]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* data/glr.c, data/lalr1.cc, data/yacc.c: When YYABORT was
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
1452af69 471999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760
PE
51under the terms of the @acronym{GNU} Free Documentation License,
52Version 1.1 or any later version published by the Free Software
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
65@dircategory GNU programming tools
66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
931c7513
RS
8559 Temple Place, Suite 330 @*
86Boston, MA 02111-1307 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976
RS
119* Invocation:: How to run Bison (to produce the parser source file).
120* Table of Symbols:: All the keywords of the Bison language are explained.
121* Glossary:: Basic concepts are explained.
d1a1114f 122* FAQ:: Frequently Asked Questions
f2b5126e 123* Copying This Manual:: License for copying this manual.
bfa74976
RS
124* Index:: Cross-references to the text.
125
93dd49ab
PE
126@detailmenu
127 --- The Detailed Node Listing ---
bfa74976
RS
128
129The Concepts of Bison
130
131* Language and Grammar:: Languages and context-free grammars,
132 as mathematical ideas.
133* Grammar in Bison:: How we represent grammars for Bison's sake.
134* Semantic Values:: Each token or syntactic grouping can have
135 a semantic value (the value of an integer,
136 the name of an identifier, etc.).
137* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 138* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 139* Locations Overview:: Tracking Locations.
bfa74976
RS
140* Bison Parser:: What are Bison's input and output,
141 how is the output used?
142* Stages:: Stages in writing and running Bison grammars.
143* Grammar Layout:: Overall structure of a Bison grammar file.
144
fa7e68c3
PE
145Writing @acronym{GLR} Parsers
146
147* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
148* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
149* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
150
bfa74976
RS
151Examples
152
153* RPN Calc:: Reverse polish notation calculator;
154 a first example with no operator precedence.
155* Infix Calc:: Infix (algebraic) notation calculator.
156 Operator precedence is introduced.
157* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 158* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
159* Multi-function Calc:: Calculator with memory and trig functions.
160 It uses multiple data-types for semantic values.
bfa74976
RS
161* Exercises:: Ideas for improving the multi-function calculator.
162
163Reverse Polish Notation Calculator
164
75f5aaea 165* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
166* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
167* Lexer: Rpcalc Lexer. The lexical analyzer.
168* Main: Rpcalc Main. The controlling function.
169* Error: Rpcalc Error. The error reporting function.
170* Gen: Rpcalc Gen. Running Bison on the grammar file.
171* Comp: Rpcalc Compile. Run the C compiler on the output code.
172
173Grammar Rules for @code{rpcalc}
174
13863333
AD
175* Rpcalc Input::
176* Rpcalc Line::
177* Rpcalc Expr::
bfa74976 178
342b8b6e
AD
179Location Tracking Calculator: @code{ltcalc}
180
181* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
182* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
183* Lexer: Ltcalc Lexer. The lexical analyzer.
184
bfa74976
RS
185Multi-Function Calculator: @code{mfcalc}
186
187* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
188* Rules: Mfcalc Rules. Grammar rules for the calculator.
189* Symtab: Mfcalc Symtab. Symbol table management subroutines.
190
191Bison Grammar Files
192
193* Grammar Outline:: Overall layout of the grammar file.
194* Symbols:: Terminal and nonterminal symbols.
195* Rules:: How to write grammar rules.
196* Recursion:: Writing recursive rules.
197* Semantics:: Semantic values and actions.
93dd49ab 198* Locations:: Locations and actions.
bfa74976
RS
199* Declarations:: All kinds of Bison declarations are described here.
200* Multiple Parsers:: Putting more than one Bison parser in one program.
201
202Outline of a Bison Grammar
203
93dd49ab 204* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
205* Bison Declarations:: Syntax and usage of the Bison declarations section.
206* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 207* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
208
209Defining Language Semantics
210
211* Value Type:: Specifying one data type for all semantic values.
212* Multiple Types:: Specifying several alternative data types.
213* Actions:: An action is the semantic definition of a grammar rule.
214* Action Types:: Specifying data types for actions to operate on.
215* Mid-Rule Actions:: Most actions go at the end of a rule.
216 This says when, why and how to use the exceptional
217 action in the middle of a rule.
218
93dd49ab
PE
219Tracking Locations
220
221* Location Type:: Specifying a data type for locations.
222* Actions and Locations:: Using locations in actions.
223* Location Default Action:: Defining a general way to compute locations.
224
bfa74976
RS
225Bison Declarations
226
227* Token Decl:: Declaring terminal symbols.
228* Precedence Decl:: Declaring terminals with precedence and associativity.
229* Union Decl:: Declaring the set of all semantic value types.
230* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 231* Destructor Decl:: Declaring how symbols are freed.
d6328241 232* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
233* Start Decl:: Specifying the start symbol.
234* Pure Decl:: Requesting a reentrant parser.
235* Decl Summary:: Table of all Bison declarations.
236
237Parser C-Language Interface
238
239* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 240* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
241 which reads tokens.
242* Error Reporting:: You must supply a function @code{yyerror}.
243* Action Features:: Special features for use in actions.
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
95923bd6 250* Token Locations:: How @code{yylex} must return the text location
bfa74976 251 (line number, etc.) of the token, if the
93dd49ab 252 actions want that.
bfa74976
RS
253* Pure Calling:: How the calling convention differs
254 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
255
13863333 256The Bison Parser Algorithm
bfa74976
RS
257
258* Look-Ahead:: Parser looks one token ahead when deciding what to do.
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
266* Stack Overflow:: What happens when stack gets full. How to avoid it.
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
d1a1114f
AD
294Frequently Asked Questions
295
296* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 297* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 298* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa 299* C++ Parsers:: Compiling Parsers with C++ Compilers
2fa09258 300* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 301
f2b5126e
PB
302Copying This Manual
303
304* GNU Free Documentation License:: License for copying this manual.
305
342b8b6e 306@end detailmenu
bfa74976
RS
307@end menu
308
342b8b6e 309@node Introduction
bfa74976
RS
310@unnumbered Introduction
311@cindex introduction
312
313@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 314grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
315program to parse that grammar. Once you are proficient with Bison,
316you may use it to develop a wide range of language parsers, from those
317used in simple desk calculators to complex programming languages.
318
319Bison is upward compatible with Yacc: all properly-written Yacc grammars
320ought to work with Bison with no change. Anyone familiar with Yacc
321should be able to use Bison with little trouble. You need to be fluent in
322C programming in order to use Bison or to understand this manual.
323
324We begin with tutorial chapters that explain the basic concepts of using
325Bison and show three explained examples, each building on the last. If you
326don't know Bison or Yacc, start by reading these chapters. Reference
327chapters follow which describe specific aspects of Bison in detail.
328
931c7513
RS
329Bison was written primarily by Robert Corbett; Richard Stallman made it
330Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 331multi-character string literals and other features.
931c7513 332
df1af54c 333This edition corresponds to version @value{VERSION} of Bison.
bfa74976 334
342b8b6e 335@node Conditions
bfa74976
RS
336@unnumbered Conditions for Using Bison
337
a31239f1 338As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 339@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 340Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 341parsers could be used only in programs that were free software.
a31239f1 342
c827f760
PE
343The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
344compiler, have never
9ecbd125 345had such a requirement. They could always be used for nonfree
a31239f1
RS
346software. The reason Bison was different was not due to a special
347policy decision; it resulted from applying the usual General Public
348License to all of the Bison source code.
349
350The output of the Bison utility---the Bison parser file---contains a
351verbatim copy of a sizable piece of Bison, which is the code for the
352@code{yyparse} function. (The actions from your grammar are inserted
353into this function at one point, but the rest of the function is not
c827f760
PE
354changed.) When we applied the @acronym{GPL} terms to the code for
355@code{yyparse},
a31239f1
RS
356the effect was to restrict the use of Bison output to free software.
357
358We didn't change the terms because of sympathy for people who want to
359make software proprietary. @strong{Software should be free.} But we
360concluded that limiting Bison's use to free software was doing little to
361encourage people to make other software free. So we decided to make the
362practical conditions for using Bison match the practical conditions for
c827f760 363using the other @acronym{GNU} tools.
bfa74976 364
eda42934 365This exception applies only when Bison is generating C code for an
c827f760
PE
366@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
367as usual. You can
262aa8dd
PE
368tell whether the exception applies to your @samp{.c} output file by
369inspecting it to see whether it says ``As a special exception, when
370this file is copied by Bison into a Bison output file, you may use
371that output file without restriction.''
372
c67a198d 373@include gpl.texi
bfa74976 374
342b8b6e 375@node Concepts
bfa74976
RS
376@chapter The Concepts of Bison
377
378This chapter introduces many of the basic concepts without which the
379details of Bison will not make sense. If you do not already know how to
380use Bison or Yacc, we suggest you start by reading this chapter carefully.
381
382@menu
383* Language and Grammar:: Languages and context-free grammars,
384 as mathematical ideas.
385* Grammar in Bison:: How we represent grammars for Bison's sake.
386* Semantic Values:: Each token or syntactic grouping can have
387 a semantic value (the value of an integer,
388 the name of an identifier, etc.).
389* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 390* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 391* Locations Overview:: Tracking Locations.
bfa74976
RS
392* Bison Parser:: What are Bison's input and output,
393 how is the output used?
394* Stages:: Stages in writing and running Bison grammars.
395* Grammar Layout:: Overall structure of a Bison grammar file.
396@end menu
397
342b8b6e 398@node Language and Grammar
bfa74976
RS
399@section Languages and Context-Free Grammars
400
bfa74976
RS
401@cindex context-free grammar
402@cindex grammar, context-free
403In order for Bison to parse a language, it must be described by a
404@dfn{context-free grammar}. This means that you specify one or more
405@dfn{syntactic groupings} and give rules for constructing them from their
406parts. For example, in the C language, one kind of grouping is called an
407`expression'. One rule for making an expression might be, ``An expression
408can be made of a minus sign and another expression''. Another would be,
409``An expression can be an integer''. As you can see, rules are often
410recursive, but there must be at least one rule which leads out of the
411recursion.
412
c827f760 413@cindex @acronym{BNF}
bfa74976
RS
414@cindex Backus-Naur form
415The most common formal system for presenting such rules for humans to read
c827f760
PE
416is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
417order to specify the language Algol 60. Any grammar expressed in
418@acronym{BNF} is a context-free grammar. The input to Bison is
419essentially machine-readable @acronym{BNF}.
bfa74976 420
c827f760
PE
421@cindex @acronym{LALR}(1) grammars
422@cindex @acronym{LR}(1) grammars
676385e2
PH
423There are various important subclasses of context-free grammar. Although it
424can handle almost all context-free grammars, Bison is optimized for what
c827f760 425are called @acronym{LALR}(1) grammars.
676385e2 426In brief, in these grammars, it must be possible to
bfa74976
RS
427tell how to parse any portion of an input string with just a single
428token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
429@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
430restrictions that are
bfa74976 431hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
432@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
433@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
434more information on this.
bfa74976 435
c827f760
PE
436@cindex @acronym{GLR} parsing
437@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
438@cindex ambiguous grammars
439@cindex non-deterministic parsing
9501dc6e
AD
440
441Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
442roughly that the next grammar rule to apply at any point in the input is
443uniquely determined by the preceding input and a fixed, finite portion
444(called a @dfn{look-ahead}) of the remaining input. A context-free
445grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
446apply the grammar rules to get the some inputs. Even unambiguous
447grammars can be @dfn{non-deterministic}, meaning that no fixed
448look-ahead always suffices to determine the next grammar rule to apply.
449With the proper declarations, Bison is also able to parse these more
450general context-free grammars, using a technique known as @acronym{GLR}
451parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
452are able to handle any context-free grammar for which the number of
453possible parses of any given string is finite.
676385e2 454
bfa74976
RS
455@cindex symbols (abstract)
456@cindex token
457@cindex syntactic grouping
458@cindex grouping, syntactic
9501dc6e
AD
459In the formal grammatical rules for a language, each kind of syntactic
460unit or grouping is named by a @dfn{symbol}. Those which are built by
461grouping smaller constructs according to grammatical rules are called
bfa74976
RS
462@dfn{nonterminal symbols}; those which can't be subdivided are called
463@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
464corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 465corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
466
467We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
468nonterminal, mean. The tokens of C are identifiers, constants (numeric
469and string), and the various keywords, arithmetic operators and
470punctuation marks. So the terminal symbols of a grammar for C include
471`identifier', `number', `string', plus one symbol for each keyword,
472operator or punctuation mark: `if', `return', `const', `static', `int',
473`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
474(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
475lexicography, not grammar.)
476
477Here is a simple C function subdivided into tokens:
478
9edcd895
AD
479@ifinfo
480@example
481int /* @r{keyword `int'} */
482square (int x) /* @r{identifier, open-paren, identifier,}
483 @r{identifier, close-paren} */
484@{ /* @r{open-brace} */
485 return x * x; /* @r{keyword `return', identifier, asterisk,
486 identifier, semicolon} */
487@} /* @r{close-brace} */
488@end example
489@end ifinfo
490@ifnotinfo
bfa74976
RS
491@example
492int /* @r{keyword `int'} */
9edcd895 493square (int x) /* @r{identifier, open-paren, identifier, identifier, close-paren} */
bfa74976 494@{ /* @r{open-brace} */
9edcd895 495 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
496@} /* @r{close-brace} */
497@end example
9edcd895 498@end ifnotinfo
bfa74976
RS
499
500The syntactic groupings of C include the expression, the statement, the
501declaration, and the function definition. These are represented in the
502grammar of C by nonterminal symbols `expression', `statement',
503`declaration' and `function definition'. The full grammar uses dozens of
504additional language constructs, each with its own nonterminal symbol, in
505order to express the meanings of these four. The example above is a
506function definition; it contains one declaration, and one statement. In
507the statement, each @samp{x} is an expression and so is @samp{x * x}.
508
509Each nonterminal symbol must have grammatical rules showing how it is made
510out of simpler constructs. For example, one kind of C statement is the
511@code{return} statement; this would be described with a grammar rule which
512reads informally as follows:
513
514@quotation
515A `statement' can be made of a `return' keyword, an `expression' and a
516`semicolon'.
517@end quotation
518
519@noindent
520There would be many other rules for `statement', one for each kind of
521statement in C.
522
523@cindex start symbol
524One nonterminal symbol must be distinguished as the special one which
525defines a complete utterance in the language. It is called the @dfn{start
526symbol}. In a compiler, this means a complete input program. In the C
527language, the nonterminal symbol `sequence of definitions and declarations'
528plays this role.
529
530For example, @samp{1 + 2} is a valid C expression---a valid part of a C
531program---but it is not valid as an @emph{entire} C program. In the
532context-free grammar of C, this follows from the fact that `expression' is
533not the start symbol.
534
535The Bison parser reads a sequence of tokens as its input, and groups the
536tokens using the grammar rules. If the input is valid, the end result is
537that the entire token sequence reduces to a single grouping whose symbol is
538the grammar's start symbol. If we use a grammar for C, the entire input
539must be a `sequence of definitions and declarations'. If not, the parser
540reports a syntax error.
541
342b8b6e 542@node Grammar in Bison
bfa74976
RS
543@section From Formal Rules to Bison Input
544@cindex Bison grammar
545@cindex grammar, Bison
546@cindex formal grammar
547
548A formal grammar is a mathematical construct. To define the language
549for Bison, you must write a file expressing the grammar in Bison syntax:
550a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
551
552A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 553as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
554in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
555
556The Bison representation for a terminal symbol is also called a @dfn{token
557type}. Token types as well can be represented as C-like identifiers. By
558convention, these identifiers should be upper case to distinguish them from
559nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
560@code{RETURN}. A terminal symbol that stands for a particular keyword in
561the language should be named after that keyword converted to upper case.
562The terminal symbol @code{error} is reserved for error recovery.
931c7513 563@xref{Symbols}.
bfa74976
RS
564
565A terminal symbol can also be represented as a character literal, just like
566a C character constant. You should do this whenever a token is just a
567single character (parenthesis, plus-sign, etc.): use that same character in
568a literal as the terminal symbol for that token.
569
931c7513
RS
570A third way to represent a terminal symbol is with a C string constant
571containing several characters. @xref{Symbols}, for more information.
572
bfa74976
RS
573The grammar rules also have an expression in Bison syntax. For example,
574here is the Bison rule for a C @code{return} statement. The semicolon in
575quotes is a literal character token, representing part of the C syntax for
576the statement; the naked semicolon, and the colon, are Bison punctuation
577used in every rule.
578
579@example
580stmt: RETURN expr ';'
581 ;
582@end example
583
584@noindent
585@xref{Rules, ,Syntax of Grammar Rules}.
586
342b8b6e 587@node Semantic Values
bfa74976
RS
588@section Semantic Values
589@cindex semantic value
590@cindex value, semantic
591
592A formal grammar selects tokens only by their classifications: for example,
593if a rule mentions the terminal symbol `integer constant', it means that
594@emph{any} integer constant is grammatically valid in that position. The
595precise value of the constant is irrelevant to how to parse the input: if
596@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 597grammatical.
bfa74976
RS
598
599But the precise value is very important for what the input means once it is
600parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6013989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
602has both a token type and a @dfn{semantic value}. @xref{Semantics,
603,Defining Language Semantics},
bfa74976
RS
604for details.
605
606The token type is a terminal symbol defined in the grammar, such as
607@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
608you need to know to decide where the token may validly appear and how to
609group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 610except their types.
bfa74976
RS
611
612The semantic value has all the rest of the information about the
613meaning of the token, such as the value of an integer, or the name of an
614identifier. (A token such as @code{','} which is just punctuation doesn't
615need to have any semantic value.)
616
617For example, an input token might be classified as token type
618@code{INTEGER} and have the semantic value 4. Another input token might
619have the same token type @code{INTEGER} but value 3989. When a grammar
620rule says that @code{INTEGER} is allowed, either of these tokens is
621acceptable because each is an @code{INTEGER}. When the parser accepts the
622token, it keeps track of the token's semantic value.
623
624Each grouping can also have a semantic value as well as its nonterminal
625symbol. For example, in a calculator, an expression typically has a
626semantic value that is a number. In a compiler for a programming
627language, an expression typically has a semantic value that is a tree
628structure describing the meaning of the expression.
629
342b8b6e 630@node Semantic Actions
bfa74976
RS
631@section Semantic Actions
632@cindex semantic actions
633@cindex actions, semantic
634
635In order to be useful, a program must do more than parse input; it must
636also produce some output based on the input. In a Bison grammar, a grammar
637rule can have an @dfn{action} made up of C statements. Each time the
638parser recognizes a match for that rule, the action is executed.
639@xref{Actions}.
13863333 640
bfa74976
RS
641Most of the time, the purpose of an action is to compute the semantic value
642of the whole construct from the semantic values of its parts. For example,
643suppose we have a rule which says an expression can be the sum of two
644expressions. When the parser recognizes such a sum, each of the
645subexpressions has a semantic value which describes how it was built up.
646The action for this rule should create a similar sort of value for the
647newly recognized larger expression.
648
649For example, here is a rule that says an expression can be the sum of
650two subexpressions:
651
652@example
653expr: expr '+' expr @{ $$ = $1 + $3; @}
654 ;
655@end example
656
657@noindent
658The action says how to produce the semantic value of the sum expression
659from the values of the two subexpressions.
660
676385e2 661@node GLR Parsers
c827f760
PE
662@section Writing @acronym{GLR} Parsers
663@cindex @acronym{GLR} parsing
664@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
665@findex %glr-parser
666@cindex conflicts
667@cindex shift/reduce conflicts
fa7e68c3 668@cindex reduce/reduce conflicts
676385e2 669
fa7e68c3 670In some grammars, Bison's standard
9501dc6e
AD
671@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
672certain grammar rule at a given point. That is, it may not be able to
673decide (on the basis of the input read so far) which of two possible
674reductions (applications of a grammar rule) applies, or whether to apply
675a reduction or read more of the input and apply a reduction later in the
676input. These are known respectively as @dfn{reduce/reduce} conflicts
677(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
678(@pxref{Shift/Reduce}).
679
680To use a grammar that is not easily modified to be @acronym{LALR}(1), a
681more general parsing algorithm is sometimes necessary. If you include
676385e2 682@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 683(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
684(@acronym{GLR}) parser. These parsers handle Bison grammars that
685contain no unresolved conflicts (i.e., after applying precedence
686declarations) identically to @acronym{LALR}(1) parsers. However, when
687faced with unresolved shift/reduce and reduce/reduce conflicts,
688@acronym{GLR} parsers use the simple expedient of doing both,
689effectively cloning the parser to follow both possibilities. Each of
690the resulting parsers can again split, so that at any given time, there
691can be any number of possible parses being explored. The parsers
676385e2
PH
692proceed in lockstep; that is, all of them consume (shift) a given input
693symbol before any of them proceed to the next. Each of the cloned
694parsers eventually meets one of two possible fates: either it runs into
695a parsing error, in which case it simply vanishes, or it merges with
696another parser, because the two of them have reduced the input to an
697identical set of symbols.
698
699During the time that there are multiple parsers, semantic actions are
700recorded, but not performed. When a parser disappears, its recorded
701semantic actions disappear as well, and are never performed. When a
702reduction makes two parsers identical, causing them to merge, Bison
703records both sets of semantic actions. Whenever the last two parsers
704merge, reverting to the single-parser case, Bison resolves all the
705outstanding actions either by precedences given to the grammar rules
706involved, or by performing both actions, and then calling a designated
707user-defined function on the resulting values to produce an arbitrary
708merged result.
709
fa7e68c3
PE
710@menu
711* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
712* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
713* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
714@end menu
715
716@node Simple GLR Parsers
717@subsection Using @acronym{GLR} on Unambiguous Grammars
718@cindex @acronym{GLR} parsing, unambiguous grammars
719@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
720@findex %glr-parser
721@findex %expect-rr
722@cindex conflicts
723@cindex reduce/reduce conflicts
724@cindex shift/reduce conflicts
725
726In the simplest cases, you can use the @acronym{GLR} algorithm
727to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
728Such grammars typically require more than one symbol of look-ahead,
729or (in rare cases) fall into the category of grammars in which the
730@acronym{LALR}(1) algorithm throws away too much information (they are in
731@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
732
733Consider a problem that
734arises in the declaration of enumerated and subrange types in the
735programming language Pascal. Here are some examples:
736
737@example
738type subrange = lo .. hi;
739type enum = (a, b, c);
740@end example
741
742@noindent
743The original language standard allows only numeric
744literals and constant identifiers for the subrange bounds (@samp{lo}
745and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
74610206) and many other
747Pascal implementations allow arbitrary expressions there. This gives
748rise to the following situation, containing a superfluous pair of
749parentheses:
750
751@example
752type subrange = (a) .. b;
753@end example
754
755@noindent
756Compare this to the following declaration of an enumerated
757type with only one value:
758
759@example
760type enum = (a);
761@end example
762
763@noindent
764(These declarations are contrived, but they are syntactically
765valid, and more-complicated cases can come up in practical programs.)
766
767These two declarations look identical until the @samp{..} token.
768With normal @acronym{LALR}(1) one-token look-ahead it is not
769possible to decide between the two forms when the identifier
770@samp{a} is parsed. It is, however, desirable
771for a parser to decide this, since in the latter case
772@samp{a} must become a new identifier to represent the enumeration
773value, while in the former case @samp{a} must be evaluated with its
774current meaning, which may be a constant or even a function call.
775
776You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
777to be resolved later, but this typically requires substantial
778contortions in both semantic actions and large parts of the
779grammar, where the parentheses are nested in the recursive rules for
780expressions.
781
782You might think of using the lexer to distinguish between the two
783forms by returning different tokens for currently defined and
784undefined identifiers. But if these declarations occur in a local
785scope, and @samp{a} is defined in an outer scope, then both forms
786are possible---either locally redefining @samp{a}, or using the
787value of @samp{a} from the outer scope. So this approach cannot
788work.
789
e757bb10 790A simple solution to this problem is to declare the parser to
fa7e68c3
PE
791use the @acronym{GLR} algorithm.
792When the @acronym{GLR} parser reaches the critical state, it
793merely splits into two branches and pursues both syntax rules
794simultaneously. Sooner or later, one of them runs into a parsing
795error. If there is a @samp{..} token before the next
796@samp{;}, the rule for enumerated types fails since it cannot
797accept @samp{..} anywhere; otherwise, the subrange type rule
798fails since it requires a @samp{..} token. So one of the branches
799fails silently, and the other one continues normally, performing
800all the intermediate actions that were postponed during the split.
801
802If the input is syntactically incorrect, both branches fail and the parser
803reports a syntax error as usual.
804
805The effect of all this is that the parser seems to ``guess'' the
806correct branch to take, or in other words, it seems to use more
807look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
808for. In this example, @acronym{LALR}(2) would suffice, but also some cases
809that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
810
811In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
812and the current Bison parser even takes exponential time and space
813for some grammars. In practice, this rarely happens, and for many
814grammars it is possible to prove that it cannot happen.
815The present example contains only one conflict between two
816rules, and the type-declaration context containing the conflict
817cannot be nested. So the number of
818branches that can exist at any time is limited by the constant 2,
819and the parsing time is still linear.
820
821Here is a Bison grammar corresponding to the example above. It
822parses a vastly simplified form of Pascal type declarations.
823
824@example
825%token TYPE DOTDOT ID
826
827@group
828%left '+' '-'
829%left '*' '/'
830@end group
831
832%%
833
834@group
835type_decl : TYPE ID '=' type ';'
836 ;
837@end group
838
839@group
840type : '(' id_list ')'
841 | expr DOTDOT expr
842 ;
843@end group
844
845@group
846id_list : ID
847 | id_list ',' ID
848 ;
849@end group
850
851@group
852expr : '(' expr ')'
853 | expr '+' expr
854 | expr '-' expr
855 | expr '*' expr
856 | expr '/' expr
857 | ID
858 ;
859@end group
860@end example
861
862When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
863about one reduce/reduce conflict. In the conflicting situation the
864parser chooses one of the alternatives, arbitrarily the one
865declared first. Therefore the following correct input is not
866recognized:
867
868@example
869type t = (a) .. b;
870@end example
871
872The parser can be turned into a @acronym{GLR} parser, while also telling Bison
873to be silent about the one known reduce/reduce conflict, by
e757bb10 874adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
875@samp{%%}):
876
877@example
878%glr-parser
879%expect-rr 1
880@end example
881
882@noindent
883No change in the grammar itself is required. Now the
884parser recognizes all valid declarations, according to the
885limited syntax above, transparently. In fact, the user does not even
886notice when the parser splits.
887
888So here we have a case where we can use the benefits of @acronym{GLR}, almost
889without disadvantages. Even in simple cases like this, however, there
890are at least two potential problems to beware.
891First, always analyze the conflicts reported by
892Bison to make sure that @acronym{GLR} splitting is only done where it is
893intended. A @acronym{GLR} parser splitting inadvertently may cause
894problems less obvious than an @acronym{LALR} parser statically choosing the
895wrong alternative in a conflict.
e757bb10 896Second, consider interactions with the lexer (@pxref{Semantic Tokens})
fa7e68c3
PE
897with great care. Since a split parser consumes tokens
898without performing any actions during the split, the lexer cannot
899obtain information via parser actions. Some cases of
900lexer interactions can be eliminated by using @acronym{GLR} to
901shift the complications from the lexer to the parser. You must check
902the remaining cases for correctness.
903
904In our example, it would be safe for the lexer to return tokens
905based on their current meanings in some symbol table, because no new
906symbols are defined in the middle of a type declaration. Though it
907is possible for a parser to define the enumeration
908constants as they are parsed, before the type declaration is
909completed, it actually makes no difference since they cannot be used
910within the same enumerated type declaration.
911
912@node Merging GLR Parses
913@subsection Using @acronym{GLR} to Resolve Ambiguities
914@cindex @acronym{GLR} parsing, ambiguous grammars
915@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
916@findex %dprec
917@findex %merge
918@cindex conflicts
919@cindex reduce/reduce conflicts
920
2a8d363a 921Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
922
923@example
924%@{
38a92d50
PE
925 #include <stdio.h>
926 #define YYSTYPE char const *
927 int yylex (void);
928 void yyerror (char const *);
676385e2
PH
929%@}
930
931%token TYPENAME ID
932
933%right '='
934%left '+'
935
936%glr-parser
937
938%%
939
fae437e8 940prog :
676385e2
PH
941 | prog stmt @{ printf ("\n"); @}
942 ;
943
944stmt : expr ';' %dprec 1
945 | decl %dprec 2
946 ;
947
2a8d363a 948expr : ID @{ printf ("%s ", $$); @}
fae437e8 949 | TYPENAME '(' expr ')'
2a8d363a
AD
950 @{ printf ("%s <cast> ", $1); @}
951 | expr '+' expr @{ printf ("+ "); @}
952 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
953 ;
954
fae437e8 955decl : TYPENAME declarator ';'
2a8d363a 956 @{ printf ("%s <declare> ", $1); @}
676385e2 957 | TYPENAME declarator '=' expr ';'
2a8d363a 958 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
959 ;
960
2a8d363a 961declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
962 | '(' declarator ')'
963 ;
964@end example
965
966@noindent
967This models a problematic part of the C++ grammar---the ambiguity between
968certain declarations and statements. For example,
969
970@example
971T (x) = y+z;
972@end example
973
974@noindent
975parses as either an @code{expr} or a @code{stmt}
c827f760
PE
976(assuming that @samp{T} is recognized as a @code{TYPENAME} and
977@samp{x} as an @code{ID}).
