} or @code{FNCT}, are new.
2224
2225@smallexample
18b519c0 2226@group
bfa74976
RS
2227input: /* empty */
2228 | input line
2229;
18b519c0 2230@end group
bfa74976 2231
18b519c0 2232@group
bfa74976
RS
2233line:
2234 '\n'
2235 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2236 | error '\n' @{ yyerrok; @}
2237;
18b519c0 2238@end group
bfa74976 2239
18b519c0 2240@group
bfa74976
RS
2241exp: NUM @{ $$ = $1; @}
2242 | VAR @{ $$ = $1->value.var; @}
2243 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2244 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2245 | exp '+' exp @{ $$ = $1 + $3; @}
2246 | exp '-' exp @{ $$ = $1 - $3; @}
2247 | exp '*' exp @{ $$ = $1 * $3; @}
2248 | exp '/' exp @{ $$ = $1 / $3; @}
2249 | '-' exp %prec NEG @{ $$ = -$2; @}
2250 | exp '^' exp @{ $$ = pow ($1, $3); @}
2251 | '(' exp ')' @{ $$ = $2; @}
2252;
18b519c0 2253@end group
38a92d50 2254/* End of grammar. */
bfa74976
RS
2255%%
2256@end smallexample
2257
342b8b6e 2258@node Mfcalc Symtab
bfa74976
RS
2259@subsection The @code{mfcalc} Symbol Table
2260@cindex symbol table example
2261
2262The multi-function calculator requires a symbol table to keep track of the
2263names and meanings of variables and functions. This doesn't affect the
2264grammar rules (except for the actions) or the Bison declarations, but it
2265requires some additional C functions for support.
2266
2267The symbol table itself consists of a linked list of records. Its
2268definition, which is kept in the header @file{calc.h}, is as follows. It
2269provides for either functions or variables to be placed in the table.
2270
2271@smallexample
2272@group
38a92d50 2273/* Function type. */
32dfccf8 2274typedef double (*func_t) (double);
72f889cc 2275@end group
32dfccf8 2276
72f889cc 2277@group
38a92d50 2278/* Data type for links in the chain of symbols. */
bfa74976
RS
2279struct symrec
2280@{
38a92d50 2281 char *name; /* name of symbol */
bfa74976 2282 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2283 union
2284 @{
38a92d50
PE
2285 double var; /* value of a VAR */
2286 func_t fnctptr; /* value of a FNCT */
bfa74976 2287 @} value;
38a92d50 2288 struct symrec *next; /* link field */
bfa74976
RS
2289@};
2290@end group
2291
2292@group
2293typedef struct symrec symrec;
2294
38a92d50 2295/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2296extern symrec *sym_table;
2297
a730d142 2298symrec *putsym (char const *, int);
38a92d50 2299symrec *getsym (char const *);
bfa74976
RS
2300@end group
2301@end smallexample
2302
2303The new version of @code{main} includes a call to @code{init_table}, a
2304function that initializes the symbol table. Here it is, and
2305@code{init_table} as well:
2306
2307@smallexample
bfa74976
RS
2308#include <stdio.h>
2309
18b519c0 2310@group
38a92d50 2311/* Called by yyparse on error. */
13863333 2312void
38a92d50 2313yyerror (char const *s)
bfa74976
RS
2314@{
2315 printf ("%s\n", s);
2316@}
18b519c0 2317@end group
bfa74976 2318
18b519c0 2319@group
bfa74976
RS
2320struct init
2321@{
38a92d50
PE
2322 char const *fname;
2323 double (*fnct) (double);
bfa74976
RS
2324@};
2325@end group
2326
2327@group
38a92d50 2328struct init const arith_fncts[] =
13863333 2329@{
32dfccf8
AD
2330 "sin", sin,
2331 "cos", cos,
13863333 2332 "atan", atan,
32dfccf8
AD
2333 "ln", log,
2334 "exp", exp,
13863333
AD
2335 "sqrt", sqrt,
2336 0, 0
2337@};
18b519c0 2338@end group
bfa74976 2339
18b519c0 2340@group
bfa74976 2341/* The symbol table: a chain of `struct symrec'. */
38a92d50 2342symrec *sym_table;
bfa74976
RS
2343@end group
2344
2345@group
72d2299c 2346/* Put arithmetic functions in table. */
13863333
AD
2347void
2348init_table (void)
bfa74976
RS
2349@{
2350 int i;
2351 symrec *ptr;
2352 for (i = 0; arith_fncts[i].fname != 0; i++)
2353 @{
2354 ptr = putsym (arith_fncts[i].fname, FNCT);
2355 ptr->value.fnctptr = arith_fncts[i].fnct;
2356 @}
2357@}
2358@end group
38a92d50
PE
2359
2360@group
2361int
2362main (void)
2363@{
2364 init_table ();
2365 return yyparse ();
2366@}
2367@end group
bfa74976
RS
2368@end smallexample
2369
2370By simply editing the initialization list and adding the necessary include
2371files, you can add additional functions to the calculator.
2372
2373Two important functions allow look-up and installation of symbols in the
2374symbol table. The function @code{putsym} is passed a name and the type
2375(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2376linked to the front of the list, and a pointer to the object is returned.
2377The function @code{getsym} is passed the name of the symbol to look up. If
2378found, a pointer to that symbol is returned; otherwise zero is returned.
2379
2380@smallexample
2381symrec *
38a92d50 2382putsym (char const *sym_name, int sym_type)
bfa74976
RS
2383@{
2384 symrec *ptr;
2385 ptr = (symrec *) malloc (sizeof (symrec));
2386 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2387 strcpy (ptr->name,sym_name);
2388 ptr->type = sym_type;
72d2299c 2389 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2390 ptr->next = (struct symrec *)sym_table;
2391 sym_table = ptr;
2392 return ptr;
2393@}
2394
2395symrec *
38a92d50 2396getsym (char const *sym_name)
bfa74976
RS
2397@{
2398 symrec *ptr;
2399 for (ptr = sym_table; ptr != (symrec *) 0;
2400 ptr = (symrec *)ptr->next)
2401 if (strcmp (ptr->name,sym_name) == 0)
2402 return ptr;
2403 return 0;
2404@}
2405@end smallexample
2406
2407The function @code{yylex} must now recognize variables, numeric values, and
2408the single-character arithmetic operators. Strings of alphanumeric
14ded682 2409characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2410functions depending on what the symbol table says about them.
2411
2412The string is passed to @code{getsym} for look up in the symbol table. If
2413the name appears in the table, a pointer to its location and its type
2414(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2415already in the table, then it is installed as a @code{VAR} using
2416@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2417returned to @code{yyparse}.
bfa74976
RS
2418
2419No change is needed in the handling of numeric values and arithmetic
2420operators in @code{yylex}.
2421
2422@smallexample
2423@group
2424#include <ctype.h>
18b519c0 2425@end group
13863333 2426
18b519c0 2427@group
13863333
AD
2428int
2429yylex (void)
bfa74976
RS
2430@{
2431 int c;
2432
72d2299c 2433 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2434 while ((c = getchar ()) == ' ' || c == '\t');
2435
2436 if (c == EOF)
2437 return 0;
2438@end group
2439
2440@group
2441 /* Char starts a number => parse the number. */
2442 if (c == '.' || isdigit (c))
2443 @{
2444 ungetc (c, stdin);
2445 scanf ("%lf", &yylval.val);
2446 return NUM;
2447 @}
2448@end group
2449
2450@group
2451 /* Char starts an identifier => read the name. */
2452 if (isalpha (c))
2453 @{
2454 symrec *s;
2455 static char *symbuf = 0;
2456 static int length = 0;
2457 int i;
2458@end group
2459
2460@group
2461 /* Initially make the buffer long enough
2462 for a 40-character symbol name. */
2463 if (length == 0)
2464 length = 40, symbuf = (char *)malloc (length + 1);
2465
2466 i = 0;
2467 do
2468@end group
2469@group
2470 @{
2471 /* If buffer is full, make it bigger. */
2472 if (i == length)
2473 @{
2474 length *= 2;
18b519c0 2475 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2476 @}
2477 /* Add this character to the buffer. */
2478 symbuf[i++] = c;
2479 /* Get another character. */
2480 c = getchar ();
2481 @}
2482@end group
2483@group
72d2299c 2484 while (isalnum (c));
bfa74976
RS
2485
2486 ungetc (c, stdin);
2487 symbuf[i] = '\0';
2488@end group
2489
2490@group
2491 s = getsym (symbuf);
2492 if (s == 0)
2493 s = putsym (symbuf, VAR);
2494 yylval.tptr = s;
2495 return s->type;
2496 @}
2497
2498 /* Any other character is a token by itself. */
2499 return c;
2500@}
2501@end group
2502@end smallexample
2503
72d2299c 2504This program is both powerful and flexible. You may easily add new
704a47c4
AD
2505functions, and it is a simple job to modify this code to install
2506predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2507
342b8b6e 2508@node Exercises
bfa74976
RS
2509@section Exercises
2510@cindex exercises
2511
2512@enumerate
2513@item
2514Add some new functions from @file{math.h} to the initialization list.
2515
2516@item
2517Add another array that contains constants and their values. Then
2518modify @code{init_table} to add these constants to the symbol table.
2519It will be easiest to give the constants type @code{VAR}.
2520
2521@item
2522Make the program report an error if the user refers to an
2523uninitialized variable in any way except to store a value in it.
2524@end enumerate
2525
342b8b6e 2526@node Grammar File
bfa74976
RS
2527@chapter Bison Grammar Files
2528
2529Bison takes as input a context-free grammar specification and produces a
2530C-language function that recognizes correct instances of the grammar.
2531
2532The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2533@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2534
2535@menu
2536* Grammar Outline:: Overall layout of the grammar file.
2537* Symbols:: Terminal and nonterminal symbols.
2538* Rules:: How to write grammar rules.
2539* Recursion:: Writing recursive rules.
2540* Semantics:: Semantic values and actions.
847bf1f5 2541* Locations:: Locations and actions.
bfa74976
RS
2542* Declarations:: All kinds of Bison declarations are described here.
2543* Multiple Parsers:: Putting more than one Bison parser in one program.
2544@end menu
2545
342b8b6e 2546@node Grammar Outline
bfa74976
RS
2547@section Outline of a Bison Grammar
2548
2549A Bison grammar file has four main sections, shown here with the
2550appropriate delimiters:
2551
2552@example
2553%@{
38a92d50 2554 @var{Prologue}
bfa74976
RS
2555%@}
2556
2557@var{Bison declarations}
2558
2559%%
2560@var{Grammar rules}
2561%%
2562
75f5aaea 2563@var{Epilogue}
bfa74976
RS
2564@end example
2565
2566Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2567As a @acronym{GNU} extension, @samp{//} introduces a comment that
2568continues until end of line.
bfa74976
RS
2569
2570@menu
75f5aaea 2571* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2572* Bison Declarations:: Syntax and usage of the Bison declarations section.
2573* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2574* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2575@end menu
2576
38a92d50 2577@node Prologue
75f5aaea
MA
2578@subsection The prologue
2579@cindex declarations section
2580@cindex Prologue
2581@cindex declarations
bfa74976 2582
08e49d20 2583The @var{Prologue} section contains macro definitions and
bfa74976
RS
2584declarations of functions and variables that are used in the actions in the
2585grammar rules. These are copied to the beginning of the parser file so
2586that they precede the definition of @code{yyparse}. You can use
2587@samp{#include} to get the declarations from a header file. If you don't
2588need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2589delimiters that bracket this section.
2590
c732d2c6
AD
2591You may have more than one @var{Prologue} section, intermixed with the
2592@var{Bison declarations}. This allows you to have C and Bison
2593declarations that refer to each other. For example, the @code{%union}
2594declaration may use types defined in a header file, and you may wish to
2595prototype functions that take arguments of type @code{YYSTYPE}. This
2596can be done with two @var{Prologue} blocks, one before and one after the
2597@code{%union} declaration.
2598
2599@smallexample
2600%@{
38a92d50
PE
2601 #include <stdio.h>
2602 #include "ptypes.h"
c732d2c6
AD
2603%@}
2604
2605%union @{
779e7ceb 2606 long int n;
c732d2c6
AD
2607 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2608@}
2609
2610%@{
38a92d50
PE
2611 static void print_token_value (FILE *, int, YYSTYPE);
2612 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2613%@}
2614
2615@dots{}
2616@end smallexample
2617
342b8b6e 2618@node Bison Declarations
bfa74976
RS
2619@subsection The Bison Declarations Section
2620@cindex Bison declarations (introduction)
2621@cindex declarations, Bison (introduction)
2622
2623The @var{Bison declarations} section contains declarations that define
2624terminal and nonterminal symbols, specify precedence, and so on.
2625In some simple grammars you may not need any declarations.
2626@xref{Declarations, ,Bison Declarations}.
2627
342b8b6e 2628@node Grammar Rules
bfa74976
RS
2629@subsection The Grammar Rules Section
2630@cindex grammar rules section
2631@cindex rules section for grammar
2632
2633The @dfn{grammar rules} section contains one or more Bison grammar
2634rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2635
2636There must always be at least one grammar rule, and the first
2637@samp{%%} (which precedes the grammar rules) may never be omitted even
2638if it is the first thing in the file.
2639
38a92d50 2640@node Epilogue
75f5aaea 2641@subsection The epilogue
bfa74976 2642@cindex additional C code section
75f5aaea 2643@cindex epilogue
bfa74976
RS
2644@cindex C code, section for additional
2645
08e49d20
PE
2646The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2647the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2648place to put anything that you want to have in the parser file but which need
2649not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2650definitions of @code{yylex} and @code{yyerror} often go here. Because
2651C requires functions to be declared before being used, you often need
2652to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2653even if you define them in the Epilogue.
75f5aaea 2654@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2655
2656If the last section is empty, you may omit the @samp{%%} that separates it
2657from the grammar rules.
2658
38a92d50
PE
2659The Bison parser itself contains many macros and identifiers whose
2660names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2661good idea to avoid using any such names (except those documented in this
75f5aaea 2662manual) in the epilogue of the grammar file.
bfa74976 2663
342b8b6e 2664@node Symbols
bfa74976
RS
2665@section Symbols, Terminal and Nonterminal
2666@cindex nonterminal symbol
2667@cindex terminal symbol
2668@cindex token type
2669@cindex symbol
2670
2671@dfn{Symbols} in Bison grammars represent the grammatical classifications
2672of the language.
2673
2674A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2675class of syntactically equivalent tokens. You use the symbol in grammar
2676rules to mean that a token in that class is allowed. The symbol is
2677represented in the Bison parser by a numeric code, and the @code{yylex}
2678function returns a token type code to indicate what kind of token has been
2679read. You don't need to know what the code value is; you can use the
2680symbol to stand for it.
2681
2682A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2683groupings. The symbol name is used in writing grammar rules. By convention,
2684it should be all lower case.
2685
2686Symbol names can contain letters, digits (not at the beginning),
2687underscores and periods. Periods make sense only in nonterminals.
2688
931c7513 2689There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2690
2691@itemize @bullet
2692@item
2693A @dfn{named token type} is written with an identifier, like an
c827f760 2694identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2695such name must be defined with a Bison declaration such as
2696@code{%token}. @xref{Token Decl, ,Token Type Names}.
2697
2698@item
2699@cindex character token
2700@cindex literal token
2701@cindex single-character literal
931c7513
RS
2702A @dfn{character token type} (or @dfn{literal character token}) is
2703written in the grammar using the same syntax used in C for character
2704constants; for example, @code{'+'} is a character token type. A
2705character token type doesn't need to be declared unless you need to
2706specify its semantic value data type (@pxref{Value Type, ,Data Types of
2707Semantic Values}), associativity, or precedence (@pxref{Precedence,
2708,Operator Precedence}).
bfa74976
RS
2709
2710By convention, a character token type is used only to represent a
2711token that consists of that particular character. Thus, the token
2712type @code{'+'} is used to represent the character @samp{+} as a
2713token. Nothing enforces this convention, but if you depart from it,
2714your program will confuse other readers.
2715
2716All the usual escape sequences used in character literals in C can be
2717used in Bison as well, but you must not use the null character as a
72d2299c
PE
2718character literal because its numeric code, zero, signifies
2719end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2720for @code{yylex}}). Also, unlike standard C, trigraphs have no
2721special meaning in Bison character literals, nor is backslash-newline
2722allowed.
931c7513
RS
2723
2724@item
2725@cindex string token
2726@cindex literal string token
9ecbd125 2727@cindex multicharacter literal
931c7513
RS
2728A @dfn{literal string token} is written like a C string constant; for
2729example, @code{"<="} is a literal string token. A literal string token
2730doesn't need to be declared unless you need to specify its semantic
14ded682 2731value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2732(@pxref{Precedence}).
2733
2734You can associate the literal string token with a symbolic name as an
2735alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2736Declarations}). If you don't do that, the lexical analyzer has to
2737retrieve the token number for the literal string token from the
2738@code{yytname} table (@pxref{Calling Convention}).
2739
c827f760 2740@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2741
2742By convention, a literal string token is used only to represent a token
2743that consists of that particular string. Thus, you should use the token
2744type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2745does not enforce this convention, but if you depart from it, people who
931c7513
RS
2746read your program will be confused.
2747
2748All the escape sequences used in string literals in C can be used in
92ac3705
PE
2749Bison as well, except that you must not use a null character within a
2750string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2751meaning in Bison string literals, nor is backslash-newline allowed. A
2752literal string token must contain two or more characters; for a token
2753containing just one character, use a character token (see above).
bfa74976
RS
2754@end itemize
2755
2756How you choose to write a terminal symbol has no effect on its
2757grammatical meaning. That depends only on where it appears in rules and
2758on when the parser function returns that symbol.
2759
72d2299c
PE
2760The value returned by @code{yylex} is always one of the terminal
2761symbols, except that a zero or negative value signifies end-of-input.
2762Whichever way you write the token type in the grammar rules, you write
2763it the same way in the definition of @code{yylex}. The numeric code
2764for a character token type is simply the positive numeric code of the
2765character, so @code{yylex} can use the identical value to generate the
2766requisite code, though you may need to convert it to @code{unsigned
2767char} to avoid sign-extension on hosts where @code{char} is signed.
2768Each named token type becomes a C macro in
bfa74976 2769the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2770(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2771@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2772
2773If @code{yylex} is defined in a separate file, you need to arrange for the
2774token-type macro definitions to be available there. Use the @samp{-d}
2775option when you run Bison, so that it will write these macro definitions
2776into a separate header file @file{@var{name}.tab.h} which you can include
2777in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2778
72d2299c
PE
2779If you want to write a grammar that is portable to any Standard C
2780host, you must use only non-null character tokens taken from the basic
c827f760 2781execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2782digits, the 52 lower- and upper-case English letters, and the
2783characters in the following C-language string:
2784
2785@example
2786"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2787@end example
2788
2789The @code{yylex} function and Bison must use a consistent character
2790set and encoding for character tokens. For example, if you run Bison in an
c827f760 2791@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2792in an environment that uses an incompatible character set like
c827f760
PE
2793@acronym{EBCDIC}, the resulting program may not work because the
2794tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2795character tokens. It is standard
e966383b 2796practice for software distributions to contain C source files that
c827f760
PE
2797were generated by Bison in an @acronym{ASCII} environment, so installers on
2798platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2799files before compiling them.
2800
bfa74976
RS
2801The symbol @code{error} is a terminal symbol reserved for error recovery
2802(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2803In particular, @code{yylex} should never return this value. The default
2804value of the error token is 256, unless you explicitly assigned 256 to
2805one of your tokens with a @code{%token} declaration.
bfa74976 2806
342b8b6e 2807@node Rules
bfa74976
RS
2808@section Syntax of Grammar Rules
2809@cindex rule syntax
2810@cindex grammar rule syntax
2811@cindex syntax of grammar rules
2812
2813A Bison grammar rule has the following general form:
2814
2815@example
e425e872 2816@group
bfa74976
RS
2817@var{result}: @var{components}@dots{}
2818 ;
e425e872 2819@end group
bfa74976
RS
2820@end example
2821
2822@noindent
9ecbd125 2823where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2824and @var{components} are various terminal and nonterminal symbols that
13863333 2825are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2826
2827For example,
2828
2829@example
2830@group
2831exp: exp '+' exp
2832 ;
2833@end group
2834@end example
2835
2836@noindent
2837says that two groupings of type @code{exp}, with a @samp{+} token in between,
2838can be combined into a larger grouping of type @code{exp}.
2839
72d2299c
PE
2840White space in rules is significant only to separate symbols. You can add
2841extra white space as you wish.
bfa74976
RS
2842
2843Scattered among the components can be @var{actions} that determine
2844the semantics of the rule. An action looks like this:
2845
2846@example
2847@{@var{C statements}@}
2848@end example
2849
2850@noindent
2851Usually there is only one action and it follows the components.
2852@xref{Actions}.
2853
2854@findex |
2855Multiple rules for the same @var{result} can be written separately or can
2856be joined with the vertical-bar character @samp{|} as follows:
2857
2858@ifinfo
2859@example
2860@var{result}: @var{rule1-components}@dots{}
2861 | @var{rule2-components}@dots{}
2862 @dots{}
2863 ;
2864@end example
2865@end ifinfo
2866@iftex
2867@example
2868@group
2869@var{result}: @var{rule1-components}@dots{}
2870 | @var{rule2-components}@dots{}
2871 @dots{}
2872 ;
2873@end group
2874@end example
2875@end iftex
2876
2877@noindent
2878They are still considered distinct rules even when joined in this way.
2879
2880If @var{components} in a rule is empty, it means that @var{result} can
2881match the empty string. For example, here is how to define a
2882comma-separated sequence of zero or more @code{exp} groupings:
2883
2884@example
2885@group
2886expseq: /* empty */
2887 | expseq1
2888 ;
2889@end group
2890
2891@group
2892expseq1: exp
2893 | expseq1 ',' exp
2894 ;
2895@end group
2896@end example
2897
2898@noindent
2899It is customary to write a comment @samp{/* empty */} in each rule
2900with no components.
2901
342b8b6e 2902@node Recursion
bfa74976
RS
2903@section Recursive Rules
2904@cindex recursive rule
2905
2906A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2907also on its right hand side. Nearly all Bison grammars need to use
2908recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2909of a particular thing. Consider this recursive definition of a
2910comma-separated sequence of one or more expressions:
bfa74976
RS
2911
2912@example
2913@group
2914expseq1: exp
2915 | expseq1 ',' exp
2916 ;
2917@end group
2918@end example
2919
2920@cindex left recursion
2921@cindex right recursion
2922@noindent
2923Since the recursive use of @code{expseq1} is the leftmost symbol in the
2924right hand side, we call this @dfn{left recursion}. By contrast, here
2925the same construct is defined using @dfn{right recursion}:
2926
2927@example
2928@group
2929expseq1: exp
2930 | exp ',' expseq1
2931 ;
2932@end group
2933@end example
2934
2935@noindent
ec3bc396
AD
2936Any kind of sequence can be defined using either left recursion or right
2937recursion, but you should always use left recursion, because it can
2938parse a sequence of any number of elements with bounded stack space.
2939Right recursion uses up space on the Bison stack in proportion to the
2940number of elements in the sequence, because all the elements must be
2941shifted onto the stack before the rule can be applied even once.
2942@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2943of this.
bfa74976
RS
2944
2945@cindex mutual recursion
2946@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2947rule does not appear directly on its right hand side, but does appear
2948in rules for other nonterminals which do appear on its right hand
13863333 2949side.
bfa74976
RS
2950
2951For example:
2952
2953@example
2954@group
2955expr: primary
2956 | primary '+' primary
2957 ;
2958@end group
2959
2960@group
2961primary: constant
2962 | '(' expr ')'
2963 ;
2964@end group
2965@end example
2966
2967@noindent
2968defines two mutually-recursive nonterminals, since each refers to the
2969other.
2970
342b8b6e 2971@node Semantics
bfa74976
RS
2972@section Defining Language Semantics
2973@cindex defining language semantics
13863333 2974@cindex language semantics, defining
bfa74976
RS
2975
2976The grammar rules for a language determine only the syntax. The semantics
2977are determined by the semantic values associated with various tokens and
2978groupings, and by the actions taken when various groupings are recognized.
2979
2980For example, the calculator calculates properly because the value
2981associated with each expression is the proper number; it adds properly
2982because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2983the numbers associated with @var{x} and @var{y}.
2984
2985@menu
2986* Value Type:: Specifying one data type for all semantic values.
2987* Multiple Types:: Specifying several alternative data types.
2988* Actions:: An action is the semantic definition of a grammar rule.
2989* Action Types:: Specifying data types for actions to operate on.
2990* Mid-Rule Actions:: Most actions go at the end of a rule.
2991 This says when, why and how to use the exceptional
2992 action in the middle of a rule.
2993@end menu
2994
342b8b6e 2995@node Value Type
bfa74976
RS
2996@subsection Data Types of Semantic Values
2997@cindex semantic value type
2998@cindex value type, semantic
2999@cindex data types of semantic values
3000@cindex default data type
3001
3002In a simple program it may be sufficient to use the same data type for
3003the semantic values of all language constructs. This was true in the
c827f760 3004@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3005Notation Calculator}).
bfa74976
RS
3006
3007Bison's default is to use type @code{int} for all semantic values. To
3008specify some other type, define @code{YYSTYPE} as a macro, like this:
3009
3010@example
3011#define YYSTYPE double
3012@end example
3013
3014@noindent
342b8b6e 3015This macro definition must go in the prologue of the grammar file
75f5aaea 3016(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3017
342b8b6e 3018@node Multiple Types
bfa74976
RS
3019@subsection More Than One Value Type
3020
3021In most programs, you will need different data types for different kinds
3022of tokens and groupings. For example, a numeric constant may need type
779e7ceb 3023@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3024and an identifier might need a pointer to an entry in the symbol table.