676385e2 978Bison detects this as a reduce/reduce conflict between the rules
fae437e8 979@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
980time it encounters @code{x} in the example above. Since this is a
981@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
982each choice of resolving the reduce/reduce conflict.
983Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
984however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
985ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
986the other reduces @code{stmt : decl}, after which both parsers are in an
987identical state: they've seen @samp{prog stmt} and have the same unprocessed
988input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
989
990At this point, the @acronym{GLR} parser requires a specification in the
991grammar of how to choose between the competing parses.
992In the example above, the two @code{%dprec}
e757bb10 993declarations specify that Bison is to give precedence
fa7e68c3 994to the parse that interprets the example as a
676385e2
PH
995@code{decl}, which implies that @code{x} is a declarator.
996The parser therefore prints
997
998@example
fae437e8 999"x" y z + T <init-declare>
676385e2
PH
1000@end example
1001
fa7e68c3
PE
1002The @code{%dprec} declarations only come into play when more than one
1003parse survives. Consider a different input string for this parser:
676385e2
PH
1004
1005@example
1006T (x) + y;
1007@end example
1008
1009@noindent
e757bb10 1010This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1011construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1012Here, there is no ambiguity (this cannot be parsed as a declaration).
1013However, at the time the Bison parser encounters @code{x}, it does not
1014have enough information to resolve the reduce/reduce conflict (again,
1015between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1016case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1017into two, one assuming that @code{x} is an @code{expr}, and the other
1018assuming @code{x} is a @code{declarator}. The second of these parsers
1019then vanishes when it sees @code{+}, and the parser prints
1020
1021@example
fae437e8 1022x T <cast> y +
676385e2
PH
1023@end example
1024
1025Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1026the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1027actions of the two possible parsers, rather than choosing one over the
1028other. To do so, you could change the declaration of @code{stmt} as
1029follows:
1030
1031@example
1032stmt : expr ';' %merge <stmtMerge>
1033 | decl %merge <stmtMerge>
1034 ;
1035@end example
1036
1037@noindent
676385e2
PH
1038and define the @code{stmtMerge} function as:
1039
1040@example
38a92d50
PE
1041static YYSTYPE
1042stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1043@{
1044 printf ("<OR> ");
1045 return "";
1046@}
1047@end example
1048
1049@noindent
1050with an accompanying forward declaration
1051in the C declarations at the beginning of the file:
1052
1053@example
1054%@{
38a92d50 1055 #define YYSTYPE char const *
676385e2
PH
1056 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1057%@}
1058@end example
1059
1060@noindent
fa7e68c3
PE
1061With these declarations, the resulting parser parses the first example
1062as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1063
1064@example
fae437e8 1065"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1066@end example
1067
fa7e68c3 1068Bison requires that all of the
e757bb10 1069productions that participate in any particular merge have identical
fa7e68c3
PE
1070@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1071and the parser will report an error during any parse that results in
1072the offending merge.
9501dc6e 1073
fa7e68c3
PE
1074@node Compiler Requirements
1075@subsection Considerations when Compiling @acronym{GLR} Parsers
1076@cindex @code{inline}
9501dc6e 1077@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1078
38a92d50
PE
1079The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1080later. In addition, they use the @code{inline} keyword, which is not
1081C89, but is C99 and is a common extension in pre-C99 compilers. It is
1082up to the user of these parsers to handle
9501dc6e
AD
1083portability issues. For instance, if using Autoconf and the Autoconf
1084macro @code{AC_C_INLINE}, a mere
1085
1086@example
1087%@{
38a92d50 1088 #include <config.h>
9501dc6e
AD
1089%@}
1090@end example
1091
1092@noindent
1093will suffice. Otherwise, we suggest
1094
1095@example
1096%@{
38a92d50
PE
1097 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1098 #define inline
1099 #endif
9501dc6e
AD
1100%@}
1101@end example
676385e2 1102
342b8b6e 1103@node Locations Overview
847bf1f5
AD
1104@section Locations
1105@cindex location
95923bd6
AD
1106@cindex textual location
1107@cindex location, textual
847bf1f5
AD
1108
1109Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1110and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1111the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1112Bison provides a mechanism for handling these locations.
1113
72d2299c 1114Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1115associated location, but the type of locations is the same for all tokens and
72d2299c 1116groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1117structure for storing locations (@pxref{Locations}, for more details).
1118
1119Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1120set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1121is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1122@code{@@3}.
1123
1124When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1125of its left hand side (@pxref{Actions}). In the same way, another default
1126action is used for locations. However, the action for locations is general
847bf1f5 1127enough for most cases, meaning there is usually no need to describe for each
72d2299c 1128rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1129grouping, the default behavior of the output parser is to take the beginning
1130of the first symbol, and the end of the last symbol.
1131
342b8b6e 1132@node Bison Parser
bfa74976
RS
1133@section Bison Output: the Parser File
1134@cindex Bison parser
1135@cindex Bison utility
1136@cindex lexical analyzer, purpose
1137@cindex parser
1138
1139When you run Bison, you give it a Bison grammar file as input. The output
1140is a C source file that parses the language described by the grammar.
1141This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1142utility and the Bison parser are two distinct programs: the Bison utility
1143is a program whose output is the Bison parser that becomes part of your
1144program.
1145
1146The job of the Bison parser is to group tokens into groupings according to
1147the grammar rules---for example, to build identifiers and operators into
1148expressions. As it does this, it runs the actions for the grammar rules it
1149uses.
1150
704a47c4
AD
1151The tokens come from a function called the @dfn{lexical analyzer} that
1152you must supply in some fashion (such as by writing it in C). The Bison
1153parser calls the lexical analyzer each time it wants a new token. It
1154doesn't know what is ``inside'' the tokens (though their semantic values
1155may reflect this). Typically the lexical analyzer makes the tokens by
1156parsing characters of text, but Bison does not depend on this.
1157@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1158
1159The Bison parser file is C code which defines a function named
1160@code{yyparse} which implements that grammar. This function does not make
1161a complete C program: you must supply some additional functions. One is
1162the lexical analyzer. Another is an error-reporting function which the
1163parser calls to report an error. In addition, a complete C program must
1164start with a function called @code{main}; you have to provide this, and
1165arrange for it to call @code{yyparse} or the parser will never run.
1166@xref{Interface, ,Parser C-Language Interface}.
1167
1168Aside from the token type names and the symbols in the actions you
7093d0f5 1169write, all symbols defined in the Bison parser file itself
bfa74976
RS
1170begin with @samp{yy} or @samp{YY}. This includes interface functions
1171such as the lexical analyzer function @code{yylex}, the error reporting
1172function @code{yyerror} and the parser function @code{yyparse} itself.
1173This also includes numerous identifiers used for internal purposes.
1174Therefore, you should avoid using C identifiers starting with @samp{yy}
1175or @samp{YY} in the Bison grammar file except for the ones defined in
1176this manual.
1177
7093d0f5
AD
1178In some cases the Bison parser file includes system headers, and in
1179those cases your code should respect the identifiers reserved by those
c827f760 1180headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 1181@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
ec3bc396
AD
1182declare memory allocators and related types. Other system headers may
1183be included if you define @code{YYDEBUG} to a nonzero value
1184(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1185
342b8b6e 1186@node Stages
bfa74976
RS
1187@section Stages in Using Bison
1188@cindex stages in using Bison
1189@cindex using Bison
1190
1191The actual language-design process using Bison, from grammar specification
1192to a working compiler or interpreter, has these parts:
1193
1194@enumerate
1195@item
1196Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1197(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1198in the language, describe the action that is to be taken when an
1199instance of that rule is recognized. The action is described by a
1200sequence of C statements.
bfa74976
RS
1201
1202@item
704a47c4
AD
1203Write a lexical analyzer to process input and pass tokens to the parser.
1204The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1205Lexical Analyzer Function @code{yylex}}). It could also be produced
1206using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1207
1208@item
1209Write a controlling function that calls the Bison-produced parser.
1210
1211@item
1212Write error-reporting routines.
1213@end enumerate
1214
1215To turn this source code as written into a runnable program, you
1216must follow these steps:
1217
1218@enumerate
1219@item
1220Run Bison on the grammar to produce the parser.
1221
1222@item
1223Compile the code output by Bison, as well as any other source files.
1224
1225@item
1226Link the object files to produce the finished product.
1227@end enumerate
1228
342b8b6e 1229@node Grammar Layout
bfa74976
RS
1230@section The Overall Layout of a Bison Grammar
1231@cindex grammar file
1232@cindex file format
1233@cindex format of grammar file
1234@cindex layout of Bison grammar
1235
1236The input file for the Bison utility is a @dfn{Bison grammar file}. The
1237general form of a Bison grammar file is as follows:
1238
1239@example
1240%@{
08e49d20 1241@var{Prologue}
bfa74976
RS
1242%@}
1243
1244@var{Bison declarations}
1245
1246%%
1247@var{Grammar rules}
1248%%
08e49d20 1249@var{Epilogue}
bfa74976
RS
1250@end example
1251
1252@noindent
1253The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1254in every Bison grammar file to separate the sections.
1255
72d2299c 1256The prologue may define types and variables used in the actions. You can
342b8b6e 1257also use preprocessor commands to define macros used there, and use
bfa74976 1258@code{#include} to include header files that do any of these things.
38a92d50
PE
1259You need to declare the lexical analyzer @code{yylex} and the error
1260printer @code{yyerror} here, along with any other global identifiers
1261used by the actions in the grammar rules.
bfa74976
RS
1262
1263The Bison declarations declare the names of the terminal and nonterminal
1264symbols, and may also describe operator precedence and the data types of
1265semantic values of various symbols.
1266
1267The grammar rules define how to construct each nonterminal symbol from its
1268parts.
1269
38a92d50
PE
1270The epilogue can contain any code you want to use. Often the
1271definitions of functions declared in the prologue go here. In a
1272simple program, all the rest of the program can go here.
bfa74976 1273
342b8b6e 1274@node Examples
bfa74976
RS
1275@chapter Examples
1276@cindex simple examples
1277@cindex examples, simple
1278
1279Now we show and explain three sample programs written using Bison: a
1280reverse polish notation calculator, an algebraic (infix) notation
1281calculator, and a multi-function calculator. All three have been tested
1282under BSD Unix 4.3; each produces a usable, though limited, interactive
1283desk-top calculator.
1284
1285These examples are simple, but Bison grammars for real programming
1286languages are written the same way.
1287@ifinfo
1288You can copy these examples out of the Info file and into a source file
1289to try them.
1290@end ifinfo
1291
1292@menu
1293* RPN Calc:: Reverse polish notation calculator;
1294 a first example with no operator precedence.
1295* Infix Calc:: Infix (algebraic) notation calculator.
1296 Operator precedence is introduced.
1297* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1298* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1299* Multi-function Calc:: Calculator with memory and trig functions.
1300 It uses multiple data-types for semantic values.
1301* Exercises:: Ideas for improving the multi-function calculator.
1302@end menu
1303
342b8b6e 1304@node RPN Calc
bfa74976
RS
1305@section Reverse Polish Notation Calculator
1306@cindex reverse polish notation
1307@cindex polish notation calculator
1308@cindex @code{rpcalc}
1309@cindex calculator, simple
1310
1311The first example is that of a simple double-precision @dfn{reverse polish
1312notation} calculator (a calculator using postfix operators). This example
1313provides a good starting point, since operator precedence is not an issue.
1314The second example will illustrate how operator precedence is handled.
1315
1316The source code for this calculator is named @file{rpcalc.y}. The
1317@samp{.y} extension is a convention used for Bison input files.
1318
1319@menu
75f5aaea 1320* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1321* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1322* Lexer: Rpcalc Lexer. The lexical analyzer.
1323* Main: Rpcalc Main. The controlling function.
1324* Error: Rpcalc Error. The error reporting function.
1325* Gen: Rpcalc Gen. Running Bison on the grammar file.
1326* Comp: Rpcalc Compile. Run the C compiler on the output code.
1327@end menu
1328
342b8b6e 1329@node Rpcalc Decls
bfa74976
RS
1330@subsection Declarations for @code{rpcalc}
1331
1332Here are the C and Bison declarations for the reverse polish notation
1333calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1334
1335@example
72d2299c 1336/* Reverse polish notation calculator. */
bfa74976
RS
1337
1338%@{
38a92d50
PE
1339 #define YYSTYPE double
1340 #include <math.h>
1341 int yylex (void);
1342 void yyerror (char const *);
bfa74976
RS
1343%@}
1344
1345%token NUM
1346
72d2299c 1347%% /* Grammar rules and actions follow. */
bfa74976
RS
1348@end example
1349
75f5aaea 1350The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1351preprocessor directives and two forward declarations.
bfa74976
RS
1352
1353The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1354specifying the C data type for semantic values of both tokens and
1355groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1356Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1357don't define it, @code{int} is the default. Because we specify
1358@code{double}, each token and each expression has an associated value,
1359which is a floating point number.
bfa74976
RS
1360
1361The @code{#include} directive is used to declare the exponentiation
1362function @code{pow}.
1363
38a92d50
PE
1364The forward declarations for @code{yylex} and @code{yyerror} are
1365needed because the C language requires that functions be declared
1366before they are used. These functions will be defined in the
1367epilogue, but the parser calls them so they must be declared in the
1368prologue.
1369
704a47c4
AD
1370The second section, Bison declarations, provides information to Bison
1371about the token types (@pxref{Bison Declarations, ,The Bison
1372Declarations Section}). Each terminal symbol that is not a
1373single-character literal must be declared here. (Single-character
bfa74976
RS
1374literals normally don't need to be declared.) In this example, all the
1375arithmetic operators are designated by single-character literals, so the
1376only terminal symbol that needs to be declared is @code{NUM}, the token
1377type for numeric constants.
1378
342b8b6e 1379@node Rpcalc Rules
bfa74976
RS
1380@subsection Grammar Rules for @code{rpcalc}
1381
1382Here are the grammar rules for the reverse polish notation calculator.
1383
1384@example
1385input: /* empty */
1386 | input line
1387;
1388
1389line: '\n'
18b519c0 1390 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1391;
1392
18b519c0
AD
1393exp: NUM @{ $$ = $1; @}
1394 | exp exp '+' @{ $$ = $1 + $2; @}
1395 | exp exp '-' @{ $$ = $1 - $2; @}
1396 | exp exp '*' @{ $$ = $1 * $2; @}
1397 | exp exp '/' @{ $$ = $1 / $2; @}
1398 /* Exponentiation */
1399 | exp exp '^' @{ $$ = pow ($1, $2); @}
1400 /* Unary minus */
1401 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1402;
1403%%
1404@end example
1405
1406The groupings of the rpcalc ``language'' defined here are the expression
1407(given the name @code{exp}), the line of input (@code{line}), and the
1408complete input transcript (@code{input}). Each of these nonterminal
1409symbols has several alternate rules, joined by the @samp{|} punctuator
1410which is read as ``or''. The following sections explain what these rules
1411mean.
1412
1413The semantics of the language is determined by the actions taken when a
1414grouping is recognized. The actions are the C code that appears inside
1415braces. @xref{Actions}.
1416
1417You must specify these actions in C, but Bison provides the means for
1418passing semantic values between the rules. In each action, the
1419pseudo-variable @code{$$} stands for the semantic value for the grouping
1420that the rule is going to construct. Assigning a value to @code{$$} is the
1421main job of most actions. The semantic values of the components of the
1422rule are referred to as @code{$1}, @code{$2}, and so on.
1423
1424@menu
13863333
AD
1425* Rpcalc Input::
1426* Rpcalc Line::
1427* Rpcalc Expr::
bfa74976
RS
1428@end menu
1429
342b8b6e 1430@node Rpcalc Input
bfa74976
RS
1431@subsubsection Explanation of @code{input}
1432
1433Consider the definition of @code{input}:
1434
1435@example
1436input: /* empty */
1437 | input line
1438;
1439@end example
1440
1441This definition reads as follows: ``A complete input is either an empty
1442string, or a complete input followed by an input line''. Notice that
1443``complete input'' is defined in terms of itself. This definition is said
1444to be @dfn{left recursive} since @code{input} appears always as the
1445leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1446
1447The first alternative is empty because there are no symbols between the
1448colon and the first @samp{|}; this means that @code{input} can match an
1449empty string of input (no tokens). We write the rules this way because it
1450is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1451It's conventional to put an empty alternative first and write the comment
1452@samp{/* empty */} in it.
1453
1454The second alternate rule (@code{input line}) handles all nontrivial input.
1455It means, ``After reading any number of lines, read one more line if
1456possible.'' The left recursion makes this rule into a loop. Since the
1457first alternative matches empty input, the loop can be executed zero or
1458more times.
1459
1460The parser function @code{yyparse} continues to process input until a
1461grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1462input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1463
342b8b6e 1464@node Rpcalc Line
bfa74976
RS
1465@subsubsection Explanation of @code{line}
1466
1467Now consider the definition of @code{line}:
1468
1469@example
1470line: '\n'
1471 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1472;
1473@end example
1474
1475The first alternative is a token which is a newline character; this means
1476that rpcalc accepts a blank line (and ignores it, since there is no
1477action). The second alternative is an expression followed by a newline.
1478This is the alternative that makes rpcalc useful. The semantic value of
1479the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1480question is the first symbol in the alternative. The action prints this
1481value, which is the result of the computation the user asked for.
1482
1483This action is unusual because it does not assign a value to @code{$$}. As
1484a consequence, the semantic value associated with the @code{line} is
1485uninitialized (its value will be unpredictable). This would be a bug if
1486that value were ever used, but we don't use it: once rpcalc has printed the
1487value of the user's input line, that value is no longer needed.
1488
342b8b6e 1489@node Rpcalc Expr
bfa74976
RS
1490@subsubsection Explanation of @code{expr}
1491
1492The @code{exp} grouping has several rules, one for each kind of expression.
1493The first rule handles the simplest expressions: those that are just numbers.
1494The second handles an addition-expression, which looks like two expressions
1495followed by a plus-sign. The third handles subtraction, and so on.
1496
1497@example
1498exp: NUM
1499 | exp exp '+' @{ $$ = $1 + $2; @}
1500 | exp exp '-' @{ $$ = $1 - $2; @}
1501 @dots{}
1502 ;
1503@end example
1504
1505We have used @samp{|} to join all the rules for @code{exp}, but we could
1506equally well have written them separately:
1507
1508@example
1509exp: NUM ;
1510exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1511exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1512 @dots{}
1513@end example
1514
1515Most of the rules have actions that compute the value of the expression in
1516terms of the value of its parts. For example, in the rule for addition,
1517@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1518the second one. The third component, @code{'+'}, has no meaningful
1519associated semantic value, but if it had one you could refer to it as
1520@code{$3}. When @code{yyparse} recognizes a sum expression using this
1521rule, the sum of the two subexpressions' values is produced as the value of
1522the entire expression. @xref{Actions}.
1523
1524You don't have to give an action for every rule. When a rule has no
1525action, Bison by default copies the value of @code{$1} into @code{$$}.
1526This is what happens in the first rule (the one that uses @code{NUM}).
1527
1528The formatting shown here is the recommended convention, but Bison does
72d2299c 1529not require it. You can add or change white space as much as you wish.
bfa74976
RS
1530For example, this:
1531
1532@example
99a9344e 1533exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1534@end example
1535
1536@noindent
1537means the same thing as this:
1538
1539@example
1540exp: NUM
1541 | exp exp '+' @{ $$ = $1 + $2; @}
1542 | @dots{}
99a9344e 1543;
bfa74976
RS
1544@end example
1545
1546@noindent
1547The latter, however, is much more readable.
1548
342b8b6e 1549@node Rpcalc Lexer
bfa74976
RS
1550@subsection The @code{rpcalc} Lexical Analyzer
1551@cindex writing a lexical analyzer
1552@cindex lexical analyzer, writing
1553
704a47c4
AD
1554The lexical analyzer's job is low-level parsing: converting characters
1555or sequences of characters into tokens. The Bison parser gets its
1556tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1557Analyzer Function @code{yylex}}.
bfa74976 1558
c827f760
PE
1559Only a simple lexical analyzer is needed for the @acronym{RPN}
1560calculator. This
bfa74976
RS
1561lexical analyzer skips blanks and tabs, then reads in numbers as
1562@code{double} and returns them as @code{NUM} tokens. Any other character
1563that isn't part of a number is a separate token. Note that the token-code
1564for such a single-character token is the character itself.
1565
1566The return value of the lexical analyzer function is a numeric code which
1567represents a token type. The same text used in Bison rules to stand for
1568this token type is also a C expression for the numeric code for the type.
1569This works in two ways. If the token type is a character literal, then its
e966383b 1570numeric code is that of the character; you can use the same
bfa74976
RS
1571character literal in the lexical analyzer to express the number. If the
1572token type is an identifier, that identifier is defined by Bison as a C
1573macro whose definition is the appropriate number. In this example,
1574therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1575
1964ad8c
AD
1576The semantic value of the token (if it has one) is stored into the
1577global variable @code{yylval}, which is where the Bison parser will look
1578for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1579defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1580,Declarations for @code{rpcalc}}.)
bfa74976 1581
72d2299c
PE
1582A token type code of zero is returned if the end-of-input is encountered.
1583(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1584
1585Here is the code for the lexical analyzer:
1586
1587@example
1588@group
72d2299c 1589/* The lexical analyzer returns a double floating point
e966383b 1590 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1591 of the character read if not a number. It skips all blanks
1592 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1593
1594#include <ctype.h>
1595@end group
1596
1597@group
13863333
AD
1598int
1599yylex (void)
bfa74976
RS
1600@{
1601 int c;
1602
72d2299c 1603 /* Skip white space. */
13863333 1604 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1605 ;
1606@end group
1607@group
72d2299c 1608 /* Process numbers. */
13863333 1609 if (c == '.' || isdigit (c))
bfa74976
RS
1610 @{
1611 ungetc (c, stdin);
1612 scanf ("%lf", &yylval);
1613 return NUM;
1614 @}
1615@end group
1616@group
72d2299c 1617 /* Return end-of-input. */
13863333 1618 if (c == EOF)
bfa74976 1619 return 0;
72d2299c 1620 /* Return a single char. */
13863333 1621 return c;
bfa74976
RS
1622@}
1623@end group
1624@end example
1625
342b8b6e 1626@node Rpcalc Main
bfa74976
RS
1627@subsection The Controlling Function
1628@cindex controlling function
1629@cindex main function in simple example
1630
1631In keeping with the spirit of this example, the controlling function is
1632kept to the bare minimum. The only requirement is that it call
1633@code{yyparse} to start the process of parsing.
1634
1635@example
1636@group
13863333
AD
1637int
1638main (void)
bfa74976 1639@{
13863333 1640 return yyparse ();
bfa74976
RS
1641@}
1642@end group
1643@end example
1644
342b8b6e 1645@node Rpcalc Error
bfa74976
RS
1646@subsection The Error Reporting Routine
1647@cindex error reporting routine
1648
1649When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1650function @code{yyerror} to print an error message (usually but not
6e649e65 1651always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1652@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1653here is the definition we will use:
bfa74976
RS
1654
1655@example
1656@group
1657#include <stdio.h>
1658
38a92d50 1659/* Called by yyparse on error. */
13863333 1660void
38a92d50 1661yyerror (char const *s)
bfa74976 1662@{
4e03e201 1663 fprintf (stderr, "%s\n", s);
bfa74976
RS
1664@}
1665@end group
1666@end example
1667
1668After @code{yyerror} returns, the Bison parser may recover from the error
1669and continue parsing if the grammar contains a suitable error rule
1670(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1671have not written any error rules in this example, so any invalid input will
1672cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1673real calculator, but it is adequate for the first example.
bfa74976 1674
342b8b6e 1675@node Rpcalc Gen
bfa74976
RS
1676@subsection Running Bison to Make the Parser
1677@cindex running Bison (introduction)
1678
ceed8467
AD
1679Before running Bison to produce a parser, we need to decide how to
1680arrange all the source code in one or more source files. For such a
1681simple example, the easiest thing is to put everything in one file. The
1682definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1683end, in the epilogue of the file
75f5aaea 1684(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1685
1686For a large project, you would probably have several source files, and use
1687@code{make} to arrange to recompile them.
1688
1689With all the source in a single file, you use the following command to
1690convert it into a parser file:
1691
1692@example
1693bison @var{file_name}.y
1694@end example
1695
1696@noindent
1697In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1698@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1699removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1700Bison contains the source code for @code{yyparse}. The additional
1701functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1702are copied verbatim to the output.
1703
342b8b6e 1704@node Rpcalc Compile
bfa74976
RS
1705@subsection Compiling the Parser File
1706@cindex compiling the parser
1707
1708Here is how to compile and run the parser file:
1709
1710@example
1711@group
1712# @r{List files in current directory.}
9edcd895 1713$ @kbd{ls}
bfa74976
RS
1714rpcalc.tab.c rpcalc.y
1715@end group
1716
1717@group
1718# @r{Compile the Bison parser.}
1719# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1720$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1721@end group
1722
1723@group
1724# @r{List files again.}
9edcd895 1725$ @kbd{ls}
bfa74976
RS
1726rpcalc rpcalc.tab.c rpcalc.y
1727@end group
1728@end example
1729
1730The file @file{rpcalc} now contains the executable code. Here is an
1731example session using @code{rpcalc}.
1732
1733@example
9edcd895
AD
1734$ @kbd{rpcalc}
1735@kbd{4 9 +}
bfa74976 173613
9edcd895 1737@kbd{3 7 + 3 4 5 *+-}
bfa74976 1738-13
9edcd895 1739@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 174013
9edcd895 1741@kbd{5 6 / 4 n +}
bfa74976 1742-3.166666667
9edcd895 1743@kbd{3 4 ^} @r{Exponentiation}
bfa74976 174481
9edcd895
AD
1745@kbd{^D} @r{End-of-file indicator}
1746$
bfa74976
RS
1747@end example
1748
342b8b6e 1749@node Infix Calc
bfa74976
RS
1750@section Infix Notation Calculator: @code{calc}
1751@cindex infix notation calculator
1752@cindex @code{calc}
1753@cindex calculator, infix notation
1754
1755We now modify rpcalc to handle infix operators instead of postfix. Infix
1756notation involves the concept of operator precedence and the need for
1757parentheses nested to arbitrary depth. Here is the Bison code for
1758@file{calc.y}, an infix desk-top calculator.
1759
1760@example
38a92d50 1761/* Infix notation calculator. */
bfa74976
RS
1762
1763%@{
38a92d50
PE
1764 #define YYSTYPE double
1765 #include <math.h>
1766 #include <stdio.h>
1767 int yylex (void);
1768 void yyerror (char const *);
bfa74976
RS
1769%@}
1770
38a92d50 1771/* Bison declarations. */
bfa74976
RS
1772%token NUM
1773%left '-' '+'
1774%left '*' '/'
1775%left NEG /* negation--unary minus */
38a92d50 1776%right '^' /* exponentiation */
bfa74976 1777
38a92d50
PE
1778%% /* The grammar follows. */
1779input: /* empty */
bfa74976
RS
1780 | input line
1781;
1782
1783line: '\n'
1784 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1785;
1786
1787exp: NUM @{ $$ = $1; @}
1788 | exp '+' exp @{ $$ = $1 + $3; @}
1789 | exp '-' exp @{ $$ = $1 - $3; @}
1790 | exp '*' exp @{ $$ = $1 * $3; @}
1791 | exp '/' exp @{ $$ = $1 / $3; @}
1792 | '-' exp %prec NEG @{ $$ = -$2; @}
1793 | exp '^' exp @{ $$ = pow ($1, $3); @}
1794 | '(' exp ')' @{ $$ = $2; @}
1795;
1796%%
1797@end example
1798
1799@noindent
ceed8467
AD
1800The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1801same as before.
bfa74976
RS
1802
1803There are two important new features shown in this code.
1804
1805In the second section (Bison declarations), @code{%left} declares token
1806types and says they are left-associative operators. The declarations
1807@code{%left} and @code{%right} (right associativity) take the place of
1808@code{%token} which is used to declare a token type name without
1809associativity. (These tokens are single-character literals, which
1810ordinarily don't need to be declared. We declare them here to specify
1811the associativity.)