3025
3026To use more than one data type for semantic values in one parser, Bison
3027requires you to do two things:
3028
3029@itemize @bullet
3030@item
3031Specify the entire collection of possible data types, with the
704a47c4
AD
3032@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3033Value Types}).
bfa74976
RS
3034
3035@item
14ded682
AD
3036Choose one of those types for each symbol (terminal or nonterminal) for
3037which semantic values are used. This is done for tokens with the
3038@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3039and for groupings with the @code{%type} Bison declaration (@pxref{Type
3040Decl, ,Nonterminal Symbols}).
bfa74976
RS
3041@end itemize
3042
342b8b6e 3043@node Actions
bfa74976
RS
3044@subsection Actions
3045@cindex action
3046@vindex $$
3047@vindex $@var{n}
3048
3049An action accompanies a syntactic rule and contains C code to be executed
3050each time an instance of that rule is recognized. The task of most actions
3051is to compute a semantic value for the grouping built by the rule from the
3052semantic values associated with tokens or smaller groupings.
3053
3054An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3055compound statement in C@. An action can contain any sequence of C
3056statements. Bison does not look for trigraphs, though, so if your C
3057code uses trigraphs you should ensure that they do not affect the
3058nesting of braces or the boundaries of comments, strings, or character
3059literals.
3060
3061An action can be placed at any position in the rule;
704a47c4
AD
3062it is executed at that position. Most rules have just one action at the
3063end of the rule, following all the components. Actions in the middle of
3064a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3065Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3066
3067The C code in an action can refer to the semantic values of the components
3068matched by the rule with the construct @code{$@var{n}}, which stands for
3069the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3070being constructed is @code{$$}. Bison translates both of these
3071constructs into expressions of the appropriate type when it copies the
3072actions into the parser file. @code{$$} is translated to a modifiable
3073lvalue, so it can be assigned to.
bfa74976
RS
3074
3075Here is a typical example:
3076
3077@example
3078@group
3079exp: @dots{}
3080 | exp '+' exp
3081 @{ $$ = $1 + $3; @}
3082@end group
3083@end example
3084
3085@noindent
3086This rule constructs an @code{exp} from two smaller @code{exp} groupings
3087connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3088refer to the semantic values of the two component @code{exp} groupings,
3089which are the first and third symbols on the right hand side of the rule.
3090The sum is stored into @code{$$} so that it becomes the semantic value of
3091the addition-expression just recognized by the rule. If there were a
3092useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3093referred to as @code{$2}.
bfa74976 3094
3ded9a63
AD
3095Note that the vertical-bar character @samp{|} is really a rule
3096separator, and actions are attached to a single rule. This is a
3097difference with tools like Flex, for which @samp{|} stands for either
3098``or'', or ``the same action as that of the next rule''. In the
3099following example, the action is triggered only when @samp{b} is found:
3100
3101@example
3102@group
3103a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3104@end group
3105@end example
3106
bfa74976
RS
3107@cindex default action
3108If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3109@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3110becomes the value of the whole rule. Of course, the default action is
3111valid only if the two data types match. There is no meaningful default
3112action for an empty rule; every empty rule must have an explicit action
3113unless the rule's value does not matter.
bfa74976
RS
3114
3115@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3116to tokens and groupings on the stack @emph{before} those that match the
3117current rule. This is a very risky practice, and to use it reliably
3118you must be certain of the context in which the rule is applied. Here
3119is a case in which you can use this reliably:
3120
3121@example
3122@group
3123foo: expr bar '+' expr @{ @dots{} @}
3124 | expr bar '-' expr @{ @dots{} @}
3125 ;
3126@end group
3127
3128@group
3129bar: /* empty */
3130 @{ previous_expr = $0; @}
3131 ;
3132@end group
3133@end example
3134
3135As long as @code{bar} is used only in the fashion shown here, @code{$0}
3136always refers to the @code{expr} which precedes @code{bar} in the
3137definition of @code{foo}.
3138
342b8b6e 3139@node Action Types
bfa74976
RS
3140@subsection Data Types of Values in Actions
3141@cindex action data types
3142@cindex data types in actions
3143
3144If you have chosen a single data type for semantic values, the @code{$$}
3145and @code{$@var{n}} constructs always have that data type.
3146
3147If you have used @code{%union} to specify a variety of data types, then you
3148must declare a choice among these types for each terminal or nonterminal
3149symbol that can have a semantic value. Then each time you use @code{$$} or
3150@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3151in the rule. In this example,
bfa74976
RS
3152
3153@example
3154@group
3155exp: @dots{}
3156 | exp '+' exp
3157 @{ $$ = $1 + $3; @}
3158@end group
3159@end example
3160
3161@noindent
3162@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3163have the data type declared for the nonterminal symbol @code{exp}. If
3164@code{$2} were used, it would have the data type declared for the
e0c471a9 3165terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3166
3167Alternatively, you can specify the data type when you refer to the value,
3168by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3169reference. For example, if you have defined types as shown here:
3170
3171@example
3172@group
3173%union @{
3174 int itype;
3175 double dtype;
3176@}
3177@end group
3178@end example
3179
3180@noindent
3181then you can write @code{$<itype>1} to refer to the first subunit of the
3182rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3183
342b8b6e 3184@node Mid-Rule Actions
bfa74976
RS
3185@subsection Actions in Mid-Rule
3186@cindex actions in mid-rule
3187@cindex mid-rule actions
3188
3189Occasionally it is useful to put an action in the middle of a rule.
3190These actions are written just like usual end-of-rule actions, but they
3191are executed before the parser even recognizes the following components.
3192
3193A mid-rule action may refer to the components preceding it using
3194@code{$@var{n}}, but it may not refer to subsequent components because
3195it is run before they are parsed.
3196
3197The mid-rule action itself counts as one of the components of the rule.
3198This makes a difference when there is another action later in the same rule
3199(and usually there is another at the end): you have to count the actions
3200along with the symbols when working out which number @var{n} to use in
3201@code{$@var{n}}.
3202
3203The mid-rule action can also have a semantic value. The action can set
3204its value with an assignment to @code{$$}, and actions later in the rule
3205can refer to the value using @code{$@var{n}}. Since there is no symbol
3206to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3207in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3208specify a data type each time you refer to this value.
bfa74976
RS
3209
3210There is no way to set the value of the entire rule with a mid-rule
3211action, because assignments to @code{$$} do not have that effect. The
3212only way to set the value for the entire rule is with an ordinary action
3213at the end of the rule.
3214
3215Here is an example from a hypothetical compiler, handling a @code{let}
3216statement that looks like @samp{let (@var{variable}) @var{statement}} and
3217serves to create a variable named @var{variable} temporarily for the
3218duration of @var{statement}. To parse this construct, we must put
3219@var{variable} into the symbol table while @var{statement} is parsed, then
3220remove it afterward. Here is how it is done:
3221
3222@example
3223@group
3224stmt: LET '(' var ')'
3225 @{ $<context>$ = push_context ();
3226 declare_variable ($3); @}
3227 stmt @{ $$ = $6;
3228 pop_context ($<context>5); @}
3229@end group
3230@end example
3231
3232@noindent
3233As soon as @samp{let (@var{variable})} has been recognized, the first
3234action is run. It saves a copy of the current semantic context (the
3235list of accessible variables) as its semantic value, using alternative
3236@code{context} in the data-type union. Then it calls
3237@code{declare_variable} to add the new variable to that list. Once the
3238first action is finished, the embedded statement @code{stmt} can be
3239parsed. Note that the mid-rule action is component number 5, so the
3240@samp{stmt} is component number 6.
3241
3242After the embedded statement is parsed, its semantic value becomes the
3243value of the entire @code{let}-statement. Then the semantic value from the
3244earlier action is used to restore the prior list of variables. This
3245removes the temporary @code{let}-variable from the list so that it won't
3246appear to exist while the rest of the program is parsed.
3247
3248Taking action before a rule is completely recognized often leads to
3249conflicts since the parser must commit to a parse in order to execute the
3250action. For example, the following two rules, without mid-rule actions,
3251can coexist in a working parser because the parser can shift the open-brace
3252token and look at what follows before deciding whether there is a
3253declaration or not:
3254
3255@example
3256@group
3257compound: '@{' declarations statements '@}'
3258 | '@{' statements '@}'
3259 ;
3260@end group
3261@end example
3262
3263@noindent
3264But when we add a mid-rule action as follows, the rules become nonfunctional:
3265
3266@example
3267@group
3268compound: @{ prepare_for_local_variables (); @}
3269 '@{' declarations statements '@}'
3270@end group
3271@group
3272 | '@{' statements '@}'
3273 ;
3274@end group
3275@end example
3276
3277@noindent
3278Now the parser is forced to decide whether to run the mid-rule action
3279when it has read no farther than the open-brace. In other words, it
3280must commit to using one rule or the other, without sufficient
3281information to do it correctly. (The open-brace token is what is called
3282the @dfn{look-ahead} token at this time, since the parser is still
3283deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3284
3285You might think that you could correct the problem by putting identical
3286actions into the two rules, like this:
3287
3288@example
3289@group
3290compound: @{ prepare_for_local_variables (); @}
3291 '@{' declarations statements '@}'
3292 | @{ prepare_for_local_variables (); @}
3293 '@{' statements '@}'
3294 ;
3295@end group
3296@end example
3297
3298@noindent
3299But this does not help, because Bison does not realize that the two actions
3300are identical. (Bison never tries to understand the C code in an action.)
3301
3302If the grammar is such that a declaration can be distinguished from a
3303statement by the first token (which is true in C), then one solution which
3304does work is to put the action after the open-brace, like this:
3305
3306@example
3307@group
3308compound: '@{' @{ prepare_for_local_variables (); @}
3309 declarations statements '@}'
3310 | '@{' statements '@}'
3311 ;
3312@end group
3313@end example
3314
3315@noindent
3316Now the first token of the following declaration or statement,
3317which would in any case tell Bison which rule to use, can still do so.
3318
3319Another solution is to bury the action inside a nonterminal symbol which
3320serves as a subroutine:
3321
3322@example
3323@group
3324subroutine: /* empty */
3325 @{ prepare_for_local_variables (); @}
3326 ;
3327
3328@end group
3329
3330@group
3331compound: subroutine
3332 '@{' declarations statements '@}'
3333 | subroutine
3334 '@{' statements '@}'
3335 ;
3336@end group
3337@end example
3338
3339@noindent
3340Now Bison can execute the action in the rule for @code{subroutine} without
3341deciding which rule for @code{compound} it will eventually use. Note that
3342the action is now at the end of its rule. Any mid-rule action can be
3343converted to an end-of-rule action in this way, and this is what Bison
3344actually does to implement mid-rule actions.
3345
342b8b6e 3346@node Locations
847bf1f5
AD
3347@section Tracking Locations
3348@cindex location
95923bd6
AD
3349@cindex textual location
3350@cindex location, textual
847bf1f5
AD
3351
3352Though grammar rules and semantic actions are enough to write a fully
72d2299c 3353functional parser, it can be useful to process some additional information,
3e259915
MA
3354especially symbol locations.
3355
704a47c4
AD
3356The way locations are handled is defined by providing a data type, and
3357actions to take when rules are matched.
847bf1f5
AD
3358
3359@menu
3360* Location Type:: Specifying a data type for locations.
3361* Actions and Locations:: Using locations in actions.
3362* Location Default Action:: Defining a general way to compute locations.
3363@end menu
3364
342b8b6e 3365@node Location Type
847bf1f5
AD
3366@subsection Data Type of Locations
3367@cindex data type of locations
3368@cindex default location type
3369
3370Defining a data type for locations is much simpler than for semantic values,
3371since all tokens and groupings always use the same type.
3372
3373The type of locations is specified by defining a macro called @code{YYLTYPE}.
3374When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3375four members:
3376
3377@example
6273355b 3378typedef struct YYLTYPE
847bf1f5
AD
3379@{
3380 int first_line;
3381 int first_column;
3382 int last_line;
3383 int last_column;
6273355b 3384@} YYLTYPE;
847bf1f5
AD
3385@end example
3386
342b8b6e 3387@node Actions and Locations
847bf1f5
AD
3388@subsection Actions and Locations
3389@cindex location actions
3390@cindex actions, location
3391@vindex @@$
3392@vindex @@@var{n}
3393
3394Actions are not only useful for defining language semantics, but also for
3395describing the behavior of the output parser with locations.
3396
3397The most obvious way for building locations of syntactic groupings is very
72d2299c 3398similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3399constructs can be used to access the locations of the elements being matched.
3400The location of the @var{n}th component of the right hand side is
3401@code{@@@var{n}}, while the location of the left hand side grouping is
3402@code{@@$}.
3403
3e259915 3404Here is a basic example using the default data type for locations:
847bf1f5
AD
3405
3406@example
3407@group
3408exp: @dots{}
3e259915 3409 | exp '/' exp
847bf1f5 3410 @{
3e259915
MA
3411 @@$.first_column = @@1.first_column;
3412 @@$.first_line = @@1.first_line;
847bf1f5
AD
3413 @@$.last_column = @@3.last_column;
3414 @@$.last_line = @@3.last_line;
3e259915
MA
3415 if ($3)
3416 $$ = $1 / $3;
3417 else
3418 @{
3419 $$ = 1;
4e03e201
AD
3420 fprintf (stderr,
3421 "Division by zero, l%d,c%d-l%d,c%d",
3422 @@3.first_line, @@3.first_column,
3423 @@3.last_line, @@3.last_column);
3e259915 3424 @}
847bf1f5
AD
3425 @}
3426@end group
3427@end example
3428
3e259915 3429As for semantic values, there is a default action for locations that is
72d2299c 3430run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3431beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3432last symbol.
3e259915 3433
72d2299c 3434With this default action, the location tracking can be fully automatic. The
3e259915
MA
3435example above simply rewrites this way:
3436
3437@example
3438@group
3439exp: @dots{}
3440 | exp '/' exp
3441 @{
3442 if ($3)
3443 $$ = $1 / $3;
3444 else
3445 @{
3446 $$ = 1;
4e03e201
AD
3447 fprintf (stderr,
3448 "Division by zero, l%d,c%d-l%d,c%d",
3449 @@3.first_line, @@3.first_column,
3450 @@3.last_line, @@3.last_column);
3e259915
MA
3451 @}
3452 @}
3453@end group
3454@end example
847bf1f5 3455
342b8b6e 3456@node Location Default Action
847bf1f5
AD
3457@subsection Default Action for Locations
3458@vindex YYLLOC_DEFAULT
3459
72d2299c 3460Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3461locations are much more general than semantic values, there is room in
3462the output parser to redefine the default action to take for each
72d2299c 3463rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3464matched, before the associated action is run. It is also invoked
3465while processing a syntax error, to compute the error's location.
847bf1f5 3466
3e259915 3467Most of the time, this macro is general enough to suppress location
79282c6c 3468dedicated code from semantic actions.
847bf1f5 3469
72d2299c 3470The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3471the location of the grouping (the result of the computation). When a
766de5eb 3472rule is matched, the second parameter identifies locations of
96b93a3d
PE
3473all right hand side elements of the rule being matched, and the third
3474parameter is the size of the rule's right hand side. When processing
766de5eb 3475a syntax error, the second parameter identifies locations of
96b93a3d
PE
3476the symbols that were discarded during error processing, and the third
3477parameter is the number of discarded symbols.
847bf1f5 3478
766de5eb 3479By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3480
766de5eb 3481@smallexample
847bf1f5 3482@group
766de5eb
PE
3483# define YYLLOC_DEFAULT(Current, Rhs, N) \
3484 do \
3485 if (N) \
3486 @{ \
3487 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3488 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3489 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3490 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3491 @} \
3492 else \
3493 @{ \
3494 (Current).first_line = (Current).last_line = \
3495 YYRHSLOC(Rhs, 0).last_line; \
3496 (Current).first_column = (Current).last_column = \
3497 YYRHSLOC(Rhs, 0).last_column; \
3498 @} \
3499 while (0)
847bf1f5 3500@end group
766de5eb 3501@end smallexample
676385e2 3502
766de5eb
PE
3503where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3504in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3505just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3506
3e259915 3507When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3508
3e259915 3509@itemize @bullet
79282c6c 3510@item
72d2299c 3511All arguments are free of side-effects. However, only the first one (the
3e259915 3512result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3513
3e259915 3514@item
766de5eb
PE
3515For consistency with semantic actions, valid indexes within the
3516right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3517valid index, and it refers to the symbol just before the reduction.
3518During error processing @var{n} is always positive.
0ae99356
PE
3519
3520@item
3521Your macro should parenthesize its arguments, if need be, since the
3522actual arguments may not be surrounded by parentheses. Also, your
3523macro should expand to something that can be used as a single
3524statement when it is followed by a semicolon.
3e259915 3525@end itemize
847bf1f5 3526
342b8b6e 3527@node Declarations
bfa74976
RS
3528@section Bison Declarations
3529@cindex declarations, Bison
3530@cindex Bison declarations
3531
3532The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3533used in formulating the grammar and the data types of semantic values.
3534@xref{Symbols}.
3535
3536All token type names (but not single-character literal tokens such as
3537@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3538declared if you need to specify which data type to use for the semantic
3539value (@pxref{Multiple Types, ,More Than One Value Type}).
3540
3541The first rule in the file also specifies the start symbol, by default.
3542If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3543it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3544Grammars}).
bfa74976
RS
3545
3546@menu
3547* Token Decl:: Declaring terminal symbols.
3548* Precedence Decl:: Declaring terminals with precedence and associativity.
3549* Union Decl:: Declaring the set of all semantic value types.
3550* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3551* Initial Action Decl:: Code run before parsing starts.
72f889cc 3552* Destructor Decl:: Declaring how symbols are freed.
d6328241 3553* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3554* Start Decl:: Specifying the start symbol.
3555* Pure Decl:: Requesting a reentrant parser.
3556* Decl Summary:: Table of all Bison declarations.
3557@end menu
3558
342b8b6e 3559@node Token Decl
bfa74976
RS
3560@subsection Token Type Names
3561@cindex declaring token type names
3562@cindex token type names, declaring
931c7513 3563@cindex declaring literal string tokens
bfa74976
RS
3564@findex %token
3565
3566The basic way to declare a token type name (terminal symbol) is as follows:
3567
3568@example
3569%token @var{name}
3570@end example
3571
3572Bison will convert this into a @code{#define} directive in
3573the parser, so that the function @code{yylex} (if it is in this file)
3574can use the name @var{name} to stand for this token type's code.
3575
14ded682
AD
3576Alternatively, you can use @code{%left}, @code{%right}, or
3577@code{%nonassoc} instead of @code{%token}, if you wish to specify
3578associativity and precedence. @xref{Precedence Decl, ,Operator
3579Precedence}.
bfa74976
RS
3580
3581You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3582a decimal or hexadecimal integer value in the field immediately
3583following the token name:
bfa74976
RS
3584
3585@example
3586%token NUM 300
1452af69 3587%token XNUM 0x12d // a GNU extension
bfa74976
RS
3588@end example
3589
3590@noindent
3591It is generally best, however, to let Bison choose the numeric codes for
3592all token types. Bison will automatically select codes that don't conflict
e966383b 3593with each other or with normal characters.
bfa74976
RS
3594
3595In the event that the stack type is a union, you must augment the
3596@code{%token} or other token declaration to include the data type
704a47c4
AD
3597alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3598Than One Value Type}).
bfa74976
RS
3599
3600For example:
3601
3602@example
3603@group
3604%union @{ /* define stack type */
3605 double val;
3606 symrec *tptr;
3607@}
3608%token <val> NUM /* define token NUM and its type */
3609@end group
3610@end example
3611
931c7513
RS
3612You can associate a literal string token with a token type name by
3613writing the literal string at the end of a @code{%token}
3614declaration which declares the name. For example:
3615
3616@example
3617%token arrow "=>"
3618@end example
3619
3620@noindent
3621For example, a grammar for the C language might specify these names with
3622equivalent literal string tokens:
3623
3624@example
3625%token <operator> OR "||"
3626%token <operator> LE 134 "<="
3627%left OR "<="
3628@end example
3629
3630@noindent
3631Once you equate the literal string and the token name, you can use them
3632interchangeably in further declarations or the grammar rules. The
3633@code{yylex} function can use the token name or the literal string to
3634obtain the token type code number (@pxref{Calling Convention}).
3635
342b8b6e 3636@node Precedence Decl
bfa74976
RS
3637@subsection Operator Precedence
3638@cindex precedence declarations
3639@cindex declaring operator precedence
3640@cindex operator precedence, declaring
3641
3642Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3643declare a token and specify its precedence and associativity, all at
3644once. These are called @dfn{precedence declarations}.
704a47c4
AD
3645@xref{Precedence, ,Operator Precedence}, for general information on
3646operator precedence.
bfa74976
RS
3647
3648The syntax of a precedence declaration is the same as that of
3649@code{%token}: either
3650
3651@example
3652%left @var{symbols}@dots{}
3653@end example
3654
3655@noindent
3656or
3657
3658@example
3659%left <@var{type}> @var{symbols}@dots{}
3660@end example
3661
3662And indeed any of these declarations serves the purposes of @code{%token}.
3663But in addition, they specify the associativity and relative precedence for
3664all the @var{symbols}:
3665
3666@itemize @bullet
3667@item
3668The associativity of an operator @var{op} determines how repeated uses
3669of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3670@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3671grouping @var{y} with @var{z} first. @code{%left} specifies
3672left-associativity (grouping @var{x} with @var{y} first) and
3673@code{%right} specifies right-associativity (grouping @var{y} with
3674@var{z} first). @code{%nonassoc} specifies no associativity, which
3675means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3676considered a syntax error.
3677
3678@item
3679The precedence of an operator determines how it nests with other operators.
3680All the tokens declared in a single precedence declaration have equal
3681precedence and nest together according to their associativity.
3682When two tokens declared in different precedence declarations associate,
3683the one declared later has the higher precedence and is grouped first.
3684@end itemize
3685
342b8b6e 3686@node Union Decl
bfa74976
RS
3687@subsection The Collection of Value Types
3688@cindex declaring value types
3689@cindex value types, declaring
3690@findex %union
3691
3692The @code{%union} declaration specifies the entire collection of possible
3693data types for semantic values. The keyword @code{%union} is followed by a
3694pair of braces containing the same thing that goes inside a @code{union} in
13863333 3695C.
bfa74976
RS
3696
3697For example:
3698
3699@example
3700@group
3701%union @{
3702 double val;
3703 symrec *tptr;
3704@}
3705@end group
3706@end example
3707
3708@noindent
3709This says that the two alternative types are @code{double} and @code{symrec
3710*}. They are given names @code{val} and @code{tptr}; these names are used
3711in the @code{%token} and @code{%type} declarations to pick one of the types
3712for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3713
6273355b
PE
3714As an extension to @acronym{POSIX}, a tag is allowed after the
3715@code{union}. For example:
3716
3717@example
3718@group
3719%union value @{
3720 double val;
3721 symrec *tptr;
3722@}
3723@end group
3724@end example
3725
3726specifies the union tag @code{value}, so the corresponding C type is
3727@code{union value}. If you do not specify a tag, it defaults to
3728@code{YYSTYPE}.
3729
3730Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3731a semicolon after the closing brace.
3732
342b8b6e 3733@node Type Decl
bfa74976
RS
3734@subsection Nonterminal Symbols
3735@cindex declaring value types, nonterminals
3736@cindex value types, nonterminals, declaring
3737@findex %type
3738
3739@noindent
3740When you use @code{%union} to specify multiple value types, you must
3741declare the value type of each nonterminal symbol for which values are
3742used. This is done with a @code{%type} declaration, like this:
3743
3744@example
3745%type <@var{type}> @var{nonterminal}@dots{}
3746@end example
3747
3748@noindent
704a47c4
AD
3749Here @var{nonterminal} is the name of a nonterminal symbol, and
3750@var{type} is the name given in the @code{%union} to the alternative
3751that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3752can give any number of nonterminal symbols in the same @code{%type}
3753declaration, if they have the same value type. Use spaces to separate
3754the symbol names.
bfa74976 3755
931c7513
RS
3756You can also declare the value type of a terminal symbol. To do this,
3757use the same @code{<@var{type}>} construction in a declaration for the
3758terminal symbol. All kinds of token declarations allow
3759@code{<@var{type}>}.
3760
18d192f0
AD
3761@node Initial Action Decl
3762@subsection Performing Actions before Parsing
3763@findex %initial-action
3764
3765Sometimes your parser needs to perform some initializations before
3766parsing. The @code{%initial-action} directive allows for such arbitrary
3767code.
3768
3769@deffn {Directive} %initial-action @{ @var{code} @}
3770@findex %initial-action
3771Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3772@code{yyparse} is called. The @var{code} may use @code{$$} and
3773@code{@@$} --- initial value and location of the look-ahead --- and the
3774@code{%parse-param}.