1812
1813Operator precedence is determined by the line ordering of the
1814declarations; the higher the line number of the declaration (lower on
1815the page or screen), the higher the precedence. Hence, exponentiation
1816has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1817by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1818Precedence}.
bfa74976 1819
704a47c4
AD
1820The other important new feature is the @code{%prec} in the grammar
1821section for the unary minus operator. The @code{%prec} simply instructs
1822Bison that the rule @samp{| '-' exp} has the same precedence as
1823@code{NEG}---in this case the next-to-highest. @xref{Contextual
1824Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1825
1826Here is a sample run of @file{calc.y}:
1827
1828@need 500
1829@example
9edcd895
AD
1830$ @kbd{calc}
1831@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18326.880952381
9edcd895 1833@kbd{-56 + 2}
bfa74976 1834-54
9edcd895 1835@kbd{3 ^ 2}
bfa74976
RS
18369
1837@end example
1838
342b8b6e 1839@node Simple Error Recovery
bfa74976
RS
1840@section Simple Error Recovery
1841@cindex error recovery, simple
1842
1843Up to this point, this manual has not addressed the issue of @dfn{error
1844recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1845error. All we have handled is error reporting with @code{yyerror}.
1846Recall that by default @code{yyparse} returns after calling
1847@code{yyerror}. This means that an erroneous input line causes the
1848calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1849
1850The Bison language itself includes the reserved word @code{error}, which
1851may be included in the grammar rules. In the example below it has
1852been added to one of the alternatives for @code{line}:
1853
1854@example
1855@group
1856line: '\n'
1857 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1858 | error '\n' @{ yyerrok; @}
1859;
1860@end group
1861@end example
1862
ceed8467 1863This addition to the grammar allows for simple error recovery in the
6e649e65 1864event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1865read, the error will be recognized by the third rule for @code{line},
1866and parsing will continue. (The @code{yyerror} function is still called
1867upon to print its message as well.) The action executes the statement
1868@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1869that error recovery is complete (@pxref{Error Recovery}). Note the
1870difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1871misprint.
bfa74976
RS
1872
1873This form of error recovery deals with syntax errors. There are other
1874kinds of errors; for example, division by zero, which raises an exception
1875signal that is normally fatal. A real calculator program must handle this
1876signal and use @code{longjmp} to return to @code{main} and resume parsing
1877input lines; it would also have to discard the rest of the current line of
1878input. We won't discuss this issue further because it is not specific to
1879Bison programs.
1880
342b8b6e
AD
1881@node Location Tracking Calc
1882@section Location Tracking Calculator: @code{ltcalc}
1883@cindex location tracking calculator
1884@cindex @code{ltcalc}
1885@cindex calculator, location tracking
1886
9edcd895
AD
1887This example extends the infix notation calculator with location
1888tracking. This feature will be used to improve the error messages. For
1889the sake of clarity, this example is a simple integer calculator, since
1890most of the work needed to use locations will be done in the lexical
72d2299c 1891analyzer.
342b8b6e
AD
1892
1893@menu
1894* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1895* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1896* Lexer: Ltcalc Lexer. The lexical analyzer.
1897@end menu
1898
1899@node Ltcalc Decls
1900@subsection Declarations for @code{ltcalc}
1901
9edcd895
AD
1902The C and Bison declarations for the location tracking calculator are
1903the same as the declarations for the infix notation calculator.
342b8b6e
AD
1904
1905@example
1906/* Location tracking calculator. */
1907
1908%@{
38a92d50
PE
1909 #define YYSTYPE int
1910 #include <math.h>
1911 int yylex (void);
1912 void yyerror (char const *);
342b8b6e
AD
1913%@}
1914
1915/* Bison declarations. */
1916%token NUM
1917
1918%left '-' '+'
1919%left '*' '/'
1920%left NEG
1921%right '^'
1922
38a92d50 1923%% /* The grammar follows. */
342b8b6e
AD
1924@end example
1925
9edcd895
AD
1926@noindent
1927Note there are no declarations specific to locations. Defining a data
1928type for storing locations is not needed: we will use the type provided
1929by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1930four member structure with the following integer fields:
1931@code{first_line}, @code{first_column}, @code{last_line} and
1932@code{last_column}.
342b8b6e
AD
1933
1934@node Ltcalc Rules
1935@subsection Grammar Rules for @code{ltcalc}
1936
9edcd895
AD
1937Whether handling locations or not has no effect on the syntax of your
1938language. Therefore, grammar rules for this example will be very close
1939to those of the previous example: we will only modify them to benefit
1940from the new information.
342b8b6e 1941
9edcd895
AD
1942Here, we will use locations to report divisions by zero, and locate the
1943wrong expressions or subexpressions.
342b8b6e
AD
1944
1945@example
1946@group
1947input : /* empty */
1948 | input line
1949;
1950@end group
1951
1952@group
1953line : '\n'
1954 | exp '\n' @{ printf ("%d\n", $1); @}
1955;
1956@end group
1957
1958@group
1959exp : NUM @{ $$ = $1; @}
1960 | exp '+' exp @{ $$ = $1 + $3; @}
1961 | exp '-' exp @{ $$ = $1 - $3; @}
1962 | exp '*' exp @{ $$ = $1 * $3; @}
1963@end group
342b8b6e 1964@group
9edcd895 1965 | exp '/' exp
342b8b6e
AD
1966 @{
1967 if ($3)
1968 $$ = $1 / $3;
1969 else
1970 @{
1971 $$ = 1;
9edcd895
AD
1972 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1973 @@3.first_line, @@3.first_column,
1974 @@3.last_line, @@3.last_column);
342b8b6e
AD
1975 @}
1976 @}
1977@end group
1978@group
1979 | '-' exp %preg NEG @{ $$ = -$2; @}
1980 | exp '^' exp @{ $$ = pow ($1, $3); @}
1981 | '(' exp ')' @{ $$ = $2; @}
1982@end group
1983@end example
1984
1985This code shows how to reach locations inside of semantic actions, by
1986using the pseudo-variables @code{@@@var{n}} for rule components, and the
1987pseudo-variable @code{@@$} for groupings.
1988
9edcd895
AD
1989We don't need to assign a value to @code{@@$}: the output parser does it
1990automatically. By default, before executing the C code of each action,
1991@code{@@$} is set to range from the beginning of @code{@@1} to the end
1992of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
1993can be redefined (@pxref{Location Default Action, , Default Action for
1994Locations}), and for very specific rules, @code{@@$} can be computed by
1995hand.
342b8b6e
AD
1996
1997@node Ltcalc Lexer
1998@subsection The @code{ltcalc} Lexical Analyzer.
1999
9edcd895 2000Until now, we relied on Bison's defaults to enable location
72d2299c 2001tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2002able to feed the parser with the token locations, as it already does for
2003semantic values.
342b8b6e 2004
9edcd895
AD
2005To this end, we must take into account every single character of the
2006input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2007
2008@example
2009@group
2010int
2011yylex (void)
2012@{
2013 int c;
18b519c0 2014@end group
342b8b6e 2015
18b519c0 2016@group
72d2299c 2017 /* Skip white space. */
342b8b6e
AD
2018 while ((c = getchar ()) == ' ' || c == '\t')
2019 ++yylloc.last_column;
18b519c0 2020@end group
342b8b6e 2021
18b519c0 2022@group
72d2299c 2023 /* Step. */
342b8b6e
AD
2024 yylloc.first_line = yylloc.last_line;
2025 yylloc.first_column = yylloc.last_column;
2026@end group
2027
2028@group
72d2299c 2029 /* Process numbers. */
342b8b6e
AD
2030 if (isdigit (c))
2031 @{
2032 yylval = c - '0';
2033 ++yylloc.last_column;
2034 while (isdigit (c = getchar ()))
2035 @{
2036 ++yylloc.last_column;
2037 yylval = yylval * 10 + c - '0';
2038 @}
2039 ungetc (c, stdin);
2040 return NUM;
2041 @}
2042@end group
2043
72d2299c 2044 /* Return end-of-input. */
342b8b6e
AD
2045 if (c == EOF)
2046 return 0;
2047
72d2299c 2048 /* Return a single char, and update location. */
342b8b6e
AD
2049 if (c == '\n')
2050 @{
2051 ++yylloc.last_line;
2052 yylloc.last_column = 0;
2053 @}
2054 else
2055 ++yylloc.last_column;
2056 return c;
2057@}
2058@end example
2059
9edcd895
AD
2060Basically, the lexical analyzer performs the same processing as before:
2061it skips blanks and tabs, and reads numbers or single-character tokens.
2062In addition, it updates @code{yylloc}, the global variable (of type
2063@code{YYLTYPE}) containing the token's location.
342b8b6e 2064
9edcd895 2065Now, each time this function returns a token, the parser has its number
72d2299c 2066as well as its semantic value, and its location in the text. The last
9edcd895
AD
2067needed change is to initialize @code{yylloc}, for example in the
2068controlling function:
342b8b6e
AD
2069
2070@example
9edcd895 2071@group
342b8b6e
AD
2072int
2073main (void)
2074@{
2075 yylloc.first_line = yylloc.last_line = 1;
2076 yylloc.first_column = yylloc.last_column = 0;
2077 return yyparse ();
2078@}
9edcd895 2079@end group
342b8b6e
AD
2080@end example
2081
9edcd895
AD
2082Remember that computing locations is not a matter of syntax. Every
2083character must be associated to a location update, whether it is in
2084valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2085
2086@node Multi-function Calc
bfa74976
RS
2087@section Multi-Function Calculator: @code{mfcalc}
2088@cindex multi-function calculator
2089@cindex @code{mfcalc}
2090@cindex calculator, multi-function
2091
2092Now that the basics of Bison have been discussed, it is time to move on to
2093a more advanced problem. The above calculators provided only five
2094functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2095be nice to have a calculator that provides other mathematical functions such
2096as @code{sin}, @code{cos}, etc.
2097
2098It is easy to add new operators to the infix calculator as long as they are
2099only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2100back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2101adding a new operator. But we want something more flexible: built-in
2102functions whose syntax has this form:
2103
2104@example
2105@var{function_name} (@var{argument})
2106@end example
2107
2108@noindent
2109At the same time, we will add memory to the calculator, by allowing you
2110to create named variables, store values in them, and use them later.
2111Here is a sample session with the multi-function calculator:
2112
2113@example
9edcd895
AD
2114$ @kbd{mfcalc}
2115@kbd{pi = 3.141592653589}
bfa74976 21163.1415926536
9edcd895 2117@kbd{sin(pi)}
bfa74976 21180.0000000000
9edcd895 2119@kbd{alpha = beta1 = 2.3}
bfa74976 21202.3000000000
9edcd895 2121@kbd{alpha}
bfa74976 21222.3000000000
9edcd895 2123@kbd{ln(alpha)}
bfa74976 21240.8329091229
9edcd895 2125@kbd{exp(ln(beta1))}
bfa74976 21262.3000000000
9edcd895 2127$
bfa74976
RS
2128@end example
2129
2130Note that multiple assignment and nested function calls are permitted.
2131
2132@menu
2133* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2134* Rules: Mfcalc Rules. Grammar rules for the calculator.
2135* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2136@end menu
2137
342b8b6e 2138@node Mfcalc Decl
bfa74976
RS
2139@subsection Declarations for @code{mfcalc}
2140
2141Here are the C and Bison declarations for the multi-function calculator.
2142
2143@smallexample
18b519c0 2144@group
bfa74976 2145%@{
38a92d50
PE
2146 #include <math.h> /* For math functions, cos(), sin(), etc. */
2147 #include "calc.h" /* Contains definition of `symrec'. */
2148 int yylex (void);
2149 void yyerror (char const *);
bfa74976 2150%@}
18b519c0
AD
2151@end group
2152@group
bfa74976 2153%union @{
38a92d50
PE
2154 double val; /* For returning numbers. */
2155 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2156@}
18b519c0 2157@end group
38a92d50
PE
2158%token <val> NUM /* Simple double precision number. */
2159%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2160%type <val> exp
2161
18b519c0 2162@group
bfa74976
RS
2163%right '='
2164%left '-' '+'
2165%left '*' '/'
38a92d50
PE
2166%left NEG /* negation--unary minus */
2167%right '^' /* exponentiation */
18b519c0 2168@end group
38a92d50 2169%% /* The grammar follows. */
bfa74976
RS
2170@end smallexample
2171
2172The above grammar introduces only two new features of the Bison language.
2173These features allow semantic values to have various data types
2174(@pxref{Multiple Types, ,More Than One Value Type}).
2175
2176The @code{%union} declaration specifies the entire list of possible types;
2177this is instead of defining @code{YYSTYPE}. The allowable types are now
2178double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2179the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2180
2181Since values can now have various types, it is necessary to associate a
2182type with each grammar symbol whose semantic value is used. These symbols
2183are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2184declarations are augmented with information about their data type (placed
2185between angle brackets).
2186
704a47c4
AD
2187The Bison construct @code{%type} is used for declaring nonterminal
2188symbols, just as @code{%token} is used for declaring token types. We
2189have not used @code{%type} before because nonterminal symbols are
2190normally declared implicitly by the rules that define them. But
2191@code{exp} must be declared explicitly so we can specify its value type.
2192@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2193
342b8b6e 2194@node Mfcalc Rules
bfa74976
RS
2195@subsection Grammar Rules for @code{mfcalc}
2196
2197Here are the grammar rules for the multi-function calculator.
2198Most of them are copied directly from @code{calc}; three rules,
2199those which mention @code{VAR} or @code{FNCT}, are new.
2200
2201@smallexample
18b519c0 2202@group
bfa74976
RS
2203input: /* empty */
2204 | input line
2205;
18b519c0 2206@end group
bfa74976 2207
18b519c0 2208@group
bfa74976
RS
2209line:
2210 '\n'
2211 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2212 | error '\n' @{ yyerrok; @}
2213;
18b519c0 2214@end group
bfa74976 2215
18b519c0 2216@group
bfa74976
RS
2217exp: NUM @{ $$ = $1; @}
2218 | VAR @{ $$ = $1->value.var; @}
2219 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2220 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2221 | exp '+' exp @{ $$ = $1 + $3; @}
2222 | exp '-' exp @{ $$ = $1 - $3; @}
2223 | exp '*' exp @{ $$ = $1 * $3; @}
2224 | exp '/' exp @{ $$ = $1 / $3; @}
2225 | '-' exp %prec NEG @{ $$ = -$2; @}
2226 | exp '^' exp @{ $$ = pow ($1, $3); @}
2227 | '(' exp ')' @{ $$ = $2; @}
2228;
18b519c0 2229@end group
38a92d50 2230/* End of grammar. */
bfa74976
RS
2231%%
2232@end smallexample
2233
342b8b6e 2234@node Mfcalc Symtab
bfa74976
RS
2235@subsection The @code{mfcalc} Symbol Table
2236@cindex symbol table example
2237
2238The multi-function calculator requires a symbol table to keep track of the
2239names and meanings of variables and functions. This doesn't affect the
2240grammar rules (except for the actions) or the Bison declarations, but it
2241requires some additional C functions for support.
2242
2243The symbol table itself consists of a linked list of records. Its
2244definition, which is kept in the header @file{calc.h}, is as follows. It
2245provides for either functions or variables to be placed in the table.
2246
2247@smallexample
2248@group
38a92d50 2249/* Function type. */
32dfccf8 2250typedef double (*func_t) (double);
72f889cc 2251@end group
32dfccf8 2252
72f889cc 2253@group
38a92d50 2254/* Data type for links in the chain of symbols. */
bfa74976
RS
2255struct symrec
2256@{
38a92d50 2257 char *name; /* name of symbol */
bfa74976 2258 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2259 union
2260 @{
38a92d50
PE
2261 double var; /* value of a VAR */
2262 func_t fnctptr; /* value of a FNCT */
bfa74976 2263 @} value;
38a92d50 2264 struct symrec *next; /* link field */
bfa74976
RS
2265@};
2266@end group
2267
2268@group
2269typedef struct symrec symrec;
2270
38a92d50 2271/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2272extern symrec *sym_table;
2273
38a92d50
PE
2274symrec *putsym (char const *, func_t);
2275symrec *getsym (char const *);
bfa74976
RS
2276@end group
2277@end smallexample
2278
2279The new version of @code{main} includes a call to @code{init_table}, a
2280function that initializes the symbol table. Here it is, and
2281@code{init_table} as well:
2282
2283@smallexample
bfa74976
RS
2284#include <stdio.h>
2285
18b519c0 2286@group
38a92d50 2287/* Called by yyparse on error. */
13863333 2288void
38a92d50 2289yyerror (char const *s)
bfa74976
RS
2290@{
2291 printf ("%s\n", s);
2292@}
18b519c0 2293@end group
bfa74976 2294
18b519c0 2295@group
bfa74976
RS
2296struct init
2297@{
38a92d50
PE
2298 char const *fname;
2299 double (*fnct) (double);
bfa74976
RS
2300@};
2301@end group
2302
2303@group
38a92d50 2304struct init const arith_fncts[] =
13863333 2305@{
32dfccf8
AD
2306 "sin", sin,
2307 "cos", cos,
13863333 2308 "atan", atan,
32dfccf8
AD
2309 "ln", log,
2310 "exp", exp,
13863333
AD
2311 "sqrt", sqrt,
2312 0, 0
2313@};
18b519c0 2314@end group
bfa74976 2315
18b519c0 2316@group
bfa74976 2317/* The symbol table: a chain of `struct symrec'. */
38a92d50 2318symrec *sym_table;
bfa74976
RS
2319@end group
2320
2321@group
72d2299c 2322/* Put arithmetic functions in table. */
13863333
AD
2323void
2324init_table (void)
bfa74976
RS
2325@{
2326 int i;
2327 symrec *ptr;
2328 for (i = 0; arith_fncts[i].fname != 0; i++)
2329 @{
2330 ptr = putsym (arith_fncts[i].fname, FNCT);
2331 ptr->value.fnctptr = arith_fncts[i].fnct;
2332 @}
2333@}
2334@end group
38a92d50
PE
2335
2336@group
2337int
2338main (void)
2339@{
2340 init_table ();
2341 return yyparse ();
2342@}
2343@end group
bfa74976
RS
2344@end smallexample
2345
2346By simply editing the initialization list and adding the necessary include
2347files, you can add additional functions to the calculator.
2348
2349Two important functions allow look-up and installation of symbols in the
2350symbol table. The function @code{putsym} is passed a name and the type
2351(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2352linked to the front of the list, and a pointer to the object is returned.
2353The function @code{getsym} is passed the name of the symbol to look up. If
2354found, a pointer to that symbol is returned; otherwise zero is returned.
2355
2356@smallexample
2357symrec *
38a92d50 2358putsym (char const *sym_name, int sym_type)
bfa74976
RS
2359@{
2360 symrec *ptr;
2361 ptr = (symrec *) malloc (sizeof (symrec));
2362 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2363 strcpy (ptr->name,sym_name);
2364 ptr->type = sym_type;
72d2299c 2365 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2366 ptr->next = (struct symrec *)sym_table;
2367 sym_table = ptr;
2368 return ptr;
2369@}
2370
2371symrec *
38a92d50 2372getsym (char const *sym_name)
bfa74976
RS
2373@{
2374 symrec *ptr;
2375 for (ptr = sym_table; ptr != (symrec *) 0;
2376 ptr = (symrec *)ptr->next)
2377 if (strcmp (ptr->name,sym_name) == 0)
2378 return ptr;
2379 return 0;
2380@}
2381@end smallexample
2382
2383The function @code{yylex} must now recognize variables, numeric values, and
2384the single-character arithmetic operators. Strings of alphanumeric
14ded682 2385characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2386functions depending on what the symbol table says about them.
2387
2388The string is passed to @code{getsym} for look up in the symbol table. If
2389the name appears in the table, a pointer to its location and its type
2390(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2391already in the table, then it is installed as a @code{VAR} using
2392@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2393returned to @code{yyparse}.
bfa74976
RS
2394
2395No change is needed in the handling of numeric values and arithmetic
2396operators in @code{yylex}.
2397
2398@smallexample
2399@group
2400#include <ctype.h>
18b519c0 2401@end group
13863333 2402
18b519c0 2403@group
13863333
AD
2404int
2405yylex (void)
bfa74976
RS
2406@{
2407 int c;
2408
72d2299c 2409 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2410 while ((c = getchar ()) == ' ' || c == '\t');
2411
2412 if (c == EOF)
2413 return 0;
2414@end group
2415
2416@group
2417 /* Char starts a number => parse the number. */
2418 if (c == '.' || isdigit (c))
2419 @{
2420 ungetc (c, stdin);
2421 scanf ("%lf", &yylval.val);
2422 return NUM;
2423 @}
2424@end group
2425
2426@group
2427 /* Char starts an identifier => read the name. */
2428 if (isalpha (c))
2429 @{
2430 symrec *s;
2431 static char *symbuf = 0;
2432 static int length = 0;
2433 int i;
2434@end group
2435
2436@group
2437 /* Initially make the buffer long enough
2438 for a 40-character symbol name. */
2439 if (length == 0)
2440 length = 40, symbuf = (char *)malloc (length + 1);
2441
2442 i = 0;
2443 do
2444@end group
2445@group
2446 @{
2447 /* If buffer is full, make it bigger. */
2448 if (i == length)
2449 @{
2450 length *= 2;
18b519c0 2451 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2452 @}
2453 /* Add this character to the buffer. */
2454 symbuf[i++] = c;
2455 /* Get another character. */
2456 c = getchar ();
2457 @}
2458@end group
2459@group
72d2299c 2460 while (isalnum (c));
bfa74976
RS
2461
2462 ungetc (c, stdin);
2463 symbuf[i] = '\0';
2464@end group
2465
2466@group
2467 s = getsym (symbuf);
2468 if (s == 0)
2469 s = putsym (symbuf, VAR);
2470 yylval.tptr = s;
2471 return s->type;
2472 @}
2473
2474 /* Any other character is a token by itself. */
2475 return c;
2476@}
2477@end group
2478@end smallexample
2479
72d2299c 2480This program is both powerful and flexible. You may easily add new
704a47c4
AD
2481functions, and it is a simple job to modify this code to install
2482predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2483
342b8b6e 2484@node Exercises
bfa74976
RS
2485@section Exercises
2486@cindex exercises
2487
2488@enumerate
2489@item
2490Add some new functions from @file{math.h} to the initialization list.
2491
2492@item
2493Add another array that contains constants and their values. Then
2494modify @code{init_table} to add these constants to the symbol table.
2495It will be easiest to give the constants type @code{VAR}.
2496
2497@item
2498Make the program report an error if the user refers to an
2499uninitialized variable in any way except to store a value in it.
2500@end enumerate
2501
342b8b6e 2502@node Grammar File
bfa74976
RS
2503@chapter Bison Grammar Files
2504
2505Bison takes as input a context-free grammar specification and produces a
2506C-language function that recognizes correct instances of the grammar.
2507
2508The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2509@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2510
2511@menu
2512* Grammar Outline:: Overall layout of the grammar file.
2513* Symbols:: Terminal and nonterminal symbols.
2514* Rules:: How to write grammar rules.
2515* Recursion:: Writing recursive rules.
2516* Semantics:: Semantic values and actions.
847bf1f5 2517* Locations:: Locations and actions.
bfa74976
RS
2518* Declarations:: All kinds of Bison declarations are described here.
2519* Multiple Parsers:: Putting more than one Bison parser in one program.
2520@end menu
2521
342b8b6e 2522@node Grammar Outline
bfa74976
RS
2523@section Outline of a Bison Grammar
2524
2525A Bison grammar file has four main sections, shown here with the
2526appropriate delimiters:
2527
2528@example
2529%@{
38a92d50 2530 @var{Prologue}
bfa74976
RS
2531%@}
2532
2533@var{Bison declarations}
2534
2535%%
2536@var{Grammar rules}
2537%%
2538
75f5aaea 2539@var{Epilogue}
bfa74976
RS
2540@end example
2541
2542Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2543As a @acronym{GNU} extension, @samp{//} introduces a comment that
2544continues until end of line.
bfa74976
RS
2545
2546@menu
75f5aaea 2547* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2548* Bison Declarations:: Syntax and usage of the Bison declarations section.
2549* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2550* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2551@end menu
2552
38a92d50 2553@node Prologue
75f5aaea
MA
2554@subsection The prologue
2555@cindex declarations section
2556@cindex Prologue
2557@cindex declarations
bfa74976 2558
08e49d20 2559The @var{Prologue} section contains macro definitions and
bfa74976
RS
2560declarations of functions and variables that are used in the actions in the
2561grammar rules. These are copied to the beginning of the parser file so
2562that they precede the definition of @code{yyparse}. You can use
2563@samp{#include} to get the declarations from a header file. If you don't
2564need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2565delimiters that bracket this section.
2566
c732d2c6
AD
2567You may have more than one @var{Prologue} section, intermixed with the
2568@var{Bison declarations}. This allows you to have C and Bison
2569declarations that refer to each other. For example, the @code{%union}
2570declaration may use types defined in a header file, and you may wish to
2571prototype functions that take arguments of type @code{YYSTYPE}. This
2572can be done with two @var{Prologue} blocks, one before and one after the
2573@code{%union} declaration.
2574
2575@smallexample
2576%@{
38a92d50
PE
2577 #include <stdio.h>
2578 #include "ptypes.h"
c732d2c6
AD
2579%@}
2580
2581%union @{
779e7ceb 2582 long int n;
c732d2c6
AD
2583 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2584@}
2585
2586%@{
38a92d50
PE
2587 static void print_token_value (FILE *, int, YYSTYPE);
2588 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2589%@}
2590
2591@dots{}
2592@end smallexample
2593
342b8b6e 2594@node Bison Declarations
bfa74976
RS
2595@subsection The Bison Declarations Section
2596@cindex Bison declarations (introduction)
2597@cindex declarations, Bison (introduction)
2598
2599The @var{Bison declarations} section contains declarations that define
2600terminal and nonterminal symbols, specify precedence, and so on.
2601In some simple grammars you may not need any declarations.
2602@xref{Declarations, ,Bison Declarations}.
2603
342b8b6e 2604@node Grammar Rules
bfa74976
RS
2605@subsection The Grammar Rules Section
2606@cindex grammar rules section
2607@cindex rules section for grammar
2608
2609The @dfn{grammar rules} section contains one or more Bison grammar
2610rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2611
2612There must always be at least one grammar rule, and the first
2613@samp{%%} (which precedes the grammar rules) may never be omitted even
2614if it is the first thing in the file.
2615
38a92d50 2616@node Epilogue
75f5aaea 2617@subsection The epilogue
bfa74976 2618@cindex additional C code section
75f5aaea 2619@cindex epilogue
bfa74976
RS
2620@cindex C code, section for additional
2621
08e49d20
PE
2622The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2623the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2624place to put anything that you want to have in the parser file but which need
2625not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2626definitions of @code{yylex} and @code{yyerror} often go here. Because
2627C requires functions to be declared before being used, you often need
2628to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
2629even if you define them int he Epilogue.
75f5aaea 2630@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2631
2632If the last section is empty, you may omit the @samp{%%} that separates it
2633from the grammar rules.
2634
38a92d50
PE
2635The Bison parser itself contains many macros and identifiers whose
2636names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2637good idea to avoid using any such names (except those documented in this
75f5aaea 2638manual) in the epilogue of the grammar file.
bfa74976 2639
342b8b6e 2640@node Symbols
bfa74976
RS
2641@section Symbols, Terminal and Nonterminal
2642@cindex nonterminal symbol
2643@cindex terminal symbol
2644@cindex token type
2645@cindex symbol
2646
2647@dfn{Symbols} in Bison grammars represent the grammatical classifications
2648of the language.
2649
2650A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2651class of syntactically equivalent tokens. You use the symbol in grammar
2652rules to mean that a token in that class is allowed. The symbol is
2653represented in the Bison parser by a numeric code, and the @code{yylex}
2654function returns a token type code to indicate what kind of token has been
2655read. You don't need to know what the code value is; you can use the
2656symbol to stand for it.
2657
2658A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2659groupings. The symbol name is used in writing grammar rules. By convention,
2660it should be all lower case.
2661
2662Symbol names can contain letters, digits (not at the beginning),
2663underscores and periods. Periods make sense only in nonterminals.
2664
931c7513 2665There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2666
2667@itemize @bullet
2668@item
2669A @dfn{named token type} is written with an identifier, like an
c827f760 2670identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2671such name must be defined with a Bison declaration such as
2672@code{%token}. @xref{Token Decl, ,Token Type Names}.
2673
2674@item
2675@cindex character token
2676@cindex literal token
2677@cindex single-character literal
931c7513
RS
2678A @dfn{character token type} (or @dfn{literal character token}) is
2679written in the grammar using the same syntax used in C for character
2680constants; for example, @code{'+'} is a character token type. A
2681character token type doesn't need to be declared unless you need to
2682specify its semantic value data type (@pxref{Value Type, ,Data Types of
2683Semantic Values}), associativity, or precedence (@pxref{Precedence,
2684,Operator Precedence}).
bfa74976
RS
2685
2686By convention, a character token type is used only to represent a
2687token that consists of that particular character. Thus, the token
2688type @code{'+'} is used to represent the character @samp{+} as a
2689token. Nothing enforces this convention, but if you depart from it,
2690your program will confuse other readers.