18d192f0
AD
3775@end deffn
3776
451364ed
AD
3777For instance, if your locations use a file name, you may use
3778
3779@example
3780%parse-param @{ const char *filename @};
3781%initial-action
3782@{
3783 @@$.begin.filename = @@$.end.filename = filename;
3784@};
3785@end example
3786
18d192f0 3787
72f889cc
AD
3788@node Destructor Decl
3789@subsection Freeing Discarded Symbols
3790@cindex freeing discarded symbols
3791@findex %destructor
3792
e757bb10
AD
3793Some symbols can be discarded by the parser. For instance, during error
3794recovery (@pxref{Error Recovery}), embarrassing symbols already pushed
3795on the stack, and embarrassing tokens coming from the rest of the file
3796are thrown away until the parser falls on its feet. If these symbols
3797convey heap based information, this memory is lost. While this behavior
3798can be tolerable for batch parsers, such as in compilers, it is not for
3799possibly ``never ending'' parsers such as shells, or implementations of
72f889cc
AD
3800communication protocols.
3801
3802The @code{%destructor} directive allows for the definition of code that
3803is called when a symbol is thrown away.
3804
3805@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3806@findex %destructor
3807Declare that the @var{code} must be invoked for each of the
3808@var{symbols} that will be discarded by the parser. The @var{code}
3809should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3810@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3811(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3812
3813@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3814experimental, as there was not enough user feedback. In particular,
3df37415 3815the syntax might still change.
72f889cc
AD
3816@end deffn
3817
3818For instance:
3819
3820@smallexample
3821%union
3822@{
3823 char *string;
3824@}
3825%token <string> STRING
3826%type <string> string
3827%destructor @{ free ($$); @} STRING string
3828@end smallexample
3829
3830@noindent
3831guarantees that when a @code{STRING} or a @code{string} will be discarded,
3832its associated memory will be freed.
3833
3834Note that in the future, Bison might also consider that right hand side
3835members that are not mentioned in the action can be destroyed. For
3836instance, in:
3837
3838@smallexample
3839comment: "/*" STRING "*/";
3840@end smallexample
3841
3842@noindent
3843the parser is entitled to destroy the semantic value of the
3844@code{string}. Of course, this will not apply to the default action;
3845compare:
3846
3847@smallexample
3848typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3849typefull: string; // $$ = $1 applies, $1 is not destroyed.
3850@end smallexample
3851
e757bb10
AD
3852@sp 1
3853
3854@cindex discarded symbols
3855@dfn{Discarded symbols} are the following:
3856
3857@itemize
3858@item
3859stacked symbols popped during the first phase of error recovery,
3860@item
3861incoming terminals during the second phase of error recovery,
3862@item
451364ed 3863the current look-ahead when the parser aborts (either via an explicit
e757bb10
AD
3864call to @code{YYABORT}, or as a consequence of a failed error recovery).
3865@end itemize
3866
3867
342b8b6e 3868@node Expect Decl
bfa74976
RS
3869@subsection Suppressing Conflict Warnings
3870@cindex suppressing conflict warnings
3871@cindex preventing warnings about conflicts
3872@cindex warnings, preventing
3873@cindex conflicts, suppressing warnings of
3874@findex %expect
d6328241 3875@findex %expect-rr
bfa74976
RS
3876
3877Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3878(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3879have harmless shift/reduce conflicts which are resolved in a predictable
3880way and would be difficult to eliminate. It is desirable to suppress
3881the warning about these conflicts unless the number of conflicts
3882changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3883
3884The declaration looks like this:
3885
3886@example
3887%expect @var{n}
3888@end example
3889
7da99ede
AD
3890Here @var{n} is a decimal integer. The declaration says there should be
3891no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3892reduce/reduce conflicts. The usual warning is
7da99ede
AD
3893given if there are either more or fewer conflicts, or if there are any
3894reduce/reduce conflicts.
bfa74976 3895
fa7e68c3 3896For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3897and should be eliminated entirely. Bison will always report
fa7e68c3 3898reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3899both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3900would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3901to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3902parsers, using the declaration:
3903
3904@example
3905%expect-rr @var{n}
3906@end example
3907
bfa74976
RS
3908In general, using @code{%expect} involves these steps:
3909
3910@itemize @bullet
3911@item
3912Compile your grammar without @code{%expect}. Use the @samp{-v} option
3913to get a verbose list of where the conflicts occur. Bison will also
3914print the number of conflicts.
3915
3916@item
3917Check each of the conflicts to make sure that Bison's default
3918resolution is what you really want. If not, rewrite the grammar and
3919go back to the beginning.
3920
3921@item
3922Add an @code{%expect} declaration, copying the number @var{n} from the
3923number which Bison printed.
3924@end itemize
3925
69363a9e
PE
3926Now Bison will stop annoying you if you do not change the number of
3927conflicts, but it will warn you again if changes in the grammar result
3928in more or fewer conflicts.
bfa74976 3929
342b8b6e 3930@node Start Decl
bfa74976
RS
3931@subsection The Start-Symbol
3932@cindex declaring the start symbol
3933@cindex start symbol, declaring
3934@cindex default start symbol
3935@findex %start
3936
3937Bison assumes by default that the start symbol for the grammar is the first
3938nonterminal specified in the grammar specification section. The programmer
3939may override this restriction with the @code{%start} declaration as follows:
3940
3941@example
3942%start @var{symbol}
3943@end example
3944
342b8b6e 3945@node Pure Decl
bfa74976
RS
3946@subsection A Pure (Reentrant) Parser
3947@cindex reentrant parser
3948@cindex pure parser
8c9a50be 3949@findex %pure-parser
bfa74976
RS
3950
3951A @dfn{reentrant} program is one which does not alter in the course of
3952execution; in other words, it consists entirely of @dfn{pure} (read-only)
3953code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3954for example, a non-reentrant program may not be safe to call from a signal
3955handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3956program must be called only within interlocks.
3957
70811b85 3958Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3959suitable for most uses, and it permits compatibility with Yacc. (The
3960standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3961statically allocated variables for communication with @code{yylex},
3962including @code{yylval} and @code{yylloc}.)
bfa74976 3963
70811b85 3964Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3965declaration @code{%pure-parser} says that you want the parser to be
70811b85 3966reentrant. It looks like this:
bfa74976
RS
3967
3968@example
8c9a50be 3969%pure-parser
bfa74976
RS
3970@end example
3971
70811b85
RS
3972The result is that the communication variables @code{yylval} and
3973@code{yylloc} become local variables in @code{yyparse}, and a different
3974calling convention is used for the lexical analyzer function
3975@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3976Parsers}, for the details of this. The variable @code{yynerrs} also
3977becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3978Reporting Function @code{yyerror}}). The convention for calling
3979@code{yyparse} itself is unchanged.
3980
3981Whether the parser is pure has nothing to do with the grammar rules.
3982You can generate either a pure parser or a nonreentrant parser from any
3983valid grammar.
bfa74976 3984
342b8b6e 3985@node Decl Summary
bfa74976
RS
3986@subsection Bison Declaration Summary
3987@cindex Bison declaration summary
3988@cindex declaration summary
3989@cindex summary, Bison declaration
3990
d8988b2f 3991Here is a summary of the declarations used to define a grammar:
bfa74976 3992
18b519c0 3993@deffn {Directive} %union
bfa74976
RS
3994Declare the collection of data types that semantic values may have
3995(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 3996@end deffn
bfa74976 3997
18b519c0 3998@deffn {Directive} %token
bfa74976
RS
3999Declare a terminal symbol (token type name) with no precedence
4000or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4001@end deffn
bfa74976 4002
18b519c0 4003@deffn {Directive} %right
bfa74976
RS
4004Declare a terminal symbol (token type name) that is right-associative
4005(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4006@end deffn
bfa74976 4007
18b519c0 4008@deffn {Directive} %left
bfa74976
RS
4009Declare a terminal symbol (token type name) that is left-associative
4010(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4011@end deffn
bfa74976 4012
18b519c0 4013@deffn {Directive} %nonassoc
bfa74976 4014Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4015(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4016Using it in a way that would be associative is a syntax error.
4017@end deffn
4018
91d2c560 4019@ifset defaultprec
39a06c25 4020@deffn {Directive} %default-prec
22fccf95 4021Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4022(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4023@end deffn
91d2c560 4024@end ifset
bfa74976 4025
18b519c0 4026@deffn {Directive} %type
bfa74976
RS
4027Declare the type of semantic values for a nonterminal symbol
4028(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4029@end deffn
bfa74976 4030
18b519c0 4031@deffn {Directive} %start
89cab50d
AD
4032Specify the grammar's start symbol (@pxref{Start Decl, ,The
4033Start-Symbol}).
18b519c0 4034@end deffn
bfa74976 4035
18b519c0 4036@deffn {Directive} %expect
bfa74976
RS
4037Declare the expected number of shift-reduce conflicts
4038(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4039@end deffn
4040
bfa74976 4041
d8988b2f
AD
4042@sp 1
4043@noindent
4044In order to change the behavior of @command{bison}, use the following
4045directives:
4046
18b519c0 4047@deffn {Directive} %debug
4947ebdb
PE
4048In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4049already defined, so that the debugging facilities are compiled.
18b519c0 4050@end deffn
ec3bc396 4051@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4052
18b519c0 4053@deffn {Directive} %defines
4bfd5e4e
PE
4054Write a header file containing macro definitions for the token type
4055names defined in the grammar as well as a few other declarations.
d8988b2f 4056If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4057is named @file{@var{name}.h}.
d8988b2f 4058
4bfd5e4e 4059Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
4060declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
4061(@pxref{Multiple Types, ,More Than One Value Type}) with components
4062that require other definitions, or if you have defined a
4bfd5e4e 4063@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
4064Values}), you need to arrange for these definitions to be propagated to
4065all modules, e.g., by putting them in a
4bfd5e4e
PE
4066prerequisite header that is included both by your parser and by any
4067other module that needs @code{YYSTYPE}.
4068
4069Unless your parser is pure, the output header declares @code{yylval}
4070as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4071Parser}.
4072
4073If you have also used locations, the output header declares
4074@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4075@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4076Locations}.
4077
4078This output file is normally essential if you wish to put the
4079definition of @code{yylex} in a separate source file, because
4080@code{yylex} typically needs to be able to refer to the
4081above-mentioned declarations and to the token type codes.
4082@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4083@end deffn
d8988b2f 4084
18b519c0 4085@deffn {Directive} %destructor
72f889cc 4086Specifying how the parser should reclaim the memory associated to
fa7e68c3 4087discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4088@end deffn
72f889cc 4089
18b519c0 4090@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4091Specify a prefix to use for all Bison output file names. The names are
4092chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4093@end deffn
d8988b2f 4094
18b519c0 4095@deffn {Directive} %locations
89cab50d
AD
4096Generate the code processing the locations (@pxref{Action Features,
4097,Special Features for Use in Actions}). This mode is enabled as soon as
4098the grammar uses the special @samp{@@@var{n}} tokens, but if your
4099grammar does not use it, using @samp{%locations} allows for more
6e649e65 4100accurate syntax error messages.
18b519c0 4101@end deffn
89cab50d 4102
18b519c0 4103@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4104Rename the external symbols used in the parser so that they start with
4105@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4106is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4107@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4108possible @code{yylloc}. For example, if you use
4109@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4110and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4111Program}.
18b519c0 4112@end deffn
931c7513 4113
91d2c560 4114@ifset defaultprec
22fccf95
PE
4115@deffn {Directive} %no-default-prec
4116Do not assign a precedence to rules lacking an explicit @code{%prec}
4117modifier (@pxref{Contextual Precedence, ,Context-Dependent
4118Precedence}).
4119@end deffn
91d2c560 4120@end ifset
22fccf95 4121
18b519c0 4122@deffn {Directive} %no-parser
6deb4447
AD
4123Do not include any C code in the parser file; generate tables only. The
4124parser file contains just @code{#define} directives and static variable
4125declarations.
4126
4127This option also tells Bison to write the C code for the grammar actions
4128into a file named @file{@var{filename}.act}, in the form of a
4129brace-surrounded body fit for a @code{switch} statement.
18b519c0 4130@end deffn
6deb4447 4131
18b519c0 4132@deffn {Directive} %no-lines
931c7513
RS
4133Don't generate any @code{#line} preprocessor commands in the parser
4134file. Ordinarily Bison writes these commands in the parser file so that
4135the C compiler and debuggers will associate errors and object code with
4136your source file (the grammar file). This directive causes them to
4137associate errors with the parser file, treating it an independent source
4138file in its own right.
18b519c0 4139@end deffn
931c7513 4140
18b519c0 4141@deffn {Directive} %output="@var{filename}"
d8988b2f 4142Specify the @var{filename} for the parser file.
18b519c0 4143@end deffn
6deb4447 4144
18b519c0 4145@deffn {Directive} %pure-parser
d8988b2f
AD
4146Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4147(Reentrant) Parser}).
18b519c0 4148@end deffn
6deb4447 4149
18b519c0 4150@deffn {Directive} %token-table
931c7513
RS
4151Generate an array of token names in the parser file. The name of the
4152array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4153token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4154three elements of @code{yytname} correspond to the predefined tokens
4155@code{"$end"},
88bce5a2
AD
4156@code{"error"}, and @code{"$undefined"}; after these come the symbols
4157defined in the grammar file.
931c7513
RS
4158
4159For single-character literal tokens and literal string tokens, the name
4160in the table includes the single-quote or double-quote characters: for
4161example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
4162is a literal string token. All the characters of the literal string
4163token appear verbatim in the string found in the table; even
4164double-quote characters are not escaped. For example, if the token
4165consists of three characters @samp{*"*}, its string in @code{yytname}
4166contains @samp{"*"*"}. (In C, that would be written as
4167@code{"\"*\"*\""}).
4168
8c9a50be 4169When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4170definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4171@code{YYNRULES}, and @code{YYNSTATES}:
4172
4173@table @code
4174@item YYNTOKENS
4175The highest token number, plus one.
4176@item YYNNTS
9ecbd125 4177The number of nonterminal symbols.
931c7513
RS
4178@item YYNRULES
4179The number of grammar rules,
4180@item YYNSTATES
4181The number of parser states (@pxref{Parser States}).
4182@end table
18b519c0 4183@end deffn
d8988b2f 4184
18b519c0 4185@deffn {Directive} %verbose
d8988b2f
AD
4186Write an extra output file containing verbose descriptions of the
4187parser states and what is done for each type of look-ahead token in
72d2299c 4188that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4189information.
18b519c0 4190@end deffn
d8988b2f 4191
18b519c0 4192@deffn {Directive} %yacc
d8988b2f
AD
4193Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4194including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4195@end deffn
d8988b2f
AD
4196
4197
342b8b6e 4198@node Multiple Parsers
bfa74976
RS
4199@section Multiple Parsers in the Same Program
4200
4201Most programs that use Bison parse only one language and therefore contain
4202only one Bison parser. But what if you want to parse more than one
4203language with the same program? Then you need to avoid a name conflict
4204between different definitions of @code{yyparse}, @code{yylval}, and so on.
4205
4206The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4207(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4208functions and variables of the Bison parser to start with @var{prefix}
4209instead of @samp{yy}. You can use this to give each parser distinct
4210names that do not conflict.
bfa74976
RS
4211
4212The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4213@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4214@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4215the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4216
4217@strong{All the other variables and macros associated with Bison are not
4218renamed.} These others are not global; there is no conflict if the same
4219name is used in different parsers. For example, @code{YYSTYPE} is not
4220renamed, but defining this in different ways in different parsers causes
4221no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4222
4223The @samp{-p} option works by adding macro definitions to the beginning
4224of the parser source file, defining @code{yyparse} as
4225@code{@var{prefix}parse}, and so on. This effectively substitutes one
4226name for the other in the entire parser file.
4227
342b8b6e 4228@node Interface
bfa74976
RS
4229@chapter Parser C-Language Interface
4230@cindex C-language interface
4231@cindex interface
4232
4233The Bison parser is actually a C function named @code{yyparse}. Here we
4234describe the interface conventions of @code{yyparse} and the other
4235functions that it needs to use.
4236
4237Keep in mind that the parser uses many C identifiers starting with
4238@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4239identifier (aside from those in this manual) in an action or in epilogue
4240in the grammar file, you are likely to run into trouble.
bfa74976
RS
4241
4242@menu
4243* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4244* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4245 which reads tokens.
4246* Error Reporting:: You must supply a function @code{yyerror}.
4247* Action Features:: Special features for use in actions.
f7ab6a50
PE
4248* Internationalization:: How to let the parser speak in the user's
4249 native language.
bfa74976
RS
4250@end menu
4251
342b8b6e 4252@node Parser Function
bfa74976
RS
4253@section The Parser Function @code{yyparse}
4254@findex yyparse
4255
4256You call the function @code{yyparse} to cause parsing to occur. This
4257function reads tokens, executes actions, and ultimately returns when it
4258encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4259write an action which directs @code{yyparse} to return immediately
4260without reading further.
bfa74976 4261
2a8d363a
AD
4262
4263@deftypefun int yyparse (void)
bfa74976
RS
4264The value returned by @code{yyparse} is 0 if parsing was successful (return
4265is due to end-of-input).
4266
4267The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 4268@end deftypefun
bfa74976
RS
4269
4270In an action, you can cause immediate return from @code{yyparse} by using
4271these macros:
4272
2a8d363a 4273@defmac YYACCEPT
bfa74976
RS
4274@findex YYACCEPT
4275Return immediately with value 0 (to report success).
2a8d363a 4276@end defmac
bfa74976 4277
2a8d363a 4278@defmac YYABORT
bfa74976
RS
4279@findex YYABORT
4280Return immediately with value 1 (to report failure).
2a8d363a
AD
4281@end defmac
4282
4283If you use a reentrant parser, you can optionally pass additional
4284parameter information to it in a reentrant way. To do so, use the
4285declaration @code{%parse-param}:
4286
feeb0eda 4287@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4288@findex %parse-param
feeb0eda 4289Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4290additional @code{yyparse} argument.
4291The @var{argument-declaration} is used when declaring
feeb0eda
PE
4292functions or prototypes. The last identifier in
4293@var{argument-declaration} must be the argument name.
2a8d363a
AD
4294@end deffn
4295
4296Here's an example. Write this in the parser:
4297
4298@example
feeb0eda
PE
4299%parse-param @{int *nastiness@}
4300%parse-param @{int *randomness@}
2a8d363a
AD
4301@end example
4302
4303@noindent
4304Then call the parser like this:
4305
4306@example
4307@{
4308 int nastiness, randomness;
4309 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4310 value = yyparse (&nastiness, &randomness);
4311 @dots{}
4312@}
4313@end example
4314
4315@noindent
4316In the grammar actions, use expressions like this to refer to the data:
4317
4318@example
4319exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4320@end example
4321
bfa74976 4322
342b8b6e 4323@node Lexical
bfa74976
RS
4324@section The Lexical Analyzer Function @code{yylex}
4325@findex yylex
4326@cindex lexical analyzer
4327
4328The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4329the input stream and returns them to the parser. Bison does not create
4330this function automatically; you must write it so that @code{yyparse} can
4331call it. The function is sometimes referred to as a lexical scanner.
4332
4333In simple programs, @code{yylex} is often defined at the end of the Bison
4334grammar file. If @code{yylex} is defined in a separate source file, you
4335need to arrange for the token-type macro definitions to be available there.
4336To do this, use the @samp{-d} option when you run Bison, so that it will
4337write these macro definitions into a separate header file
4338@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4339that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4340
4341@menu
4342* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4343* Token Values:: How @code{yylex} must return the semantic value
4344 of the token it has read.
95923bd6 4345* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4346 (line number, etc.) of the token, if the
4347 actions want that.
4348* Pure Calling:: How the calling convention differs
4349 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4350@end menu
4351
342b8b6e 4352@node Calling Convention
bfa74976
RS
4353@subsection Calling Convention for @code{yylex}
4354
72d2299c
PE
4355The value that @code{yylex} returns must be the positive numeric code
4356for the type of token it has just found; a zero or negative value
4357signifies end-of-input.
bfa74976
RS
4358
4359When a token is referred to in the grammar rules by a name, that name
4360in the parser file becomes a C macro whose definition is the proper
4361numeric code for that token type. So @code{yylex} can use the name
4362to indicate that type. @xref{Symbols}.
4363
4364When a token is referred to in the grammar rules by a character literal,
4365the numeric code for that character is also the code for the token type.
72d2299c
PE
4366So @code{yylex} can simply return that character code, possibly converted
4367to @code{unsigned char} to avoid sign-extension. The null character
4368must not be used this way, because its code is zero and that
bfa74976
RS
4369signifies end-of-input.
4370
4371Here is an example showing these things:
4372
4373@example
13863333
AD
4374int
4375yylex (void)
bfa74976
RS
4376@{
4377 @dots{}
72d2299c 4378 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4379 return 0;
4380 @dots{}
4381 if (c == '+' || c == '-')
72d2299c 4382 return c; /* Assume token type for `+' is '+'. */
bfa74976 4383 @dots{}
72d2299c 4384 return INT; /* Return the type of the token. */
bfa74976
RS
4385 @dots{}
4386@}
4387@end example
4388
4389@noindent
4390This interface has been designed so that the output from the @code{lex}
4391utility can be used without change as the definition of @code{yylex}.
4392
931c7513
RS
4393If the grammar uses literal string tokens, there are two ways that
4394@code{yylex} can determine the token type codes for them:
4395
4396@itemize @bullet
4397@item
4398If the grammar defines symbolic token names as aliases for the
4399literal string tokens, @code{yylex} can use these symbolic names like
4400all others. In this case, the use of the literal string tokens in
4401the grammar file has no effect on @code{yylex}.
4402
4403@item
9ecbd125 4404@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4405table. The index of the token in the table is the token type's code.
9ecbd125 4406The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4407double-quote, the token's characters, and another double-quote. The
4408token's characters are not escaped in any way; they appear verbatim in
4409the contents of the string in the table.
4410
4411Here's code for looking up a token in @code{yytname}, assuming that the
4412characters of the token are stored in @code{token_buffer}.
4413
4414@smallexample
4415for (i = 0; i < YYNTOKENS; i++)
4416 @{
4417 if (yytname[i] != 0
4418 && yytname[i][0] == '"'
68449b3a
PE
4419 && ! strncmp (yytname[i] + 1, token_buffer,
4420 strlen (token_buffer))
931c7513
RS
4421 && yytname[i][strlen (token_buffer) + 1] == '"'
4422 && yytname[i][strlen (token_buffer) + 2] == 0)
4423 break;
4424 @}
4425@end smallexample
4426
4427The @code{yytname} table is generated only if you use the
8c9a50be 4428@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4429@end itemize
4430
342b8b6e 4431@node Token Values
bfa74976
RS
4432@subsection Semantic Values of Tokens
4433
4434@vindex yylval
14ded682 4435In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4436be stored into the global variable @code{yylval}. When you are using
4437just one data type for semantic values, @code{yylval} has that type.
4438Thus, if the type is @code{int} (the default), you might write this in
4439@code{yylex}:
4440
4441@example
4442@group
4443 @dots{}
72d2299c
PE
4444 yylval = value; /* Put value onto Bison stack. */
4445 return INT; /* Return the type of the token. */
bfa74976
RS
4446 @dots{}
4447@end group
4448@end example
4449
4450When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4451made from the @code{%union} declaration (@pxref{Union Decl, ,The
4452Collection of Value Types}). So when you store a token's value, you
4453must use the proper member of the union. If the @code{%union}
4454declaration looks like this:
bfa74976
RS
4455
4456@example
4457@group
4458%union @{
4459 int intval;
4460 double val;
4461 symrec *tptr;
4462@}
4463@end group
4464@end example
4465
4466@noindent
4467then the code in @code{yylex} might look like this:
4468
4469@example
4470@group
4471 @dots{}
72d2299c
PE
4472 yylval.intval = value; /* Put value onto Bison stack. */
4473 return INT; /* Return the type of the token. */
bfa74976
RS
4474 @dots{}
4475@end group
4476@end example
4477
95923bd6
AD
4478@node Token Locations
4479@subsection Textual Locations of Tokens
bfa74976
RS
4480
4481@vindex yylloc
847bf1f5
AD
4482If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4483Tracking Locations}) in actions to keep track of the
89cab50d
AD
4484textual locations of tokens and groupings, then you must provide this
4485information in @code{yylex}. The function @code{yyparse} expects to
4486find the textual location of a token just parsed in the global variable
4487@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4488variable.
4489
4490By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4491initialize the members that are going to be used by the actions. The
4492four members are called @code{first_line}, @code{first_column},
4493@code{last_line} and @code{last_column}. Note that the use of this
4494feature makes the parser noticeably slower.
bfa74976
RS
4495
4496@tindex YYLTYPE
4497The data type of @code{yylloc} has the name @code{YYLTYPE}.
4498
342b8b6e 4499@node Pure Calling
c656404a 4500@subsection Calling Conventions for Pure Parsers
bfa74976 4501
8c9a50be 4502When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4503pure, reentrant parser, the global communication variables @code{yylval}
4504and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4505Parser}.) In such parsers the two global variables are replaced by
4506pointers passed as arguments to @code{yylex}. You must declare them as
4507shown here, and pass the information back by storing it through those
4508pointers.
bfa74976
RS
4509
4510@example
13863333
AD
4511int
4512yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4513@{
4514 @dots{}
4515 *lvalp = value; /* Put value onto Bison stack. */
4516 return INT; /* Return the type of the token. */
4517 @dots{}
4518@}
4519@end example
4520
4521If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4522textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4523this case, omit the second argument; @code{yylex} will be called with
4524only one argument.
4525
e425e872 4526
2a8d363a
AD
4527If you wish to pass the additional parameter data to @code{yylex}, use
4528@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4529Function}).
e425e872 4530
feeb0eda 4531@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4532@findex %lex-param
feeb0eda
PE
4533Declare that @code{argument-declaration} is an additional @code{yylex}
4534argument declaration.