2691
2692All the usual escape sequences used in character literals in C can be
2693used in Bison as well, but you must not use the null character as a
72d2299c
PE
2694character literal because its numeric code, zero, signifies
2695end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2696for @code{yylex}}). Also, unlike standard C, trigraphs have no
2697special meaning in Bison character literals, nor is backslash-newline
2698allowed.
931c7513
RS
2699
2700@item
2701@cindex string token
2702@cindex literal string token
9ecbd125 2703@cindex multicharacter literal
931c7513
RS
2704A @dfn{literal string token} is written like a C string constant; for
2705example, @code{"<="} is a literal string token. A literal string token
2706doesn't need to be declared unless you need to specify its semantic
14ded682 2707value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2708(@pxref{Precedence}).
2709
2710You can associate the literal string token with a symbolic name as an
2711alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2712Declarations}). If you don't do that, the lexical analyzer has to
2713retrieve the token number for the literal string token from the
2714@code{yytname} table (@pxref{Calling Convention}).
2715
c827f760 2716@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2717
2718By convention, a literal string token is used only to represent a token
2719that consists of that particular string. Thus, you should use the token
2720type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2721does not enforce this convention, but if you depart from it, people who
931c7513
RS
2722read your program will be confused.
2723
2724All the escape sequences used in string literals in C can be used in
92ac3705
PE
2725Bison as well, except that you must not use a null character within a
2726string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2727meaning in Bison string literals, nor is backslash-newline allowed. A
2728literal string token must contain two or more characters; for a token
2729containing just one character, use a character token (see above).
bfa74976
RS
2730@end itemize
2731
2732How you choose to write a terminal symbol has no effect on its
2733grammatical meaning. That depends only on where it appears in rules and
2734on when the parser function returns that symbol.
2735
72d2299c
PE
2736The value returned by @code{yylex} is always one of the terminal
2737symbols, except that a zero or negative value signifies end-of-input.
2738Whichever way you write the token type in the grammar rules, you write
2739it the same way in the definition of @code{yylex}. The numeric code
2740for a character token type is simply the positive numeric code of the
2741character, so @code{yylex} can use the identical value to generate the
2742requisite code, though you may need to convert it to @code{unsigned
2743char} to avoid sign-extension on hosts where @code{char} is signed.
2744Each named token type becomes a C macro in
bfa74976 2745the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2746(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2747@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2748
2749If @code{yylex} is defined in a separate file, you need to arrange for the
2750token-type macro definitions to be available there. Use the @samp{-d}
2751option when you run Bison, so that it will write these macro definitions
2752into a separate header file @file{@var{name}.tab.h} which you can include
2753in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2754
72d2299c
PE
2755If you want to write a grammar that is portable to any Standard C
2756host, you must use only non-null character tokens taken from the basic
c827f760 2757execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2758digits, the 52 lower- and upper-case English letters, and the
2759characters in the following C-language string:
2760
2761@example
2762"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2763@end example
2764
2765The @code{yylex} function and Bison must use a consistent character
2766set and encoding for character tokens. For example, if you run Bison in an
c827f760 2767@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2768in an environment that uses an incompatible character set like
c827f760
PE
2769@acronym{EBCDIC}, the resulting program may not work because the
2770tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2771character tokens. It is standard
e966383b 2772practice for software distributions to contain C source files that
c827f760
PE
2773were generated by Bison in an @acronym{ASCII} environment, so installers on
2774platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2775files before compiling them.
2776
bfa74976
RS
2777The symbol @code{error} is a terminal symbol reserved for error recovery
2778(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2779In particular, @code{yylex} should never return this value. The default
2780value of the error token is 256, unless you explicitly assigned 256 to
2781one of your tokens with a @code{%token} declaration.
bfa74976 2782
342b8b6e 2783@node Rules
bfa74976
RS
2784@section Syntax of Grammar Rules
2785@cindex rule syntax
2786@cindex grammar rule syntax
2787@cindex syntax of grammar rules
2788
2789A Bison grammar rule has the following general form:
2790
2791@example
e425e872 2792@group
bfa74976
RS
2793@var{result}: @var{components}@dots{}
2794 ;
e425e872 2795@end group
bfa74976
RS
2796@end example
2797
2798@noindent
9ecbd125 2799where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2800and @var{components} are various terminal and nonterminal symbols that
13863333 2801are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2802
2803For example,
2804
2805@example
2806@group
2807exp: exp '+' exp
2808 ;
2809@end group
2810@end example
2811
2812@noindent
2813says that two groupings of type @code{exp}, with a @samp{+} token in between,
2814can be combined into a larger grouping of type @code{exp}.
2815
72d2299c
PE
2816White space in rules is significant only to separate symbols. You can add
2817extra white space as you wish.
bfa74976
RS
2818
2819Scattered among the components can be @var{actions} that determine
2820the semantics of the rule. An action looks like this:
2821
2822@example
2823@{@var{C statements}@}
2824@end example
2825
2826@noindent
2827Usually there is only one action and it follows the components.
2828@xref{Actions}.
2829
2830@findex |
2831Multiple rules for the same @var{result} can be written separately or can
2832be joined with the vertical-bar character @samp{|} as follows:
2833
2834@ifinfo
2835@example
2836@var{result}: @var{rule1-components}@dots{}
2837 | @var{rule2-components}@dots{}
2838 @dots{}
2839 ;
2840@end example
2841@end ifinfo
2842@iftex
2843@example
2844@group
2845@var{result}: @var{rule1-components}@dots{}
2846 | @var{rule2-components}@dots{}
2847 @dots{}
2848 ;
2849@end group
2850@end example
2851@end iftex
2852
2853@noindent
2854They are still considered distinct rules even when joined in this way.
2855
2856If @var{components} in a rule is empty, it means that @var{result} can
2857match the empty string. For example, here is how to define a
2858comma-separated sequence of zero or more @code{exp} groupings:
2859
2860@example
2861@group
2862expseq: /* empty */
2863 | expseq1
2864 ;
2865@end group
2866
2867@group
2868expseq1: exp
2869 | expseq1 ',' exp
2870 ;
2871@end group
2872@end example
2873
2874@noindent
2875It is customary to write a comment @samp{/* empty */} in each rule
2876with no components.
2877
342b8b6e 2878@node Recursion
bfa74976
RS
2879@section Recursive Rules
2880@cindex recursive rule
2881
2882A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2883also on its right hand side. Nearly all Bison grammars need to use
2884recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2885of a particular thing. Consider this recursive definition of a
2886comma-separated sequence of one or more expressions:
bfa74976
RS
2887
2888@example
2889@group
2890expseq1: exp
2891 | expseq1 ',' exp
2892 ;
2893@end group
2894@end example
2895
2896@cindex left recursion
2897@cindex right recursion
2898@noindent
2899Since the recursive use of @code{expseq1} is the leftmost symbol in the
2900right hand side, we call this @dfn{left recursion}. By contrast, here
2901the same construct is defined using @dfn{right recursion}:
2902
2903@example
2904@group
2905expseq1: exp
2906 | exp ',' expseq1
2907 ;
2908@end group
2909@end example
2910
2911@noindent
ec3bc396
AD
2912Any kind of sequence can be defined using either left recursion or right
2913recursion, but you should always use left recursion, because it can
2914parse a sequence of any number of elements with bounded stack space.
2915Right recursion uses up space on the Bison stack in proportion to the
2916number of elements in the sequence, because all the elements must be
2917shifted onto the stack before the rule can be applied even once.
2918@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2919of this.
bfa74976
RS
2920
2921@cindex mutual recursion
2922@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2923rule does not appear directly on its right hand side, but does appear
2924in rules for other nonterminals which do appear on its right hand
13863333 2925side.
bfa74976
RS
2926
2927For example:
2928
2929@example
2930@group
2931expr: primary
2932 | primary '+' primary
2933 ;
2934@end group
2935
2936@group
2937primary: constant
2938 | '(' expr ')'
2939 ;
2940@end group
2941@end example
2942
2943@noindent
2944defines two mutually-recursive nonterminals, since each refers to the
2945other.
2946
342b8b6e 2947@node Semantics
bfa74976
RS
2948@section Defining Language Semantics
2949@cindex defining language semantics
13863333 2950@cindex language semantics, defining
bfa74976
RS
2951
2952The grammar rules for a language determine only the syntax. The semantics
2953are determined by the semantic values associated with various tokens and
2954groupings, and by the actions taken when various groupings are recognized.
2955
2956For example, the calculator calculates properly because the value
2957associated with each expression is the proper number; it adds properly
2958because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2959the numbers associated with @var{x} and @var{y}.
2960
2961@menu
2962* Value Type:: Specifying one data type for all semantic values.
2963* Multiple Types:: Specifying several alternative data types.
2964* Actions:: An action is the semantic definition of a grammar rule.
2965* Action Types:: Specifying data types for actions to operate on.
2966* Mid-Rule Actions:: Most actions go at the end of a rule.
2967 This says when, why and how to use the exceptional
2968 action in the middle of a rule.
2969@end menu
2970
342b8b6e 2971@node Value Type
bfa74976
RS
2972@subsection Data Types of Semantic Values
2973@cindex semantic value type
2974@cindex value type, semantic
2975@cindex data types of semantic values
2976@cindex default data type
2977
2978In a simple program it may be sufficient to use the same data type for
2979the semantic values of all language constructs. This was true in the
c827f760 2980@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 2981Notation Calculator}).
bfa74976
RS
2982
2983Bison's default is to use type @code{int} for all semantic values. To
2984specify some other type, define @code{YYSTYPE} as a macro, like this:
2985
2986@example
2987#define YYSTYPE double
2988@end example
2989
2990@noindent
342b8b6e 2991This macro definition must go in the prologue of the grammar file
75f5aaea 2992(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 2993
342b8b6e 2994@node Multiple Types
bfa74976
RS
2995@subsection More Than One Value Type
2996
2997In most programs, you will need different data types for different kinds
2998of tokens and groupings. For example, a numeric constant may need type
779e7ceb 2999@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3000and an identifier might need a pointer to an entry in the symbol table.
3001
3002To use more than one data type for semantic values in one parser, Bison
3003requires you to do two things:
3004
3005@itemize @bullet
3006@item
3007Specify the entire collection of possible data types, with the
704a47c4
AD
3008@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3009Value Types}).
bfa74976
RS
3010
3011@item
14ded682
AD
3012Choose one of those types for each symbol (terminal or nonterminal) for
3013which semantic values are used. This is done for tokens with the
3014@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3015and for groupings with the @code{%type} Bison declaration (@pxref{Type
3016Decl, ,Nonterminal Symbols}).
bfa74976
RS
3017@end itemize
3018
342b8b6e 3019@node Actions
bfa74976
RS
3020@subsection Actions
3021@cindex action
3022@vindex $$
3023@vindex $@var{n}
3024
3025An action accompanies a syntactic rule and contains C code to be executed
3026each time an instance of that rule is recognized. The task of most actions
3027is to compute a semantic value for the grouping built by the rule from the
3028semantic values associated with tokens or smaller groupings.
3029
3030An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3031compound statement in C@. An action can contain any sequence of C
3032statements. Bison does not look for trigraphs, though, so if your C
3033code uses trigraphs you should ensure that they do not affect the
3034nesting of braces or the boundaries of comments, strings, or character
3035literals.
3036
3037An action can be placed at any position in the rule;
704a47c4
AD
3038it is executed at that position. Most rules have just one action at the
3039end of the rule, following all the components. Actions in the middle of
3040a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3041Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3042
3043The C code in an action can refer to the semantic values of the components
3044matched by the rule with the construct @code{$@var{n}}, which stands for
3045the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3046being constructed is @code{$$}. Bison translates both of these
3047constructs into expressions of the appropriate type when it copies the
3048actions into the parser file. @code{$$} is translated to a modifiable
3049lvalue, so it can be assigned to.
bfa74976
RS
3050
3051Here is a typical example:
3052
3053@example
3054@group
3055exp: @dots{}
3056 | exp '+' exp
3057 @{ $$ = $1 + $3; @}
3058@end group
3059@end example
3060
3061@noindent
3062This rule constructs an @code{exp} from two smaller @code{exp} groupings
3063connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3064refer to the semantic values of the two component @code{exp} groupings,
3065which are the first and third symbols on the right hand side of the rule.
3066The sum is stored into @code{$$} so that it becomes the semantic value of
3067the addition-expression just recognized by the rule. If there were a
3068useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3069referred to as @code{$2}.
bfa74976 3070
3ded9a63
AD
3071Note that the vertical-bar character @samp{|} is really a rule
3072separator, and actions are attached to a single rule. This is a
3073difference with tools like Flex, for which @samp{|} stands for either
3074``or'', or ``the same action as that of the next rule''. In the
3075following example, the action is triggered only when @samp{b} is found:
3076
3077@example
3078@group
3079a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3080@end group
3081@end example
3082
bfa74976
RS
3083@cindex default action
3084If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3085@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3086becomes the value of the whole rule. Of course, the default action is
3087valid only if the two data types match. There is no meaningful default
3088action for an empty rule; every empty rule must have an explicit action
3089unless the rule's value does not matter.
bfa74976
RS
3090
3091@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3092to tokens and groupings on the stack @emph{before} those that match the
3093current rule. This is a very risky practice, and to use it reliably
3094you must be certain of the context in which the rule is applied. Here
3095is a case in which you can use this reliably:
3096
3097@example
3098@group
3099foo: expr bar '+' expr @{ @dots{} @}
3100 | expr bar '-' expr @{ @dots{} @}
3101 ;
3102@end group
3103
3104@group
3105bar: /* empty */
3106 @{ previous_expr = $0; @}
3107 ;
3108@end group
3109@end example
3110
3111As long as @code{bar} is used only in the fashion shown here, @code{$0}
3112always refers to the @code{expr} which precedes @code{bar} in the
3113definition of @code{foo}.
3114
342b8b6e 3115@node Action Types
bfa74976
RS
3116@subsection Data Types of Values in Actions
3117@cindex action data types
3118@cindex data types in actions
3119
3120If you have chosen a single data type for semantic values, the @code{$$}
3121and @code{$@var{n}} constructs always have that data type.
3122
3123If you have used @code{%union} to specify a variety of data types, then you
3124must declare a choice among these types for each terminal or nonterminal
3125symbol that can have a semantic value. Then each time you use @code{$$} or
3126@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3127in the rule. In this example,
bfa74976
RS
3128
3129@example
3130@group
3131exp: @dots{}
3132 | exp '+' exp
3133 @{ $$ = $1 + $3; @}
3134@end group
3135@end example
3136
3137@noindent
3138@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3139have the data type declared for the nonterminal symbol @code{exp}. If
3140@code{$2} were used, it would have the data type declared for the
e0c471a9 3141terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3142
3143Alternatively, you can specify the data type when you refer to the value,
3144by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3145reference. For example, if you have defined types as shown here:
3146
3147@example
3148@group
3149%union @{
3150 int itype;
3151 double dtype;
3152@}
3153@end group
3154@end example
3155
3156@noindent
3157then you can write @code{$<itype>1} to refer to the first subunit of the
3158rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3159
342b8b6e 3160@node Mid-Rule Actions
bfa74976
RS
3161@subsection Actions in Mid-Rule
3162@cindex actions in mid-rule
3163@cindex mid-rule actions
3164
3165Occasionally it is useful to put an action in the middle of a rule.
3166These actions are written just like usual end-of-rule actions, but they
3167are executed before the parser even recognizes the following components.
3168
3169A mid-rule action may refer to the components preceding it using
3170@code{$@var{n}}, but it may not refer to subsequent components because
3171it is run before they are parsed.
3172
3173The mid-rule action itself counts as one of the components of the rule.
3174This makes a difference when there is another action later in the same rule
3175(and usually there is another at the end): you have to count the actions
3176along with the symbols when working out which number @var{n} to use in
3177@code{$@var{n}}.
3178
3179The mid-rule action can also have a semantic value. The action can set
3180its value with an assignment to @code{$$}, and actions later in the rule
3181can refer to the value using @code{$@var{n}}. Since there is no symbol
3182to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3183in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3184specify a data type each time you refer to this value.
bfa74976
RS
3185
3186There is no way to set the value of the entire rule with a mid-rule
3187action, because assignments to @code{$$} do not have that effect. The
3188only way to set the value for the entire rule is with an ordinary action
3189at the end of the rule.
3190
3191Here is an example from a hypothetical compiler, handling a @code{let}
3192statement that looks like @samp{let (@var{variable}) @var{statement}} and
3193serves to create a variable named @var{variable} temporarily for the
3194duration of @var{statement}. To parse this construct, we must put
3195@var{variable} into the symbol table while @var{statement} is parsed, then
3196remove it afterward. Here is how it is done:
3197
3198@example
3199@group
3200stmt: LET '(' var ')'
3201 @{ $<context>$ = push_context ();
3202 declare_variable ($3); @}
3203 stmt @{ $$ = $6;
3204 pop_context ($<context>5); @}
3205@end group
3206@end example
3207
3208@noindent
3209As soon as @samp{let (@var{variable})} has been recognized, the first
3210action is run. It saves a copy of the current semantic context (the
3211list of accessible variables) as its semantic value, using alternative
3212@code{context} in the data-type union. Then it calls
3213@code{declare_variable} to add the new variable to that list. Once the
3214first action is finished, the embedded statement @code{stmt} can be
3215parsed. Note that the mid-rule action is component number 5, so the
3216@samp{stmt} is component number 6.
3217
3218After the embedded statement is parsed, its semantic value becomes the
3219value of the entire @code{let}-statement. Then the semantic value from the
3220earlier action is used to restore the prior list of variables. This
3221removes the temporary @code{let}-variable from the list so that it won't
3222appear to exist while the rest of the program is parsed.
3223
3224Taking action before a rule is completely recognized often leads to
3225conflicts since the parser must commit to a parse in order to execute the
3226action. For example, the following two rules, without mid-rule actions,
3227can coexist in a working parser because the parser can shift the open-brace
3228token and look at what follows before deciding whether there is a
3229declaration or not:
3230
3231@example
3232@group
3233compound: '@{' declarations statements '@}'
3234 | '@{' statements '@}'
3235 ;
3236@end group
3237@end example
3238
3239@noindent
3240But when we add a mid-rule action as follows, the rules become nonfunctional:
3241
3242@example
3243@group
3244compound: @{ prepare_for_local_variables (); @}
3245 '@{' declarations statements '@}'
3246@end group
3247@group
3248 | '@{' statements '@}'
3249 ;
3250@end group
3251@end example
3252
3253@noindent
3254Now the parser is forced to decide whether to run the mid-rule action
3255when it has read no farther than the open-brace. In other words, it
3256must commit to using one rule or the other, without sufficient
3257information to do it correctly. (The open-brace token is what is called
3258the @dfn{look-ahead} token at this time, since the parser is still
3259deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3260
3261You might think that you could correct the problem by putting identical
3262actions into the two rules, like this:
3263
3264@example
3265@group
3266compound: @{ prepare_for_local_variables (); @}
3267 '@{' declarations statements '@}'
3268 | @{ prepare_for_local_variables (); @}
3269 '@{' statements '@}'
3270 ;
3271@end group
3272@end example
3273
3274@noindent
3275But this does not help, because Bison does not realize that the two actions
3276are identical. (Bison never tries to understand the C code in an action.)
3277
3278If the grammar is such that a declaration can be distinguished from a
3279statement by the first token (which is true in C), then one solution which
3280does work is to put the action after the open-brace, like this:
3281
3282@example
3283@group
3284compound: '@{' @{ prepare_for_local_variables (); @}
3285 declarations statements '@}'
3286 | '@{' statements '@}'
3287 ;
3288@end group
3289@end example
3290
3291@noindent
3292Now the first token of the following declaration or statement,
3293which would in any case tell Bison which rule to use, can still do so.
3294
3295Another solution is to bury the action inside a nonterminal symbol which
3296serves as a subroutine:
3297
3298@example
3299@group
3300subroutine: /* empty */
3301 @{ prepare_for_local_variables (); @}
3302 ;
3303
3304@end group
3305
3306@group
3307compound: subroutine
3308 '@{' declarations statements '@}'
3309 | subroutine
3310 '@{' statements '@}'
3311 ;
3312@end group
3313@end example
3314
3315@noindent
3316Now Bison can execute the action in the rule for @code{subroutine} without
3317deciding which rule for @code{compound} it will eventually use. Note that
3318the action is now at the end of its rule. Any mid-rule action can be
3319converted to an end-of-rule action in this way, and this is what Bison
3320actually does to implement mid-rule actions.
3321
342b8b6e 3322@node Locations
847bf1f5
AD
3323@section Tracking Locations
3324@cindex location
95923bd6
AD
3325@cindex textual location
3326@cindex location, textual
847bf1f5
AD
3327
3328Though grammar rules and semantic actions are enough to write a fully
72d2299c 3329functional parser, it can be useful to process some additional information,
3e259915
MA
3330especially symbol locations.
3331
704a47c4
AD
3332The way locations are handled is defined by providing a data type, and
3333actions to take when rules are matched.
847bf1f5
AD
3334
3335@menu
3336* Location Type:: Specifying a data type for locations.
3337* Actions and Locations:: Using locations in actions.
3338* Location Default Action:: Defining a general way to compute locations.
3339@end menu
3340
342b8b6e 3341@node Location Type
847bf1f5
AD
3342@subsection Data Type of Locations
3343@cindex data type of locations
3344@cindex default location type
3345
3346Defining a data type for locations is much simpler than for semantic values,
3347since all tokens and groupings always use the same type.
3348
3349The type of locations is specified by defining a macro called @code{YYLTYPE}.
3350When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3351four members:
3352
3353@example
6273355b 3354typedef struct YYLTYPE
847bf1f5
AD
3355@{
3356 int first_line;
3357 int first_column;
3358 int last_line;
3359 int last_column;
6273355b 3360@} YYLTYPE;
847bf1f5
AD
3361@end example
3362
342b8b6e 3363@node Actions and Locations
847bf1f5
AD
3364@subsection Actions and Locations
3365@cindex location actions
3366@cindex actions, location
3367@vindex @@$
3368@vindex @@@var{n}
3369
3370Actions are not only useful for defining language semantics, but also for
3371describing the behavior of the output parser with locations.
3372
3373The most obvious way for building locations of syntactic groupings is very
72d2299c 3374similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3375constructs can be used to access the locations of the elements being matched.
3376The location of the @var{n}th component of the right hand side is
3377@code{@@@var{n}}, while the location of the left hand side grouping is
3378@code{@@$}.
3379
3e259915 3380Here is a basic example using the default data type for locations:
847bf1f5
AD
3381
3382@example
3383@group
3384exp: @dots{}
3e259915 3385 | exp '/' exp
847bf1f5 3386 @{
3e259915
MA
3387 @@$.first_column = @@1.first_column;
3388 @@$.first_line = @@1.first_line;
847bf1f5
AD
3389 @@$.last_column = @@3.last_column;
3390 @@$.last_line = @@3.last_line;
3e259915
MA
3391 if ($3)
3392 $$ = $1 / $3;
3393 else
3394 @{
3395 $$ = 1;
4e03e201
AD
3396 fprintf (stderr,
3397 "Division by zero, l%d,c%d-l%d,c%d",
3398 @@3.first_line, @@3.first_column,
3399 @@3.last_line, @@3.last_column);
3e259915 3400 @}
847bf1f5
AD
3401 @}
3402@end group
3403@end example
3404
3e259915 3405As for semantic values, there is a default action for locations that is
72d2299c 3406run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3407beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3408last symbol.
3e259915 3409
72d2299c 3410With this default action, the location tracking can be fully automatic. The
3e259915
MA
3411example above simply rewrites this way:
3412
3413@example
3414@group
3415exp: @dots{}
3416 | exp '/' exp
3417 @{
3418 if ($3)
3419 $$ = $1 / $3;
3420 else
3421 @{
3422 $$ = 1;
4e03e201
AD
3423 fprintf (stderr,
3424 "Division by zero, l%d,c%d-l%d,c%d",
3425 @@3.first_line, @@3.first_column,
3426 @@3.last_line, @@3.last_column);
3e259915
MA
3427 @}
3428 @}
3429@end group
3430@end example
847bf1f5 3431
342b8b6e 3432@node Location Default Action
847bf1f5
AD
3433@subsection Default Action for Locations
3434@vindex YYLLOC_DEFAULT
3435
72d2299c 3436Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3437locations are much more general than semantic values, there is room in
3438the output parser to redefine the default action to take for each
72d2299c 3439rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3440matched, before the associated action is run. It is also invoked
3441while processing a syntax error, to compute the error's location.
847bf1f5 3442
3e259915 3443Most of the time, this macro is general enough to suppress location
79282c6c 3444dedicated code from semantic actions.
847bf1f5 3445
72d2299c 3446The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d
PE
3447the location of the grouping (the result of the computation). When a
3448rule is matched, the second parameter is an array holding locations of
3449all right hand side elements of the rule being matched, and the third
3450parameter is the size of the rule's right hand side. When processing
3451a syntax error, the second parameter is an array holding locations of
3452the symbols that were discarded during error processing, and the third
3453parameter is the number of discarded symbols.
847bf1f5 3454
96b93a3d
PE
3455By default, @code{YYLLOC_DEFAULT} is defined this way for simple
3456@acronym{LALR}(1) parsers:
847bf1f5
AD
3457
3458@example
3459@group
0ae99356
PE
3460# define YYLLOC_DEFAULT(Current, Rhs, N) \
3461 ((Current).first_line = (Rhs)[1].first_line, \
3462 (Current).first_column = (Rhs)[1].first_column, \
3463 (Current).last_line = (Rhs)[N].last_line, \
3464 (Current).last_column = (Rhs)[N].last_column)
847bf1f5
AD
3465@end group
3466@end example
3467
676385e2 3468@noindent
c827f760 3469and like this for @acronym{GLR} parsers:
676385e2
PH
3470
3471@example
3472@group
0ae99356
PE
3473# define YYLLOC_DEFAULT(yyCurrent, yyRhs, YYN) \
3474 ((yyCurrent).first_line = YYRHSLOC(yyRhs, 1).first_line, \
3475 (yyCurrent).first_column = YYRHSLOC(yyRhs, 1).first_column, \
3476 (yyCurrent).last_line = YYRHSLOC(yyRhs, YYN).last_line, \
3477 (yyCurrent).last_column = YYRHSLOC(yyRhs, YYN).last_column)
676385e2
PH
3478@end group
3479@end example
3480
3e259915 3481When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3482
3e259915 3483@itemize @bullet
79282c6c 3484@item
72d2299c 3485All arguments are free of side-effects. However, only the first one (the
3e259915 3486result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3487
3e259915 3488@item
b2d52318
AD
3489For consistency with semantic actions, valid indexes for the location
3490array range from 1 to @var{n}.
0ae99356
PE
3491
3492@item
3493Your macro should parenthesize its arguments, if need be, since the
3494actual arguments may not be surrounded by parentheses. Also, your
3495macro should expand to something that can be used as a single
3496statement when it is followed by a semicolon.
3e259915 3497@end itemize
847bf1f5 3498
342b8b6e 3499@node Declarations
bfa74976
RS
3500@section Bison Declarations
3501@cindex declarations, Bison
3502@cindex Bison declarations
3503
3504The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3505used in formulating the grammar and the data types of semantic values.
3506@xref{Symbols}.
3507
3508All token type names (but not single-character literal tokens such as
3509@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3510declared if you need to specify which data type to use for the semantic
3511value (@pxref{Multiple Types, ,More Than One Value Type}).
3512
3513The first rule in the file also specifies the start symbol, by default.
3514If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3515it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3516Grammars}).
bfa74976
RS
3517
3518@menu
3519* Token Decl:: Declaring terminal symbols.
3520* Precedence Decl:: Declaring terminals with precedence and associativity.
3521* Union Decl:: Declaring the set of all semantic value types.
3522* Type Decl:: Declaring the choice of type for a nonterminal symbol.
72f889cc 3523* Destructor Decl:: Declaring how symbols are freed.
d6328241 3524* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3525* Start Decl:: Specifying the start symbol.
3526* Pure Decl:: Requesting a reentrant parser.
3527* Decl Summary:: Table of all Bison declarations.
3528@end menu
3529
342b8b6e 3530@node Token Decl
bfa74976
RS
3531@subsection Token Type Names
3532@cindex declaring token type names
3533@cindex token type names, declaring
931c7513 3534@cindex declaring literal string tokens
bfa74976
RS
3535@findex %token
3536
3537The basic way to declare a token type name (terminal symbol) is as follows:
3538
3539@example
3540%token @var{name}
3541@end example
3542
3543Bison will convert this into a @code{#define} directive in
3544the parser, so that the function @code{yylex} (if it is in this file)
3545can use the name @var{name} to stand for this token type's code.