2a8d363a 4535@end deffn
e425e872 4536
2a8d363a 4537For instance:
e425e872
RS
4538
4539@example
feeb0eda
PE
4540%parse-param @{int *nastiness@}
4541%lex-param @{int *nastiness@}
4542%parse-param @{int *randomness@}
e425e872
RS
4543@end example
4544
4545@noindent
2a8d363a 4546results in the following signature:
e425e872
RS
4547
4548@example
2a8d363a
AD
4549int yylex (int *nastiness);
4550int yyparse (int *nastiness, int *randomness);
e425e872
RS
4551@end example
4552
2a8d363a 4553If @code{%pure-parser} is added:
c656404a
RS
4554
4555@example
2a8d363a
AD
4556int yylex (YYSTYPE *lvalp, int *nastiness);
4557int yyparse (int *nastiness, int *randomness);
c656404a
RS
4558@end example
4559
2a8d363a
AD
4560@noindent
4561and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4562
2a8d363a
AD
4563@example
4564int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4565int yyparse (int *nastiness, int *randomness);
4566@end example
931c7513 4567
342b8b6e 4568@node Error Reporting
bfa74976
RS
4569@section The Error Reporting Function @code{yyerror}
4570@cindex error reporting function
4571@findex yyerror
4572@cindex parse error
4573@cindex syntax error
4574
6e649e65 4575The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4576whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4577action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4578macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4579in Actions}).
bfa74976
RS
4580
4581The Bison parser expects to report the error by calling an error
4582reporting function named @code{yyerror}, which you must supply. It is
4583called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4584receives one argument. For a syntax error, the string is normally
4585@w{@code{"syntax error"}}.
bfa74976 4586
2a8d363a
AD
4587@findex %error-verbose
4588If you invoke the directive @code{%error-verbose} in the Bison
4589declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4590Section}), then Bison provides a more verbose and specific error message
6e649e65 4591string instead of just plain @w{@code{"syntax error"}}.
bfa74976
RS
4592
4593The parser can detect one other kind of error: stack overflow. This
4594happens when the input contains constructions that are very deeply
4595nested. It isn't likely you will encounter this, since the Bison
4596parser extends its stack automatically up to a very large limit. But
4597if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
4598fashion, except that the argument string is @w{@code{"parser stack
4599overflow"}}.
4600
4601The following definition suffices in simple programs:
4602
4603@example
4604@group
13863333 4605void
38a92d50 4606yyerror (char const *s)
bfa74976
RS
4607@{
4608@end group
4609@group
4610 fprintf (stderr, "%s\n", s);
4611@}
4612@end group
4613@end example
4614
4615After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4616error recovery if you have written suitable error recovery grammar rules
4617(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4618immediately return 1.
4619
93724f13 4620Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4621an access to the current location.
4622This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4623parsers, but not for the Yacc parser, for historical reasons. I.e., if
4624@samp{%locations %pure-parser} is passed then the prototypes for
4625@code{yyerror} are:
4626
4627@example
38a92d50
PE
4628void yyerror (char const *msg); /* Yacc parsers. */
4629void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4630@end example
4631
feeb0eda 4632If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4633
4634@example
b317297e
PE
4635void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4636void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4637@end example
4638
fa7e68c3 4639Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4640convention for absolutely pure parsers, i.e., when the calling
4641convention of @code{yylex} @emph{and} the calling convention of
4642@code{%pure-parser} are pure. I.e.:
4643
4644@example
4645/* Location tracking. */
4646%locations
4647/* Pure yylex. */
4648%pure-parser
feeb0eda 4649%lex-param @{int *nastiness@}
2a8d363a 4650/* Pure yyparse. */
feeb0eda
PE
4651%parse-param @{int *nastiness@}
4652%parse-param @{int *randomness@}
2a8d363a
AD
4653@end example
4654
4655@noindent
4656results in the following signatures for all the parser kinds:
4657
4658@example
4659int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4660int yyparse (int *nastiness, int *randomness);
93724f13
AD
4661void yyerror (YYLTYPE *locp,
4662 int *nastiness, int *randomness,
38a92d50 4663 char const *msg);
2a8d363a
AD
4664@end example
4665
1c0c3e95 4666@noindent
38a92d50
PE
4667The prototypes are only indications of how the code produced by Bison
4668uses @code{yyerror}. Bison-generated code always ignores the returned
4669value, so @code{yyerror} can return any type, including @code{void}.
4670Also, @code{yyerror} can be a variadic function; that is why the
4671message is always passed last.
4672
4673Traditionally @code{yyerror} returns an @code{int} that is always
4674ignored, but this is purely for historical reasons, and @code{void} is
4675preferable since it more accurately describes the return type for
4676@code{yyerror}.
93724f13 4677
bfa74976
RS
4678@vindex yynerrs
4679The variable @code{yynerrs} contains the number of syntax errors
4680encountered so far. Normally this variable is global; but if you
704a47c4
AD
4681request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4682then it is a local variable which only the actions can access.
bfa74976 4683
342b8b6e 4684@node Action Features
bfa74976
RS
4685@section Special Features for Use in Actions
4686@cindex summary, action features
4687@cindex action features summary
4688
4689Here is a table of Bison constructs, variables and macros that
4690are useful in actions.
4691
18b519c0 4692@deffn {Variable} $$
bfa74976
RS
4693Acts like a variable that contains the semantic value for the
4694grouping made by the current rule. @xref{Actions}.
18b519c0 4695@end deffn
bfa74976 4696
18b519c0 4697@deffn {Variable} $@var{n}
bfa74976
RS
4698Acts like a variable that contains the semantic value for the
4699@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4700@end deffn
bfa74976 4701
18b519c0 4702@deffn {Variable} $<@var{typealt}>$
bfa74976 4703Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4704specified by the @code{%union} declaration. @xref{Action Types, ,Data
4705Types of Values in Actions}.
18b519c0 4706@end deffn
bfa74976 4707
18b519c0 4708@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4709Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4710union specified by the @code{%union} declaration.
e0c471a9 4711@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4712@end deffn
bfa74976 4713
18b519c0 4714@deffn {Macro} YYABORT;
bfa74976
RS
4715Return immediately from @code{yyparse}, indicating failure.
4716@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4717@end deffn
bfa74976 4718
18b519c0 4719@deffn {Macro} YYACCEPT;
bfa74976
RS
4720Return immediately from @code{yyparse}, indicating success.
4721@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4722@end deffn
bfa74976 4723
18b519c0 4724@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4725@findex YYBACKUP
4726Unshift a token. This macro is allowed only for rules that reduce
4727a single value, and only when there is no look-ahead token.
c827f760 4728It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4729It installs a look-ahead token with token type @var{token} and
4730semantic value @var{value}; then it discards the value that was
4731going to be reduced by this rule.
4732
4733If the macro is used when it is not valid, such as when there is
4734a look-ahead token already, then it reports a syntax error with
4735a message @samp{cannot back up} and performs ordinary error
4736recovery.
4737
4738In either case, the rest of the action is not executed.
18b519c0 4739@end deffn
bfa74976 4740
18b519c0 4741@deffn {Macro} YYEMPTY
bfa74976
RS
4742@vindex YYEMPTY
4743Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4744@end deffn
bfa74976 4745
18b519c0 4746@deffn {Macro} YYERROR;
bfa74976
RS
4747@findex YYERROR
4748Cause an immediate syntax error. This statement initiates error
4749recovery just as if the parser itself had detected an error; however, it
4750does not call @code{yyerror}, and does not print any message. If you
4751want to print an error message, call @code{yyerror} explicitly before
4752the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4753@end deffn
bfa74976 4754
18b519c0 4755@deffn {Macro} YYRECOVERING
bfa74976
RS
4756This macro stands for an expression that has the value 1 when the parser
4757is recovering from a syntax error, and 0 the rest of the time.
4758@xref{Error Recovery}.
18b519c0 4759@end deffn
bfa74976 4760
18b519c0 4761@deffn {Variable} yychar
bfa74976
RS
4762Variable containing the current look-ahead token. (In a pure parser,
4763this is actually a local variable within @code{yyparse}.) When there is
4764no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4765@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4766@end deffn
bfa74976 4767
18b519c0 4768@deffn {Macro} yyclearin;
bfa74976
RS
4769Discard the current look-ahead token. This is useful primarily in
4770error rules. @xref{Error Recovery}.
18b519c0 4771@end deffn
bfa74976 4772
18b519c0 4773@deffn {Macro} yyerrok;
bfa74976 4774Resume generating error messages immediately for subsequent syntax
13863333 4775errors. This is useful primarily in error rules.
bfa74976 4776@xref{Error Recovery}.
18b519c0 4777@end deffn
bfa74976 4778
18b519c0 4779@deffn {Value} @@$
847bf1f5 4780@findex @@$
95923bd6 4781Acts like a structure variable containing information on the textual location
847bf1f5
AD
4782of the grouping made by the current rule. @xref{Locations, ,
4783Tracking Locations}.
bfa74976 4784
847bf1f5
AD
4785@c Check if those paragraphs are still useful or not.
4786
4787@c @example
4788@c struct @{
4789@c int first_line, last_line;
4790@c int first_column, last_column;
4791@c @};
4792@c @end example
4793
4794@c Thus, to get the starting line number of the third component, you would
4795@c use @samp{@@3.first_line}.
bfa74976 4796
847bf1f5
AD
4797@c In order for the members of this structure to contain valid information,
4798@c you must make @code{yylex} supply this information about each token.
4799@c If you need only certain members, then @code{yylex} need only fill in
4800@c those members.
bfa74976 4801
847bf1f5 4802@c The use of this feature makes the parser noticeably slower.
18b519c0 4803@end deffn
847bf1f5 4804
18b519c0 4805@deffn {Value} @@@var{n}
847bf1f5 4806@findex @@@var{n}
95923bd6 4807Acts like a structure variable containing information on the textual location
847bf1f5
AD
4808of the @var{n}th component of the current rule. @xref{Locations, ,
4809Tracking Locations}.
18b519c0 4810@end deffn
bfa74976 4811
f7ab6a50
PE
4812@node Internationalization
4813@section Parser Internationalization
4814@cindex internationalization
4815@cindex i18n
4816@cindex NLS
4817@cindex gettext
4818@cindex bison-po
4819
4820A Bison-generated parser can print diagnostics, including error and
4821tracing messages. By default, they appear in English. However, Bison
4822also supports outputting diagnostics in the user's native language.
4823To make this work, the user should set the usual environment
4824variables. @xref{Using gettextized software, , User influence on
4825@code{gettext}, libc, The GNU C Library Reference Manual}. For
4826example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might set
4827the user's locale to French Canadian using the @acronym{UTF}-8
4828encoding. The exact set of available locales depends on the user's
4829installation.
4830
4831The maintainer of a package that uses a Bison-generated parser enables
4832the internationalization of the parser's output through the following
4833steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4834@acronym{GNU} Automake.
4835
4836@enumerate
4837@item
4838Into the directory containing the @acronym{GNU} Autoconf macros used
4839by the package---often called @file{m4}---copy the
4840@file{bison-i18n.m4} file installed by Bison under
4841@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4842For example:
4843
4844@example
4845cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4846@end example
4847
4848@item
4849In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4850invocation, add an invocation of @code{BISON_I18N}. This macro is
4851defined in the file @file{bison-i18n.m4} that you copied earlier. It
4852causes @samp{configure} to find the value of the
4853@code{BISON_LOCALEDIR} variable.
4854
4855@item
4856In the @code{main} function of your program, designate the directory
4857containing Bison's runtime message catalog, through a call to
4858@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4859For example:
4860
4861@example
4862bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4863@end example
4864
4865Typically this appears after any other call @code{bindtextdomain
4866(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4867@samp{BISON_LOCALEDIR} to be defined as a string through the
4868@file{Makefile}.
4869
4870@item
4871In the @file{Makefile.am} that controls the compilation of the @code{main}
4872function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
4873either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
4874
4875@example
4876DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4877@end example
4878
4879or:
4880
4881@example
4882AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4883@end example
4884
4885@item
4886Finally, invoke the command @command{autoreconf} to generate the build
4887infrastructure.
4888@end enumerate
4889
bfa74976 4890
342b8b6e 4891@node Algorithm
13863333
AD
4892@chapter The Bison Parser Algorithm
4893@cindex Bison parser algorithm
bfa74976
RS
4894@cindex algorithm of parser
4895@cindex shifting
4896@cindex reduction
4897@cindex parser stack
4898@cindex stack, parser
4899
4900As Bison reads tokens, it pushes them onto a stack along with their
4901semantic values. The stack is called the @dfn{parser stack}. Pushing a
4902token is traditionally called @dfn{shifting}.
4903
4904For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4905@samp{3} to come. The stack will have four elements, one for each token
4906that was shifted.
4907
4908But the stack does not always have an element for each token read. When
4909the last @var{n} tokens and groupings shifted match the components of a
4910grammar rule, they can be combined according to that rule. This is called
4911@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4912single grouping whose symbol is the result (left hand side) of that rule.
4913Running the rule's action is part of the process of reduction, because this
4914is what computes the semantic value of the resulting grouping.
4915
4916For example, if the infix calculator's parser stack contains this:
4917
4918@example
49191 + 5 * 3
4920@end example
4921
4922@noindent
4923and the next input token is a newline character, then the last three
4924elements can be reduced to 15 via the rule:
4925
4926@example
4927expr: expr '*' expr;
4928@end example
4929
4930@noindent
4931Then the stack contains just these three elements:
4932
4933@example
49341 + 15
4935@end example
4936
4937@noindent
4938At this point, another reduction can be made, resulting in the single value
493916. Then the newline token can be shifted.
4940
4941The parser tries, by shifts and reductions, to reduce the entire input down
4942to a single grouping whose symbol is the grammar's start-symbol
4943(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4944
4945This kind of parser is known in the literature as a bottom-up parser.
4946
4947@menu
4948* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4949* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4950* Precedence:: Operator precedence works by resolving conflicts.
4951* Contextual Precedence:: When an operator's precedence depends on context.
4952* Parser States:: The parser is a finite-state-machine with stack.
4953* Reduce/Reduce:: When two rules are applicable in the same situation.
4954* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4955* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
4956* Stack Overflow:: What happens when stack gets full. How to avoid it.
4957@end menu
4958
342b8b6e 4959@node Look-Ahead
bfa74976
RS
4960@section Look-Ahead Tokens
4961@cindex look-ahead token
4962
4963The Bison parser does @emph{not} always reduce immediately as soon as the
4964last @var{n} tokens and groupings match a rule. This is because such a
4965simple strategy is inadequate to handle most languages. Instead, when a
4966reduction is possible, the parser sometimes ``looks ahead'' at the next
4967token in order to decide what to do.
4968
4969When a token is read, it is not immediately shifted; first it becomes the
4970@dfn{look-ahead token}, which is not on the stack. Now the parser can
4971perform one or more reductions of tokens and groupings on the stack, while
4972the look-ahead token remains off to the side. When no more reductions
4973should take place, the look-ahead token is shifted onto the stack. This
4974does not mean that all possible reductions have been done; depending on the
4975token type of the look-ahead token, some rules may choose to delay their
4976application.
4977
4978Here is a simple case where look-ahead is needed. These three rules define
4979expressions which contain binary addition operators and postfix unary
4980factorial operators (@samp{!}), and allow parentheses for grouping.
4981
4982@example
4983@group
4984expr: term '+' expr
4985 | term
4986 ;
4987@end group
4988
4989@group
4990term: '(' expr ')'
4991 | term '!'
4992 | NUMBER
4993 ;
4994@end group
4995@end example
4996
4997Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
4998should be done? If the following token is @samp{)}, then the first three
4999tokens must be reduced to form an @code{expr}. This is the only valid
5000course, because shifting the @samp{)} would produce a sequence of symbols
5001@w{@code{term ')'}}, and no rule allows this.
5002
5003If the following token is @samp{!}, then it must be shifted immediately so
5004that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5005parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5006@code{expr}. It would then be impossible to shift the @samp{!} because
5007doing so would produce on the stack the sequence of symbols @code{expr
5008'!'}. No rule allows that sequence.
5009
5010@vindex yychar
5011The current look-ahead token is stored in the variable @code{yychar}.
5012@xref{Action Features, ,Special Features for Use in Actions}.
5013
342b8b6e 5014@node Shift/Reduce
bfa74976
RS
5015@section Shift/Reduce Conflicts
5016@cindex conflicts
5017@cindex shift/reduce conflicts
5018@cindex dangling @code{else}
5019@cindex @code{else}, dangling
5020
5021Suppose we are parsing a language which has if-then and if-then-else
5022statements, with a pair of rules like this:
5023
5024@example
5025@group
5026if_stmt:
5027 IF expr THEN stmt
5028 | IF expr THEN stmt ELSE stmt
5029 ;
5030@end group
5031@end example
5032
5033@noindent
5034Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5035terminal symbols for specific keyword tokens.
5036
5037When the @code{ELSE} token is read and becomes the look-ahead token, the
5038contents of the stack (assuming the input is valid) are just right for
5039reduction by the first rule. But it is also legitimate to shift the
5040@code{ELSE}, because that would lead to eventual reduction by the second
5041rule.
5042
5043This situation, where either a shift or a reduction would be valid, is
5044called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5045these conflicts by choosing to shift, unless otherwise directed by
5046operator precedence declarations. To see the reason for this, let's
5047contrast it with the other alternative.
5048
5049Since the parser prefers to shift the @code{ELSE}, the result is to attach
5050the else-clause to the innermost if-statement, making these two inputs
5051equivalent:
5052
5053@example
5054if x then if y then win (); else lose;
5055
5056if x then do; if y then win (); else lose; end;
5057@end example
5058
5059But if the parser chose to reduce when possible rather than shift, the
5060result would be to attach the else-clause to the outermost if-statement,
5061making these two inputs equivalent:
5062
5063@example
5064if x then if y then win (); else lose;
5065
5066if x then do; if y then win (); end; else lose;
5067@end example
5068
5069The conflict exists because the grammar as written is ambiguous: either
5070parsing of the simple nested if-statement is legitimate. The established
5071convention is that these ambiguities are resolved by attaching the
5072else-clause to the innermost if-statement; this is what Bison accomplishes
5073by choosing to shift rather than reduce. (It would ideally be cleaner to
5074write an unambiguous grammar, but that is very hard to do in this case.)
5075This particular ambiguity was first encountered in the specifications of
5076Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5077
5078To avoid warnings from Bison about predictable, legitimate shift/reduce
5079conflicts, use the @code{%expect @var{n}} declaration. There will be no
5080warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5081@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5082
5083The definition of @code{if_stmt} above is solely to blame for the
5084conflict, but the conflict does not actually appear without additional
5085rules. Here is a complete Bison input file that actually manifests the
5086conflict:
5087
5088@example
5089@group
5090%token IF THEN ELSE variable
5091%%
5092@end group
5093@group
5094stmt: expr
5095 | if_stmt
5096 ;
5097@end group
5098
5099@group
5100if_stmt:
5101 IF expr THEN stmt
5102 | IF expr THEN stmt ELSE stmt
5103 ;
5104@end group
5105
5106expr: variable
5107 ;
5108@end example
5109
342b8b6e 5110@node Precedence
bfa74976
RS
5111@section Operator Precedence
5112@cindex operator precedence
5113@cindex precedence of operators
5114
5115Another situation where shift/reduce conflicts appear is in arithmetic
5116expressions. Here shifting is not always the preferred resolution; the
5117Bison declarations for operator precedence allow you to specify when to
5118shift and when to reduce.
5119
5120@menu
5121* Why Precedence:: An example showing why precedence is needed.
5122* Using Precedence:: How to specify precedence in Bison grammars.
5123* Precedence Examples:: How these features are used in the previous example.
5124* How Precedence:: How they work.
5125@end menu
5126
342b8b6e 5127@node Why Precedence
bfa74976
RS
5128@subsection When Precedence is Needed
5129
5130Consider the following ambiguous grammar fragment (ambiguous because the
5131input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5132
5133@example
5134@group
5135expr: expr '-' expr
5136 | expr '*' expr
5137 | expr '<' expr
5138 | '(' expr ')'
5139 @dots{}
5140 ;
5141@end group
5142@end example
5143
5144@noindent
5145Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5146should it reduce them via the rule for the subtraction operator? It
5147depends on the next token. Of course, if the next token is @samp{)}, we
5148must reduce; shifting is invalid because no single rule can reduce the
5149token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5150the next token is @samp{*} or @samp{<}, we have a choice: either
5151shifting or reduction would allow the parse to complete, but with
5152different results.
5153
5154To decide which one Bison should do, we must consider the results. If
5155the next operator token @var{op} is shifted, then it must be reduced
5156first in order to permit another opportunity to reduce the difference.
5157The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5158hand, if the subtraction is reduced before shifting @var{op}, the result
5159is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5160reduce should depend on the relative precedence of the operators
5161@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5162@samp{<}.
bfa74976
RS
5163
5164@cindex associativity
5165What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5166@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5167operators we prefer the former, which is called @dfn{left association}.
5168The latter alternative, @dfn{right association}, is desirable for
5169assignment operators. The choice of left or right association is a
5170matter of whether the parser chooses to shift or reduce when the stack
5171contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5172makes right-associativity.
bfa74976 5173
342b8b6e 5174@node Using Precedence
bfa74976
RS
5175@subsection Specifying Operator Precedence
5176@findex %left
5177@findex %right
5178@findex %nonassoc
5179
5180Bison allows you to specify these choices with the operator precedence
5181declarations @code{%left} and @code{%right}. Each such declaration
5182contains a list of tokens, which are operators whose precedence and
5183associativity is being declared. The @code{%left} declaration makes all
5184those operators left-associative and the @code{%right} declaration makes
5185them right-associative. A third alternative is @code{%nonassoc}, which
5186declares that it is a syntax error to find the same operator twice ``in a
5187row''.
5188
5189The relative precedence of different operators is controlled by the
5190order in which they are declared. The first @code{%left} or
5191@code{%right} declaration in the file declares the operators whose
5192precedence is lowest, the next such declaration declares the operators
5193whose precedence is a little higher, and so on.
5194
342b8b6e 5195@node Precedence Examples
bfa74976
RS
5196@subsection Precedence Examples
5197
5198In our example, we would want the following declarations:
5199
5200@example
5201%left '<'
5202%left '-'
5203%left '*'
5204@end example
5205
5206In a more complete example, which supports other operators as well, we
5207would declare them in groups of equal precedence. For example, @code{'+'} is
5208declared with @code{'-'}:
5209
5210@example
5211%left '<' '>' '=' NE LE GE
5212%left '+' '-'
5213%left '*' '/'
5214@end example
5215
5216@noindent
5217(Here @code{NE} and so on stand for the operators for ``not equal''
5218and so on. We assume that these tokens are more than one character long
5219and therefore are represented by names, not character literals.)
5220
342b8b6e 5221@node How Precedence
bfa74976
RS
5222@subsection How Precedence Works
5223
5224The first effect of the precedence declarations is to assign precedence
5225levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5226precedence levels to certain rules: each rule gets its precedence from
5227the last terminal symbol mentioned in the components. (You can also
5228specify explicitly the precedence of a rule. @xref{Contextual
5229Precedence, ,Context-Dependent Precedence}.)
5230
5231Finally, the resolution of conflicts works by comparing the precedence
5232of the rule being considered with that of the look-ahead token. If the
5233token's precedence is higher, the choice is to shift. If the rule's
5234precedence is higher, the choice is to reduce. If they have equal
5235precedence, the choice is made based on the associativity of that
5236precedence level. The verbose output file made by @samp{-v}
5237(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5238resolved.
bfa74976
RS
5239
5240Not all rules and not all tokens have precedence. If either the rule or
5241the look-ahead token has no precedence, then the default is to shift.
5242
342b8b6e 5243@node Contextual Precedence
bfa74976
RS
5244@section Context-Dependent Precedence
5245@cindex context-dependent precedence
5246@cindex unary operator precedence
5247@cindex precedence, context-dependent
5248@cindex precedence, unary operator
5249@findex %prec
5250
5251Often the precedence of an operator depends on the context. This sounds
5252outlandish at first, but it is really very common. For example, a minus
5253sign typically has a very high precedence as a unary operator, and a
5254somewhat lower precedence (lower than multiplication) as a binary operator.
5255
5256The Bison precedence declarations, @code{%left}, @code{%right} and
5257@code{%nonassoc}, can only be used once for a given token; so a token has
5258only one precedence declared in this way. For context-dependent
5259precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5260modifier for rules.
bfa74976
RS
5261
5262The @code{%prec} modifier declares the precedence of a particular rule by
5263specifying a terminal symbol whose precedence should be used for that rule.
5264It's not necessary for that symbol to appear otherwise in the rule. The
5265modifier's syntax is:
5266
5267@example
5268%prec @var{terminal-symbol}
5269@end example
5270
5271@noindent
5272and it is written after the components of the rule. Its effect is to
5273assign the rule the precedence of @var{terminal-symbol}, overriding
5274the precedence that would be deduced for it in the ordinary way. The
5275altered rule precedence then affects how conflicts involving that rule
5276are resolved (@pxref{Precedence, ,Operator Precedence}).
5277
5278Here is how @code{%prec} solves the problem of unary minus. First, declare
5279a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5280are no tokens of this type, but the symbol serves to stand for its
5281precedence:
5282
5283@example
5284@dots{}
5285%left '+' '-'
5286%left '*'
5287%left UMINUS
5288@end example
5289
5290Now the precedence of @code{UMINUS} can be used in specific rules:
5291
5292@example
5293@group
5294exp: @dots{}
5295 | exp '-' exp
5296 @dots{}
5297 | '-' exp %prec UMINUS
5298@end group
5299@end example
5300
91d2c560 5301@ifset defaultprec
39a06c25
PE
5302If you forget to append @code{%prec UMINUS} to the rule for unary
5303minus, Bison silently assumes that minus has its usual precedence.
5304This kind of problem can be tricky to debug, since one typically
5305discovers the mistake only by testing the code.
5306
22fccf95 5307The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5308this kind of problem systematically. It causes rules that lack a
5309@code{%prec} modifier to have no precedence, even if the last terminal
5310symbol mentioned in their components has a declared precedence.
5311
22fccf95 5312If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5313for all rules that participate in precedence conflict resolution.
5314Then you will see any shift/reduce conflict until you tell Bison how
5315to resolve it, either by changing your grammar or by adding an
5316explicit precedence. This will probably add declarations to the
5317grammar, but it helps to protect against incorrect rule precedences.
5318
22fccf95
PE
5319The effect of @code{%no-default-prec;} can be reversed by giving
5320@code{%default-prec;}, which is the default.
91d2c560 5321@end ifset
39a06c25 5322
342b8b6e 5323@node Parser States
bfa74976
RS
5324@section Parser States
5325@cindex finite-state machine
5326@cindex parser state
5327@cindex state (of parser)
5328
5329The function @code{yyparse} is implemented using a finite-state machine.
5330The values pushed on the parser stack are not simply token type codes; they
5331represent the entire sequence of terminal and nonterminal symbols at or
5332near the top of the stack. The current state collects all the information
5333about previous input which is relevant to deciding what to do next.
5334
5335Each time a look-ahead token is read, the current parser state together
5336with the type of look-ahead token are looked up in a table. This table
5337entry can say, ``Shift the look-ahead token.'' In this case, it also
5338specifies the new parser state, which is pushed onto the top of the
5339parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5340This means that a certain number of tokens or groupings are taken off
5341the top of the stack, and replaced by one grouping. In other words,
5342that number of states are popped from the stack, and one new state is
5343pushed.
5344
5345There is one other alternative: the table can say that the look-ahead token
5346is erroneous in the current state. This causes error processing to begin
5347(@pxref{Error Recovery}).
5348
342b8b6e 5349@node Reduce/Reduce
bfa74976
RS
5350@section Reduce/Reduce Conflicts
5351@cindex reduce/reduce conflict
5352@cindex conflicts, reduce/reduce
5353
5354A reduce/reduce conflict occurs if there are two or more rules that apply
5355to the same sequence of input. This usually indicates a serious error
5356in the grammar.
5357
5358For example, here is an erroneous attempt to define a sequence
5359of zero or more @code{word} groupings.
5360
5361@example
5362sequence: /* empty */
5363 @{ printf ("empty sequence\n"); @}
5364 | maybeword
5365 | sequence word
5366 @{ printf ("added word %s\n", $2); @}
5367 ;
5368
5369maybeword: /* empty */
5370 @{ printf ("empty maybeword\n"); @}
5371 | word
5372 @{ printf ("single word %s\n", $1); @}
5373 ;
5374@end example
5375
5376@noindent
5377The error is an ambiguity: there is more than one way to parse a single
5378@code{word} into a @code{sequence}. It could be reduced to a
5379@code{maybeword} and then into a @code{sequence} via the second rule.
5380Alternatively, nothing-at-all could be reduced into a @code{sequence}
5381via the first rule, and this could be combined with the @code{word}
5382using the third rule for @code{sequence}.
5383
5384There is also more than one way to reduce nothing-at-all into a
5385@code{sequence}. This can be done directly via the first rule,
5386or indirectly via @code{maybeword} and then the second rule.
5387
5388You might think that this is a distinction without a difference, because it
5389does not change whether any particular input is valid or not. But it does
5390affect which actions are run. One parsing order runs the second rule's
5391action; the other runs the first rule's action and the third rule's action.
5392In this example, the output of the program changes.
5393
5394Bison resolves a reduce/reduce conflict by choosing to use the rule that
5395appears first in the grammar, but it is very risky to rely on this. Every
5396reduce/reduce conflict must be studied and usually eliminated. Here is the
5397proper way to define @code{sequence}:
5398
5399@example
5400sequence: /* empty */
5401 @{ printf ("empty sequence\n"); @}
5402 | sequence word
5403 @{ printf ("added word %s\n", $2); @}
5404 ;
5405@end example
5406
5407Here is another common error that yields a reduce/reduce conflict:
5408
5409@example
5410sequence: /* empty */
5411 | sequence words
5412 | sequence redirects
5413 ;
5414
5415words: /* empty */
5416 | words word
5417 ;
5418
5419redirects:/* empty */
5420 | redirects redirect
5421 ;
5422@end example
5423
5424@noindent
5425The intention here is to define a sequence which can contain either
5426@code{word} or @code{redirect} groupings. The individual definitions of
5427@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5428three together make a subtle ambiguity: even an empty input can be parsed
5429in infinitely many ways!
5430
5431Consider: nothing-at-all could be a @code{words}. Or it could be two
5432@code{words} in a row, or three, or any number. It could equally well be a
5433@code{redirects}, or two, or any number. Or it could be a @code{words}
5434followed by three @code{redirects} and another @code{words}. And so on.
5435
5436Here are two ways to correct these rules. First, to make it a single level
5437of sequence:
5438
5439@example
5440sequence: /* empty */
5441 | sequence word
5442 | sequence redirect
5443 ;
5444@end example
5445
5446Second, to prevent either a @code{words} or a @code{redirects}
5447from being empty:
5448
5449@example
5450sequence: /* empty */
5451 | sequence words
5452 | sequence redirects
5453 ;
5454
5455words: word
5456 | words word
5457 ;
5458
5459redirects:redirect
5460 | redirects redirect
5461 ;
5462@end example
5463
342b8b6e 5464@node Mystery Conflicts
bfa74976
RS
5465@section Mysterious Reduce/Reduce Conflicts
5466
5467Sometimes reduce/reduce conflicts can occur that don't look warranted.
5468Here is an example:
5469
5470@example
5471@group
5472%token ID
5473
5474%%
5475def: param_spec return_spec ','
5476 ;
5477param_spec:
5478 type
5479 | name_list ':' type
5480 ;
5481@end group
5482@group
5483return_spec:
5484 type
5485 | name ':' type
5486 ;
5487@end group
5488@group
5489type: ID
5490 ;
5491@end group
5492@group
5493name: ID
5494 ;
5495name_list:
5496 name
5497 | name ',' name_list
5498 ;
5499@end group
5500@end example
5501
5502It would seem that this grammar can be parsed with only a single token
13863333 5503of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5504a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5505@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5506
c827f760
PE
5507@cindex @acronym{LR}(1)
5508@cindex @acronym{LALR}(1)
bfa74976 5509However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5510@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5511an @code{ID}
bfa74976
RS
5512at the beginning of a @code{param_spec} and likewise at the beginning of
5513a @code{return_spec}, are similar enough that Bison assumes they are the
5514same. They appear similar because the same set of rules would be
5515active---the rule for reducing to a @code{name} and that for reducing to
5516a @code{type}. Bison is unable to determine at that stage of processing
5517that the rules would require different look-ahead tokens in the two
5518contexts, so it makes a single parser state for them both. Combining
5519the two contexts causes a conflict later. In parser terminology, this
c827f760 5520occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5521
5522In general, it is better to fix deficiencies than to document them. But
5523this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5524generators that can handle @acronym{LR}(1) grammars are hard to write
5525and tend to
bfa74976
RS
5526produce parsers that are very large. In practice, Bison is more useful
5527as it is now.
5528
5529When the problem arises, you can often fix it by identifying the two
a220f555
MA
5530parser states that are being confused, and adding something to make them
5531look distinct. In the above example, adding one rule to
bfa74976
RS
5532@code{return_spec} as follows makes the problem go away:
5533
5534@example
5535@group
5536%token BOGUS
5537@dots{}
5538%%
5539@dots{}
5540return_spec:
5541 type
5542 | name ':' type
5543 /* This rule is never used. */
5544 | ID BOGUS
5545 ;
5546@end group
5547@end example
5548
5549This corrects the problem because it introduces the possibility of an
5550additional active rule in the context after the @code{ID} at the beginning of
5551@code{return_spec}. This rule is not active in the corresponding context
5552in a @code{param_spec}, so the two contexts receive distinct parser states.
5553As long as the token @code{BOGUS} is never generated by @code{yylex},
5554the added rule cannot alter the way actual input is parsed.
5555
5556In this particular example, there is another way to solve the problem:
5557rewrite the rule for @code{return_spec} to use @code{ID} directly
5558instead of via @code{name}. This also causes the two confusing
5559contexts to have different sets of active rules, because the one for
5560@code{return_spec} activates the altered rule for @code{return_spec}
5561rather than the one for @code{name}.
5562
5563@example
5564param_spec:
5565 type
5566 | name_list ':' type
5567 ;
5568return_spec:
5569 type
5570 | ID ':' type
5571 ;
5572@end example
5573
e054b190
PE
5574For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5575generators, please see:
5576Frank DeRemer and Thomas Pennello, Efficient Computation of
5577@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5578Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5579pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5580
fae437e8 5581@node Generalized LR Parsing
c827f760
PE
5582@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5583@cindex @acronym{GLR} parsing
5584@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5585@cindex ambiguous grammars
5586@cindex non-deterministic parsing
5587
fae437e8
AD
5588Bison produces @emph{deterministic} parsers that choose uniquely
5589when to reduce and which reduction to apply
8dd162d3 5590based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5591As a result, normal Bison handles a proper subset of the family of
5592context-free languages.
fae437e8 5593Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5594sequence of reductions cannot have deterministic parsers in this sense.
5595The same is true of languages that require more than one symbol of
8dd162d3 5596look-ahead, since the parser lacks the information necessary to make a
676385e2 5597decision at the point it must be made in a shift-reduce parser.
fae437e8 5598Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5599there are languages where Bison's particular choice of how to
5600summarize the input seen so far loses necessary information.
5601
5602When you use the @samp{%glr-parser} declaration in your grammar file,
5603Bison generates a parser that uses a different algorithm, called
c827f760
PE
5604Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5605parser uses the same basic
676385e2
PH
5606algorithm for parsing as an ordinary Bison parser, but behaves
5607differently in cases where there is a shift-reduce conflict that has not
fae437e8 5608been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5609reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5610situation, it
fae437e8 5611effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5612shift or reduction. These parsers then proceed as usual, consuming
5613tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5614and split further, with the result that instead of a sequence of states,
c827f760 5615a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5616
5617In effect, each stack represents a guess as to what the proper parse
5618is. Additional input may indicate that a guess was wrong, in which case
5619the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5620actions generated in each stack are saved, rather than being executed
676385e2 5621immediately. When a stack disappears, its saved semantic actions never
fae437e8 5622get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5623their sets of semantic actions are both saved with the state that
5624results from the reduction. We say that two stacks are equivalent
fae437e8 5625when they both represent the same sequence of states,
676385e2
PH
5626and each pair of corresponding states represents a
5627grammar symbol that produces the same segment of the input token
5628stream.
5629
5630Whenever the parser makes a transition from having multiple
c827f760 5631states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5632algorithm, after resolving and executing the saved-up actions.
5633At this transition, some of the states on the stack will have semantic
5634values that are sets (actually multisets) of possible actions. The
5635parser tries to pick one of the actions by first finding one whose rule
5636has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5637declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5638precedence, but there the same merging function is declared for both
fae437e8 5639rules by the @samp{%merge} declaration,
676385e2
PH
5640Bison resolves and evaluates both and then calls the merge function on
5641the result. Otherwise, it reports an ambiguity.
5642
c827f760
PE
5643It is possible to use a data structure for the @acronym{GLR} parsing tree that
5644permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5645size of the input), any unambiguous (not necessarily
5646@acronym{LALR}(1)) grammar in
fae437e8 5647quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5648context-free grammar in cubic worst-case time. However, Bison currently
5649uses a simpler data structure that requires time proportional to the
5650length of the input times the maximum number of stacks required for any
5651prefix of the input. Thus, really ambiguous or non-deterministic
5652grammars can require exponential time and space to process. Such badly
5653behaving examples, however, are not generally of practical interest.
5654Usually, non-determinism in a grammar is local---the parser is ``in
5655doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5656structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5657grammar, in particular, it is only slightly slower than with the default
5658Bison parser.
5659
fa7e68c3 5660For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5661Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5662Generalised @acronym{LR} Parsers, Royal Holloway, University of
5663London, Department of Computer Science, TR-00-12,
5664@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5665(2000-12-24).
5666
342b8b6e 5667@node Stack Overflow
bfa74976
RS
5668@section Stack Overflow, and How to Avoid It
5669@cindex stack overflow
5670@cindex parser stack overflow
5671@cindex overflow of parser stack
5672
5673The Bison parser stack can overflow if too many tokens are shifted and
5674not reduced. When this happens, the parser function @code{yyparse}
5675returns a nonzero value, pausing only to call @code{yyerror} to report
5676the overflow.
5677
c827f760 5678Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5679usually results from using a right recursion instead of a left
5680recursion, @xref{Recursion, ,Recursive Rules}.
5681
bfa74976
RS
5682@vindex YYMAXDEPTH
5683By defining the macro @code{YYMAXDEPTH}, you can control how deep the
5684parser stack can become before a stack overflow occurs. Define the
5685macro with a value that is an integer. This value is the maximum number
5686of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5687
5688The stack space allowed is not necessarily allocated. If you specify a
5689large value for @code{YYMAXDEPTH}, the parser actually allocates a small
5690stack at first, and then makes it bigger by stages as needed. This
5691increasing allocation happens automatically and silently. Therefore,
5692you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5693space for ordinary inputs that do not need much stack.
5694
d7e14fc0
PE
5695However, do not allow @code{YYMAXDEPTH} to be a value so large that
5696arithmetic overflow could occur when calculating the size of the stack
5697space. Also, do not allow @code{YYMAXDEPTH} to be less than
5698@code{YYINITDEPTH}.
5699
bfa74976
RS
5700@cindex default stack limit
5701The default value of @code{YYMAXDEPTH}, if you do not define it, is
570210000.
5703
5704@vindex YYINITDEPTH
5705You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5706macro @code{YYINITDEPTH} to a positive integer. For the C
5707@acronym{LALR}(1) parser, this value must be a compile-time constant
5708unless you are assuming C99 or some other target language or compiler
5709that allows variable-length arrays. The default is 200.
5710
5711Do not allow @code{YYINITDEPTH} to be a value so large that arithmetic
5712overflow would occur when calculating the size of the stack space.
5713Also, do not allow @code{YYINITDEPTH} to be greater than
5714@code{YYMAXDEPTH}.
bfa74976 5715
d1a1114f 5716@c FIXME: C++ output.
c827f760 5717Because of semantical differences between C and C++, the
451364ed
AD
5718@acronym{LALR}(1) parsers in C produced by Bison by compiled as C++
5719cannot grow. In this precise case (compiling a C parser as C++) you are
5720suggested to grow @code{YYINITDEPTH}. In the near future, a C++ output
5721output will be provided which addresses this issue.
d1a1114f 5722
342b8b6e 5723@node Error Recovery
bfa74976
RS
5724@chapter Error Recovery
5725@cindex error recovery
5726@cindex recovery from errors
5727
6e649e65 5728It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5729error. For example, a compiler should recover sufficiently to parse the
5730rest of the input file and check it for errors; a calculator should accept
5731another expression.
5732
5733In a simple interactive command parser where each input is one line, it may
5734be sufficient to allow @code{yyparse} to return 1 on error and have the
5735caller ignore the rest of the input line when that happens (and then call
5736@code{yyparse} again). But this is inadequate for a compiler, because it
5737forgets all the syntactic context leading up to the error. A syntax error
5738deep within a function in the compiler input should not cause the compiler
5739to treat the following line like the beginning of a source file.
5740
5741@findex error
5742You can define how to recover from a syntax error by writing rules to
5743recognize the special token @code{error}. This is a terminal symbol that
5744is always defined (you need not declare it) and reserved for error
5745handling. The Bison parser generates an @code{error} token whenever a
5746syntax error happens; if you have provided a rule to recognize this token
13863333 5747in the current context, the parse can continue.
bfa74976
RS
5748
5749For example:
5750
5751@example
5752stmnts: /* empty string */
5753 | stmnts '\n'
5754 | stmnts exp '\n'
5755 | stmnts error '\n'
5756@end example
5757
5758The fourth rule in this example says that an error followed by a newline
5759makes a valid addition to any @code{stmnts}.
5760
5761What happens if a syntax error occurs in the middle of an @code{exp}? The
5762error recovery rule, interpreted strictly, applies to the precise sequence
5763of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5764the middle of an @code{exp}, there will probably be some additional tokens
5765and subexpressions on the stack after the last @code{stmnts}, and there
5766will be tokens to read before the next newline. So the rule is not
5767applicable in the ordinary way.
5768
5769But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5770the semantic context and part of the input. First it discards states
5771and objects from the stack until it gets back to a state in which the
bfa74976 5772@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5773already parsed are discarded, back to the last complete @code{stmnts}.)
5774At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5775look-ahead token is not acceptable to be shifted next, the parser reads
5776tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5777this example, Bison reads and discards input until the next newline so
5778that the fourth rule can apply. Note that discarded symbols are
5779possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5780Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5781
5782The choice of error rules in the grammar is a choice of strategies for
5783error recovery. A simple and useful strategy is simply to skip the rest of
5784the current input line or current statement if an error is detected:
5785
5786@example
72d2299c 5787stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5788@end example
5789
5790It is also useful to recover to the matching close-delimiter of an
5791opening-delimiter that has already been parsed. Otherwise the
5792close-delimiter will probably appear to be unmatched, and generate another,
5793spurious error message:
5794
5795@example
5796primary: '(' expr ')'
5797 | '(' error ')'
5798 @dots{}
5799 ;
5800@end example
5801
5802Error recovery strategies are necessarily guesses. When they guess wrong,
5803one syntax error often leads to another. In the above example, the error
5804recovery rule guesses that an error is due to bad input within one
5805@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5806middle of a valid @code{stmnt}. After the error recovery rule recovers
5807from the first error, another syntax error will be found straightaway,
5808since the text following the spurious semicolon is also an invalid
5809@code{stmnt}.
5810
5811To prevent an outpouring of error messages, the parser will output no error
5812message for another syntax error that happens shortly after the first; only
5813after three consecutive input tokens have been successfully shifted will
5814error messages resume.
5815
5816Note that rules which accept the @code{error} token may have actions, just
5817as any other rules can.
5818
5819@findex yyerrok
5820You can make error messages resume immediately by using the macro
5821@code{yyerrok} in an action. If you do this in the error rule's action, no
5822error messages will be suppressed. This macro requires no arguments;
5823@samp{yyerrok;} is a valid C statement.
5824
5825@findex yyclearin
5826The previous look-ahead token is reanalyzed immediately after an error. If
5827this is unacceptable, then the macro @code{yyclearin} may be used to clear
5828this token. Write the statement @samp{yyclearin;} in the error rule's
5829action.
5830
6e649e65 5831For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5832called that advances the input stream to some point where parsing should
5833once again commence. The next symbol returned by the lexical scanner is
5834probably correct. The previous look-ahead token ought to be discarded
5835with @samp{yyclearin;}.
5836
5837@vindex YYRECOVERING
5838The macro @code{YYRECOVERING} stands for an expression that has the
5839value 1 when the parser is recovering from a syntax error, and 0 the
5840rest of the time. A value of 1 indicates that error messages are
5841currently suppressed for new syntax errors.
5842
342b8b6e 5843@node Context Dependency
bfa74976
RS
5844@chapter Handling Context Dependencies
5845
5846The Bison paradigm is to parse tokens first, then group them into larger
5847syntactic units. In many languages, the meaning of a token is affected by
5848its context. Although this violates the Bison paradigm, certain techniques
5849(known as @dfn{kludges}) may enable you to write Bison parsers for such
5850languages.
5851
5852@menu
5853* Semantic Tokens:: Token parsing can depend on the semantic context.
5854* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5855* Tie-in Recovery:: Lexical tie-ins have implications for how
5856 error recovery rules must be written.
5857@end menu
5858
5859(Actually, ``kludge'' means any technique that gets its job done but is
5860neither clean nor robust.)
5861
342b8b6e 5862@node Semantic Tokens
bfa74976
RS
5863@section Semantic Info in Token Types
5864
5865The C language has a context dependency: the way an identifier is used
5866depends on what its current meaning is. For example, consider this:
5867
5868@example
5869foo (x);
5870@end example
5871
5872This looks like a function call statement, but if @code{foo} is a typedef
5873name, then this is actually a declaration of @code{x}. How can a Bison
5874parser for C decide how to parse this input?
5875
c827f760 5876The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5877@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5878identifier, it looks up the current declaration of the identifier in order
5879to decide which token type to return: @code{TYPENAME} if the identifier is
5880declared as a typedef, @code{IDENTIFIER} otherwise.
5881
5882The grammar rules can then express the context dependency by the choice of
5883token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5884but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5885@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5886is @emph{not} significant, such as in declarations that can shadow a
5887typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5888accepted---there is one rule for each of the two token types.
5889
5890This technique is simple to use if the decision of which kinds of
5891identifiers to allow is made at a place close to where the identifier is
5892parsed. But in C this is not always so: C allows a declaration to
5893redeclare a typedef name provided an explicit type has been specified
5894earlier:
5895
5896@example
3a4f411f
PE
5897typedef int foo, bar;
5898int baz (void)
5899@{
5900 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
5901 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
5902 return foo (bar);
5903@}
bfa74976
RS
5904@end example
5905
5906Unfortunately, the name being declared is separated from the declaration
5907construct itself by a complicated syntactic structure---the ``declarator''.
5908
9ecbd125 5909As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5910all the nonterminal names changed: once for parsing a declaration in
5911which a typedef name can be redefined, and once for parsing a
5912declaration in which that can't be done. Here is a part of the
5913duplication, with actions omitted for brevity:
bfa74976
RS
5914
5915@example
5916initdcl:
5917 declarator maybeasm '='
5918 init
5919 | declarator maybeasm
5920 ;
5921
5922notype_initdcl:
5923 notype_declarator maybeasm '='
5924 init
5925 | notype_declarator maybeasm
5926 ;
5927@end example
5928
5929@noindent
5930Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5931cannot. The distinction between @code{declarator} and
5932@code{notype_declarator} is the same sort of thing.
5933
5934There is some similarity between this technique and a lexical tie-in
5935(described next), in that information which alters the lexical analysis is
5936changed during parsing by other parts of the program. The difference is
5937here the information is global, and is used for other purposes in the
5938program. A true lexical tie-in has a special-purpose flag controlled by
5939the syntactic context.
5940
342b8b6e 5941@node Lexical Tie-ins
bfa74976
RS
5942@section Lexical Tie-ins
5943@cindex lexical tie-in
5944
5945One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5946which is set by Bison actions, whose purpose is to alter the way tokens are
5947parsed.
5948
5949For example, suppose we have a language vaguely like C, but with a special
5950construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5951an expression in parentheses in which all integers are hexadecimal. In
5952particular, the token @samp{a1b} must be treated as an integer rather than
5953as an identifier if it appears in that context. Here is how you can do it:
5954
5955@example
5956@group
5957%@{
38a92d50
PE
5958 int hexflag;
5959 int yylex (void);
5960 void yyerror (char const *);
bfa74976
RS
5961%@}
5962%%
5963@dots{}
5964@end group
5965@group
5966expr: IDENTIFIER
5967 | constant
5968 | HEX '('
5969 @{ hexflag = 1; @}
5970 expr ')'
5971 @{ hexflag = 0;
5972 $$ = $4; @}
5973 | expr '+' expr
5974 @{ $$ = make_sum ($1, $3); @}
5975 @dots{}
5976 ;
5977@end group
5978
5979@group
5980constant:
5981 INTEGER
5982 | STRING
5983 ;
5984@end group
5985@end example
5986
5987@noindent
5988Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5989it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5990with letters are parsed as integers if possible.
5991
342b8b6e
AD
5992The declaration of @code{hexflag} shown in the prologue of the parser file
5993is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 5994You must also write the code in @code{yylex} to obey the flag.
bfa74976 5995
342b8b6e 5996@node Tie-in Recovery
bfa74976
RS
5997@section Lexical Tie-ins and Error Recovery
5998
5999Lexical tie-ins make strict demands on any error recovery rules you have.
6000@xref{Error Recovery}.
6001
6002The reason for this is that the purpose of an error recovery rule is to
6003abort the parsing of one construct and resume in some larger construct.
6004For example, in C-like languages, a typical error recovery rule is to skip
6005tokens until the next semicolon, and then start a new statement, like this:
6006
6007@example
6008stmt: expr ';'
6009 | IF '(' expr ')' stmt @{ @dots{} @}
6010 @dots{}
6011 error ';'
6012 @{ hexflag = 0; @}
6013 ;
6014@end example
6015
6016If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6017construct, this error rule will apply, and then the action for the
6018completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6019remain set for the entire rest of the input, or until the next @code{hex}
6020keyword, causing identifiers to be misinterpreted as integers.
6021
6022To avoid this problem the error recovery rule itself clears @code{hexflag}.
6023
6024There may also be an error recovery rule that works within expressions.