3546
14ded682
AD
3547Alternatively, you can use @code{%left}, @code{%right}, or
3548@code{%nonassoc} instead of @code{%token}, if you wish to specify
3549associativity and precedence. @xref{Precedence Decl, ,Operator
3550Precedence}.
bfa74976
RS
3551
3552You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3553a decimal or hexadecimal integer value in the field immediately
3554following the token name:
bfa74976
RS
3555
3556@example
3557%token NUM 300
1452af69 3558%token XNUM 0x12d // a GNU extension
bfa74976
RS
3559@end example
3560
3561@noindent
3562It is generally best, however, to let Bison choose the numeric codes for
3563all token types. Bison will automatically select codes that don't conflict
e966383b 3564with each other or with normal characters.
bfa74976
RS
3565
3566In the event that the stack type is a union, you must augment the
3567@code{%token} or other token declaration to include the data type
704a47c4
AD
3568alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3569Than One Value Type}).
bfa74976
RS
3570
3571For example:
3572
3573@example
3574@group
3575%union @{ /* define stack type */
3576 double val;
3577 symrec *tptr;
3578@}
3579%token <val> NUM /* define token NUM and its type */
3580@end group
3581@end example
3582
931c7513
RS
3583You can associate a literal string token with a token type name by
3584writing the literal string at the end of a @code{%token}
3585declaration which declares the name. For example:
3586
3587@example
3588%token arrow "=>"
3589@end example
3590
3591@noindent
3592For example, a grammar for the C language might specify these names with
3593equivalent literal string tokens:
3594
3595@example
3596%token <operator> OR "||"
3597%token <operator> LE 134 "<="
3598%left OR "<="
3599@end example
3600
3601@noindent
3602Once you equate the literal string and the token name, you can use them
3603interchangeably in further declarations or the grammar rules. The
3604@code{yylex} function can use the token name or the literal string to
3605obtain the token type code number (@pxref{Calling Convention}).
3606
342b8b6e 3607@node Precedence Decl
bfa74976
RS
3608@subsection Operator Precedence
3609@cindex precedence declarations
3610@cindex declaring operator precedence
3611@cindex operator precedence, declaring
3612
3613Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3614declare a token and specify its precedence and associativity, all at
3615once. These are called @dfn{precedence declarations}.
704a47c4
AD
3616@xref{Precedence, ,Operator Precedence}, for general information on
3617operator precedence.
bfa74976
RS
3618
3619The syntax of a precedence declaration is the same as that of
3620@code{%token}: either
3621
3622@example
3623%left @var{symbols}@dots{}
3624@end example
3625
3626@noindent
3627or
3628
3629@example
3630%left <@var{type}> @var{symbols}@dots{}
3631@end example
3632
3633And indeed any of these declarations serves the purposes of @code{%token}.
3634But in addition, they specify the associativity and relative precedence for
3635all the @var{symbols}:
3636
3637@itemize @bullet
3638@item
3639The associativity of an operator @var{op} determines how repeated uses
3640of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3641@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3642grouping @var{y} with @var{z} first. @code{%left} specifies
3643left-associativity (grouping @var{x} with @var{y} first) and
3644@code{%right} specifies right-associativity (grouping @var{y} with
3645@var{z} first). @code{%nonassoc} specifies no associativity, which
3646means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3647considered a syntax error.
3648
3649@item
3650The precedence of an operator determines how it nests with other operators.
3651All the tokens declared in a single precedence declaration have equal
3652precedence and nest together according to their associativity.
3653When two tokens declared in different precedence declarations associate,
3654the one declared later has the higher precedence and is grouped first.
3655@end itemize
3656
342b8b6e 3657@node Union Decl
bfa74976
RS
3658@subsection The Collection of Value Types
3659@cindex declaring value types
3660@cindex value types, declaring
3661@findex %union
3662
3663The @code{%union} declaration specifies the entire collection of possible
3664data types for semantic values. The keyword @code{%union} is followed by a
3665pair of braces containing the same thing that goes inside a @code{union} in
13863333 3666C.
bfa74976
RS
3667
3668For example:
3669
3670@example
3671@group
3672%union @{
3673 double val;
3674 symrec *tptr;
3675@}
3676@end group
3677@end example
3678
3679@noindent
3680This says that the two alternative types are @code{double} and @code{symrec
3681*}. They are given names @code{val} and @code{tptr}; these names are used
3682in the @code{%token} and @code{%type} declarations to pick one of the types
3683for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3684
6273355b
PE
3685As an extension to @acronym{POSIX}, a tag is allowed after the
3686@code{union}. For example:
3687
3688@example
3689@group
3690%union value @{
3691 double val;
3692 symrec *tptr;
3693@}
3694@end group
3695@end example
3696
3697specifies the union tag @code{value}, so the corresponding C type is
3698@code{union value}. If you do not specify a tag, it defaults to
3699@code{YYSTYPE}.
3700
3701Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3702a semicolon after the closing brace.
3703
342b8b6e 3704@node Type Decl
bfa74976
RS
3705@subsection Nonterminal Symbols
3706@cindex declaring value types, nonterminals
3707@cindex value types, nonterminals, declaring
3708@findex %type
3709
3710@noindent
3711When you use @code{%union} to specify multiple value types, you must
3712declare the value type of each nonterminal symbol for which values are
3713used. This is done with a @code{%type} declaration, like this:
3714
3715@example
3716%type <@var{type}> @var{nonterminal}@dots{}
3717@end example
3718
3719@noindent
704a47c4
AD
3720Here @var{nonterminal} is the name of a nonterminal symbol, and
3721@var{type} is the name given in the @code{%union} to the alternative
3722that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3723can give any number of nonterminal symbols in the same @code{%type}
3724declaration, if they have the same value type. Use spaces to separate
3725the symbol names.
bfa74976 3726
931c7513
RS
3727You can also declare the value type of a terminal symbol. To do this,
3728use the same @code{<@var{type}>} construction in a declaration for the
3729terminal symbol. All kinds of token declarations allow
3730@code{<@var{type}>}.
3731
72f889cc
AD
3732@node Destructor Decl
3733@subsection Freeing Discarded Symbols
3734@cindex freeing discarded symbols
3735@findex %destructor
3736
e757bb10
AD
3737Some symbols can be discarded by the parser. For instance, during error
3738recovery (@pxref{Error Recovery}), embarrassing symbols already pushed
3739on the stack, and embarrassing tokens coming from the rest of the file
3740are thrown away until the parser falls on its feet. If these symbols
3741convey heap based information, this memory is lost. While this behavior
3742can be tolerable for batch parsers, such as in compilers, it is not for
3743possibly ``never ending'' parsers such as shells, or implementations of
72f889cc
AD
3744communication protocols.
3745
3746The @code{%destructor} directive allows for the definition of code that
3747is called when a symbol is thrown away.
3748
3749@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3750@findex %destructor
3751Declare that the @var{code} must be invoked for each of the
3752@var{symbols} that will be discarded by the parser. The @var{code}
3753should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3754@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3755(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3756
3757@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3758experimental, as there was not enough user feedback. In particular,
3df37415 3759the syntax might still change.
72f889cc
AD
3760@end deffn
3761
3762For instance:
3763
3764@smallexample
3765%union
3766@{
3767 char *string;
3768@}
3769%token <string> STRING
3770%type <string> string
3771%destructor @{ free ($$); @} STRING string
3772@end smallexample
3773
3774@noindent
3775guarantees that when a @code{STRING} or a @code{string} will be discarded,
3776its associated memory will be freed.
3777
3778Note that in the future, Bison might also consider that right hand side
3779members that are not mentioned in the action can be destroyed. For
3780instance, in:
3781
3782@smallexample
3783comment: "/*" STRING "*/";
3784@end smallexample
3785
3786@noindent
3787the parser is entitled to destroy the semantic value of the
3788@code{string}. Of course, this will not apply to the default action;
3789compare:
3790
3791@smallexample
3792typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3793typefull: string; // $$ = $1 applies, $1 is not destroyed.
3794@end smallexample
3795
e757bb10
AD
3796@sp 1
3797
3798@cindex discarded symbols
3799@dfn{Discarded symbols} are the following:
3800
3801@itemize
3802@item
3803stacked symbols popped during the first phase of error recovery,
3804@item
3805incoming terminals during the second phase of error recovery,
3806@item
3807the current lookahead when the parser aborts (either via an explicit
3808call to @code{YYABORT}, or as a consequence of a failed error recovery).
3809@end itemize
3810
3811
342b8b6e 3812@node Expect Decl
bfa74976
RS
3813@subsection Suppressing Conflict Warnings
3814@cindex suppressing conflict warnings
3815@cindex preventing warnings about conflicts
3816@cindex warnings, preventing
3817@cindex conflicts, suppressing warnings of
3818@findex %expect
d6328241 3819@findex %expect-rr
bfa74976
RS
3820
3821Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3822(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3823have harmless shift/reduce conflicts which are resolved in a predictable
3824way and would be difficult to eliminate. It is desirable to suppress
3825the warning about these conflicts unless the number of conflicts
3826changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3827
3828The declaration looks like this:
3829
3830@example
3831%expect @var{n}
3832@end example
3833
7da99ede
AD
3834Here @var{n} is a decimal integer. The declaration says there should be
3835no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3836reduce/reduce conflicts. The usual warning is
7da99ede
AD
3837given if there are either more or fewer conflicts, or if there are any
3838reduce/reduce conflicts.
bfa74976 3839
fa7e68c3 3840For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3841and should be eliminated entirely. Bison will always report
fa7e68c3 3842reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3843both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3844would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3845to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3846parsers, using the declaration:
3847
3848@example
3849%expect-rr @var{n}
3850@end example
3851
bfa74976
RS
3852In general, using @code{%expect} involves these steps:
3853
3854@itemize @bullet
3855@item
3856Compile your grammar without @code{%expect}. Use the @samp{-v} option
3857to get a verbose list of where the conflicts occur. Bison will also
3858print the number of conflicts.
3859
3860@item
3861Check each of the conflicts to make sure that Bison's default
3862resolution is what you really want. If not, rewrite the grammar and
3863go back to the beginning.
3864
3865@item
3866Add an @code{%expect} declaration, copying the number @var{n} from the
3867number which Bison printed.
3868@end itemize
3869
69363a9e
PE
3870Now Bison will stop annoying you if you do not change the number of
3871conflicts, but it will warn you again if changes in the grammar result
3872in more or fewer conflicts.
bfa74976 3873
342b8b6e 3874@node Start Decl
bfa74976
RS
3875@subsection The Start-Symbol
3876@cindex declaring the start symbol
3877@cindex start symbol, declaring
3878@cindex default start symbol
3879@findex %start
3880
3881Bison assumes by default that the start symbol for the grammar is the first
3882nonterminal specified in the grammar specification section. The programmer
3883may override this restriction with the @code{%start} declaration as follows:
3884
3885@example
3886%start @var{symbol}
3887@end example
3888
342b8b6e 3889@node Pure Decl
bfa74976
RS
3890@subsection A Pure (Reentrant) Parser
3891@cindex reentrant parser
3892@cindex pure parser
8c9a50be 3893@findex %pure-parser
bfa74976
RS
3894
3895A @dfn{reentrant} program is one which does not alter in the course of
3896execution; in other words, it consists entirely of @dfn{pure} (read-only)
3897code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3898for example, a non-reentrant program may not be safe to call from a signal
3899handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3900program must be called only within interlocks.
3901
70811b85 3902Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3903suitable for most uses, and it permits compatibility with Yacc. (The
3904standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3905statically allocated variables for communication with @code{yylex},
3906including @code{yylval} and @code{yylloc}.)
bfa74976 3907
70811b85 3908Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3909declaration @code{%pure-parser} says that you want the parser to be
70811b85 3910reentrant. It looks like this:
bfa74976
RS
3911
3912@example
8c9a50be 3913%pure-parser
bfa74976
RS
3914@end example
3915
70811b85
RS
3916The result is that the communication variables @code{yylval} and
3917@code{yylloc} become local variables in @code{yyparse}, and a different
3918calling convention is used for the lexical analyzer function
3919@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3920Parsers}, for the details of this. The variable @code{yynerrs} also
3921becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3922Reporting Function @code{yyerror}}). The convention for calling
3923@code{yyparse} itself is unchanged.
3924
3925Whether the parser is pure has nothing to do with the grammar rules.
3926You can generate either a pure parser or a nonreentrant parser from any
3927valid grammar.
bfa74976 3928
342b8b6e 3929@node Decl Summary
bfa74976
RS
3930@subsection Bison Declaration Summary
3931@cindex Bison declaration summary
3932@cindex declaration summary
3933@cindex summary, Bison declaration
3934
d8988b2f 3935Here is a summary of the declarations used to define a grammar:
bfa74976 3936
18b519c0 3937@deffn {Directive} %union
bfa74976
RS
3938Declare the collection of data types that semantic values may have
3939(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 3940@end deffn
bfa74976 3941
18b519c0 3942@deffn {Directive} %token
bfa74976
RS
3943Declare a terminal symbol (token type name) with no precedence
3944or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 3945@end deffn
bfa74976 3946
18b519c0 3947@deffn {Directive} %right
bfa74976
RS
3948Declare a terminal symbol (token type name) that is right-associative
3949(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3950@end deffn
bfa74976 3951
18b519c0 3952@deffn {Directive} %left
bfa74976
RS
3953Declare a terminal symbol (token type name) that is left-associative
3954(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 3955@end deffn
bfa74976 3956
18b519c0 3957@deffn {Directive} %nonassoc
bfa74976 3958Declare a terminal symbol (token type name) that is nonassociative
bfa74976 3959(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
3960Using it in a way that would be associative is a syntax error.
3961@end deffn
3962
91d2c560 3963@ifset defaultprec
39a06c25 3964@deffn {Directive} %default-prec
22fccf95 3965Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
3966(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
3967@end deffn
91d2c560 3968@end ifset
bfa74976 3969
18b519c0 3970@deffn {Directive} %type
bfa74976
RS
3971Declare the type of semantic values for a nonterminal symbol
3972(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 3973@end deffn
bfa74976 3974
18b519c0 3975@deffn {Directive} %start
89cab50d
AD
3976Specify the grammar's start symbol (@pxref{Start Decl, ,The
3977Start-Symbol}).
18b519c0 3978@end deffn
bfa74976 3979
18b519c0 3980@deffn {Directive} %expect
bfa74976
RS
3981Declare the expected number of shift-reduce conflicts
3982(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
3983@end deffn
3984
bfa74976 3985
d8988b2f
AD
3986@sp 1
3987@noindent
3988In order to change the behavior of @command{bison}, use the following
3989directives:
3990
18b519c0 3991@deffn {Directive} %debug
4947ebdb
PE
3992In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
3993already defined, so that the debugging facilities are compiled.
18b519c0 3994@end deffn
ec3bc396 3995@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 3996
18b519c0 3997@deffn {Directive} %defines
4bfd5e4e
PE
3998Write a header file containing macro definitions for the token type
3999names defined in the grammar as well as a few other declarations.
d8988b2f 4000If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4001is named @file{@var{name}.h}.
d8988b2f 4002
4bfd5e4e 4003Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
4004declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
4005(@pxref{Multiple Types, ,More Than One Value Type}) with components
4006that require other definitions, or if you have defined a
4bfd5e4e 4007@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
4008Values}), you need to arrange for these definitions to be propagated to
4009all modules, e.g., by putting them in a
4bfd5e4e
PE
4010prerequisite header that is included both by your parser and by any
4011other module that needs @code{YYSTYPE}.
4012
4013Unless your parser is pure, the output header declares @code{yylval}
4014as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4015Parser}.
4016
4017If you have also used locations, the output header declares
4018@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4019@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4020Locations}.
4021
4022This output file is normally essential if you wish to put the
4023definition of @code{yylex} in a separate source file, because
4024@code{yylex} typically needs to be able to refer to the
4025above-mentioned declarations and to the token type codes.
4026@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4027@end deffn
d8988b2f 4028
18b519c0 4029@deffn {Directive} %destructor
72f889cc 4030Specifying how the parser should reclaim the memory associated to
fa7e68c3 4031discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4032@end deffn
72f889cc 4033
18b519c0 4034@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4035Specify a prefix to use for all Bison output file names. The names are
4036chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4037@end deffn
d8988b2f 4038
18b519c0 4039@deffn {Directive} %locations
89cab50d
AD
4040Generate the code processing the locations (@pxref{Action Features,
4041,Special Features for Use in Actions}). This mode is enabled as soon as
4042the grammar uses the special @samp{@@@var{n}} tokens, but if your
4043grammar does not use it, using @samp{%locations} allows for more
6e649e65 4044accurate syntax error messages.
18b519c0 4045@end deffn
89cab50d 4046
18b519c0 4047@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4048Rename the external symbols used in the parser so that they start with
4049@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4050is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4051@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4052possible @code{yylloc}. For example, if you use
4053@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4054and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4055Program}.
18b519c0 4056@end deffn
931c7513 4057
91d2c560 4058@ifset defaultprec
22fccf95
PE
4059@deffn {Directive} %no-default-prec
4060Do not assign a precedence to rules lacking an explicit @code{%prec}
4061modifier (@pxref{Contextual Precedence, ,Context-Dependent
4062Precedence}).
4063@end deffn
91d2c560 4064@end ifset
22fccf95 4065
18b519c0 4066@deffn {Directive} %no-parser
6deb4447
AD
4067Do not include any C code in the parser file; generate tables only. The
4068parser file contains just @code{#define} directives and static variable
4069declarations.
4070
4071This option also tells Bison to write the C code for the grammar actions
4072into a file named @file{@var{filename}.act}, in the form of a
4073brace-surrounded body fit for a @code{switch} statement.
18b519c0 4074@end deffn
6deb4447 4075
18b519c0 4076@deffn {Directive} %no-lines
931c7513
RS
4077Don't generate any @code{#line} preprocessor commands in the parser
4078file. Ordinarily Bison writes these commands in the parser file so that
4079the C compiler and debuggers will associate errors and object code with
4080your source file (the grammar file). This directive causes them to
4081associate errors with the parser file, treating it an independent source
4082file in its own right.
18b519c0 4083@end deffn
931c7513 4084
18b519c0 4085@deffn {Directive} %output="@var{filename}"
d8988b2f 4086Specify the @var{filename} for the parser file.
18b519c0 4087@end deffn
6deb4447 4088
18b519c0 4089@deffn {Directive} %pure-parser
d8988b2f
AD
4090Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4091(Reentrant) Parser}).
18b519c0 4092@end deffn
6deb4447 4093
18b519c0 4094@deffn {Directive} %token-table
931c7513
RS
4095Generate an array of token names in the parser file. The name of the
4096array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4097token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4098three elements of @code{yytname} correspond to the predefined tokens
4099@code{"$end"},
88bce5a2
AD
4100@code{"error"}, and @code{"$undefined"}; after these come the symbols
4101defined in the grammar file.
931c7513
RS
4102
4103For single-character literal tokens and literal string tokens, the name
4104in the table includes the single-quote or double-quote characters: for
4105example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
4106is a literal string token. All the characters of the literal string
4107token appear verbatim in the string found in the table; even
4108double-quote characters are not escaped. For example, if the token
4109consists of three characters @samp{*"*}, its string in @code{yytname}
4110contains @samp{"*"*"}. (In C, that would be written as
4111@code{"\"*\"*\""}).
4112
8c9a50be 4113When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4114definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4115@code{YYNRULES}, and @code{YYNSTATES}:
4116
4117@table @code
4118@item YYNTOKENS
4119The highest token number, plus one.
4120@item YYNNTS
9ecbd125 4121The number of nonterminal symbols.
931c7513
RS
4122@item YYNRULES
4123The number of grammar rules,
4124@item YYNSTATES
4125The number of parser states (@pxref{Parser States}).
4126@end table
18b519c0 4127@end deffn
d8988b2f 4128
18b519c0 4129@deffn {Directive} %verbose
d8988b2f
AD
4130Write an extra output file containing verbose descriptions of the
4131parser states and what is done for each type of look-ahead token in
72d2299c 4132that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4133information.
18b519c0 4134@end deffn
d8988b2f 4135
18b519c0 4136@deffn {Directive} %yacc
d8988b2f
AD
4137Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4138including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4139@end deffn
d8988b2f
AD
4140
4141
342b8b6e 4142@node Multiple Parsers
bfa74976
RS
4143@section Multiple Parsers in the Same Program
4144
4145Most programs that use Bison parse only one language and therefore contain
4146only one Bison parser. But what if you want to parse more than one
4147language with the same program? Then you need to avoid a name conflict
4148between different definitions of @code{yyparse}, @code{yylval}, and so on.
4149
4150The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4151(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4152functions and variables of the Bison parser to start with @var{prefix}
4153instead of @samp{yy}. You can use this to give each parser distinct
4154names that do not conflict.
bfa74976
RS
4155
4156The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4157@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4158@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4159the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4160
4161@strong{All the other variables and macros associated with Bison are not
4162renamed.} These others are not global; there is no conflict if the same
4163name is used in different parsers. For example, @code{YYSTYPE} is not
4164renamed, but defining this in different ways in different parsers causes
4165no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4166
4167The @samp{-p} option works by adding macro definitions to the beginning
4168of the parser source file, defining @code{yyparse} as
4169@code{@var{prefix}parse}, and so on. This effectively substitutes one
4170name for the other in the entire parser file.
4171
342b8b6e 4172@node Interface
bfa74976
RS
4173@chapter Parser C-Language Interface
4174@cindex C-language interface
4175@cindex interface
4176
4177The Bison parser is actually a C function named @code{yyparse}. Here we
4178describe the interface conventions of @code{yyparse} and the other
4179functions that it needs to use.
4180
4181Keep in mind that the parser uses many C identifiers starting with
4182@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4183identifier (aside from those in this manual) in an action or in epilogue
4184in the grammar file, you are likely to run into trouble.
bfa74976
RS
4185
4186@menu
4187* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4188* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4189 which reads tokens.
4190* Error Reporting:: You must supply a function @code{yyerror}.
4191* Action Features:: Special features for use in actions.
4192@end menu
4193
342b8b6e 4194@node Parser Function
bfa74976
RS
4195@section The Parser Function @code{yyparse}
4196@findex yyparse
4197
4198You call the function @code{yyparse} to cause parsing to occur. This
4199function reads tokens, executes actions, and ultimately returns when it
4200encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4201write an action which directs @code{yyparse} to return immediately
4202without reading further.
bfa74976 4203
2a8d363a
AD
4204
4205@deftypefun int yyparse (void)
bfa74976
RS
4206The value returned by @code{yyparse} is 0 if parsing was successful (return
4207is due to end-of-input).
4208
4209The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 4210@end deftypefun
bfa74976
RS
4211
4212In an action, you can cause immediate return from @code{yyparse} by using
4213these macros:
4214
2a8d363a 4215@defmac YYACCEPT
bfa74976
RS
4216@findex YYACCEPT
4217Return immediately with value 0 (to report success).
2a8d363a 4218@end defmac
bfa74976 4219
2a8d363a 4220@defmac YYABORT
bfa74976
RS
4221@findex YYABORT
4222Return immediately with value 1 (to report failure).
2a8d363a
AD
4223@end defmac
4224
4225If you use a reentrant parser, you can optionally pass additional
4226parameter information to it in a reentrant way. To do so, use the
4227declaration @code{%parse-param}:
4228
feeb0eda 4229@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4230@findex %parse-param
feeb0eda 4231Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4232additional @code{yyparse} argument.
4233The @var{argument-declaration} is used when declaring
feeb0eda
PE
4234functions or prototypes. The last identifier in
4235@var{argument-declaration} must be the argument name.
2a8d363a
AD
4236@end deffn
4237
4238Here's an example. Write this in the parser:
4239
4240@example
feeb0eda
PE
4241%parse-param @{int *nastiness@}
4242%parse-param @{int *randomness@}
2a8d363a
AD
4243@end example
4244
4245@noindent
4246Then call the parser like this:
4247
4248@example
4249@{
4250 int nastiness, randomness;
4251 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4252 value = yyparse (&nastiness, &randomness);
4253 @dots{}
4254@}
4255@end example
4256
4257@noindent
4258In the grammar actions, use expressions like this to refer to the data:
4259
4260@example
4261exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4262@end example
4263
bfa74976 4264
342b8b6e 4265@node Lexical
bfa74976
RS
4266@section The Lexical Analyzer Function @code{yylex}
4267@findex yylex
4268@cindex lexical analyzer
4269
4270The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4271the input stream and returns them to the parser. Bison does not create
4272this function automatically; you must write it so that @code{yyparse} can
4273call it. The function is sometimes referred to as a lexical scanner.
4274
4275In simple programs, @code{yylex} is often defined at the end of the Bison
4276grammar file. If @code{yylex} is defined in a separate source file, you
4277need to arrange for the token-type macro definitions to be available there.
4278To do this, use the @samp{-d} option when you run Bison, so that it will
4279write these macro definitions into a separate header file
4280@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4281that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4282
4283@menu
4284* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4285* Token Values:: How @code{yylex} must return the semantic value
4286 of the token it has read.
95923bd6 4287* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4288 (line number, etc.) of the token, if the
4289 actions want that.
4290* Pure Calling:: How the calling convention differs
4291 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4292@end menu
4293
342b8b6e 4294@node Calling Convention
bfa74976
RS
4295@subsection Calling Convention for @code{yylex}
4296
72d2299c
PE
4297The value that @code{yylex} returns must be the positive numeric code
4298for the type of token it has just found; a zero or negative value
4299signifies end-of-input.
bfa74976
RS
4300
4301When a token is referred to in the grammar rules by a name, that name
4302in the parser file becomes a C macro whose definition is the proper
4303numeric code for that token type. So @code{yylex} can use the name
4304to indicate that type. @xref{Symbols}.
4305
4306When a token is referred to in the grammar rules by a character literal,
4307the numeric code for that character is also the code for the token type.
72d2299c
PE
4308So @code{yylex} can simply return that character code, possibly converted
4309to @code{unsigned char} to avoid sign-extension. The null character
4310must not be used this way, because its code is zero and that
bfa74976
RS
4311signifies end-of-input.
4312
4313Here is an example showing these things:
4314
4315@example
13863333
AD
4316int
4317yylex (void)
bfa74976
RS
4318@{
4319 @dots{}
72d2299c 4320 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4321 return 0;
4322 @dots{}
4323 if (c == '+' || c == '-')
72d2299c 4324 return c; /* Assume token type for `+' is '+'. */
bfa74976 4325 @dots{}
72d2299c 4326 return INT; /* Return the type of the token. */
bfa74976
RS
4327 @dots{}
4328@}
4329@end example
4330
4331@noindent
4332This interface has been designed so that the output from the @code{lex}
4333utility can be used without change as the definition of @code{yylex}.
4334
931c7513
RS
4335If the grammar uses literal string tokens, there are two ways that
4336@code{yylex} can determine the token type codes for them:
4337
4338@itemize @bullet
4339@item
4340If the grammar defines symbolic token names as aliases for the
4341literal string tokens, @code{yylex} can use these symbolic names like
4342all others. In this case, the use of the literal string tokens in
4343the grammar file has no effect on @code{yylex}.
4344
4345@item
9ecbd125 4346@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4347table. The index of the token in the table is the token type's code.
9ecbd125 4348The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4349double-quote, the token's characters, and another double-quote. The
4350token's characters are not escaped in any way; they appear verbatim in
4351the contents of the string in the table.
4352
4353Here's code for looking up a token in @code{yytname}, assuming that the
4354characters of the token are stored in @code{token_buffer}.
4355
4356@smallexample
4357for (i = 0; i < YYNTOKENS; i++)
4358 @{
4359 if (yytname[i] != 0
4360 && yytname[i][0] == '"'
68449b3a
PE
4361 && ! strncmp (yytname[i] + 1, token_buffer,
4362 strlen (token_buffer))
931c7513
RS
4363 && yytname[i][strlen (token_buffer) + 1] == '"'
4364 && yytname[i][strlen (token_buffer) + 2] == 0)
4365 break;
4366 @}
4367@end smallexample
4368
4369The @code{yytname} table is generated only if you use the
8c9a50be 4370@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4371@end itemize
4372
342b8b6e 4373@node Token Values
bfa74976
RS
4374@subsection Semantic Values of Tokens
4375
4376@vindex yylval
14ded682 4377In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4378be stored into the global variable @code{yylval}. When you are using
4379just one data type for semantic values, @code{yylval} has that type.
4380Thus, if the type is @code{int} (the default), you might write this in
4381@code{yylex}:
4382
4383@example
4384@group
4385 @dots{}
72d2299c
PE
4386 yylval = value; /* Put value onto Bison stack. */
4387 return INT; /* Return the type of the token. */
bfa74976
RS
4388 @dots{}
4389@end group
4390@end example
4391
4392When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4393made from the @code{%union} declaration (@pxref{Union Decl, ,The
4394Collection of Value Types}). So when you store a token's value, you
4395must use the proper member of the union. If the @code{%union}
4396declaration looks like this:
bfa74976
RS
4397
4398@example
4399@group
4400%union @{
4401 int intval;
4402 double val;
4403 symrec *tptr;
4404@}
4405@end group
4406@end example
4407
4408@noindent
4409then the code in @code{yylex} might look like this:
4410
4411@example
4412@group
4413 @dots{}
72d2299c
PE
4414 yylval.intval = value; /* Put value onto Bison stack. */
4415 return INT; /* Return the type of the token. */
bfa74976
RS
4416 @dots{}
4417@end group
4418@end example
4419
95923bd6
AD
4420@node Token Locations
4421@subsection Textual Locations of Tokens
bfa74976
RS
4422
4423@vindex yylloc
847bf1f5
AD
4424If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4425Tracking Locations}) in actions to keep track of the
89cab50d
AD
4426textual locations of tokens and groupings, then you must provide this
4427information in @code{yylex}. The function @code{yyparse} expects to
4428find the textual location of a token just parsed in the global variable
4429@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4430variable.