6025For example, there could be a rule which applies within parentheses
6026and skips to the close-parenthesis:
6027
6028@example
6029@group
6030expr: @dots{}
6031 | '(' expr ')'
6032 @{ $$ = $2; @}
6033 | '(' error ')'
6034 @dots{}
6035@end group
6036@end example
6037
6038If this rule acts within the @code{hex} construct, it is not going to abort
6039that construct (since it applies to an inner level of parentheses within
6040the construct). Therefore, it should not clear the flag: the rest of
6041the @code{hex} construct should be parsed with the flag still in effect.
6042
6043What if there is an error recovery rule which might abort out of the
6044@code{hex} construct or might not, depending on circumstances? There is no
6045way you can write the action to determine whether a @code{hex} construct is
6046being aborted or not. So if you are using a lexical tie-in, you had better
6047make sure your error recovery rules are not of this kind. Each rule must
6048be such that you can be sure that it always will, or always won't, have to
6049clear the flag.
6050
ec3bc396
AD
6051@c ================================================== Debugging Your Parser
6052
342b8b6e 6053@node Debugging
bfa74976 6054@chapter Debugging Your Parser
ec3bc396
AD
6055
6056Developing a parser can be a challenge, especially if you don't
6057understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6058Algorithm}). Even so, sometimes a detailed description of the automaton
6059can help (@pxref{Understanding, , Understanding Your Parser}), or
6060tracing the execution of the parser can give some insight on why it
6061behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6062
6063@menu
6064* Understanding:: Understanding the structure of your parser.
6065* Tracing:: Tracing the execution of your parser.
6066@end menu
6067
6068@node Understanding
6069@section Understanding Your Parser
6070
6071As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6072Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6073frequent than one would hope), looking at this automaton is required to
6074tune or simply fix a parser. Bison provides two different
c827f760 6075representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6076file).
6077
6078The textual file is generated when the options @option{--report} or
6079@option{--verbose} are specified, see @xref{Invocation, , Invoking
6080Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6081the parser output file name, and adding @samp{.output} instead.
6082Therefore, if the input file is @file{foo.y}, then the parser file is
6083called @file{foo.tab.c} by default. As a consequence, the verbose
6084output file is called @file{foo.output}.
6085
6086The following grammar file, @file{calc.y}, will be used in the sequel:
6087
6088@example
6089%token NUM STR
6090%left '+' '-'
6091%left '*'
6092%%
6093exp: exp '+' exp
6094 | exp '-' exp
6095 | exp '*' exp
6096 | exp '/' exp
6097 | NUM
6098 ;
6099useless: STR;
6100%%
6101@end example
6102
88bce5a2
AD
6103@command{bison} reports:
6104
6105@example
6106calc.y: warning: 1 useless nonterminal and 1 useless rule
6107calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6108calc.y:11.10-12: warning: useless rule: useless: STR
6109calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6110@end example
6111
6112When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6113creates a file @file{calc.output} with contents detailed below. The
6114order of the output and the exact presentation might vary, but the
6115interpretation is the same.
ec3bc396
AD
6116
6117The first section includes details on conflicts that were solved thanks
6118to precedence and/or associativity:
6119
6120@example
6121Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6122Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6123Conflict in state 8 between rule 2 and token '*' resolved as shift.
6124@exdent @dots{}
6125@end example
6126
6127@noindent
6128The next section lists states that still have conflicts.
6129
6130@example
5a99098d
PE
6131State 8 conflicts: 1 shift/reduce
6132State 9 conflicts: 1 shift/reduce
6133State 10 conflicts: 1 shift/reduce
6134State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6135@end example
6136
6137@noindent
6138@cindex token, useless
6139@cindex useless token
6140@cindex nonterminal, useless
6141@cindex useless nonterminal
6142@cindex rule, useless
6143@cindex useless rule
6144The next section reports useless tokens, nonterminal and rules. Useless
6145nonterminals and rules are removed in order to produce a smaller parser,
6146but useless tokens are preserved, since they might be used by the
6147scanner (note the difference between ``useless'' and ``not used''
6148below):
6149
6150@example
6151Useless nonterminals:
6152 useless
6153
6154Terminals which are not used:
6155 STR
6156
6157Useless rules:
6158#6 useless: STR;
6159@end example
6160
6161@noindent
6162The next section reproduces the exact grammar that Bison used:
6163
6164@example
6165Grammar
6166
6167 Number, Line, Rule
88bce5a2 6168 0 5 $accept -> exp $end
ec3bc396
AD
6169 1 5 exp -> exp '+' exp
6170 2 6 exp -> exp '-' exp
6171 3 7 exp -> exp '*' exp
6172 4 8 exp -> exp '/' exp
6173 5 9 exp -> NUM
6174@end example
6175
6176@noindent
6177and reports the uses of the symbols:
6178
6179@example
6180Terminals, with rules where they appear
6181
88bce5a2 6182$end (0) 0
ec3bc396
AD
6183'*' (42) 3
6184'+' (43) 1
6185'-' (45) 2
6186'/' (47) 4
6187error (256)
6188NUM (258) 5
6189
6190Nonterminals, with rules where they appear
6191
88bce5a2 6192$accept (8)
ec3bc396
AD
6193 on left: 0
6194exp (9)
6195 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6196@end example
6197
6198@noindent
6199@cindex item
6200@cindex pointed rule
6201@cindex rule, pointed
6202Bison then proceeds onto the automaton itself, describing each state
6203with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6204item is a production rule together with a point (marked by @samp{.})
6205that the input cursor.
6206
6207@example
6208state 0
6209
88bce5a2 6210 $accept -> . exp $ (rule 0)
ec3bc396 6211
2a8d363a 6212 NUM shift, and go to state 1
ec3bc396 6213
2a8d363a 6214 exp go to state 2
ec3bc396
AD
6215@end example
6216
6217This reads as follows: ``state 0 corresponds to being at the very
6218beginning of the parsing, in the initial rule, right before the start
6219symbol (here, @code{exp}). When the parser returns to this state right
6220after having reduced a rule that produced an @code{exp}, the control
6221flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6222symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6223the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6224look-ahead triggers a syntax error.''
ec3bc396
AD
6225
6226@cindex core, item set
6227@cindex item set core
6228@cindex kernel, item set
6229@cindex item set core
6230Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6231report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6232at the beginning of any rule deriving an @code{exp}. By default Bison
6233reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6234you want to see more detail you can invoke @command{bison} with
6235@option{--report=itemset} to list all the items, include those that can
6236be derived:
6237
6238@example
6239state 0
6240
88bce5a2 6241 $accept -> . exp $ (rule 0)
ec3bc396
AD
6242 exp -> . exp '+' exp (rule 1)
6243 exp -> . exp '-' exp (rule 2)
6244 exp -> . exp '*' exp (rule 3)
6245 exp -> . exp '/' exp (rule 4)
6246 exp -> . NUM (rule 5)
6247
6248 NUM shift, and go to state 1
6249
6250 exp go to state 2
6251@end example
6252
6253@noindent
6254In the state 1...
6255
6256@example
6257state 1
6258
6259 exp -> NUM . (rule 5)
6260
2a8d363a 6261 $default reduce using rule 5 (exp)
ec3bc396
AD
6262@end example
6263
6264@noindent
8dd162d3 6265the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6266(@samp{$default}), the parser will reduce it. If it was coming from
6267state 0, then, after this reduction it will return to state 0, and will
6268jump to state 2 (@samp{exp: go to state 2}).
6269
6270@example
6271state 2
6272
88bce5a2 6273 $accept -> exp . $ (rule 0)
ec3bc396
AD
6274 exp -> exp . '+' exp (rule 1)
6275 exp -> exp . '-' exp (rule 2)
6276 exp -> exp . '*' exp (rule 3)
6277 exp -> exp . '/' exp (rule 4)
6278
2a8d363a
AD
6279 $ shift, and go to state 3
6280 '+' shift, and go to state 4
6281 '-' shift, and go to state 5
6282 '*' shift, and go to state 6
6283 '/' shift, and go to state 7
ec3bc396
AD
6284@end example
6285
6286@noindent
6287In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6288because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6289@samp{+}, it will be shifted on the parse stack, and the automaton
6290control will jump to state 4, corresponding to the item @samp{exp -> exp
6291'+' . exp}. Since there is no default action, any other token than
6e649e65 6292those listed above will trigger a syntax error.
ec3bc396
AD
6293
6294The state 3 is named the @dfn{final state}, or the @dfn{accepting
6295state}:
6296
6297@example
6298state 3
6299
88bce5a2 6300 $accept -> exp $ . (rule 0)
ec3bc396 6301
2a8d363a 6302 $default accept
ec3bc396
AD
6303@end example
6304
6305@noindent
6306the initial rule is completed (the start symbol and the end
6307of input were read), the parsing exits successfully.
6308
6309The interpretation of states 4 to 7 is straightforward, and is left to
6310the reader.
6311
6312@example
6313state 4
6314
6315 exp -> exp '+' . exp (rule 1)
6316
2a8d363a 6317 NUM shift, and go to state 1
ec3bc396 6318
2a8d363a 6319 exp go to state 8
ec3bc396
AD
6320
6321state 5
6322
6323 exp -> exp '-' . exp (rule 2)
6324
2a8d363a 6325 NUM shift, and go to state 1
ec3bc396 6326
2a8d363a 6327 exp go to state 9
ec3bc396
AD
6328
6329state 6
6330
6331 exp -> exp '*' . exp (rule 3)
6332
2a8d363a 6333 NUM shift, and go to state 1
ec3bc396 6334
2a8d363a 6335 exp go to state 10
ec3bc396
AD
6336
6337state 7
6338
6339 exp -> exp '/' . exp (rule 4)
6340
2a8d363a 6341 NUM shift, and go to state 1
ec3bc396 6342
2a8d363a 6343 exp go to state 11
ec3bc396
AD
6344@end example
6345
5a99098d
PE
6346As was announced in beginning of the report, @samp{State 8 conflicts:
63471 shift/reduce}:
ec3bc396
AD
6348
6349@example
6350state 8
6351
6352 exp -> exp . '+' exp (rule 1)
6353 exp -> exp '+' exp . (rule 1)
6354 exp -> exp . '-' exp (rule 2)
6355 exp -> exp . '*' exp (rule 3)
6356 exp -> exp . '/' exp (rule 4)
6357
2a8d363a
AD
6358 '*' shift, and go to state 6
6359 '/' shift, and go to state 7
ec3bc396 6360
2a8d363a
AD
6361 '/' [reduce using rule 1 (exp)]
6362 $default reduce using rule 1 (exp)
ec3bc396
AD
6363@end example
6364
8dd162d3 6365Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6366either shifting (and going to state 7), or reducing rule 1. The
6367conflict means that either the grammar is ambiguous, or the parser lacks
6368information to make the right decision. Indeed the grammar is
6369ambiguous, as, since we did not specify the precedence of @samp{/}, the
6370sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6371NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6372NUM}, which corresponds to reducing rule 1.
6373
c827f760 6374Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6375arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6376Shift/Reduce Conflicts}. Discarded actions are reported in between
6377square brackets.
6378
6379Note that all the previous states had a single possible action: either
6380shifting the next token and going to the corresponding state, or
6381reducing a single rule. In the other cases, i.e., when shifting
6382@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6383possible, the look-ahead is required to select the action. State 8 is
6384one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6385is shifting, otherwise the action is reducing rule 1. In other words,
6386the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6387look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6388precedence than @samp{+}. More generally, some items are eligible only
6389with some set of possible look-ahead tokens. When run with
6390@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6391
6392@example
6393state 8
6394
6395 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6396 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6397 exp -> exp . '-' exp (rule 2)
6398 exp -> exp . '*' exp (rule 3)
6399 exp -> exp . '/' exp (rule 4)
6400
6401 '*' shift, and go to state 6
6402 '/' shift, and go to state 7
6403
6404 '/' [reduce using rule 1 (exp)]
6405 $default reduce using rule 1 (exp)
6406@end example
6407
6408The remaining states are similar:
6409
6410@example
6411state 9
6412
6413 exp -> exp . '+' exp (rule 1)
6414 exp -> exp . '-' exp (rule 2)
6415 exp -> exp '-' exp . (rule 2)
6416 exp -> exp . '*' exp (rule 3)
6417 exp -> exp . '/' exp (rule 4)
6418
2a8d363a
AD
6419 '*' shift, and go to state 6
6420 '/' shift, and go to state 7
ec3bc396 6421
2a8d363a
AD
6422 '/' [reduce using rule 2 (exp)]
6423 $default reduce using rule 2 (exp)
ec3bc396
AD
6424
6425state 10
6426
6427 exp -> exp . '+' exp (rule 1)
6428 exp -> exp . '-' exp (rule 2)
6429 exp -> exp . '*' exp (rule 3)
6430 exp -> exp '*' exp . (rule 3)
6431 exp -> exp . '/' exp (rule 4)
6432
2a8d363a 6433 '/' shift, and go to state 7
ec3bc396 6434
2a8d363a
AD
6435 '/' [reduce using rule 3 (exp)]
6436 $default reduce using rule 3 (exp)
ec3bc396
AD
6437
6438state 11
6439
6440 exp -> exp . '+' exp (rule 1)
6441 exp -> exp . '-' exp (rule 2)
6442 exp -> exp . '*' exp (rule 3)
6443 exp -> exp . '/' exp (rule 4)
6444 exp -> exp '/' exp . (rule 4)
6445
2a8d363a
AD
6446 '+' shift, and go to state 4
6447 '-' shift, and go to state 5
6448 '*' shift, and go to state 6
6449 '/' shift, and go to state 7
ec3bc396 6450
2a8d363a
AD
6451 '+' [reduce using rule 4 (exp)]
6452 '-' [reduce using rule 4 (exp)]
6453 '*' [reduce using rule 4 (exp)]
6454 '/' [reduce using rule 4 (exp)]
6455 $default reduce using rule 4 (exp)
ec3bc396
AD
6456@end example
6457
6458@noindent
fa7e68c3
PE
6459Observe that state 11 contains conflicts not only due to the lack of
6460precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6461@samp{*}, but also because the
ec3bc396
AD
6462associativity of @samp{/} is not specified.
6463
6464
6465@node Tracing
6466@section Tracing Your Parser
bfa74976
RS
6467@findex yydebug
6468@cindex debugging
6469@cindex tracing the parser
6470
6471If a Bison grammar compiles properly but doesn't do what you want when it
6472runs, the @code{yydebug} parser-trace feature can help you figure out why.
6473
3ded9a63
AD
6474There are several means to enable compilation of trace facilities:
6475
6476@table @asis
6477@item the macro @code{YYDEBUG}
6478@findex YYDEBUG
6479Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6480parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6481@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6482YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6483Prologue}).
6484
6485@item the option @option{-t}, @option{--debug}
6486Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6487,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6488
6489@item the directive @samp{%debug}
6490@findex %debug
6491Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6492Declaration Summary}). This is a Bison extension, which will prove
6493useful when Bison will output parsers for languages that don't use a
c827f760
PE
6494preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6495you, this is
3ded9a63
AD
6496the preferred solution.
6497@end table
6498
6499We suggest that you always enable the debug option so that debugging is
6500always possible.
bfa74976 6501
02a81e05 6502The trace facility outputs messages with macro calls of the form
e2742e46 6503@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6504@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6505arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6506define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6507and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6508
6509Once you have compiled the program with trace facilities, the way to
6510request a trace is to store a nonzero value in the variable @code{yydebug}.
6511You can do this by making the C code do it (in @code{main}, perhaps), or
6512you can alter the value with a C debugger.
6513
6514Each step taken by the parser when @code{yydebug} is nonzero produces a
6515line or two of trace information, written on @code{stderr}. The trace
6516messages tell you these things:
6517
6518@itemize @bullet
6519@item
6520Each time the parser calls @code{yylex}, what kind of token was read.
6521
6522@item
6523Each time a token is shifted, the depth and complete contents of the
6524state stack (@pxref{Parser States}).
6525
6526@item
6527Each time a rule is reduced, which rule it is, and the complete contents
6528of the state stack afterward.
6529@end itemize
6530
6531To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6532produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6533Bison}). This file shows the meaning of each state in terms of
6534positions in various rules, and also what each state will do with each
6535possible input token. As you read the successive trace messages, you
6536can see that the parser is functioning according to its specification in
6537the listing file. Eventually you will arrive at the place where
6538something undesirable happens, and you will see which parts of the
6539grammar are to blame.
bfa74976
RS
6540
6541The parser file is a C program and you can use C debuggers on it, but it's
6542not easy to interpret what it is doing. The parser function is a
6543finite-state machine interpreter, and aside from the actions it executes
6544the same code over and over. Only the values of variables show where in
6545the grammar it is working.
6546
6547@findex YYPRINT
6548The debugging information normally gives the token type of each token
6549read, but not its semantic value. You can optionally define a macro
6550named @code{YYPRINT} to provide a way to print the value. If you define
6551@code{YYPRINT}, it should take three arguments. The parser will pass a
6552standard I/O stream, the numeric code for the token type, and the token
6553value (from @code{yylval}).
6554
6555Here is an example of @code{YYPRINT} suitable for the multi-function
6556calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6557
6558@smallexample
38a92d50
PE
6559%@{
6560 static void print_token_value (FILE *, int, YYSTYPE);
6561 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6562%@}
6563
6564@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6565
6566static void
831d3c99 6567print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6568@{
6569 if (type == VAR)
d3c4e709 6570 fprintf (file, "%s", value.tptr->name);
bfa74976 6571 else if (type == NUM)
d3c4e709 6572 fprintf (file, "%d", value.val);
bfa74976
RS
6573@}
6574@end smallexample
6575
ec3bc396
AD
6576@c ================================================= Invoking Bison
6577
342b8b6e 6578@node Invocation
bfa74976
RS
6579@chapter Invoking Bison
6580@cindex invoking Bison
6581@cindex Bison invocation
6582@cindex options for invoking Bison
6583
6584The usual way to invoke Bison is as follows:
6585
6586@example
6587bison @var{infile}
6588@end example
6589
6590Here @var{infile} is the grammar file name, which usually ends in
6591@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6592with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6593@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6594@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6595C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6596or @file{foo.y++}. Then, the output files will take an extension like
6597the given one as input (respectively @file{foo.tab.cpp} and
6598@file{foo.tab.c++}).
234a3be3
AD
6599This feature takes effect with all options that manipulate filenames like
6600@samp{-o} or @samp{-d}.
6601
6602For example :
6603
6604@example
6605bison -d @var{infile.yxx}
6606@end example
84163231 6607@noindent
72d2299c 6608will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6609
6610@example
b56471a6 6611bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6612@end example
84163231 6613@noindent
234a3be3
AD
6614will produce @file{output.c++} and @file{outfile.h++}.
6615
397ec073
PE
6616For compatibility with @acronym{POSIX}, the standard Bison
6617distribution also contains a shell script called @command{yacc} that
6618invokes Bison with the @option{-y} option.
6619
bfa74976 6620@menu
13863333 6621* Bison Options:: All the options described in detail,
c827f760 6622 in alphabetical order by short options.
bfa74976 6623* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6624* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6625@end menu
6626
342b8b6e 6627@node Bison Options
bfa74976
RS
6628@section Bison Options
6629
6630Bison supports both traditional single-letter options and mnemonic long
6631option names. Long option names are indicated with @samp{--} instead of
6632@samp{-}. Abbreviations for option names are allowed as long as they
6633are unique. When a long option takes an argument, like
6634@samp{--file-prefix}, connect the option name and the argument with
6635@samp{=}.
6636
6637Here is a list of options that can be used with Bison, alphabetized by
6638short option. It is followed by a cross key alphabetized by long
6639option.
6640
89cab50d
AD
6641@c Please, keep this ordered as in `bison --help'.
6642@noindent
6643Operations modes:
6644@table @option
6645@item -h
6646@itemx --help
6647Print a summary of the command-line options to Bison and exit.
bfa74976 6648
89cab50d
AD
6649@item -V
6650@itemx --version
6651Print the version number of Bison and exit.
bfa74976 6652
f7ab6a50
PE
6653@item --print-localedir
6654Print the name of the directory containing locale-dependent data.
6655
89cab50d
AD
6656@need 1750
6657@item -y
6658@itemx --yacc
89cab50d
AD
6659Equivalent to @samp{-o y.tab.c}; the parser output file is called
6660@file{y.tab.c}, and the other outputs are called @file{y.output} and
6661@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6662file name conventions. Thus, the following shell script can substitute
397ec073
PE
6663for Yacc, and the Bison distribution contains such a script for
6664compatibility with @acronym{POSIX}:
bfa74976 6665
89cab50d 6666@example
397ec073 6667#! /bin/sh
26e06a21 6668bison -y "$@@"
89cab50d
AD
6669@end example
6670@end table
6671
6672@noindent
6673Tuning the parser:
6674
6675@table @option
cd5bd6ac
AD
6676@item -S @var{file}
6677@itemx --skeleton=@var{file}
6678Specify the skeleton to use. You probably don't need this option unless
6679you are developing Bison.
6680
89cab50d
AD
6681@item -t
6682@itemx --debug
4947ebdb
PE
6683In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6684already defined, so that the debugging facilities are compiled.
ec3bc396 6685@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6686
6687@item --locations
d8988b2f 6688Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6689
6690@item -p @var{prefix}
6691@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6692Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6693@xref{Decl Summary}.
bfa74976
RS
6694
6695@item -l
6696@itemx --no-lines
6697Don't put any @code{#line} preprocessor commands in the parser file.
6698Ordinarily Bison puts them in the parser file so that the C compiler
6699and debuggers will associate errors with your source file, the
6700grammar file. This option causes them to associate errors with the
95e742f7 6701parser file, treating it as an independent source file in its own right.
bfa74976 6702
931c7513
RS
6703@item -n
6704@itemx --no-parser
d8988b2f 6705Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6706
89cab50d
AD
6707@item -k
6708@itemx --token-table
d8988b2f 6709Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6710@end table
bfa74976 6711
89cab50d
AD
6712@noindent
6713Adjust the output:
bfa74976 6714
89cab50d
AD
6715@table @option
6716@item -d
d8988b2f
AD
6717@itemx --defines
6718Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6719file containing macro definitions for the token type names defined in
4bfd5e4e 6720the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6721
342b8b6e 6722@item --defines=@var{defines-file}
d8988b2f 6723Same as above, but save in the file @var{defines-file}.
342b8b6e 6724
89cab50d
AD
6725@item -b @var{file-prefix}
6726@itemx --file-prefix=@var{prefix}
d8988b2f 6727Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6728for all Bison output file names. @xref{Decl Summary}.
bfa74976 6729
ec3bc396
AD
6730@item -r @var{things}
6731@itemx --report=@var{things}
6732Write an extra output file containing verbose description of the comma
6733separated list of @var{things} among:
6734
6735@table @code
6736@item state
6737Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6738@acronym{LALR} automaton.
ec3bc396 6739
8dd162d3 6740@item look-ahead
ec3bc396 6741Implies @code{state} and augments the description of the automaton with
8dd162d3 6742each rule's look-ahead set.
ec3bc396
AD
6743
6744@item itemset
6745Implies @code{state} and augments the description of the automaton with
6746the full set of items for each state, instead of its core only.
6747@end table
6748
6749For instance, on the following grammar
6750
bfa74976
RS
6751@item -v
6752@itemx --verbose
6deb4447
AD
6753Pretend that @code{%verbose} was specified, i.e, write an extra output
6754file containing verbose descriptions of the grammar and
72d2299c 6755parser. @xref{Decl Summary}.
bfa74976 6756
d8988b2f
AD
6757@item -o @var{filename}
6758@itemx --output=@var{filename}
6759Specify the @var{filename} for the parser file.
bfa74976 6760
d8988b2f
AD
6761The other output files' names are constructed from @var{filename} as
6762described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6763
6764@item -g
c827f760
PE
6765Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6766automaton computed by Bison. If the grammar file is @file{foo.y}, the
6767@acronym{VCG} output file will
342b8b6e
AD
6768be @file{foo.vcg}.
6769
6770@item --graph=@var{graph-file}
72d2299c
PE
6771The behavior of @var{--graph} is the same than @samp{-g}. The only
6772difference is that it has an optional argument which is the name of
342b8b6e 6773the output graph filename.
bfa74976
RS
6774@end table
6775
342b8b6e 6776@node Option Cross Key
bfa74976
RS
6777@section Option Cross Key
6778
6779Here is a list of options, alphabetized by long option, to help you find
6780the corresponding short option.
6781
6782@tex
6783\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6784
6785{\tt
6786\line{ --debug \leaderfill -t}
6787\line{ --defines \leaderfill -d}
6788\line{ --file-prefix \leaderfill -b}
342b8b6e 6789\line{ --graph \leaderfill -g}
ff51d159 6790\line{ --help \leaderfill -h}
bfa74976
RS
6791\line{ --name-prefix \leaderfill -p}
6792\line{ --no-lines \leaderfill -l}
931c7513 6793\line{ --no-parser \leaderfill -n}
d8988b2f 6794\line{ --output \leaderfill -o}
f7ab6a50 6795\line{ --print-localedir}
931c7513 6796\line{ --token-table \leaderfill -k}
bfa74976
RS
6797\line{ --verbose \leaderfill -v}
6798\line{ --version \leaderfill -V}
6799\line{ --yacc \leaderfill -y}
6800}
6801@end tex
6802
6803@ifinfo
6804@example
6805--debug -t
342b8b6e 6806--defines=@var{defines-file} -d
bfa74976 6807--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6808--graph=@var{graph-file} -d
ff51d159 6809--help -h
931c7513 6810--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6811--no-lines -l
931c7513 6812--no-parser -n
d8988b2f 6813--output=@var{outfile} -o @var{outfile}
f7ab6a50 6814--print-localedir
931c7513 6815--token-table -k
bfa74976
RS
6816--verbose -v
6817--version -V
8c9a50be 6818--yacc -y
bfa74976
RS
6819@end example
6820@end ifinfo
6821
93dd49ab
PE
6822@node Yacc Library
6823@section Yacc Library
6824
6825The Yacc library contains default implementations of the
6826@code{yyerror} and @code{main} functions. These default
6827implementations are normally not useful, but @acronym{POSIX} requires
6828them. To use the Yacc library, link your program with the
6829@option{-ly} option. Note that Bison's implementation of the Yacc
6830library is distributed under the terms of the @acronym{GNU} General
6831Public License (@pxref{Copying}).
6832
6833If you use the Yacc library's @code{yyerror} function, you should
6834declare @code{yyerror} as follows:
6835
6836@example
6837int yyerror (char const *);
6838@end example
6839
6840Bison ignores the @code{int} value returned by this @code{yyerror}.
6841If you use the Yacc library's @code{main} function, your
6842@code{yyparse} function should have the following type signature:
6843
6844@example
6845int yyparse (void);
6846@end example
6847
12545799
AD
6848@c ================================================= C++ Bison
6849
6850@node C++ Language Interface
6851@chapter C++ Language Interface
6852
6853@menu
6854* C++ Parsers:: The interface to generate C++ parser classes
6855* A Complete C++ Example:: Demonstrating their use
6856@end menu
6857
6858@node C++ Parsers
6859@section C++ Parsers
6860
6861@menu
6862* C++ Bison Interface:: Asking for C++ parser generation
6863* C++ Semantic Values:: %union vs. C++
6864* C++ Location Values:: The position and location classes
6865* C++ Parser Interface:: Instantiating and running the parser
6866* C++ Scanner Interface:: Exchanges between yylex and parse
6867@end menu
6868
6869@node C++ Bison Interface
6870@subsection C++ Bison Interface
6871@c - %skeleton "lalr1.cc"
6872@c - Always pure
6873@c - initial action
6874
e054b190 6875The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
6876it, you may either pass the option @option{--skeleton=lalr1.cc} to
6877Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
6878grammar preamble. When run, @command{bison} will create several
6879files:
6880@table @file
6881@item position.hh
6882@itemx location.hh
6883The definition of the classes @code{position} and @code{location},
6884used for location tracking. @xref{C++ Location Values}.
6885
6886@item stack.hh
6887An auxiliary class @code{stack} used by the parser.
6888
6889@item @var{filename}.hh
6890@itemx @var{filename}.cc
6891The declaration and implementation of the C++ parser class.
6892@var{filename} is the name of the output file. It follows the same
6893rules as with regular C parsers.
6894
6895Note that @file{@var{filename}.hh} is @emph{mandatory}, the C++ cannot
6896work without the parser class declaration. Therefore, you must either
6897pass @option{-d}/@option{--defines} to @command{bison}, or use the
6898@samp{%defines} directive.
6899@end table
6900
6901All these files are documented using Doxygen; run @command{doxygen}
6902for a complete and accurate documentation.
6903
6904@node C++ Semantic Values
6905@subsection C++ Semantic Values
6906@c - No objects in unions
6907@c - YSTYPE
6908@c - Printer and destructor
6909
6910The @code{%union} directive works as for C, see @ref{Union Decl, ,The
6911Collection of Value Types}. In particular it produces a genuine
6912@code{union}@footnote{In the future techniques to allow complex types
6913within pseudo-unions (variants) might be implemented to alleviate
6914these issues.}, which have a few specific features in C++.
6915@itemize @minus
6916@item
6917The name @code{YYSTYPE} also denotes @samp{union YYSTYPE}. You may
6918forward declare it just with @samp{union YYSTYPE;}.
6919@item
6920Non POD (Plain Old Data) types cannot be used. C++ forbids any
6921instance of classes with constructors in unions: only @emph{pointers}
6922to such objects are allowed.
6923@end itemize
6924
6925Because objects have to be stored via pointers, memory is not
6926reclaimed automatically: using the @code{%destructor} directive is the
6927only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
6928Symbols}.
6929
6930
6931@node C++ Location Values
6932@subsection C++ Location Values
6933@c - %locations
6934@c - class Position
6935@c - class Location
6936@c - %define "filename_type" "const symbol::Symbol"
6937
6938When the directive @code{%locations} is used, the C++ parser supports
6939location tracking, see @ref{Locations, , Locations Overview}. Two
6940auxiliary classes define a @code{position}, a single point in a file,
6941and a @code{location}, a range composed of a pair of
6942@code{position}s (possibly spanning several files).
6943
6944@deftypemethod {position} {std::string*} filename
6945The name of the file. It will always be handled as a pointer, the
6946parser will never duplicate nor deallocate it. As an experimental
6947feature you may change it to @samp{@var{type}*} using @samp{%define
6948"filename_type" "@var{type}"}.
6949@end deftypemethod
6950
6951@deftypemethod {position} {unsigned int} line
6952The line, starting at 1.
6953@end deftypemethod
6954
6955@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
6956Advance by @var{height} lines, resetting the column number.
6957@end deftypemethod
6958
6959@deftypemethod {position} {unsigned int} column
6960The column, starting at 0.
6961@end deftypemethod
6962
6963@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
6964Advance by @var{width} columns, without changing the line number.
6965@end deftypemethod
6966
6967@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
6968@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
6969@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
6970@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
6971Various forms of syntactic sugar for @code{columns}.
6972@end deftypemethod
6973
6974@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
6975Report @var{p} on @var{o} like this:
6976@samp{@var{filename}:@var{line}.@var{column}}, or
6977@samp{@var{line}.@var{column}} if @var{filename} is null.
6978@end deftypemethod
6979
6980@deftypemethod {location} {position} begin
6981@deftypemethodx {location} {position} end
6982The first, inclusive, position of the range, and the first beyond.
6983@end deftypemethod
6984
6985@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
6986@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
6987Advance the @code{end} position.
6988@end deftypemethod
6989
6990@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
6991@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
6992@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
6993Various forms of syntactic sugar.
6994@end deftypemethod
6995
6996@deftypemethod {location} {void} step ()
6997Move @code{begin} onto @code{end}.
6998@end deftypemethod
6999
7000
7001@node C++ Parser Interface
7002@subsection C++ Parser Interface
7003@c - define parser_class_name
7004@c - Ctor
7005@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7006@c debug_stream.
7007@c - Reporting errors
7008
7009The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7010declare and define the parser class in the namespace @code{yy}. The
7011class name defaults to @code{parser}, but may be changed using
7012@samp{%define "parser_class_name" "@var{name}"}. The interface of
7013this class is detailled below. It can be extended using the
7014@code{%parse-param} feature: its semantics is slightly changed since
7015it describes an additional member of the parser class, and an
7016additional argument for its constructor.
7017
8a0adb01
AD
7018@defcv {Type} {parser} {semantic_value_type}
7019@defcvx {Type} {parser} {location_value_type}
12545799 7020The types for semantics value and locations.
8a0adb01 7021@end defcv
12545799
AD
7022
7023@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7024Build a new parser object. There are no arguments by default, unless
7025@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7026@end deftypemethod
7027
7028@deftypemethod {parser} {int} parse ()
7029Run the syntactic analysis, and return 0 on success, 1 otherwise.
7030@end deftypemethod
7031
7032@deftypemethod {parser} {std::ostream&} debug_stream ()
7033@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7034Get or set the stream used for tracing the parsing. It defaults to
7035@code{std::cerr}.
7036@end deftypemethod
7037
7038@deftypemethod {parser} {debug_level_type} debug_level ()
7039@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7040Get or set the tracing level. Currently its value is either 0, no trace,
7041or non-zero, full tracing.
7042@end deftypemethod
7043
7044@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7045The definition for this member function must be supplied by the user:
7046the parser uses it to report a parser error occurring at @var{l},
7047described by @var{m}.
7048@end deftypemethod
7049
7050
7051@node C++ Scanner Interface
7052@subsection C++ Scanner Interface
7053@c - prefix for yylex.
7054@c - Pure interface to yylex
7055@c - %lex-param
7056
7057The parser invokes the scanner by calling @code{yylex}. Contrary to C
7058parsers, C++ parsers are always pure: there is no point in using the
7059@code{%pure-parser} directive. Therefore the interface is as follows.
7060
7061@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7062Return the next token. Its type is the return value, its semantic
7063value and location being @var{yylval} and @var{yylloc}. Invocations of
7064@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7065@end deftypemethod
7066
7067
7068@node A Complete C++ Example
7069@section A Complete C++ Example
7070
7071This section demonstrates the use of a C++ parser with a simple but
7072complete example. This example should be available on your system,
7073ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7074focuses on the use of Bison, therefore the design of the various C++
7075classes is very naive: no accessors, no encapsulation of members etc.
7076We will use a Lex scanner, and more precisely, a Flex scanner, to
7077demonstrate the various interaction. A hand written scanner is
7078actually easier to interface with.
7079
7080@menu
7081* Calc++ --- C++ Calculator:: The specifications
7082* Calc++ Parsing Driver:: An active parsing context
7083* Calc++ Parser:: A parser class
7084* Calc++ Scanner:: A pure C++ Flex scanner
7085* Calc++ Top Level:: Conducting the band
7086@end menu
7087
7088@node Calc++ --- C++ Calculator
7089@subsection Calc++ --- C++ Calculator
7090
7091Of course the grammar is dedicated to arithmetics, a single
7092expression, possibily preceded by variable assignments. An
7093environment containing possibly predefined variables such as
7094@code{one} and @code{two}, is exchanged with the parser. An example
7095of valid input follows.
7096
7097@example
7098three := 3
7099seven := one + two * three
7100seven * seven
7101@end example
7102
7103@node Calc++ Parsing Driver
7104@subsection Calc++ Parsing Driver
7105@c - An env
7106@c - A place to store error messages
7107@c - A place for the result
7108
7109To support a pure interface with the parser (and the scanner) the
7110technique of the ``parsing context'' is convenient: a structure
7111containing all the data to exchange. Since, in addition to simply
7112launch the parsing, there are several auxiliary tasks to execute (open
7113the file for parsing, instantiate the parser etc.), we recommend
7114transforming the simple parsing context structure into a fully blown
7115@dfn{parsing driver} class.
7116
7117The declaration of this driver class, @file{calc++-driver.hh}, is as
7118follows. The first part includes the CPP guard and imports the
7119required standard library components.
7120
1c59e0a1 7121@comment file: calc++-driver.hh
12545799
AD
7122@example
7123#ifndef CALCXX_DRIVER_HH
7124# define CALCXX_DRIVER_HH
7125# include <string>
7126# include <map>
7127@end example
7128
7129@noindent
7130Then come forward declarations. Because the parser uses the parsing
7131driver and reciprocally, simple inclusions of header files will not
7132do. Because the driver's declaration is the one that will be imported
7133by the rest of the project, it is saner to forward declare the
7134parser's information here.
7135
1c59e0a1 7136@comment file: calc++-driver.hh
12545799
AD
7137@example
7138// Forward declarations.
7139union YYSTYPE;
1c59e0a1
AD
7140namespace yy
7141@{
7142 class location;
7143 class calcxx_parser;
7144@}
12545799
AD
7145class calcxx_driver;
7146@end example
7147
7148@noindent
7149Then comes the declaration of the scanning function. Flex expects
7150the signature of @code{yylex} to be defined in the macro
7151@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7152factor both as follows.
1c59e0a1
AD
7153
7154@comment file: calc++-driver.hh
12545799
AD
7155@example
7156// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7157# define YY_DECL \
12545799
AD
7158 int yylex (YYSTYPE* yylval, yy::location* yylloc, calcxx_driver& driver)
7159// ... and declare it for the parser's sake.
7160YY_DECL;
7161@end example
7162
7163@noindent
7164The @code{calcxx_driver} class is then declared with its most obvious
7165members.
7166
1c59e0a1 7167@comment file: calc++-driver.hh
12545799
AD
7168@example
7169// Conducting the whole scanning and parsing of Calc++.
7170class calcxx_driver
7171@{
7172public:
7173 calcxx_driver ();
7174 virtual ~calcxx_driver ();
7175
7176 std::map<std::string, int> variables;
7177
7178 int result;
7179@end example
7180
7181@noindent
7182To encapsulate the coordination with the Flex scanner, it is useful to
7183have two members function to open and close the scanning phase.
7184members.
7185
1c59e0a1 7186@comment file: calc++-driver.hh
12545799
AD
7187@example
7188 // Handling the scanner.
7189 void scan_begin ();
7190 void scan_end ();
7191 bool trace_scanning;
7192@end example
7193
7194@noindent
7195Similarly for the parser itself.
7196
1c59e0a1 7197@comment file: calc++-driver.hh
12545799
AD
7198@example
7199 // Handling the parser.
7200 void parse (const std::string& f);
7201 std::string file;
7202 bool trace_parsing;
7203@end example
7204
7205@noindent
7206To demonstrate pure handling of parse errors, instead of simply
7207dumping them on the standard error output, we will pass them to the
7208compiler driver using the following two member functions. Finally, we
7209close the class declaration and CPP guard.
7210
1c59e0a1 7211@comment file: calc++-driver.hh
12545799
AD
7212@example
7213 // Error handling.
7214 void error (const yy::location& l, const std::string& m);
7215 void error (const std::string& m);
7216@};
7217#endif // ! CALCXX_DRIVER_HH
7218@end example
7219
7220The implementation of the driver is straightforward. The @code{parse}
7221member function deserves some attention. The @code{error} functions
7222are simple stubs, they should actually register the located error
7223messages and set error state.
7224
1c59e0a1 7225@comment file: calc++-driver.cc
12545799
AD
7226@example
7227#include "calc++-driver.hh"
7228#include "calc++-parser.hh"
7229
7230calcxx_driver::calcxx_driver ()
7231 : trace_scanning (false), trace_parsing (false)
7232@{
7233 variables["one"] = 1;
7234 variables["two"] = 2;
7235@}
7236
7237calcxx_driver::~calcxx_driver ()
7238@{
7239@}
7240
7241void
7242calcxx_driver::parse (const std::string &f)
7243@{
7244 file = f;
7245 scan_begin ();
7246 yy::calcxx_parser parser (*this);
7247 parser.set_debug_level (trace_parsing);
7248 parser.parse ();
7249 scan_end ();
7250@}
7251
7252void
7253calcxx_driver::error (const yy::location& l, const std::string& m)
7254@{
7255 std::cerr << l << ": " << m << std::endl;
7256@}
7257
7258void
7259calcxx_driver::error (const std::string& m)
7260@{
7261 std::cerr << m << std::endl;
7262@}
7263@end example
7264
7265@node Calc++ Parser
7266@subsection Calc++ Parser
7267
7268The parser definition file @file{calc++-parser.yy} starts by asking
7269for the C++ skeleton, the creation of the parser header file, and
7270specifies the name of the parser class. It then includes the required
7271headers.
1c59e0a1
AD
7272
7273@comment file: calc++-parser.yy
12545799
AD
7274@example
7275%skeleton "lalr1.cc" /* -*- C++ -*- */
7276%define "parser_class_name" "calcxx_parser"
7277%defines
7278%@{
7279# include <string>
7280# include "calc++-driver.hh"
7281%@}
7282@end example
7283
7284@noindent
7285The driver is passed by reference to the parser and to the scanner.
7286This provides a simple but effective pure interface, not relying on
7287global variables.
7288
1c59e0a1 7289@comment file: calc++-parser.yy
12545799
AD
7290@example
7291// The parsing context.
7292%parse-param @{ calcxx_driver& driver @}
7293%lex-param @{ calcxx_driver& driver @}
7294@end example
7295
7296@noindent
7297Then we request the location tracking feature, and initialize the
7298first location's file name. Afterwards new locations are computed
7299relatively to the previous locations: the file name will be
7300automatically propagated.
7301
1c59e0a1 7302@comment file: calc++-parser.yy
12545799
AD
7303@example
7304%locations
7305%initial-action
7306@{
7307 // Initialize the initial location.
7308 @@$.begin.filename = @@$.end.filename = &driver.file;
7309@};
7310@end example
7311
7312@noindent
7313Use the two following directives to enable parser tracing and verbose
7314error messages.
7315
1c59e0a1 7316@comment file: calc++-parser.yy
12545799
AD
7317@example
7318%debug
7319%error-verbose
7320@end example
7321
7322@noindent
7323Semantic values cannot use ``real'' objects, but only pointers to
7324them.
7325
1c59e0a1 7326@comment file: calc++-parser.yy
12545799
AD
7327@example
7328// Symbols.
7329%union
7330@{
7331 int ival;
7332 std::string *sval;
7333@};
7334@end example
7335
7336@noindent
7337The token numbered as 0 corresponds to end of file; the following line
7338allows for nicer error messages referring to ``end of file'' instead
7339of ``$end''. Similarly user friendly named are provided for each
7340symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7341avoid name clashes.
7342
1c59e0a1 7343@comment file: calc++-parser.yy
12545799
AD
7344@example
7345%token YYEOF 0 "end of file"
7346%token TOKEN_ASSIGN ":="
7347%token <sval> TOKEN_IDENTIFIER "identifier"
7348%token <ival> TOKEN_NUMBER "number"
7349%type <ival> exp "expression"
7350@end example
7351
7352@noindent
7353To enable memory deallocation during error recovery, use
7354@code{%destructor}.
7355
1c59e0a1 7356@comment file: calc++-parser.yy
12545799
AD
7357@example
7358%printer @{ debug_stream () << *$$; @} "identifier"
7359%destructor @{ delete $$; @} "identifier"
7360
7361%printer @{ debug_stream () << $$; @} "number" "expression"
7362@end example
7363
7364@noindent
7365The grammar itself is straightforward.
7366
1c59e0a1 7367@comment file: calc++-parser.yy
12545799
AD
7368@example
7369%%
7370%start unit;
7371unit: assignments exp @{ driver.result = $2; @};
7372
7373assignments: assignments assignment @{@}
7374 | /* Nothing. */ @{@};
7375
7376assignment: TOKEN_IDENTIFIER ":=" exp @{ driver.variables[*$1] = $3; @};
7377
7378%left '+' '-';
7379%left '*' '/';
7380exp: exp '+' exp @{ $$ = $1 + $3; @}
7381 | exp '-' exp @{ $$ = $1 - $3; @}
7382 | exp '*' exp @{ $$ = $1 * $3; @}
7383 | exp '/' exp @{ $$ = $1 / $3; @}
7384 | TOKEN_IDENTIFIER @{ $$ = driver.variables[*$1]; @}
7385 | TOKEN_NUMBER @{ $$ = $1; @};
7386%%
7387@end example
7388
7389@noindent
7390Finally the @code{error} member function registers the errors to the
7391driver.
7392
1c59e0a1 7393@comment file: calc++-parser.yy
12545799
AD
7394@example
7395void
1c59e0a1
AD
7396yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7397 const std::string& m)
12545799
AD
7398@{
7399 driver.error (l, m);
7400@}
7401@end example
7402
7403@node Calc++ Scanner
7404@subsection Calc++ Scanner
7405
7406The Flex scanner first includes the driver declaration, then the
7407parser's to get the set of defined tokens.
7408
1c59e0a1 7409@comment file: calc++-scanner.ll
12545799
AD
7410@example
7411%@{ /* -*- C++ -*- */
7412# include <string>
7413# include "calc++-driver.hh"
7414# include "calc++-parser.hh"
7415%@}
7416@end example
7417
7418@noindent
7419Because there is no @code{#include}-like feature we don't need
7420@code{yywrap}, we don't need @code{unput} either, and we parse an
7421actual file, this is not an interactive session with the user.
7422Finally we enable the scanner tracing features.
7423
1c59e0a1 7424@comment file: calc++-scanner.ll
12545799
AD
7425@example
7426%option noyywrap nounput batch debug
7427@end example
7428
7429@noindent
7430Abbreviations allow for more readable rules.
7431
1c59e0a1 7432@comment file: calc++-scanner.ll
12545799
AD
7433@example
7434id [a-zA-Z][a-zA-Z_0-9]*
7435int [0-9]+
7436blank [ \t]
7437@end example
7438
7439@noindent
7440The following paragraph suffices to track locations acurately. Each
7441time @code{yylex} is invoked, the begin position is moved onto the end
7442position. Then when a pattern is matched, the end position is
7443advanced of its width. In case it matched ends of lines, the end
7444cursor is adjusted, and each time blanks are matched, the begin cursor
7445is moved onto the end cursor to effectively ignore the blanks
7446preceding tokens. Comments would be treated equally.
7447
1c59e0a1 7448@comment file: calc++-scanner.ll
12545799 7449@example
828c373b
AD
7450%@{
7451# define YY_USER_ACTION yylloc->columns (yyleng);
7452%@}
12545799
AD
7453%%
7454%@{
7455 yylloc->step ();
12545799
AD
7456%@}
7457@{blank@}+ yylloc->step ();
7458[\n]+ yylloc->lines (yyleng); yylloc->step ();
7459@end example
7460
7461@noindent
7462The rules are simple, just note the use of the driver to report
7463errors.
7464
1c59e0a1 7465@comment file: calc++-scanner.ll
12545799
AD
7466@example
7467[-+*/] return yytext[0];
7468":=" return TOKEN_ASSIGN;
7469@{int@} yylval->ival = atoi (yytext); return TOKEN_NUMBER;
7470@{id@} yylval->sval = new std::string (yytext); return TOKEN_IDENTIFIER;
7471. driver.error (*yylloc, "invalid character");
7472%%
7473@end example
7474
7475@noindent
7476Finally, because the scanner related driver's member function depend
7477on the scanner's data, it is simpler to implement them in this file.
7478
1c59e0a1 7479@comment file: calc++-scanner.ll
12545799
AD
7480@example
7481void
7482calcxx_driver::scan_begin ()
7483@{
7484 yy_flex_debug = trace_scanning;
7485 if (!(yyin = fopen (file.c_str (), "r")))
7486 error (std::string ("cannot open ") + file);
7487@}
7488
7489void
7490calcxx_driver::scan_end ()
7491@{
7492 fclose (yyin);
7493@}
7494@end example
7495
7496@node Calc++ Top Level
7497@subsection Calc++ Top Level
7498
7499The top level file, @file{calc++.cc}, poses no problem.
7500
1c59e0a1 7501@comment file: calc++.cc
12545799
AD
7502@example
7503#include <iostream>
7504#include "calc++-driver.hh"
7505
7506int
7507main (int argc, const char* argv[])
7508@{
7509 calcxx_driver driver;
7510 for (++argv; argv[0]; ++argv)
7511 if (*argv == std::string ("-p"))
7512 driver.trace_parsing = true;
7513 else if (*argv == std::string ("-s"))
7514 driver.trace_scanning = true;
7515 else
7516 @{
7517 driver.parse (*argv);
7518 std::cout << driver.result << std::endl;
7519 @}
7520@}
7521@end example
7522
7523@c ================================================= FAQ
d1a1114f
AD
7524
7525@node FAQ
7526@chapter Frequently Asked Questions
7527@cindex frequently asked questions
7528@cindex questions
7529
7530Several questions about Bison come up occasionally. Here some of them
7531are addressed.
7532
7533@menu
7534* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 7535* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7536* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7537* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7538@end menu
7539
7540@node Parser Stack Overflow
7541@section Parser Stack Overflow
7542
7543@display
7544My parser returns with error with a @samp{parser stack overflow}
7545message. What can I do?
7546@end display
7547
7548This question is already addressed elsewhere, @xref{Recursion,
7549,Recursive Rules}.
7550
e64fec0a
PE
7551@node How Can I Reset the Parser
7552@section How Can I Reset the Parser
5b066063 7553
0e14ad77
PE
7554The following phenomenon has several symptoms, resulting in the
7555following typical questions:
5b066063
AD
7556
7557@display
7558I invoke @code{yyparse} several times, and on correct input it works
7559properly; but when a parse error is found, all the other calls fail
0e14ad77 7560too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7561@end display
7562
7563@noindent
7564or
7565
7566@display
0e14ad77 7567My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7568which case I run @code{yyparse} from @code{yyparse}. This fails
7569although I did specify I needed a @code{%pure-parser}.
7570@end display
7571
0e14ad77
PE
7572These problems typically come not from Bison itself, but from
7573Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7574speed, they might not notice a change of input file. As a
7575demonstration, consider the following source file,
7576@file{first-line.l}:
7577
7578@verbatim
7579%{
7580#include <stdio.h>
7581#include <stdlib.h>
7582%}
7583%%
7584.*\n ECHO; return 1;
7585%%
7586int
0e14ad77 7587yyparse (char const *file)
5b066063
AD
7588{
7589 yyin = fopen (file, "r");
7590 if (!yyin)
7591 exit (2);
fa7e68c3 7592 /* One token only. */
5b066063 7593 yylex ();
0e14ad77 7594 if (fclose (yyin) != 0)
5b066063
AD
7595 exit (3);
7596 return 0;
7597}
7598
7599int
0e14ad77 7600main (void)
5b066063
AD
7601{
7602 yyparse ("input");
7603 yyparse ("input");
7604 return 0;
7605}
7606@end verbatim
7607
7608@noindent
7609If the file @file{input} contains
7610
7611@verbatim
7612input:1: Hello,
7613input:2: World!
7614@end verbatim
7615
7616@noindent
0e14ad77 7617then instead of getting the first line twice, you get:
5b066063
AD
7618
7619@example
7620$ @kbd{flex -ofirst-line.c first-line.l}
7621$ @kbd{gcc -ofirst-line first-line.c -ll}
7622$ @kbd{./first-line}
7623input:1: Hello,
7624input:2: World!