4431
4432By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4433initialize the members that are going to be used by the actions. The
4434four members are called @code{first_line}, @code{first_column},
4435@code{last_line} and @code{last_column}. Note that the use of this
4436feature makes the parser noticeably slower.
bfa74976
RS
4437
4438@tindex YYLTYPE
4439The data type of @code{yylloc} has the name @code{YYLTYPE}.
4440
342b8b6e 4441@node Pure Calling
c656404a 4442@subsection Calling Conventions for Pure Parsers
bfa74976 4443
8c9a50be 4444When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4445pure, reentrant parser, the global communication variables @code{yylval}
4446and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4447Parser}.) In such parsers the two global variables are replaced by
4448pointers passed as arguments to @code{yylex}. You must declare them as
4449shown here, and pass the information back by storing it through those
4450pointers.
bfa74976
RS
4451
4452@example
13863333
AD
4453int
4454yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4455@{
4456 @dots{}
4457 *lvalp = value; /* Put value onto Bison stack. */
4458 return INT; /* Return the type of the token. */
4459 @dots{}
4460@}
4461@end example
4462
4463If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4464textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4465this case, omit the second argument; @code{yylex} will be called with
4466only one argument.
4467
e425e872 4468
2a8d363a
AD
4469If you wish to pass the additional parameter data to @code{yylex}, use
4470@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4471Function}).
e425e872 4472
feeb0eda 4473@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4474@findex %lex-param
feeb0eda
PE
4475Declare that @code{argument-declaration} is an additional @code{yylex}
4476argument declaration.
2a8d363a 4477@end deffn
e425e872 4478
2a8d363a 4479For instance:
e425e872
RS
4480
4481@example
feeb0eda
PE
4482%parse-param @{int *nastiness@}
4483%lex-param @{int *nastiness@}
4484%parse-param @{int *randomness@}
e425e872
RS
4485@end example
4486
4487@noindent
2a8d363a 4488results in the following signature:
e425e872
RS
4489
4490@example
2a8d363a
AD
4491int yylex (int *nastiness);
4492int yyparse (int *nastiness, int *randomness);
e425e872
RS
4493@end example
4494
2a8d363a 4495If @code{%pure-parser} is added:
c656404a
RS
4496
4497@example
2a8d363a
AD
4498int yylex (YYSTYPE *lvalp, int *nastiness);
4499int yyparse (int *nastiness, int *randomness);
c656404a
RS
4500@end example
4501
2a8d363a
AD
4502@noindent
4503and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4504
2a8d363a
AD
4505@example
4506int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4507int yyparse (int *nastiness, int *randomness);
4508@end example
931c7513 4509
342b8b6e 4510@node Error Reporting
bfa74976
RS
4511@section The Error Reporting Function @code{yyerror}
4512@cindex error reporting function
4513@findex yyerror
4514@cindex parse error
4515@cindex syntax error
4516
6e649e65 4517The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4518whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4519action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4520macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4521in Actions}).
bfa74976
RS
4522
4523The Bison parser expects to report the error by calling an error
4524reporting function named @code{yyerror}, which you must supply. It is
4525called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4526receives one argument. For a syntax error, the string is normally
4527@w{@code{"syntax error"}}.
bfa74976 4528
2a8d363a
AD
4529@findex %error-verbose
4530If you invoke the directive @code{%error-verbose} in the Bison
4531declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4532Section}), then Bison provides a more verbose and specific error message
6e649e65 4533string instead of just plain @w{@code{"syntax error"}}.
bfa74976
RS
4534
4535The parser can detect one other kind of error: stack overflow. This
4536happens when the input contains constructions that are very deeply
4537nested. It isn't likely you will encounter this, since the Bison
4538parser extends its stack automatically up to a very large limit. But
4539if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
4540fashion, except that the argument string is @w{@code{"parser stack
4541overflow"}}.
4542
4543The following definition suffices in simple programs:
4544
4545@example
4546@group
13863333 4547void
38a92d50 4548yyerror (char const *s)
bfa74976
RS
4549@{
4550@end group
4551@group
4552 fprintf (stderr, "%s\n", s);
4553@}
4554@end group
4555@end example
4556
4557After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4558error recovery if you have written suitable error recovery grammar rules
4559(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4560immediately return 1.
4561
93724f13 4562Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4563an access to the current location.
4564This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4565parsers, but not for the Yacc parser, for historical reasons. I.e., if
4566@samp{%locations %pure-parser} is passed then the prototypes for
4567@code{yyerror} are:
4568
4569@example
38a92d50
PE
4570void yyerror (char const *msg); /* Yacc parsers. */
4571void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4572@end example
4573
feeb0eda 4574If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4575
4576@example
b317297e
PE
4577void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4578void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4579@end example
4580
fa7e68c3 4581Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4582convention for absolutely pure parsers, i.e., when the calling
4583convention of @code{yylex} @emph{and} the calling convention of
4584@code{%pure-parser} are pure. I.e.:
4585
4586@example
4587/* Location tracking. */
4588%locations
4589/* Pure yylex. */
4590%pure-parser
feeb0eda 4591%lex-param @{int *nastiness@}
2a8d363a 4592/* Pure yyparse. */
feeb0eda
PE
4593%parse-param @{int *nastiness@}
4594%parse-param @{int *randomness@}
2a8d363a
AD
4595@end example
4596
4597@noindent
4598results in the following signatures for all the parser kinds:
4599
4600@example
4601int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4602int yyparse (int *nastiness, int *randomness);
93724f13
AD
4603void yyerror (YYLTYPE *locp,
4604 int *nastiness, int *randomness,
38a92d50 4605 char const *msg);
2a8d363a
AD
4606@end example
4607
1c0c3e95 4608@noindent
38a92d50
PE
4609The prototypes are only indications of how the code produced by Bison
4610uses @code{yyerror}. Bison-generated code always ignores the returned
4611value, so @code{yyerror} can return any type, including @code{void}.
4612Also, @code{yyerror} can be a variadic function; that is why the
4613message is always passed last.
4614
4615Traditionally @code{yyerror} returns an @code{int} that is always
4616ignored, but this is purely for historical reasons, and @code{void} is
4617preferable since it more accurately describes the return type for
4618@code{yyerror}.
93724f13 4619
bfa74976
RS
4620@vindex yynerrs
4621The variable @code{yynerrs} contains the number of syntax errors
4622encountered so far. Normally this variable is global; but if you
704a47c4
AD
4623request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4624then it is a local variable which only the actions can access.
bfa74976 4625
342b8b6e 4626@node Action Features
bfa74976
RS
4627@section Special Features for Use in Actions
4628@cindex summary, action features
4629@cindex action features summary
4630
4631Here is a table of Bison constructs, variables and macros that
4632are useful in actions.
4633
18b519c0 4634@deffn {Variable} $$
bfa74976
RS
4635Acts like a variable that contains the semantic value for the
4636grouping made by the current rule. @xref{Actions}.
18b519c0 4637@end deffn
bfa74976 4638
18b519c0 4639@deffn {Variable} $@var{n}
bfa74976
RS
4640Acts like a variable that contains the semantic value for the
4641@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4642@end deffn
bfa74976 4643
18b519c0 4644@deffn {Variable} $<@var{typealt}>$
bfa74976 4645Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4646specified by the @code{%union} declaration. @xref{Action Types, ,Data
4647Types of Values in Actions}.
18b519c0 4648@end deffn
bfa74976 4649
18b519c0 4650@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4651Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4652union specified by the @code{%union} declaration.
e0c471a9 4653@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4654@end deffn
bfa74976 4655
18b519c0 4656@deffn {Macro} YYABORT;
bfa74976
RS
4657Return immediately from @code{yyparse}, indicating failure.
4658@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4659@end deffn
bfa74976 4660
18b519c0 4661@deffn {Macro} YYACCEPT;
bfa74976
RS
4662Return immediately from @code{yyparse}, indicating success.
4663@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4664@end deffn
bfa74976 4665
18b519c0 4666@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4667@findex YYBACKUP
4668Unshift a token. This macro is allowed only for rules that reduce
4669a single value, and only when there is no look-ahead token.
c827f760 4670It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4671It installs a look-ahead token with token type @var{token} and
4672semantic value @var{value}; then it discards the value that was
4673going to be reduced by this rule.
4674
4675If the macro is used when it is not valid, such as when there is
4676a look-ahead token already, then it reports a syntax error with
4677a message @samp{cannot back up} and performs ordinary error
4678recovery.
4679
4680In either case, the rest of the action is not executed.
18b519c0 4681@end deffn
bfa74976 4682
18b519c0 4683@deffn {Macro} YYEMPTY
bfa74976
RS
4684@vindex YYEMPTY
4685Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4686@end deffn
bfa74976 4687
18b519c0 4688@deffn {Macro} YYERROR;
bfa74976
RS
4689@findex YYERROR
4690Cause an immediate syntax error. This statement initiates error
4691recovery just as if the parser itself had detected an error; however, it
4692does not call @code{yyerror}, and does not print any message. If you
4693want to print an error message, call @code{yyerror} explicitly before
4694the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4695@end deffn
bfa74976 4696
18b519c0 4697@deffn {Macro} YYRECOVERING
bfa74976
RS
4698This macro stands for an expression that has the value 1 when the parser
4699is recovering from a syntax error, and 0 the rest of the time.
4700@xref{Error Recovery}.
18b519c0 4701@end deffn
bfa74976 4702
18b519c0 4703@deffn {Variable} yychar
bfa74976
RS
4704Variable containing the current look-ahead token. (In a pure parser,
4705this is actually a local variable within @code{yyparse}.) When there is
4706no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4707@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4708@end deffn
bfa74976 4709
18b519c0 4710@deffn {Macro} yyclearin;
bfa74976
RS
4711Discard the current look-ahead token. This is useful primarily in
4712error rules. @xref{Error Recovery}.
18b519c0 4713@end deffn
bfa74976 4714
18b519c0 4715@deffn {Macro} yyerrok;
bfa74976 4716Resume generating error messages immediately for subsequent syntax
13863333 4717errors. This is useful primarily in error rules.
bfa74976 4718@xref{Error Recovery}.
18b519c0 4719@end deffn
bfa74976 4720
18b519c0 4721@deffn {Value} @@$
847bf1f5 4722@findex @@$
95923bd6 4723Acts like a structure variable containing information on the textual location
847bf1f5
AD
4724of the grouping made by the current rule. @xref{Locations, ,
4725Tracking Locations}.
bfa74976 4726
847bf1f5
AD
4727@c Check if those paragraphs are still useful or not.
4728
4729@c @example
4730@c struct @{
4731@c int first_line, last_line;
4732@c int first_column, last_column;
4733@c @};
4734@c @end example
4735
4736@c Thus, to get the starting line number of the third component, you would
4737@c use @samp{@@3.first_line}.
bfa74976 4738
847bf1f5
AD
4739@c In order for the members of this structure to contain valid information,
4740@c you must make @code{yylex} supply this information about each token.
4741@c If you need only certain members, then @code{yylex} need only fill in
4742@c those members.
bfa74976 4743
847bf1f5 4744@c The use of this feature makes the parser noticeably slower.
18b519c0 4745@end deffn
847bf1f5 4746
18b519c0 4747@deffn {Value} @@@var{n}
847bf1f5 4748@findex @@@var{n}
95923bd6 4749Acts like a structure variable containing information on the textual location
847bf1f5
AD
4750of the @var{n}th component of the current rule. @xref{Locations, ,
4751Tracking Locations}.
18b519c0 4752@end deffn
bfa74976 4753
bfa74976 4754
342b8b6e 4755@node Algorithm
13863333
AD
4756@chapter The Bison Parser Algorithm
4757@cindex Bison parser algorithm
bfa74976
RS
4758@cindex algorithm of parser
4759@cindex shifting
4760@cindex reduction
4761@cindex parser stack
4762@cindex stack, parser
4763
4764As Bison reads tokens, it pushes them onto a stack along with their
4765semantic values. The stack is called the @dfn{parser stack}. Pushing a
4766token is traditionally called @dfn{shifting}.
4767
4768For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4769@samp{3} to come. The stack will have four elements, one for each token
4770that was shifted.
4771
4772But the stack does not always have an element for each token read. When
4773the last @var{n} tokens and groupings shifted match the components of a
4774grammar rule, they can be combined according to that rule. This is called
4775@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4776single grouping whose symbol is the result (left hand side) of that rule.
4777Running the rule's action is part of the process of reduction, because this
4778is what computes the semantic value of the resulting grouping.
4779
4780For example, if the infix calculator's parser stack contains this:
4781
4782@example
47831 + 5 * 3
4784@end example
4785
4786@noindent
4787and the next input token is a newline character, then the last three
4788elements can be reduced to 15 via the rule:
4789
4790@example
4791expr: expr '*' expr;
4792@end example
4793
4794@noindent
4795Then the stack contains just these three elements:
4796
4797@example
47981 + 15
4799@end example
4800
4801@noindent
4802At this point, another reduction can be made, resulting in the single value
480316. Then the newline token can be shifted.
4804
4805The parser tries, by shifts and reductions, to reduce the entire input down
4806to a single grouping whose symbol is the grammar's start-symbol
4807(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4808
4809This kind of parser is known in the literature as a bottom-up parser.
4810
4811@menu
4812* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4813* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4814* Precedence:: Operator precedence works by resolving conflicts.
4815* Contextual Precedence:: When an operator's precedence depends on context.
4816* Parser States:: The parser is a finite-state-machine with stack.
4817* Reduce/Reduce:: When two rules are applicable in the same situation.
4818* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4819* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
4820* Stack Overflow:: What happens when stack gets full. How to avoid it.
4821@end menu
4822
342b8b6e 4823@node Look-Ahead
bfa74976
RS
4824@section Look-Ahead Tokens
4825@cindex look-ahead token
4826
4827The Bison parser does @emph{not} always reduce immediately as soon as the
4828last @var{n} tokens and groupings match a rule. This is because such a
4829simple strategy is inadequate to handle most languages. Instead, when a
4830reduction is possible, the parser sometimes ``looks ahead'' at the next
4831token in order to decide what to do.
4832
4833When a token is read, it is not immediately shifted; first it becomes the
4834@dfn{look-ahead token}, which is not on the stack. Now the parser can
4835perform one or more reductions of tokens and groupings on the stack, while
4836the look-ahead token remains off to the side. When no more reductions
4837should take place, the look-ahead token is shifted onto the stack. This
4838does not mean that all possible reductions have been done; depending on the
4839token type of the look-ahead token, some rules may choose to delay their
4840application.
4841
4842Here is a simple case where look-ahead is needed. These three rules define
4843expressions which contain binary addition operators and postfix unary
4844factorial operators (@samp{!}), and allow parentheses for grouping.
4845
4846@example
4847@group
4848expr: term '+' expr
4849 | term
4850 ;
4851@end group
4852
4853@group
4854term: '(' expr ')'
4855 | term '!'
4856 | NUMBER
4857 ;
4858@end group
4859@end example
4860
4861Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
4862should be done? If the following token is @samp{)}, then the first three
4863tokens must be reduced to form an @code{expr}. This is the only valid
4864course, because shifting the @samp{)} would produce a sequence of symbols
4865@w{@code{term ')'}}, and no rule allows this.
4866
4867If the following token is @samp{!}, then it must be shifted immediately so
4868that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
4869parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
4870@code{expr}. It would then be impossible to shift the @samp{!} because
4871doing so would produce on the stack the sequence of symbols @code{expr
4872'!'}. No rule allows that sequence.
4873
4874@vindex yychar
4875The current look-ahead token is stored in the variable @code{yychar}.
4876@xref{Action Features, ,Special Features for Use in Actions}.
4877
342b8b6e 4878@node Shift/Reduce
bfa74976
RS
4879@section Shift/Reduce Conflicts
4880@cindex conflicts
4881@cindex shift/reduce conflicts
4882@cindex dangling @code{else}
4883@cindex @code{else}, dangling
4884
4885Suppose we are parsing a language which has if-then and if-then-else
4886statements, with a pair of rules like this:
4887
4888@example
4889@group
4890if_stmt:
4891 IF expr THEN stmt
4892 | IF expr THEN stmt ELSE stmt
4893 ;
4894@end group
4895@end example
4896
4897@noindent
4898Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
4899terminal symbols for specific keyword tokens.
4900
4901When the @code{ELSE} token is read and becomes the look-ahead token, the
4902contents of the stack (assuming the input is valid) are just right for
4903reduction by the first rule. But it is also legitimate to shift the
4904@code{ELSE}, because that would lead to eventual reduction by the second
4905rule.
4906
4907This situation, where either a shift or a reduction would be valid, is
4908called a @dfn{shift/reduce conflict}. Bison is designed to resolve
4909these conflicts by choosing to shift, unless otherwise directed by
4910operator precedence declarations. To see the reason for this, let's
4911contrast it with the other alternative.
4912
4913Since the parser prefers to shift the @code{ELSE}, the result is to attach
4914the else-clause to the innermost if-statement, making these two inputs
4915equivalent:
4916
4917@example
4918if x then if y then win (); else lose;
4919
4920if x then do; if y then win (); else lose; end;
4921@end example
4922
4923But if the parser chose to reduce when possible rather than shift, the
4924result would be to attach the else-clause to the outermost if-statement,
4925making these two inputs equivalent:
4926
4927@example
4928if x then if y then win (); else lose;
4929
4930if x then do; if y then win (); end; else lose;
4931@end example
4932
4933The conflict exists because the grammar as written is ambiguous: either
4934parsing of the simple nested if-statement is legitimate. The established
4935convention is that these ambiguities are resolved by attaching the
4936else-clause to the innermost if-statement; this is what Bison accomplishes
4937by choosing to shift rather than reduce. (It would ideally be cleaner to
4938write an unambiguous grammar, but that is very hard to do in this case.)
4939This particular ambiguity was first encountered in the specifications of
4940Algol 60 and is called the ``dangling @code{else}'' ambiguity.
4941
4942To avoid warnings from Bison about predictable, legitimate shift/reduce
4943conflicts, use the @code{%expect @var{n}} declaration. There will be no
4944warning as long as the number of shift/reduce conflicts is exactly @var{n}.
4945@xref{Expect Decl, ,Suppressing Conflict Warnings}.
4946
4947The definition of @code{if_stmt} above is solely to blame for the
4948conflict, but the conflict does not actually appear without additional
4949rules. Here is a complete Bison input file that actually manifests the
4950conflict:
4951
4952@example
4953@group
4954%token IF THEN ELSE variable
4955%%
4956@end group
4957@group
4958stmt: expr
4959 | if_stmt
4960 ;
4961@end group
4962
4963@group
4964if_stmt:
4965 IF expr THEN stmt
4966 | IF expr THEN stmt ELSE stmt
4967 ;
4968@end group
4969
4970expr: variable
4971 ;
4972@end example
4973
342b8b6e 4974@node Precedence
bfa74976
RS
4975@section Operator Precedence
4976@cindex operator precedence
4977@cindex precedence of operators
4978
4979Another situation where shift/reduce conflicts appear is in arithmetic
4980expressions. Here shifting is not always the preferred resolution; the
4981Bison declarations for operator precedence allow you to specify when to
4982shift and when to reduce.
4983
4984@menu
4985* Why Precedence:: An example showing why precedence is needed.
4986* Using Precedence:: How to specify precedence in Bison grammars.
4987* Precedence Examples:: How these features are used in the previous example.
4988* How Precedence:: How they work.
4989@end menu
4990
342b8b6e 4991@node Why Precedence
bfa74976
RS
4992@subsection When Precedence is Needed
4993
4994Consider the following ambiguous grammar fragment (ambiguous because the
4995input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
4996
4997@example
4998@group
4999expr: expr '-' expr
5000 | expr '*' expr
5001 | expr '<' expr
5002 | '(' expr ')'
5003 @dots{}
5004 ;
5005@end group
5006@end example
5007
5008@noindent
5009Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5010should it reduce them via the rule for the subtraction operator? It
5011depends on the next token. Of course, if the next token is @samp{)}, we
5012must reduce; shifting is invalid because no single rule can reduce the
5013token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5014the next token is @samp{*} or @samp{<}, we have a choice: either
5015shifting or reduction would allow the parse to complete, but with
5016different results.
5017
5018To decide which one Bison should do, we must consider the results. If
5019the next operator token @var{op} is shifted, then it must be reduced
5020first in order to permit another opportunity to reduce the difference.
5021The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5022hand, if the subtraction is reduced before shifting @var{op}, the result
5023is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5024reduce should depend on the relative precedence of the operators
5025@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5026@samp{<}.
bfa74976
RS
5027
5028@cindex associativity
5029What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5030@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5031operators we prefer the former, which is called @dfn{left association}.
5032The latter alternative, @dfn{right association}, is desirable for
5033assignment operators. The choice of left or right association is a
5034matter of whether the parser chooses to shift or reduce when the stack
5035contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5036makes right-associativity.
bfa74976 5037
342b8b6e 5038@node Using Precedence
bfa74976
RS
5039@subsection Specifying Operator Precedence
5040@findex %left
5041@findex %right
5042@findex %nonassoc
5043
5044Bison allows you to specify these choices with the operator precedence
5045declarations @code{%left} and @code{%right}. Each such declaration
5046contains a list of tokens, which are operators whose precedence and
5047associativity is being declared. The @code{%left} declaration makes all
5048those operators left-associative and the @code{%right} declaration makes
5049them right-associative. A third alternative is @code{%nonassoc}, which
5050declares that it is a syntax error to find the same operator twice ``in a
5051row''.
5052
5053The relative precedence of different operators is controlled by the
5054order in which they are declared. The first @code{%left} or
5055@code{%right} declaration in the file declares the operators whose
5056precedence is lowest, the next such declaration declares the operators
5057whose precedence is a little higher, and so on.
5058
342b8b6e 5059@node Precedence Examples
bfa74976
RS
5060@subsection Precedence Examples
5061
5062In our example, we would want the following declarations:
5063
5064@example
5065%left '<'
5066%left '-'
5067%left '*'
5068@end example
5069
5070In a more complete example, which supports other operators as well, we
5071would declare them in groups of equal precedence. For example, @code{'+'} is
5072declared with @code{'-'}:
5073
5074@example
5075%left '<' '>' '=' NE LE GE
5076%left '+' '-'
5077%left '*' '/'
5078@end example
5079
5080@noindent
5081(Here @code{NE} and so on stand for the operators for ``not equal''
5082and so on. We assume that these tokens are more than one character long
5083and therefore are represented by names, not character literals.)
5084
342b8b6e 5085@node How Precedence
bfa74976
RS
5086@subsection How Precedence Works
5087
5088The first effect of the precedence declarations is to assign precedence
5089levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5090precedence levels to certain rules: each rule gets its precedence from
5091the last terminal symbol mentioned in the components. (You can also
5092specify explicitly the precedence of a rule. @xref{Contextual
5093Precedence, ,Context-Dependent Precedence}.)
5094
5095Finally, the resolution of conflicts works by comparing the precedence
5096of the rule being considered with that of the look-ahead token. If the
5097token's precedence is higher, the choice is to shift. If the rule's
5098precedence is higher, the choice is to reduce. If they have equal
5099precedence, the choice is made based on the associativity of that
5100precedence level. The verbose output file made by @samp{-v}
5101(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5102resolved.
bfa74976
RS
5103
5104Not all rules and not all tokens have precedence. If either the rule or
5105the look-ahead token has no precedence, then the default is to shift.
5106
342b8b6e 5107@node Contextual Precedence
bfa74976
RS
5108@section Context-Dependent Precedence
5109@cindex context-dependent precedence
5110@cindex unary operator precedence
5111@cindex precedence, context-dependent
5112@cindex precedence, unary operator
5113@findex %prec
5114
5115Often the precedence of an operator depends on the context. This sounds
5116outlandish at first, but it is really very common. For example, a minus
5117sign typically has a very high precedence as a unary operator, and a
5118somewhat lower precedence (lower than multiplication) as a binary operator.
5119
5120The Bison precedence declarations, @code{%left}, @code{%right} and
5121@code{%nonassoc}, can only be used once for a given token; so a token has
5122only one precedence declared in this way. For context-dependent
5123precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5124modifier for rules.
bfa74976
RS
5125
5126The @code{%prec} modifier declares the precedence of a particular rule by
5127specifying a terminal symbol whose precedence should be used for that rule.
5128It's not necessary for that symbol to appear otherwise in the rule. The
5129modifier's syntax is:
5130
5131@example
5132%prec @var{terminal-symbol}
5133@end example
5134
5135@noindent
5136and it is written after the components of the rule. Its effect is to
5137assign the rule the precedence of @var{terminal-symbol}, overriding
5138the precedence that would be deduced for it in the ordinary way. The
5139altered rule precedence then affects how conflicts involving that rule
5140are resolved (@pxref{Precedence, ,Operator Precedence}).
5141
5142Here is how @code{%prec} solves the problem of unary minus. First, declare
5143a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5144are no tokens of this type, but the symbol serves to stand for its
5145precedence:
5146
5147@example
5148@dots{}
5149%left '+' '-'
5150%left '*'
5151%left UMINUS
5152@end example
5153
5154Now the precedence of @code{UMINUS} can be used in specific rules:
5155
5156@example
5157@group
5158exp: @dots{}
5159 | exp '-' exp
5160 @dots{}
5161 | '-' exp %prec UMINUS
5162@end group
5163@end example
5164
91d2c560 5165@ifset defaultprec
39a06c25
PE
5166If you forget to append @code{%prec UMINUS} to the rule for unary
5167minus, Bison silently assumes that minus has its usual precedence.
5168This kind of problem can be tricky to debug, since one typically
5169discovers the mistake only by testing the code.
5170
22fccf95 5171The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5172this kind of problem systematically. It causes rules that lack a
5173@code{%prec} modifier to have no precedence, even if the last terminal
5174symbol mentioned in their components has a declared precedence.
5175
22fccf95 5176If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5177for all rules that participate in precedence conflict resolution.
5178Then you will see any shift/reduce conflict until you tell Bison how
5179to resolve it, either by changing your grammar or by adding an
5180explicit precedence. This will probably add declarations to the
5181grammar, but it helps to protect against incorrect rule precedences.
5182
22fccf95
PE
5183The effect of @code{%no-default-prec;} can be reversed by giving
5184@code{%default-prec;}, which is the default.
91d2c560 5185@end ifset
39a06c25 5186
342b8b6e 5187@node Parser States
bfa74976
RS
5188@section Parser States
5189@cindex finite-state machine
5190@cindex parser state
5191@cindex state (of parser)
5192
5193The function @code{yyparse} is implemented using a finite-state machine.
5194The values pushed on the parser stack are not simply token type codes; they
5195represent the entire sequence of terminal and nonterminal symbols at or
5196near the top of the stack. The current state collects all the information
5197about previous input which is relevant to deciding what to do next.
5198
5199Each time a look-ahead token is read, the current parser state together
5200with the type of look-ahead token are looked up in a table. This table
5201entry can say, ``Shift the look-ahead token.'' In this case, it also
5202specifies the new parser state, which is pushed onto the top of the
5203parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5204This means that a certain number of tokens or groupings are taken off
5205the top of the stack, and replaced by one grouping. In other words,
5206that number of states are popped from the stack, and one new state is
5207pushed.
5208
5209There is one other alternative: the table can say that the look-ahead token
5210is erroneous in the current state. This causes error processing to begin
5211(@pxref{Error Recovery}).
5212
342b8b6e 5213@node Reduce/Reduce
bfa74976
RS
5214@section Reduce/Reduce Conflicts
5215@cindex reduce/reduce conflict
5216@cindex conflicts, reduce/reduce
5217
5218A reduce/reduce conflict occurs if there are two or more rules that apply
5219to the same sequence of input. This usually indicates a serious error
5220in the grammar.
5221
5222For example, here is an erroneous attempt to define a sequence
5223of zero or more @code{word} groupings.
5224
5225@example
5226sequence: /* empty */
5227 @{ printf ("empty sequence\n"); @}
5228 | maybeword
5229 | sequence word
5230 @{ printf ("added word %s\n", $2); @}
5231 ;
5232
5233maybeword: /* empty */
5234 @{ printf ("empty maybeword\n"); @}
5235 | word
5236 @{ printf ("single word %s\n", $1); @}
5237 ;
5238@end example
5239
5240@noindent
5241The error is an ambiguity: there is more than one way to parse a single
5242@code{word} into a @code{sequence}. It could be reduced to a
5243@code{maybeword} and then into a @code{sequence} via the second rule.