7625@end example
7626
0e14ad77
PE
7627Therefore, whenever you change @code{yyin}, you must tell the
7628Lex-generated scanner to discard its current buffer and switch to the
7629new one. This depends upon your implementation of Lex; see its
7630documentation for more. For Flex, it suffices to call
7631@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7632Flex-generated scanner needs to read from several input streams to
7633handle features like include files, you might consider using Flex
7634functions like @samp{yy_switch_to_buffer} that manipulate multiple
7635input buffers.
5b066063 7636
b165c324
AD
7637If your Flex-generated scanner uses start conditions (@pxref{Start
7638conditions, , Start conditions, flex, The Flex Manual}), you might
7639also want to reset the scanner's state, i.e., go back to the initial
7640start condition, through a call to @samp{BEGIN (0)}.
7641
fef4cb51
AD
7642@node Strings are Destroyed
7643@section Strings are Destroyed
7644
7645@display
c7e441b4 7646My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7647them. Instead of reporting @samp{"foo", "bar"}, it reports
7648@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7649@end display
7650
7651This error is probably the single most frequent ``bug report'' sent to
7652Bison lists, but is only concerned with a misunderstanding of the role
7653of scanner. Consider the following Lex code:
7654
7655@verbatim
7656%{
7657#include <stdio.h>
7658char *yylval = NULL;
7659%}
7660%%
7661.* yylval = yytext; return 1;
7662\n /* IGNORE */
7663%%
7664int
7665main ()
7666{
fa7e68c3 7667 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7668 char *fst = (yylex (), yylval);
7669 char *snd = (yylex (), yylval);
7670 printf ("\"%s\", \"%s\"\n", fst, snd);
7671 return 0;
7672}
7673@end verbatim
7674
7675If you compile and run this code, you get:
7676
7677@example
7678$ @kbd{flex -osplit-lines.c split-lines.l}
7679$ @kbd{gcc -osplit-lines split-lines.c -ll}
7680$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7681"one
7682two", "two"
7683@end example
7684
7685@noindent
7686this is because @code{yytext} is a buffer provided for @emph{reading}
7687in the action, but if you want to keep it, you have to duplicate it
7688(e.g., using @code{strdup}). Note that the output may depend on how
7689your implementation of Lex handles @code{yytext}. For instance, when
7690given the Lex compatibility option @option{-l} (which triggers the
7691option @samp{%array}) Flex generates a different behavior:
7692
7693@example
7694$ @kbd{flex -l -osplit-lines.c split-lines.l}
7695$ @kbd{gcc -osplit-lines split-lines.c -ll}
7696$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7697"two", "two"
7698@end example
7699
7700
2fa09258
AD
7701@node Implementing Gotos/Loops
7702@section Implementing Gotos/Loops
a06ea4aa
AD
7703
7704@display
7705My simple calculator supports variables, assignments, and functions,
2fa09258 7706but how can I implement gotos, or loops?
a06ea4aa
AD
7707@end display
7708
7709Although very pedagogical, the examples included in the document blur
a1c84f45 7710the distinction to make between the parser---whose job is to recover
a06ea4aa 7711the structure of a text and to transmit it to subsequent modules of
a1c84f45 7712the program---and the processing (such as the execution) of this
a06ea4aa
AD
7713structure. This works well with so called straight line programs,
7714i.e., precisely those that have a straightforward execution model:
7715execute simple instructions one after the others.
7716
7717@cindex abstract syntax tree
7718@cindex @acronym{AST}
7719If you want a richer model, you will probably need to use the parser
7720to construct a tree that does represent the structure it has
7721recovered; this tree is usually called the @dfn{abstract syntax tree},
7722or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7723traversing it in various ways, will enable treatments such as its
7724execution or its translation, which will result in an interpreter or a
7725compiler.
7726
7727This topic is way beyond the scope of this manual, and the reader is
7728invited to consult the dedicated literature.
7729
7730
7731
d1a1114f
AD
7732@c ================================================= Table of Symbols
7733
342b8b6e 7734@node Table of Symbols
bfa74976
RS
7735@appendix Bison Symbols
7736@cindex Bison symbols, table of
7737@cindex symbols in Bison, table of
7738
18b519c0 7739@deffn {Variable} @@$
3ded9a63 7740In an action, the location of the left-hand side of the rule.
88bce5a2 7741@xref{Locations, , Locations Overview}.
18b519c0 7742@end deffn
3ded9a63 7743
18b519c0 7744@deffn {Variable} @@@var{n}
3ded9a63
AD
7745In an action, the location of the @var{n}-th symbol of the right-hand
7746side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7747@end deffn
3ded9a63 7748
18b519c0 7749@deffn {Variable} $$
3ded9a63
AD
7750In an action, the semantic value of the left-hand side of the rule.
7751@xref{Actions}.
18b519c0 7752@end deffn
3ded9a63 7753
18b519c0 7754@deffn {Variable} $@var{n}
3ded9a63
AD
7755In an action, the semantic value of the @var{n}-th symbol of the
7756right-hand side of the rule. @xref{Actions}.
18b519c0 7757@end deffn
3ded9a63 7758
dd8d9022
AD
7759@deffn {Delimiter} %%
7760Delimiter used to separate the grammar rule section from the
7761Bison declarations section or the epilogue.
7762@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7763@end deffn
bfa74976 7764
dd8d9022
AD
7765@c Don't insert spaces, or check the DVI output.
7766@deffn {Delimiter} %@{@var{code}%@}
7767All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7768the output file uninterpreted. Such code forms the prologue of the input
7769file. @xref{Grammar Outline, ,Outline of a Bison
7770Grammar}.
18b519c0 7771@end deffn
bfa74976 7772
dd8d9022
AD
7773@deffn {Construct} /*@dots{}*/
7774Comment delimiters, as in C.
18b519c0 7775@end deffn
bfa74976 7776
dd8d9022
AD
7777@deffn {Delimiter} :
7778Separates a rule's result from its components. @xref{Rules, ,Syntax of
7779Grammar Rules}.
18b519c0 7780@end deffn
bfa74976 7781
dd8d9022
AD
7782@deffn {Delimiter} ;
7783Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7784@end deffn
bfa74976 7785
dd8d9022
AD
7786@deffn {Delimiter} |
7787Separates alternate rules for the same result nonterminal.
7788@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7789@end deffn
bfa74976 7790
dd8d9022
AD
7791@deffn {Symbol} $accept
7792The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7793$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7794Start-Symbol}. It cannot be used in the grammar.
18b519c0 7795@end deffn
bfa74976 7796
18b519c0 7797@deffn {Directive} %debug
6deb4447 7798Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7799@end deffn
6deb4447 7800
91d2c560 7801@ifset defaultprec
22fccf95
PE
7802@deffn {Directive} %default-prec
7803Assign a precedence to rules that lack an explicit @samp{%prec}
7804modifier. @xref{Contextual Precedence, ,Context-Dependent
7805Precedence}.
39a06c25 7806@end deffn
91d2c560 7807@end ifset
39a06c25 7808
18b519c0 7809@deffn {Directive} %defines
6deb4447
AD
7810Bison declaration to create a header file meant for the scanner.
7811@xref{Decl Summary}.
18b519c0 7812@end deffn
6deb4447 7813
18b519c0 7814@deffn {Directive} %destructor
72f889cc 7815Specifying how the parser should reclaim the memory associated to
fa7e68c3 7816discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7817@end deffn
72f889cc 7818
18b519c0 7819@deffn {Directive} %dprec
676385e2 7820Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7821time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7822@acronym{GLR} Parsers}.
18b519c0 7823@end deffn
676385e2 7824
dd8d9022
AD
7825@deffn {Symbol} $end
7826The predefined token marking the end of the token stream. It cannot be
7827used in the grammar.
7828@end deffn
7829
7830@deffn {Symbol} error
7831A token name reserved for error recovery. This token may be used in
7832grammar rules so as to allow the Bison parser to recognize an error in
7833the grammar without halting the process. In effect, a sentence
7834containing an error may be recognized as valid. On a syntax error, the
7835token @code{error} becomes the current look-ahead token. Actions
7836corresponding to @code{error} are then executed, and the look-ahead
7837token is reset to the token that originally caused the violation.
7838@xref{Error Recovery}.
18d192f0
AD
7839@end deffn
7840
18b519c0 7841@deffn {Directive} %error-verbose
2a8d363a
AD
7842Bison declaration to request verbose, specific error message strings
7843when @code{yyerror} is called.
18b519c0 7844@end deffn
2a8d363a 7845
18b519c0 7846@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7847Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7848Summary}.
18b519c0 7849@end deffn
d8988b2f 7850
18b519c0 7851@deffn {Directive} %glr-parser
c827f760
PE
7852Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7853Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7854@end deffn
676385e2 7855
dd8d9022
AD
7856@deffn {Directive} %initial-action
7857Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
7858@end deffn
7859
18b519c0 7860@deffn {Directive} %left
bfa74976
RS
7861Bison declaration to assign left associativity to token(s).
7862@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7863@end deffn
bfa74976 7864
feeb0eda 7865@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7866Bison declaration to specifying an additional parameter that
7867@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7868for Pure Parsers}.
18b519c0 7869@end deffn
2a8d363a 7870
18b519c0 7871@deffn {Directive} %merge
676385e2 7872Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7873reduce/reduce conflict with a rule having the same merging function, the
676385e2 7874function is applied to the two semantic values to get a single result.
c827f760 7875@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7876@end deffn
676385e2 7877
18b519c0 7878@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7879Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7880@end deffn
d8988b2f 7881
91d2c560 7882@ifset defaultprec
22fccf95
PE
7883@deffn {Directive} %no-default-prec
7884Do not assign a precedence to rules that lack an explicit @samp{%prec}
7885modifier. @xref{Contextual Precedence, ,Context-Dependent
7886Precedence}.
7887@end deffn
91d2c560 7888@end ifset
22fccf95 7889
18b519c0 7890@deffn {Directive} %no-lines
931c7513
RS
7891Bison declaration to avoid generating @code{#line} directives in the
7892parser file. @xref{Decl Summary}.
18b519c0 7893@end deffn
931c7513 7894
18b519c0 7895@deffn {Directive} %nonassoc
14ded682 7896Bison declaration to assign non-associativity to token(s).
bfa74976 7897@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7898@end deffn
bfa74976 7899
18b519c0 7900@deffn {Directive} %output="@var{filename}"
72d2299c 7901Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7902Summary}.
18b519c0 7903@end deffn
d8988b2f 7904
feeb0eda 7905@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7906Bison declaration to specifying an additional parameter that
7907@code{yyparse} should accept. @xref{Parser Function,, The Parser
7908Function @code{yyparse}}.
18b519c0 7909@end deffn
2a8d363a 7910
18b519c0 7911@deffn {Directive} %prec
bfa74976
RS
7912Bison declaration to assign a precedence to a specific rule.
7913@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7914@end deffn
bfa74976 7915
18b519c0 7916@deffn {Directive} %pure-parser
bfa74976
RS
7917Bison declaration to request a pure (reentrant) parser.
7918@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7919@end deffn
bfa74976 7920
18b519c0 7921@deffn {Directive} %right
bfa74976
RS
7922Bison declaration to assign right associativity to token(s).
7923@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7924@end deffn
bfa74976 7925
18b519c0 7926@deffn {Directive} %start
704a47c4
AD
7927Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7928Start-Symbol}.
18b519c0 7929@end deffn
bfa74976 7930
18b519c0 7931@deffn {Directive} %token
bfa74976
RS
7932Bison declaration to declare token(s) without specifying precedence.
7933@xref{Token Decl, ,Token Type Names}.
18b519c0 7934@end deffn
bfa74976 7935
18b519c0 7936@deffn {Directive} %token-table
931c7513
RS
7937Bison declaration to include a token name table in the parser file.
7938@xref{Decl Summary}.
18b519c0 7939@end deffn
931c7513 7940
18b519c0 7941@deffn {Directive} %type
704a47c4
AD
7942Bison declaration to declare nonterminals. @xref{Type Decl,
7943,Nonterminal Symbols}.
18b519c0 7944@end deffn
bfa74976 7945
dd8d9022
AD
7946@deffn {Symbol} $undefined
7947The predefined token onto which all undefined values returned by
7948@code{yylex} are mapped. It cannot be used in the grammar, rather, use
7949@code{error}.
7950@end deffn
7951
18b519c0 7952@deffn {Directive} %union
bfa74976
RS
7953Bison declaration to specify several possible data types for semantic
7954values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 7955@end deffn
bfa74976 7956
dd8d9022
AD
7957@deffn {Macro} YYABORT
7958Macro to pretend that an unrecoverable syntax error has occurred, by
7959making @code{yyparse} return 1 immediately. The error reporting
7960function @code{yyerror} is not called. @xref{Parser Function, ,The
7961Parser Function @code{yyparse}}.
7962@end deffn
3ded9a63 7963
dd8d9022
AD
7964@deffn {Macro} YYACCEPT
7965Macro to pretend that a complete utterance of the language has been
7966read, by making @code{yyparse} return 0 immediately.
7967@xref{Parser Function, ,The Parser Function @code{yyparse}}.
7968@end deffn
bfa74976 7969
dd8d9022
AD
7970@deffn {Macro} YYBACKUP
7971Macro to discard a value from the parser stack and fake a look-ahead
7972token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7973@end deffn
bfa74976 7974
dd8d9022
AD
7975@deffn {Variable} yychar
7976External integer variable that contains the integer value of the current
7977look-ahead token. (In a pure parser, it is a local variable within
7978@code{yyparse}.) Error-recovery rule actions may examine this variable.
7979@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7980@end deffn
bfa74976 7981
dd8d9022
AD
7982@deffn {Variable} yyclearin
7983Macro used in error-recovery rule actions. It clears the previous
7984look-ahead token. @xref{Error Recovery}.
18b519c0 7985@end deffn
bfa74976 7986
dd8d9022
AD
7987@deffn {Macro} YYDEBUG
7988Macro to define to equip the parser with tracing code. @xref{Tracing,
7989,Tracing Your Parser}.
18b519c0 7990@end deffn
bfa74976 7991
dd8d9022
AD
7992@deffn {Variable} yydebug
7993External integer variable set to zero by default. If @code{yydebug}
7994is given a nonzero value, the parser will output information on input
7995symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 7996@end deffn
bfa74976 7997
dd8d9022
AD
7998@deffn {Macro} yyerrok
7999Macro to cause parser to recover immediately to its normal mode
8000after a syntax error. @xref{Error Recovery}.
8001@end deffn
8002
8003@deffn {Macro} YYERROR
8004Macro to pretend that a syntax error has just been detected: call
8005@code{yyerror} and then perform normal error recovery if possible
8006(@pxref{Error Recovery}), or (if recovery is impossible) make
8007@code{yyparse} return 1. @xref{Error Recovery}.
8008@end deffn
8009
8010@deffn {Function} yyerror
8011User-supplied function to be called by @code{yyparse} on error.
8012@xref{Error Reporting, ,The Error
8013Reporting Function @code{yyerror}}.
8014@end deffn
8015
8016@deffn {Macro} YYERROR_VERBOSE
8017An obsolete macro that you define with @code{#define} in the prologue
8018to request verbose, specific error message strings
8019when @code{yyerror} is called. It doesn't matter what definition you
8020use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8021@code{%error-verbose} is preferred.
8022@end deffn
8023
8024@deffn {Macro} YYINITDEPTH
8025Macro for specifying the initial size of the parser stack.
8026@xref{Stack Overflow}.
8027@end deffn
8028
8029@deffn {Function} yylex
8030User-supplied lexical analyzer function, called with no arguments to get
8031the next token. @xref{Lexical, ,The Lexical Analyzer Function
8032@code{yylex}}.
8033@end deffn
8034
8035@deffn {Macro} YYLEX_PARAM
8036An obsolete macro for specifying an extra argument (or list of extra
8037arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
8038macro is deprecated, and is supported only for Yacc like parsers.
8039@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8040@end deffn
8041
8042@deffn {Variable} yylloc
8043External variable in which @code{yylex} should place the line and column
8044numbers associated with a token. (In a pure parser, it is a local
8045variable within @code{yyparse}, and its address is passed to
8046@code{yylex}.) You can ignore this variable if you don't use the
8047@samp{@@} feature in the grammar actions. @xref{Token Locations,
8048,Textual Locations of Tokens}.
8049@end deffn
8050
8051@deffn {Type} YYLTYPE
8052Data type of @code{yylloc}; by default, a structure with four
8053members. @xref{Location Type, , Data Types of Locations}.
8054@end deffn
8055
8056@deffn {Variable} yylval
8057External variable in which @code{yylex} should place the semantic
8058value associated with a token. (In a pure parser, it is a local
8059variable within @code{yyparse}, and its address is passed to
8060@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
8061@end deffn
8062
8063@deffn {Macro} YYMAXDEPTH
8064Macro for specifying the maximum size of the parser stack. @xref{Stack
8065Overflow}.
8066@end deffn
8067
8068@deffn {Variable} yynerrs
8069Global variable which Bison increments each time there is a syntax error.
8070(In a pure parser, it is a local variable within @code{yyparse}.)
8071@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8072@end deffn
8073
8074@deffn {Function} yyparse
8075The parser function produced by Bison; call this function to start
8076parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8077@end deffn
8078
8079@deffn {Macro} YYPARSE_PARAM
8080An obsolete macro for specifying the name of a parameter that
8081@code{yyparse} should accept. The use of this macro is deprecated, and
8082is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8083Conventions for Pure Parsers}.
8084@end deffn
8085
8086@deffn {Macro} YYRECOVERING
8087Macro whose value indicates whether the parser is recovering from a
8088syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8089@end deffn
8090
8091@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8092Macro used to control the use of @code{alloca} when the C
8093@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8094the parser will use @code{malloc} to extend its stacks. If defined to
80951, the parser will use @code{alloca}. Values other than 0 and 1 are
8096reserved for future Bison extensions. If not defined,
8097@code{YYSTACK_USE_ALLOCA} defaults to 0.
8098
8099If you define @code{YYSTACK_USE_ALLOCA} to 1, it is your
8100responsibility to make sure that @code{alloca} is visible, e.g., by
8101using @acronym{GCC} or by including @code{<stdlib.h>}. Furthermore,
8102in the all-too-common case where your code may run on a host with a
8103limited stack and with unreliable stack-overflow checking, you should
8104set @code{YYMAXDEPTH} to a value that cannot possibly result in
8105unchecked stack overflow on any of your target hosts when
8106@code{alloca} is called. You can inspect the code that Bison
8107generates in order to determine the proper numeric values. This will
8108require some expertise in low-level implementation details.
dd8d9022
AD
8109@end deffn
8110
8111@deffn {Type} YYSTYPE
8112Data type of semantic values; @code{int} by default.
8113@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8114@end deffn
bfa74976 8115
342b8b6e 8116@node Glossary
bfa74976
RS
8117@appendix Glossary
8118@cindex glossary
8119
8120@table @asis
c827f760
PE
8121@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8122Formal method of specifying context-free grammars originally proposed
8123by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8124committee document contributing to what became the Algol 60 report.
8125@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8126
8127@item Context-free grammars
8128Grammars specified as rules that can be applied regardless of context.
8129Thus, if there is a rule which says that an integer can be used as an
8130expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8131permitted. @xref{Language and Grammar, ,Languages and Context-Free
8132Grammars}.
bfa74976
RS
8133
8134@item Dynamic allocation
8135Allocation of memory that occurs during execution, rather than at
8136compile time or on entry to a function.
8137
8138@item Empty string
8139Analogous to the empty set in set theory, the empty string is a
8140character string of length zero.
8141
8142@item Finite-state stack machine
8143A ``machine'' that has discrete states in which it is said to exist at
8144each instant in time. As input to the machine is processed, the
8145machine moves from state to state as specified by the logic of the
8146machine. In the case of the parser, the input is the language being
8147parsed, and the states correspond to various stages in the grammar
c827f760 8148rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8149
c827f760 8150@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8151A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8152that are not @acronym{LALR}(1). It resolves situations that Bison's
8153usual @acronym{LALR}(1)
676385e2
PH
8154algorithm cannot by effectively splitting off multiple parsers, trying all
8155possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8156right context. @xref{Generalized LR Parsing, ,Generalized
8157@acronym{LR} Parsing}.
676385e2 8158
bfa74976
RS
8159@item Grouping
8160A language construct that is (in general) grammatically divisible;
c827f760 8161for example, `expression' or `declaration' in C@.
bfa74976
RS
8162@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8163
8164@item Infix operator
8165An arithmetic operator that is placed between the operands on which it
8166performs some operation.
8167
8168@item Input stream
8169A continuous flow of data between devices or programs.
8170
8171@item Language construct
8172One of the typical usage schemas of the language. For example, one of
8173the constructs of the C language is the @code{if} statement.
8174@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8175
8176@item Left associativity
8177Operators having left associativity are analyzed from left to right:
8178@samp{a+b+c} first computes @samp{a+b} and then combines with
8179@samp{c}. @xref{Precedence, ,Operator Precedence}.
8180
8181@item Left recursion
89cab50d
AD
8182A rule whose result symbol is also its first component symbol; for
8183example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8184Rules}.
bfa74976
RS
8185
8186@item Left-to-right parsing
8187Parsing a sentence of a language by analyzing it token by token from
c827f760 8188left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8189
8190@item Lexical analyzer (scanner)
8191A function that reads an input stream and returns tokens one by one.
8192@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8193
8194@item Lexical tie-in
8195A flag, set by actions in the grammar rules, which alters the way
8196tokens are parsed. @xref{Lexical Tie-ins}.
8197
931c7513 8198@item Literal string token
14ded682 8199A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8200
bfa74976 8201@item Look-ahead token
89cab50d
AD
8202A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8203Tokens}.
bfa74976 8204
c827f760 8205@item @acronym{LALR}(1)
bfa74976 8206The class of context-free grammars that Bison (like most other parser
c827f760
PE
8207generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8208Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8209
c827f760 8210@item @acronym{LR}(1)
bfa74976
RS
8211The class of context-free grammars in which at most one token of
8212look-ahead is needed to disambiguate the parsing of any piece of input.
8213
8214@item Nonterminal symbol
8215A grammar symbol standing for a grammatical construct that can
8216be expressed through rules in terms of smaller constructs; in other
8217words, a construct that is not a token. @xref{Symbols}.
8218
bfa74976
RS
8219@item Parser
8220A function that recognizes valid sentences of a language by analyzing
8221the syntax structure of a set of tokens passed to it from a lexical
8222analyzer.
8223
8224@item Postfix operator
8225An arithmetic operator that is placed after the operands upon which it
8226performs some operation.
8227
8228@item Reduction
8229Replacing a string of nonterminals and/or terminals with a single
89cab50d 8230nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8231Parser Algorithm}.
bfa74976
RS
8232
8233@item Reentrant
8234A reentrant subprogram is a subprogram which can be in invoked any
8235number of times in parallel, without interference between the various
8236invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8237
8238@item Reverse polish notation
8239A language in which all operators are postfix operators.
8240
8241@item Right recursion
89cab50d
AD
8242A rule whose result symbol is also its last component symbol; for
8243example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8244Rules}.
bfa74976
RS
8245
8246@item Semantics
8247In computer languages, the semantics are specified by the actions
8248taken for each instance of the language, i.e., the meaning of
8249each statement. @xref{Semantics, ,Defining Language Semantics}.
8250
8251@item Shift
8252A parser is said to shift when it makes the choice of analyzing
8253further input from the stream rather than reducing immediately some
c827f760 8254already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8255
8256@item Single-character literal
8257A single character that is recognized and interpreted as is.
8258@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8259
8260@item Start symbol
8261The nonterminal symbol that stands for a complete valid utterance in
8262the language being parsed. The start symbol is usually listed as the
13863333 8263first nonterminal symbol in a language specification.
bfa74976
RS
8264@xref{Start Decl, ,The Start-Symbol}.
8265
8266@item Symbol table
8267A data structure where symbol names and associated data are stored
8268during parsing to allow for recognition and use of existing
8269information in repeated uses of a symbol. @xref{Multi-function Calc}.
8270
6e649e65
PE
8271@item Syntax error
8272An error encountered during parsing of an input stream due to invalid
8273syntax. @xref{Error Recovery}.
8274
bfa74976
RS
8275@item Token
8276A basic, grammatically indivisible unit of a language. The symbol
8277that describes a token in the grammar is a terminal symbol.
8278The input of the Bison parser is a stream of tokens which comes from
8279the lexical analyzer. @xref{Symbols}.
8280
8281@item Terminal symbol
89cab50d
AD
8282A grammar symbol that has no rules in the grammar and therefore is
8283grammatically indivisible. The piece of text it represents is a token.
8284@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8285@end table
8286
342b8b6e 8287@node Copying This Manual
f2b5126e 8288@appendix Copying This Manual
f9a8293a 8289
f2b5126e
PB
8290@menu
8291* GNU Free Documentation License:: License for copying this manual.
8292@end menu
f9a8293a 8293
f2b5126e
PB
8294@include fdl.texi
8295
342b8b6e 8296@node Index
bfa74976
RS
8297@unnumbered Index
8298
8299@printindex cp
8300
bfa74976 8301@bye
a06ea4aa
AD
8302
8303@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8304@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8305@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8306@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8307@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8308@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8309@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8310@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8311@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8312@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8313@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8314@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8315@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8316@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8317@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8318@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8319@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8320@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8321@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8322@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8323@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
8324@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
8325@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8326@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8327@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8328@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8329@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8330@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8331@c LocalWords: YYSTACK DVI fdl printindex