5244Alternatively, nothing-at-all could be reduced into a @code{sequence}
5245via the first rule, and this could be combined with the @code{word}
5246using the third rule for @code{sequence}.
5247
5248There is also more than one way to reduce nothing-at-all into a
5249@code{sequence}. This can be done directly via the first rule,
5250or indirectly via @code{maybeword} and then the second rule.
5251
5252You might think that this is a distinction without a difference, because it
5253does not change whether any particular input is valid or not. But it does
5254affect which actions are run. One parsing order runs the second rule's
5255action; the other runs the first rule's action and the third rule's action.
5256In this example, the output of the program changes.
5257
5258Bison resolves a reduce/reduce conflict by choosing to use the rule that
5259appears first in the grammar, but it is very risky to rely on this. Every
5260reduce/reduce conflict must be studied and usually eliminated. Here is the
5261proper way to define @code{sequence}:
5262
5263@example
5264sequence: /* empty */
5265 @{ printf ("empty sequence\n"); @}
5266 | sequence word
5267 @{ printf ("added word %s\n", $2); @}
5268 ;
5269@end example
5270
5271Here is another common error that yields a reduce/reduce conflict:
5272
5273@example
5274sequence: /* empty */
5275 | sequence words
5276 | sequence redirects
5277 ;
5278
5279words: /* empty */
5280 | words word
5281 ;
5282
5283redirects:/* empty */
5284 | redirects redirect
5285 ;
5286@end example
5287
5288@noindent
5289The intention here is to define a sequence which can contain either
5290@code{word} or @code{redirect} groupings. The individual definitions of
5291@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5292three together make a subtle ambiguity: even an empty input can be parsed
5293in infinitely many ways!
5294
5295Consider: nothing-at-all could be a @code{words}. Or it could be two
5296@code{words} in a row, or three, or any number. It could equally well be a
5297@code{redirects}, or two, or any number. Or it could be a @code{words}
5298followed by three @code{redirects} and another @code{words}. And so on.
5299
5300Here are two ways to correct these rules. First, to make it a single level
5301of sequence:
5302
5303@example
5304sequence: /* empty */
5305 | sequence word
5306 | sequence redirect
5307 ;
5308@end example
5309
5310Second, to prevent either a @code{words} or a @code{redirects}
5311from being empty:
5312
5313@example
5314sequence: /* empty */
5315 | sequence words
5316 | sequence redirects
5317 ;
5318
5319words: word
5320 | words word
5321 ;
5322
5323redirects:redirect
5324 | redirects redirect
5325 ;
5326@end example
5327
342b8b6e 5328@node Mystery Conflicts
bfa74976
RS
5329@section Mysterious Reduce/Reduce Conflicts
5330
5331Sometimes reduce/reduce conflicts can occur that don't look warranted.
5332Here is an example:
5333
5334@example
5335@group
5336%token ID
5337
5338%%
5339def: param_spec return_spec ','
5340 ;
5341param_spec:
5342 type
5343 | name_list ':' type
5344 ;
5345@end group
5346@group
5347return_spec:
5348 type
5349 | name ':' type
5350 ;
5351@end group
5352@group
5353type: ID
5354 ;
5355@end group
5356@group
5357name: ID
5358 ;
5359name_list:
5360 name
5361 | name ',' name_list
5362 ;
5363@end group
5364@end example
5365
5366It would seem that this grammar can be parsed with only a single token
13863333 5367of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5368a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5369@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5370
c827f760
PE
5371@cindex @acronym{LR}(1)
5372@cindex @acronym{LALR}(1)
bfa74976 5373However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5374@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5375an @code{ID}
bfa74976
RS
5376at the beginning of a @code{param_spec} and likewise at the beginning of
5377a @code{return_spec}, are similar enough that Bison assumes they are the
5378same. They appear similar because the same set of rules would be
5379active---the rule for reducing to a @code{name} and that for reducing to
5380a @code{type}. Bison is unable to determine at that stage of processing
5381that the rules would require different look-ahead tokens in the two
5382contexts, so it makes a single parser state for them both. Combining
5383the two contexts causes a conflict later. In parser terminology, this
c827f760 5384occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5385
5386In general, it is better to fix deficiencies than to document them. But
5387this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5388generators that can handle @acronym{LR}(1) grammars are hard to write
5389and tend to
bfa74976
RS
5390produce parsers that are very large. In practice, Bison is more useful
5391as it is now.
5392
5393When the problem arises, you can often fix it by identifying the two
a220f555
MA
5394parser states that are being confused, and adding something to make them
5395look distinct. In the above example, adding one rule to
bfa74976
RS
5396@code{return_spec} as follows makes the problem go away:
5397
5398@example
5399@group
5400%token BOGUS
5401@dots{}
5402%%
5403@dots{}
5404return_spec:
5405 type
5406 | name ':' type
5407 /* This rule is never used. */
5408 | ID BOGUS
5409 ;
5410@end group
5411@end example
5412
5413This corrects the problem because it introduces the possibility of an
5414additional active rule in the context after the @code{ID} at the beginning of
5415@code{return_spec}. This rule is not active in the corresponding context
5416in a @code{param_spec}, so the two contexts receive distinct parser states.
5417As long as the token @code{BOGUS} is never generated by @code{yylex},
5418the added rule cannot alter the way actual input is parsed.
5419
5420In this particular example, there is another way to solve the problem:
5421rewrite the rule for @code{return_spec} to use @code{ID} directly
5422instead of via @code{name}. This also causes the two confusing
5423contexts to have different sets of active rules, because the one for
5424@code{return_spec} activates the altered rule for @code{return_spec}
5425rather than the one for @code{name}.
5426
5427@example
5428param_spec:
5429 type
5430 | name_list ':' type
5431 ;
5432return_spec:
5433 type
5434 | ID ':' type
5435 ;
5436@end example
5437
fae437e8 5438@node Generalized LR Parsing
c827f760
PE
5439@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5440@cindex @acronym{GLR} parsing
5441@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5442@cindex ambiguous grammars
5443@cindex non-deterministic parsing
5444
fae437e8
AD
5445Bison produces @emph{deterministic} parsers that choose uniquely
5446when to reduce and which reduction to apply
8dd162d3 5447based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5448As a result, normal Bison handles a proper subset of the family of
5449context-free languages.
fae437e8 5450Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5451sequence of reductions cannot have deterministic parsers in this sense.
5452The same is true of languages that require more than one symbol of
8dd162d3 5453look-ahead, since the parser lacks the information necessary to make a
676385e2 5454decision at the point it must be made in a shift-reduce parser.
fae437e8 5455Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5456there are languages where Bison's particular choice of how to
5457summarize the input seen so far loses necessary information.
5458
5459When you use the @samp{%glr-parser} declaration in your grammar file,
5460Bison generates a parser that uses a different algorithm, called
c827f760
PE
5461Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5462parser uses the same basic
676385e2
PH
5463algorithm for parsing as an ordinary Bison parser, but behaves
5464differently in cases where there is a shift-reduce conflict that has not
fae437e8 5465been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5466reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5467situation, it
fae437e8 5468effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5469shift or reduction. These parsers then proceed as usual, consuming
5470tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5471and split further, with the result that instead of a sequence of states,
c827f760 5472a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5473
5474In effect, each stack represents a guess as to what the proper parse
5475is. Additional input may indicate that a guess was wrong, in which case
5476the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5477actions generated in each stack are saved, rather than being executed
676385e2 5478immediately. When a stack disappears, its saved semantic actions never
fae437e8 5479get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5480their sets of semantic actions are both saved with the state that
5481results from the reduction. We say that two stacks are equivalent
fae437e8 5482when they both represent the same sequence of states,
676385e2
PH
5483and each pair of corresponding states represents a
5484grammar symbol that produces the same segment of the input token
5485stream.
5486
5487Whenever the parser makes a transition from having multiple
c827f760 5488states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5489algorithm, after resolving and executing the saved-up actions.
5490At this transition, some of the states on the stack will have semantic
5491values that are sets (actually multisets) of possible actions. The
5492parser tries to pick one of the actions by first finding one whose rule
5493has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5494declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5495precedence, but there the same merging function is declared for both
fae437e8 5496rules by the @samp{%merge} declaration,
676385e2
PH
5497Bison resolves and evaluates both and then calls the merge function on
5498the result. Otherwise, it reports an ambiguity.
5499
c827f760
PE
5500It is possible to use a data structure for the @acronym{GLR} parsing tree that
5501permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5502size of the input), any unambiguous (not necessarily
5503@acronym{LALR}(1)) grammar in
fae437e8 5504quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5505context-free grammar in cubic worst-case time. However, Bison currently
5506uses a simpler data structure that requires time proportional to the
5507length of the input times the maximum number of stacks required for any
5508prefix of the input. Thus, really ambiguous or non-deterministic
5509grammars can require exponential time and space to process. Such badly
5510behaving examples, however, are not generally of practical interest.
5511Usually, non-determinism in a grammar is local---the parser is ``in
5512doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5513structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5514grammar, in particular, it is only slightly slower than with the default
5515Bison parser.
5516
fa7e68c3 5517For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5518Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5519Generalised @acronym{LR} Parsers, Royal Holloway, University of
5520London, Department of Computer Science, TR-00-12,
5521@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5522(2000-12-24).
5523
342b8b6e 5524@node Stack Overflow
bfa74976
RS
5525@section Stack Overflow, and How to Avoid It
5526@cindex stack overflow
5527@cindex parser stack overflow
5528@cindex overflow of parser stack
5529
5530The Bison parser stack can overflow if too many tokens are shifted and
5531not reduced. When this happens, the parser function @code{yyparse}
5532returns a nonzero value, pausing only to call @code{yyerror} to report
5533the overflow.
5534
c827f760 5535Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5536usually results from using a right recursion instead of a left
5537recursion, @xref{Recursion, ,Recursive Rules}.
5538
bfa74976
RS
5539@vindex YYMAXDEPTH
5540By defining the macro @code{YYMAXDEPTH}, you can control how deep the
5541parser stack can become before a stack overflow occurs. Define the
5542macro with a value that is an integer. This value is the maximum number
5543of tokens that can be shifted (and not reduced) before overflow.
5544It must be a constant expression whose value is known at compile time.
5545
5546The stack space allowed is not necessarily allocated. If you specify a
5547large value for @code{YYMAXDEPTH}, the parser actually allocates a small
5548stack at first, and then makes it bigger by stages as needed. This
5549increasing allocation happens automatically and silently. Therefore,
5550you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5551space for ordinary inputs that do not need much stack.
5552
5553@cindex default stack limit
5554The default value of @code{YYMAXDEPTH}, if you do not define it, is
555510000.
5556
5557@vindex YYINITDEPTH
5558You can control how much stack is allocated initially by defining the
5559macro @code{YYINITDEPTH}. This value too must be a compile-time
5560constant integer. The default is 200.
5561
d1a1114f 5562@c FIXME: C++ output.
c827f760
PE
5563Because of semantical differences between C and C++, the
5564@acronym{LALR}(1) parsers
d1a1114f
AD
5565in C produced by Bison by compiled as C++ cannot grow. In this precise
5566case (compiling a C parser as C++) you are suggested to grow
5567@code{YYINITDEPTH}. In the near future, a C++ output output will be
5568provided which addresses this issue.
5569
342b8b6e 5570@node Error Recovery
bfa74976
RS
5571@chapter Error Recovery
5572@cindex error recovery
5573@cindex recovery from errors
5574
6e649e65 5575It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5576error. For example, a compiler should recover sufficiently to parse the
5577rest of the input file and check it for errors; a calculator should accept
5578another expression.
5579
5580In a simple interactive command parser where each input is one line, it may
5581be sufficient to allow @code{yyparse} to return 1 on error and have the
5582caller ignore the rest of the input line when that happens (and then call
5583@code{yyparse} again). But this is inadequate for a compiler, because it
5584forgets all the syntactic context leading up to the error. A syntax error
5585deep within a function in the compiler input should not cause the compiler
5586to treat the following line like the beginning of a source file.
5587
5588@findex error
5589You can define how to recover from a syntax error by writing rules to
5590recognize the special token @code{error}. This is a terminal symbol that
5591is always defined (you need not declare it) and reserved for error
5592handling. The Bison parser generates an @code{error} token whenever a
5593syntax error happens; if you have provided a rule to recognize this token
13863333 5594in the current context, the parse can continue.
bfa74976
RS
5595
5596For example:
5597
5598@example
5599stmnts: /* empty string */
5600 | stmnts '\n'
5601 | stmnts exp '\n'
5602 | stmnts error '\n'
5603@end example
5604
5605The fourth rule in this example says that an error followed by a newline
5606makes a valid addition to any @code{stmnts}.
5607
5608What happens if a syntax error occurs in the middle of an @code{exp}? The
5609error recovery rule, interpreted strictly, applies to the precise sequence
5610of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5611the middle of an @code{exp}, there will probably be some additional tokens
5612and subexpressions on the stack after the last @code{stmnts}, and there
5613will be tokens to read before the next newline. So the rule is not
5614applicable in the ordinary way.
5615
5616But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5617the semantic context and part of the input. First it discards states
5618and objects from the stack until it gets back to a state in which the
bfa74976 5619@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5620already parsed are discarded, back to the last complete @code{stmnts}.)
5621At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5622look-ahead token is not acceptable to be shifted next, the parser reads
5623tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5624this example, Bison reads and discards input until the next newline so
5625that the fourth rule can apply. Note that discarded symbols are
5626possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5627Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5628
5629The choice of error rules in the grammar is a choice of strategies for
5630error recovery. A simple and useful strategy is simply to skip the rest of
5631the current input line or current statement if an error is detected:
5632
5633@example
72d2299c 5634stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5635@end example
5636
5637It is also useful to recover to the matching close-delimiter of an
5638opening-delimiter that has already been parsed. Otherwise the
5639close-delimiter will probably appear to be unmatched, and generate another,
5640spurious error message:
5641
5642@example
5643primary: '(' expr ')'
5644 | '(' error ')'
5645 @dots{}
5646 ;
5647@end example
5648
5649Error recovery strategies are necessarily guesses. When they guess wrong,
5650one syntax error often leads to another. In the above example, the error
5651recovery rule guesses that an error is due to bad input within one
5652@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5653middle of a valid @code{stmnt}. After the error recovery rule recovers
5654from the first error, another syntax error will be found straightaway,
5655since the text following the spurious semicolon is also an invalid
5656@code{stmnt}.
5657
5658To prevent an outpouring of error messages, the parser will output no error
5659message for another syntax error that happens shortly after the first; only
5660after three consecutive input tokens have been successfully shifted will
5661error messages resume.
5662
5663Note that rules which accept the @code{error} token may have actions, just
5664as any other rules can.
5665
5666@findex yyerrok
5667You can make error messages resume immediately by using the macro
5668@code{yyerrok} in an action. If you do this in the error rule's action, no
5669error messages will be suppressed. This macro requires no arguments;
5670@samp{yyerrok;} is a valid C statement.
5671
5672@findex yyclearin
5673The previous look-ahead token is reanalyzed immediately after an error. If
5674this is unacceptable, then the macro @code{yyclearin} may be used to clear
5675this token. Write the statement @samp{yyclearin;} in the error rule's
5676action.
5677
6e649e65 5678For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5679called that advances the input stream to some point where parsing should
5680once again commence. The next symbol returned by the lexical scanner is
5681probably correct. The previous look-ahead token ought to be discarded
5682with @samp{yyclearin;}.
5683
5684@vindex YYRECOVERING
5685The macro @code{YYRECOVERING} stands for an expression that has the
5686value 1 when the parser is recovering from a syntax error, and 0 the
5687rest of the time. A value of 1 indicates that error messages are
5688currently suppressed for new syntax errors.
5689
342b8b6e 5690@node Context Dependency
bfa74976
RS
5691@chapter Handling Context Dependencies
5692
5693The Bison paradigm is to parse tokens first, then group them into larger
5694syntactic units. In many languages, the meaning of a token is affected by
5695its context. Although this violates the Bison paradigm, certain techniques
5696(known as @dfn{kludges}) may enable you to write Bison parsers for such
5697languages.
5698
5699@menu
5700* Semantic Tokens:: Token parsing can depend on the semantic context.
5701* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5702* Tie-in Recovery:: Lexical tie-ins have implications for how
5703 error recovery rules must be written.
5704@end menu
5705
5706(Actually, ``kludge'' means any technique that gets its job done but is
5707neither clean nor robust.)
5708
342b8b6e 5709@node Semantic Tokens
bfa74976
RS
5710@section Semantic Info in Token Types
5711
5712The C language has a context dependency: the way an identifier is used
5713depends on what its current meaning is. For example, consider this:
5714
5715@example
5716foo (x);
5717@end example
5718
5719This looks like a function call statement, but if @code{foo} is a typedef
5720name, then this is actually a declaration of @code{x}. How can a Bison
5721parser for C decide how to parse this input?
5722
c827f760 5723The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5724@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5725identifier, it looks up the current declaration of the identifier in order
5726to decide which token type to return: @code{TYPENAME} if the identifier is
5727declared as a typedef, @code{IDENTIFIER} otherwise.
5728
5729The grammar rules can then express the context dependency by the choice of
5730token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5731but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5732@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5733is @emph{not} significant, such as in declarations that can shadow a
5734typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5735accepted---there is one rule for each of the two token types.
5736
5737This technique is simple to use if the decision of which kinds of
5738identifiers to allow is made at a place close to where the identifier is
5739parsed. But in C this is not always so: C allows a declaration to
5740redeclare a typedef name provided an explicit type has been specified
5741earlier:
5742
5743@example
5744typedef int foo, bar, lose;
5745static foo (bar); /* @r{redeclare @code{bar} as static variable} */
5746static int foo (lose); /* @r{redeclare @code{foo} as function} */
5747@end example
5748
5749Unfortunately, the name being declared is separated from the declaration
5750construct itself by a complicated syntactic structure---the ``declarator''.
5751
9ecbd125 5752As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5753all the nonterminal names changed: once for parsing a declaration in
5754which a typedef name can be redefined, and once for parsing a
5755declaration in which that can't be done. Here is a part of the
5756duplication, with actions omitted for brevity:
bfa74976
RS
5757
5758@example
5759initdcl:
5760 declarator maybeasm '='
5761 init
5762 | declarator maybeasm
5763 ;
5764
5765notype_initdcl:
5766 notype_declarator maybeasm '='
5767 init
5768 | notype_declarator maybeasm
5769 ;
5770@end example
5771
5772@noindent
5773Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5774cannot. The distinction between @code{declarator} and
5775@code{notype_declarator} is the same sort of thing.
5776
5777There is some similarity between this technique and a lexical tie-in
5778(described next), in that information which alters the lexical analysis is
5779changed during parsing by other parts of the program. The difference is
5780here the information is global, and is used for other purposes in the
5781program. A true lexical tie-in has a special-purpose flag controlled by
5782the syntactic context.
5783
342b8b6e 5784@node Lexical Tie-ins
bfa74976
RS
5785@section Lexical Tie-ins
5786@cindex lexical tie-in
5787
5788One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5789which is set by Bison actions, whose purpose is to alter the way tokens are
5790parsed.
5791
5792For example, suppose we have a language vaguely like C, but with a special
5793construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5794an expression in parentheses in which all integers are hexadecimal. In
5795particular, the token @samp{a1b} must be treated as an integer rather than
5796as an identifier if it appears in that context. Here is how you can do it:
5797
5798@example
5799@group
5800%@{
38a92d50
PE
5801 int hexflag;
5802 int yylex (void);
5803 void yyerror (char const *);
bfa74976
RS
5804%@}
5805%%
5806@dots{}
5807@end group
5808@group
5809expr: IDENTIFIER
5810 | constant
5811 | HEX '('
5812 @{ hexflag = 1; @}
5813 expr ')'
5814 @{ hexflag = 0;
5815 $$ = $4; @}
5816 | expr '+' expr
5817 @{ $$ = make_sum ($1, $3); @}
5818 @dots{}
5819 ;
5820@end group
5821
5822@group
5823constant:
5824 INTEGER
5825 | STRING
5826 ;
5827@end group
5828@end example
5829
5830@noindent
5831Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5832it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5833with letters are parsed as integers if possible.
5834
342b8b6e
AD
5835The declaration of @code{hexflag} shown in the prologue of the parser file
5836is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 5837You must also write the code in @code{yylex} to obey the flag.
bfa74976 5838
342b8b6e 5839@node Tie-in Recovery
bfa74976
RS
5840@section Lexical Tie-ins and Error Recovery
5841
5842Lexical tie-ins make strict demands on any error recovery rules you have.
5843@xref{Error Recovery}.
5844
5845The reason for this is that the purpose of an error recovery rule is to
5846abort the parsing of one construct and resume in some larger construct.
5847For example, in C-like languages, a typical error recovery rule is to skip
5848tokens until the next semicolon, and then start a new statement, like this:
5849
5850@example
5851stmt: expr ';'
5852 | IF '(' expr ')' stmt @{ @dots{} @}
5853 @dots{}
5854 error ';'
5855 @{ hexflag = 0; @}
5856 ;
5857@end example
5858
5859If there is a syntax error in the middle of a @samp{hex (@var{expr})}
5860construct, this error rule will apply, and then the action for the
5861completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
5862remain set for the entire rest of the input, or until the next @code{hex}
5863keyword, causing identifiers to be misinterpreted as integers.
5864
5865To avoid this problem the error recovery rule itself clears @code{hexflag}.
5866
5867There may also be an error recovery rule that works within expressions.
5868For example, there could be a rule which applies within parentheses
5869and skips to the close-parenthesis:
5870
5871@example
5872@group
5873expr: @dots{}
5874 | '(' expr ')'
5875 @{ $$ = $2; @}
5876 | '(' error ')'
5877 @dots{}
5878@end group
5879@end example
5880
5881If this rule acts within the @code{hex} construct, it is not going to abort
5882that construct (since it applies to an inner level of parentheses within
5883the construct). Therefore, it should not clear the flag: the rest of
5884the @code{hex} construct should be parsed with the flag still in effect.
5885
5886What if there is an error recovery rule which might abort out of the
5887@code{hex} construct or might not, depending on circumstances? There is no
5888way you can write the action to determine whether a @code{hex} construct is
5889being aborted or not. So if you are using a lexical tie-in, you had better
5890make sure your error recovery rules are not of this kind. Each rule must
5891be such that you can be sure that it always will, or always won't, have to
5892clear the flag.
5893
ec3bc396
AD
5894@c ================================================== Debugging Your Parser
5895
342b8b6e 5896@node Debugging
bfa74976 5897@chapter Debugging Your Parser
ec3bc396
AD
5898
5899Developing a parser can be a challenge, especially if you don't
5900understand the algorithm (@pxref{Algorithm, ,The Bison Parser
5901Algorithm}). Even so, sometimes a detailed description of the automaton
5902can help (@pxref{Understanding, , Understanding Your Parser}), or
5903tracing the execution of the parser can give some insight on why it
5904behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
5905
5906@menu
5907* Understanding:: Understanding the structure of your parser.
5908* Tracing:: Tracing the execution of your parser.
5909@end menu
5910
5911@node Understanding
5912@section Understanding Your Parser
5913
5914As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
5915Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
5916frequent than one would hope), looking at this automaton is required to
5917tune or simply fix a parser. Bison provides two different
c827f760 5918representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
5919file).
5920
5921The textual file is generated when the options @option{--report} or
5922@option{--verbose} are specified, see @xref{Invocation, , Invoking
5923Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
5924the parser output file name, and adding @samp{.output} instead.
5925Therefore, if the input file is @file{foo.y}, then the parser file is
5926called @file{foo.tab.c} by default. As a consequence, the verbose
5927output file is called @file{foo.output}.
5928
5929The following grammar file, @file{calc.y}, will be used in the sequel:
5930
5931@example
5932%token NUM STR
5933%left '+' '-'
5934%left '*'
5935%%
5936exp: exp '+' exp
5937 | exp '-' exp
5938 | exp '*' exp
5939 | exp '/' exp
5940 | NUM
5941 ;
5942useless: STR;
5943%%
5944@end example
5945
88bce5a2
AD
5946@command{bison} reports:
5947
5948@example
5949calc.y: warning: 1 useless nonterminal and 1 useless rule
5950calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
5951calc.y:11.10-12: warning: useless rule: useless: STR
5952calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
5953@end example
5954
5955When given @option{--report=state}, in addition to @file{calc.tab.c}, it
5956creates a file @file{calc.output} with contents detailed below. The
5957order of the output and the exact presentation might vary, but the
5958interpretation is the same.
ec3bc396
AD
5959
5960The first section includes details on conflicts that were solved thanks
5961to precedence and/or associativity:
5962
5963@example
5964Conflict in state 8 between rule 2 and token '+' resolved as reduce.
5965Conflict in state 8 between rule 2 and token '-' resolved as reduce.
5966Conflict in state 8 between rule 2 and token '*' resolved as shift.
5967@exdent @dots{}
5968@end example
5969
5970@noindent
5971The next section lists states that still have conflicts.
5972
5973@example
5a99098d
PE
5974State 8 conflicts: 1 shift/reduce
5975State 9 conflicts: 1 shift/reduce
5976State 10 conflicts: 1 shift/reduce
5977State 11 conflicts: 4 shift/reduce
ec3bc396
AD
5978@end example
5979
5980@noindent
5981@cindex token, useless
5982@cindex useless token
5983@cindex nonterminal, useless
5984@cindex useless nonterminal
5985@cindex rule, useless
5986@cindex useless rule
5987The next section reports useless tokens, nonterminal and rules. Useless
5988nonterminals and rules are removed in order to produce a smaller parser,
5989but useless tokens are preserved, since they might be used by the
5990scanner (note the difference between ``useless'' and ``not used''
5991below):
5992
5993@example
5994Useless nonterminals:
5995 useless
5996
5997Terminals which are not used:
5998 STR
5999
6000Useless rules:
6001#6 useless: STR;
6002@end example
6003
6004@noindent
6005The next section reproduces the exact grammar that Bison used:
6006
6007@example
6008Grammar
6009
6010 Number, Line, Rule
88bce5a2 6011 0 5 $accept -> exp $end
ec3bc396
AD
6012 1 5 exp -> exp '+' exp
6013 2 6 exp -> exp '-' exp
6014 3 7 exp -> exp '*' exp
6015 4 8 exp -> exp '/' exp
6016 5 9 exp -> NUM
6017@end example
6018
6019@noindent
6020and reports the uses of the symbols:
6021
6022@example
6023Terminals, with rules where they appear
6024
88bce5a2 6025$end (0) 0
ec3bc396
AD
6026'*' (42) 3
6027'+' (43) 1
6028'-' (45) 2
6029'/' (47) 4
6030error (256)
6031NUM (258) 5
6032
6033Nonterminals, with rules where they appear
6034
88bce5a2 6035$accept (8)
ec3bc396
AD
6036 on left: 0
6037exp (9)
6038 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6039@end example
6040
6041@noindent
6042@cindex item
6043@cindex pointed rule
6044@cindex rule, pointed
6045Bison then proceeds onto the automaton itself, describing each state
6046with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6047item is a production rule together with a point (marked by @samp{.})
6048that the input cursor.
6049
6050@example
6051state 0
6052
88bce5a2 6053 $accept -> . exp $ (rule 0)
ec3bc396 6054
2a8d363a 6055 NUM shift, and go to state 1
ec3bc396 6056
2a8d363a 6057 exp go to state 2
ec3bc396
AD
6058@end example
6059
6060This reads as follows: ``state 0 corresponds to being at the very
6061beginning of the parsing, in the initial rule, right before the start
6062symbol (here, @code{exp}). When the parser returns to this state right
6063after having reduced a rule that produced an @code{exp}, the control
6064flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6065symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6066the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6067look-ahead triggers a syntax error.''
ec3bc396
AD
6068
6069@cindex core, item set
6070@cindex item set core
6071@cindex kernel, item set
6072@cindex item set core
6073Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6074report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6075at the beginning of any rule deriving an @code{exp}. By default Bison
6076reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6077you want to see more detail you can invoke @command{bison} with
6078@option{--report=itemset} to list all the items, include those that can
6079be derived:
6080
6081@example
6082state 0
6083
88bce5a2 6084 $accept -> . exp $ (rule 0)
ec3bc396
AD
6085 exp -> . exp '+' exp (rule 1)
6086 exp -> . exp '-' exp (rule 2)
6087 exp -> . exp '*' exp (rule 3)
6088 exp -> . exp '/' exp (rule 4)
6089 exp -> . NUM (rule 5)
6090
6091 NUM shift, and go to state 1
6092
6093 exp go to state 2
6094@end example
6095
6096@noindent
6097In the state 1...
6098
6099@example
6100state 1
6101
6102 exp -> NUM . (rule 5)
6103
2a8d363a 6104 $default reduce using rule 5 (exp)
ec3bc396
AD
6105@end example
6106
6107@noindent
8dd162d3 6108the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6109(@samp{$default}), the parser will reduce it. If it was coming from
6110state 0, then, after this reduction it will return to state 0, and will
6111jump to state 2 (@samp{exp: go to state 2}).
6112
6113@example
6114state 2
6115
88bce5a2 6116 $accept -> exp . $ (rule 0)
ec3bc396
AD
6117 exp -> exp . '+' exp (rule 1)
6118 exp -> exp . '-' exp (rule 2)
6119 exp -> exp . '*' exp (rule 3)
6120 exp -> exp . '/' exp (rule 4)
6121
2a8d363a
AD
6122 $ shift, and go to state 3
6123 '+' shift, and go to state 4
6124 '-' shift, and go to state 5
6125 '*' shift, and go to state 6
6126 '/' shift, and go to state 7
ec3bc396
AD
6127@end example
6128
6129@noindent
6130In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6131because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6132@samp{+}, it will be shifted on the parse stack, and the automaton
6133control will jump to state 4, corresponding to the item @samp{exp -> exp
6134'+' . exp}. Since there is no default action, any other token than
6e649e65 6135those listed above will trigger a syntax error.
ec3bc396
AD
6136
6137The state 3 is named the @dfn{final state}, or the @dfn{accepting
6138state}:
6139
6140@example
6141state 3
6142
88bce5a2 6143 $accept -> exp $ . (rule 0)
ec3bc396 6144
2a8d363a 6145 $default accept
ec3bc396
AD
6146@end example
6147
6148@noindent
6149the initial rule is completed (the start symbol and the end
6150of input were read), the parsing exits successfully.
6151
6152The interpretation of states 4 to 7 is straightforward, and is left to
6153the reader.
6154
6155@example
6156state 4
6157
6158 exp -> exp '+' . exp (rule 1)
6159
2a8d363a 6160 NUM shift, and go to state 1
ec3bc396 6161
2a8d363a 6162 exp go to state 8
ec3bc396
AD
6163
6164state 5
6165
6166 exp -> exp '-' . exp (rule 2)
6167
2a8d363a 6168 NUM shift, and go to state 1
ec3bc396 6169
2a8d363a 6170 exp go to state 9
ec3bc396
AD
6171
6172state 6
6173
6174 exp -> exp '*' . exp (rule 3)
6175
2a8d363a 6176 NUM shift, and go to state 1
ec3bc396 6177
2a8d363a 6178 exp go to state 10
ec3bc396
AD
6179
6180state 7
6181
6182 exp -> exp '/' . exp (rule 4)
6183
2a8d363a 6184 NUM shift, and go to state 1
ec3bc396 6185
2a8d363a 6186 exp go to state 11
ec3bc396
AD
6187@end example
6188
5a99098d
PE
6189As was announced in beginning of the report, @samp{State 8 conflicts:
61901 shift/reduce}:
ec3bc396
AD
6191
6192@example
6193state 8
6194
6195 exp -> exp . '+' exp (rule 1)
6196 exp -> exp '+' exp . (rule 1)
6197 exp -> exp . '-' exp (rule 2)
6198 exp -> exp . '*' exp (rule 3)
6199 exp -> exp . '/' exp (rule 4)
6200
2a8d363a
AD
6201 '*' shift, and go to state 6
6202 '/' shift, and go to state 7
ec3bc396 6203
2a8d363a
AD
6204 '/' [reduce using rule 1 (exp)]
6205 $default reduce using rule 1 (exp)
ec3bc396
AD
6206@end example
6207
8dd162d3 6208Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6209either shifting (and going to state 7), or reducing rule 1. The
6210conflict means that either the grammar is ambiguous, or the parser lacks
6211information to make the right decision. Indeed the grammar is
6212ambiguous, as, since we did not specify the precedence of @samp{/}, the
6213sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6214NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6215NUM}, which corresponds to reducing rule 1.
6216
c827f760 6217Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6218arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6219Shift/Reduce Conflicts}. Discarded actions are reported in between
6220square brackets.
6221
6222Note that all the previous states had a single possible action: either
6223shifting the next token and going to the corresponding state, or
6224reducing a single rule. In the other cases, i.e., when shifting
6225@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6226possible, the look-ahead is required to select the action. State 8 is
6227one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6228is shifting, otherwise the action is reducing rule 1. In other words,
6229the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6230look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6231precedence than @samp{+}. More generally, some items are eligible only
6232with some set of possible look-ahead tokens. When run with
6233@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6234
6235@example
6236state 8
6237
6238 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6239 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6240 exp -> exp . '-' exp (rule 2)
6241 exp -> exp . '*' exp (rule 3)
6242 exp -> exp . '/' exp (rule 4)
6243
6244 '*' shift, and go to state 6
6245 '/' shift, and go to state 7
6246
6247 '/' [reduce using rule 1 (exp)]
6248 $default reduce using rule 1 (exp)
6249@end example
6250
6251The remaining states are similar:
6252
6253@example
6254state 9
6255
6256 exp -> exp . '+' exp (rule 1)
6257 exp -> exp . '-' exp (rule 2)
6258 exp -> exp '-' exp . (rule 2)
6259 exp -> exp . '*' exp (rule 3)
6260 exp -> exp . '/' exp (rule 4)
6261
2a8d363a
AD
6262 '*' shift, and go to state 6
6263 '/' shift, and go to state 7
ec3bc396 6264
2a8d363a
AD
6265 '/' [reduce using rule 2 (exp)]
6266 $default reduce using rule 2 (exp)
ec3bc396
AD
6267
6268state 10
6269
6270 exp -> exp . '+' exp (rule 1)
6271 exp -> exp . '-' exp (rule 2)
6272 exp -> exp . '*' exp (rule 3)
6273 exp -> exp '*' exp . (rule 3)
6274 exp -> exp . '/' exp (rule 4)
6275
2a8d363a 6276 '/' shift, and go to state 7
ec3bc396 6277
2a8d363a
AD
6278 '/' [reduce using rule 3 (exp)]
6279 $default reduce using rule 3 (exp)
ec3bc396
AD
6280
6281state 11
6282
6283 exp -> exp . '+' exp (rule 1)
6284 exp -> exp . '-' exp (rule 2)
6285 exp -> exp . '*' exp (rule 3)
6286 exp -> exp . '/' exp (rule 4)
6287 exp -> exp '/' exp . (rule 4)
6288
2a8d363a
AD
6289 '+' shift, and go to state 4
6290 '-' shift, and go to state 5
6291 '*' shift, and go to state 6
6292 '/' shift, and go to state 7
ec3bc396 6293
2a8d363a
AD
6294 '+' [reduce using rule 4 (exp)]
6295 '-' [reduce using rule 4 (exp)]
6296 '*' [reduce using rule 4 (exp)]
6297 '/' [reduce using rule 4 (exp)]
6298 $default reduce using rule 4 (exp)
ec3bc396
AD
6299@end example
6300
6301@noindent
fa7e68c3
PE
6302Observe that state 11 contains conflicts not only due to the lack of
6303precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6304@samp{*}, but also because the
ec3bc396
AD
6305associativity of @samp{/} is not specified.
6306
6307
6308@node Tracing
6309@section Tracing Your Parser
bfa74976
RS
6310@findex yydebug
6311@cindex debugging
6312@cindex tracing the parser
6313
6314If a Bison grammar compiles properly but doesn't do what you want when it
6315runs, the @code{yydebug} parser-trace feature can help you figure out why.
6316
3ded9a63
AD
6317There are several means to enable compilation of trace facilities:
6318
6319@table @asis
6320@item the macro @code{YYDEBUG}
6321@findex YYDEBUG
6322Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6323parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6324@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6325YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6326Prologue}).
6327
6328@item the option @option{-t}, @option{--debug}
6329Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6330,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6331
6332@item the directive @samp{%debug}
6333@findex %debug
6334Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6335Declaration Summary}). This is a Bison extension, which will prove
6336useful when Bison will output parsers for languages that don't use a
c827f760
PE
6337preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6338you, this is
3ded9a63
AD
6339the preferred solution.
6340@end table
6341
6342We suggest that you always enable the debug option so that debugging is
6343always possible.
bfa74976 6344
02a81e05 6345The trace facility outputs messages with macro calls of the form
e2742e46 6346@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6347@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6348arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6349define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6350and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6351
6352Once you have compiled the program with trace facilities, the way to
6353request a trace is to store a nonzero value in the variable @code{yydebug}.
6354You can do this by making the C code do it (in @code{main}, perhaps), or
6355you can alter the value with a C debugger.
6356
6357Each step taken by the parser when @code{yydebug} is nonzero produces a
6358line or two of trace information, written on @code{stderr}. The trace
6359messages tell you these things:
6360
6361@itemize @bullet
6362@item
6363Each time the parser calls @code{yylex}, what kind of token was read.
6364
6365@item
6366Each time a token is shifted, the depth and complete contents of the
6367state stack (@pxref{Parser States}).
6368
6369@item
6370Each time a rule is reduced, which rule it is, and the complete contents
6371of the state stack afterward.
6372@end itemize
6373
6374To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6375produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6376Bison}). This file shows the meaning of each state in terms of
6377positions in various rules, and also what each state will do with each
6378possible input token. As you read the successive trace messages, you
6379can see that the parser is functioning according to its specification in
6380the listing file. Eventually you will arrive at the place where
6381something undesirable happens, and you will see which parts of the
6382grammar are to blame.
bfa74976
RS
6383
6384The parser file is a C program and you can use C debuggers on it, but it's
6385not easy to interpret what it is doing. The parser function is a
6386finite-state machine interpreter, and aside from the actions it executes
6387the same code over and over. Only the values of variables show where in
6388the grammar it is working.
6389
6390@findex YYPRINT
6391The debugging information normally gives the token type of each token
6392read, but not its semantic value. You can optionally define a macro
6393named @code{YYPRINT} to provide a way to print the value. If you define
6394@code{YYPRINT}, it should take three arguments. The parser will pass a
6395standard I/O stream, the numeric code for the token type, and the token
6396value (from @code{yylval}).
6397
6398Here is an example of @code{YYPRINT} suitable for the multi-function
6399calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6400
6401@smallexample
38a92d50
PE
6402%@{
6403 static void print_token_value (FILE *, int, YYSTYPE);
6404 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6405%@}
6406
6407@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6408
6409static void
831d3c99 6410print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6411@{
6412 if (type == VAR)
d3c4e709 6413 fprintf (file, "%s", value.tptr->name);
bfa74976 6414 else if (type == NUM)
d3c4e709 6415 fprintf (file, "%d", value.val);
bfa74976
RS
6416@}
6417@end smallexample
6418
ec3bc396
AD
6419@c ================================================= Invoking Bison
6420
342b8b6e 6421@node Invocation
bfa74976
RS
6422@chapter Invoking Bison
6423@cindex invoking Bison
6424@cindex Bison invocation
6425@cindex options for invoking Bison
6426
6427The usual way to invoke Bison is as follows:
6428
6429@example
6430bison @var{infile}
6431@end example
6432
6433Here @var{infile} is the grammar file name, which usually ends in
6434@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6435with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6436@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6437@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6438C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6439or @file{foo.y++}. Then, the output files will take an extension like
6440the given one as input (respectively @file{foo.tab.cpp} and
6441@file{foo.tab.c++}).
234a3be3
AD
6442This feature takes effect with all options that manipulate filenames like
6443@samp{-o} or @samp{-d}.
6444
6445For example :
6446
6447@example
6448bison -d @var{infile.yxx}
6449@end example
84163231 6450@noindent
72d2299c 6451will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6452
6453@example
b56471a6 6454bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6455@end example
84163231 6456@noindent
234a3be3
AD
6457will produce @file{output.c++} and @file{outfile.h++}.
6458
397ec073
PE
6459For compatibility with @acronym{POSIX}, the standard Bison
6460distribution also contains a shell script called @command{yacc} that
6461invokes Bison with the @option{-y} option.
6462
bfa74976 6463@menu
13863333 6464* Bison Options:: All the options described in detail,
c827f760 6465 in alphabetical order by short options.
bfa74976 6466* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6467* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6468@end menu
6469
342b8b6e 6470@node Bison Options
bfa74976
RS
6471@section Bison Options
6472
6473Bison supports both traditional single-letter options and mnemonic long
6474option names. Long option names are indicated with @samp{--} instead of
6475@samp{-}. Abbreviations for option names are allowed as long as they
6476are unique. When a long option takes an argument, like
6477@samp{--file-prefix}, connect the option name and the argument with
6478@samp{=}.
6479
6480Here is a list of options that can be used with Bison, alphabetized by
6481short option. It is followed by a cross key alphabetized by long
6482option.
6483
89cab50d
AD
6484@c Please, keep this ordered as in `bison --help'.
6485@noindent
6486Operations modes:
6487@table @option
6488@item -h
6489@itemx --help
6490Print a summary of the command-line options to Bison and exit.
bfa74976 6491
89cab50d
AD
6492@item -V
6493@itemx --version
6494Print the version number of Bison and exit.
bfa74976 6495
89cab50d
AD
6496@need 1750
6497@item -y
6498@itemx --yacc
89cab50d
AD
6499Equivalent to @samp{-o y.tab.c}; the parser output file is called
6500@file{y.tab.c}, and the other outputs are called @file{y.output} and
6501@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6502file name conventions. Thus, the following shell script can substitute
397ec073
PE
6503for Yacc, and the Bison distribution contains such a script for
6504compatibility with @acronym{POSIX}:
bfa74976 6505
89cab50d 6506@example
397ec073 6507#! /bin/sh
26e06a21 6508bison -y "$@@"
89cab50d
AD
6509@end example
6510@end table
6511
6512@noindent
6513Tuning the parser:
6514
6515@table @option
cd5bd6ac
AD
6516@item -S @var{file}
6517@itemx --skeleton=@var{file}
6518Specify the skeleton to use. You probably don't need this option unless
6519you are developing Bison.
6520
89cab50d
AD
6521@item -t
6522@itemx --debug
4947ebdb
PE
6523In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6524already defined, so that the debugging facilities are compiled.
ec3bc396 6525@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6526
6527@item --locations
d8988b2f 6528Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6529
6530@item -p @var{prefix}
6531@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6532Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6533@xref{Decl Summary}.
bfa74976
RS
6534
6535@item -l
6536@itemx --no-lines
6537Don't put any @code{#line} preprocessor commands in the parser file.
6538Ordinarily Bison puts them in the parser file so that the C compiler
6539and debuggers will associate errors with your source file, the
6540grammar file. This option causes them to associate errors with the
95e742f7 6541parser file, treating it as an independent source file in its own right.
bfa74976 6542
931c7513
RS
6543@item -n
6544@itemx --no-parser
d8988b2f 6545Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6546
89cab50d
AD
6547@item -k
6548@itemx --token-table
d8988b2f 6549Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6550@end table
bfa74976 6551
89cab50d
AD
6552@noindent
6553Adjust the output:
bfa74976 6554
89cab50d
AD
6555@table @option
6556@item -d
d8988b2f
AD
6557@itemx --defines
6558Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6559file containing macro definitions for the token type names defined in
4bfd5e4e 6560the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6561
342b8b6e 6562@item --defines=@var{defines-file}
d8988b2f 6563Same as above, but save in the file @var{defines-file}.
342b8b6e 6564
89cab50d
AD
6565@item -b @var{file-prefix}
6566@itemx --file-prefix=@var{prefix}
d8988b2f 6567Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6568for all Bison output file names. @xref{Decl Summary}.
bfa74976 6569
ec3bc396
AD
6570@item -r @var{things}
6571@itemx --report=@var{things}
6572Write an extra output file containing verbose description of the comma
6573separated list of @var{things} among:
6574
6575@table @code
6576@item state
6577Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6578@acronym{LALR} automaton.
ec3bc396 6579
8dd162d3 6580@item look-ahead
ec3bc396 6581Implies @code{state} and augments the description of the automaton with
8dd162d3 6582each rule's look-ahead set.
ec3bc396
AD
6583
6584@item itemset
6585Implies @code{state} and augments the description of the automaton with
6586the full set of items for each state, instead of its core only.
6587@end table
6588
6589For instance, on the following grammar
6590
bfa74976
RS
6591@item -v
6592@itemx --verbose
6deb4447
AD
6593Pretend that @code{%verbose} was specified, i.e, write an extra output
6594file containing verbose descriptions of the grammar and
72d2299c 6595parser. @xref{Decl Summary}.
bfa74976 6596
d8988b2f
AD
6597@item -o @var{filename}
6598@itemx --output=@var{filename}
6599Specify the @var{filename} for the parser file.
bfa74976 6600
d8988b2f
AD
6601The other output files' names are constructed from @var{filename} as
6602described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6603
6604@item -g
c827f760
PE
6605Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6606automaton computed by Bison. If the grammar file is @file{foo.y}, the
6607@acronym{VCG} output file will
342b8b6e
AD
6608be @file{foo.vcg}.
6609
6610@item --graph=@var{graph-file}
72d2299c
PE
6611The behavior of @var{--graph} is the same than @samp{-g}. The only
6612difference is that it has an optional argument which is the name of
342b8b6e 6613the output graph filename.
bfa74976
RS
6614@end table
6615
342b8b6e 6616@node Option Cross Key
bfa74976
RS
6617@section Option Cross Key
6618
6619Here is a list of options, alphabetized by long option, to help you find
6620the corresponding short option.
6621
6622@tex
6623\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6624
6625{\tt
6626\line{ --debug \leaderfill -t}
6627\line{ --defines \leaderfill -d}
6628\line{ --file-prefix \leaderfill -b}
342b8b6e 6629\line{ --graph \leaderfill -g}
ff51d159 6630\line{ --help \leaderfill -h}
bfa74976
RS
6631\line{ --name-prefix \leaderfill -p}
6632\line{ --no-lines \leaderfill -l}
931c7513 6633\line{ --no-parser \leaderfill -n}
d8988b2f 6634\line{ --output \leaderfill -o}
931c7513 6635\line{ --token-table \leaderfill -k}
bfa74976
RS
6636\line{ --verbose \leaderfill -v}
6637\line{ --version \leaderfill -V}
6638\line{ --yacc \leaderfill -y}
6639}
6640@end tex
6641
6642@ifinfo
6643@example
6644--debug -t
342b8b6e 6645--defines=@var{defines-file} -d
bfa74976 6646--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6647--graph=@var{graph-file} -d
ff51d159 6648--help -h
931c7513 6649--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6650--no-lines -l
931c7513 6651--no-parser -n
d8988b2f 6652--output=@var{outfile} -o @var{outfile}
931c7513 6653--token-table -k
bfa74976
RS
6654--verbose -v
6655--version -V
8c9a50be 6656--yacc -y
bfa74976
RS
6657@end example
6658@end ifinfo
6659
93dd49ab
PE
6660@node Yacc Library
6661@section Yacc Library
6662
6663The Yacc library contains default implementations of the
6664@code{yyerror} and @code{main} functions. These default
6665implementations are normally not useful, but @acronym{POSIX} requires
6666them. To use the Yacc library, link your program with the
6667@option{-ly} option. Note that Bison's implementation of the Yacc
6668library is distributed under the terms of the @acronym{GNU} General
6669Public License (@pxref{Copying}).
6670
6671If you use the Yacc library's @code{yyerror} function, you should
6672declare @code{yyerror} as follows:
6673
6674@example
6675int yyerror (char const *);
6676@end example
6677
6678Bison ignores the @code{int} value returned by this @code{yyerror}.
6679If you use the Yacc library's @code{main} function, your
6680@code{yyparse} function should have the following type signature:
6681
6682@example
6683int yyparse (void);
6684@end example
6685
d1a1114f
AD
6686@c ================================================= Invoking Bison
6687
6688@node FAQ
6689@chapter Frequently Asked Questions
6690@cindex frequently asked questions
6691@cindex questions
6692
6693Several questions about Bison come up occasionally. Here some of them
6694are addressed.
6695
6696@menu
6697* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 6698* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 6699* Strings are Destroyed:: @code{yylval} Loses Track of Strings
a06ea4aa 6700* C++ Parsers:: Compiling Parsers with C++ Compilers
2fa09258 6701* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
6702@end menu
6703
6704@node Parser Stack Overflow
6705@section Parser Stack Overflow
6706
6707@display
6708My parser returns with error with a @samp{parser stack overflow}
6709message. What can I do?
6710@end display
6711
6712This question is already addressed elsewhere, @xref{Recursion,
6713,Recursive Rules}.
6714
e64fec0a
PE
6715@node How Can I Reset the Parser
6716@section How Can I Reset the Parser
5b066063 6717
0e14ad77
PE
6718The following phenomenon has several symptoms, resulting in the
6719following typical questions:
5b066063
AD
6720
6721@display
6722I invoke @code{yyparse} several times, and on correct input it works
6723properly; but when a parse error is found, all the other calls fail
0e14ad77 6724too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
6725@end display
6726
6727@noindent
6728or
6729
6730@display
0e14ad77 6731My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
6732which case I run @code{yyparse} from @code{yyparse}. This fails
6733although I did specify I needed a @code{%pure-parser}.
6734@end display
6735
0e14ad77
PE
6736These problems typically come not from Bison itself, but from
6737Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
6738speed, they might not notice a change of input file. As a
6739demonstration, consider the following source file,
6740@file{first-line.l}:
6741
6742@verbatim
6743%{
6744#include <stdio.h>
6745#include <stdlib.h>
6746%}
6747%%
6748.*\n ECHO; return 1;
6749%%
6750int
0e14ad77 6751yyparse (char const *file)
5b066063
AD
6752{
6753 yyin = fopen (file, "r");
6754 if (!yyin)
6755 exit (2);
fa7e68c3 6756 /* One token only. */
5b066063 6757 yylex ();
0e14ad77 6758 if (fclose (yyin) != 0)
5b066063
AD
6759 exit (3);
6760 return 0;
6761}
6762
6763int
0e14ad77 6764main (void)
5b066063
AD
6765{
6766 yyparse ("input");
6767 yyparse ("input");
6768 return 0;
6769}
6770@end verbatim
6771
6772@noindent
6773If the file @file{input} contains
6774
6775@verbatim
6776input:1: Hello,
6777input:2: World!
6778@end verbatim
6779
6780@noindent
0e14ad77 6781then instead of getting the first line twice, you get:
5b066063
AD
6782
6783@example
6784$ @kbd{flex -ofirst-line.c first-line.l}
6785$ @kbd{gcc -ofirst-line first-line.c -ll}
6786$ @kbd{./first-line}
6787input:1: Hello,
6788input:2: World!
6789@end example
6790
0e14ad77
PE
6791Therefore, whenever you change @code{yyin}, you must tell the
6792Lex-generated scanner to discard its current buffer and switch to the
6793new one. This depends upon your implementation of Lex; see its
6794documentation for more. For Flex, it suffices to call
6795@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
6796Flex-generated scanner needs to read from several input streams to
6797handle features like include files, you might consider using Flex
6798functions like @samp{yy_switch_to_buffer} that manipulate multiple
6799input buffers.
5b066063 6800
b165c324
AD
6801If your Flex-generated scanner uses start conditions (@pxref{Start
6802conditions, , Start conditions, flex, The Flex Manual}), you might
6803also want to reset the scanner's state, i.e., go back to the initial
6804start condition, through a call to @samp{BEGIN (0)}.
6805
fef4cb51
AD
6806@node Strings are Destroyed
6807@section Strings are Destroyed
6808
6809@display
c7e441b4 6810My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
6811them. Instead of reporting @samp{"foo", "bar"}, it reports
6812@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
6813@end display
6814
6815This error is probably the single most frequent ``bug report'' sent to
6816Bison lists, but is only concerned with a misunderstanding of the role
6817of scanner. Consider the following Lex code:
6818
6819@verbatim
6820%{
6821#include <stdio.h>
6822char *yylval = NULL;
6823%}
6824%%
6825.* yylval = yytext; return 1;
6826\n /* IGNORE */
6827%%
6828int
6829main ()
6830{
fa7e68c3 6831 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
6832 char *fst = (yylex (), yylval);
6833 char *snd = (yylex (), yylval);
6834 printf ("\"%s\", \"%s\"\n", fst, snd);
6835 return 0;
6836}
6837@end verbatim
6838
6839If you compile and run this code, you get:
6840
6841@example
6842$ @kbd{flex -osplit-lines.c split-lines.l}
6843$ @kbd{gcc -osplit-lines split-lines.c -ll}
6844$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6845"one
6846two", "two"
6847@end example
6848
6849@noindent
6850this is because @code{yytext} is a buffer provided for @emph{reading}
6851in the action, but if you want to keep it, you have to duplicate it
6852(e.g., using @code{strdup}). Note that the output may depend on how
6853your implementation of Lex handles @code{yytext}. For instance, when
6854given the Lex compatibility option @option{-l} (which triggers the
6855option @samp{%array}) Flex generates a different behavior:
6856
6857@example
6858$ @kbd{flex -l -osplit-lines.c split-lines.l}
6859$ @kbd{gcc -osplit-lines split-lines.c -ll}
6860$ @kbd{printf 'one\ntwo\n' | ./split-lines}
6861"two", "two"
6862@end example
6863
6864
a06ea4aa
AD
6865@node C++ Parsers
6866@section C++ Parsers
6867
6868@display
6869How can I generate parsers in C++?
6870@end display
6871
6872We are working on a C++ output for Bison, but unfortunately, for lack
6873of time, the skeleton is not finished. It is functional, but in
6874numerous respects, it will require additional work which @emph{might}
6875break backward compatibility. Since the skeleton for C++ is not
6876documented, we do not consider ourselves bound to this interface,
6877nevertheless, as much as possible we will try to keep compatibility.
6878
6879Another possibility is to use the regular C parsers, and to compile
6880them with a C++ compiler. This works properly, provided that you bear
6881some simple C++ rules in mind, such as not including ``real classes''
6882(i.e., structure with constructors) in unions. Therefore, in the
6883@code{%union}, use pointers to classes, or better yet, a single
6884pointer type to the root of your lexical/syntactic hierarchy.
6885
6886
2fa09258
AD
6887@node Implementing Gotos/Loops
6888@section Implementing Gotos/Loops
a06ea4aa
AD
6889
6890@display
6891My simple calculator supports variables, assignments, and functions,
2fa09258 6892but how can I implement gotos, or loops?
a06ea4aa
AD
6893@end display
6894
6895Although very pedagogical, the examples included in the document blur
a1c84f45 6896the distinction to make between the parser---whose job is to recover
a06ea4aa 6897the structure of a text and to transmit it to subsequent modules of
a1c84f45 6898the program---and the processing (such as the execution) of this
a06ea4aa
AD
6899structure. This works well with so called straight line programs,
6900i.e., precisely those that have a straightforward execution model:
6901execute simple instructions one after the others.
6902
6903@cindex abstract syntax tree
6904@cindex @acronym{AST}
6905If you want a richer model, you will probably need to use the parser
6906to construct a tree that does represent the structure it has
6907recovered; this tree is usually called the @dfn{abstract syntax tree},
6908or @dfn{@acronym{AST}} for short. Then, walking through this tree,
6909traversing it in various ways, will enable treatments such as its
6910execution or its translation, which will result in an interpreter or a
6911compiler.
6912
6913This topic is way beyond the scope of this manual, and the reader is
6914invited to consult the dedicated literature.
6915
6916
6917
d1a1114f
AD
6918@c ================================================= Table of Symbols
6919
342b8b6e 6920@node Table of Symbols
bfa74976
RS
6921@appendix Bison Symbols
6922@cindex Bison symbols, table of
6923@cindex symbols in Bison, table of
6924
18b519c0 6925@deffn {Variable} @@$
3ded9a63 6926In an action, the location of the left-hand side of the rule.
88bce5a2 6927@xref{Locations, , Locations Overview}.
18b519c0 6928@end deffn
3ded9a63 6929
18b519c0 6930@deffn {Variable} @@@var{n}
3ded9a63
AD
6931In an action, the location of the @var{n}-th symbol of the right-hand
6932side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 6933@end deffn
3ded9a63 6934
18b519c0 6935@deffn {Variable} $$
3ded9a63
AD
6936In an action, the semantic value of the left-hand side of the rule.
6937@xref{Actions}.
18b519c0 6938@end deffn
3ded9a63 6939
18b519c0 6940@deffn {Variable} $@var{n}
3ded9a63
AD
6941In an action, the semantic value of the @var{n}-th symbol of the
6942right-hand side of the rule. @xref{Actions}.
18b519c0 6943@end deffn
3ded9a63 6944
18b519c0 6945@deffn {Symbol} $accept
88bce5a2
AD
6946The predefined nonterminal whose only rule is @samp{$accept: @var{start}
6947$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
6948Start-Symbol}. It cannot be used in the grammar.
18b519c0 6949@end deffn
88bce5a2 6950
18b519c0 6951@deffn {Symbol} $end
88bce5a2
AD
6952The predefined token marking the end of the token stream. It cannot be
6953used in the grammar.
18b519c0 6954@end deffn
88bce5a2 6955
18b519c0 6956@deffn {Symbol} $undefined
88bce5a2
AD
6957The predefined token onto which all undefined values returned by
6958@code{yylex} are mapped. It cannot be used in the grammar, rather, use
6959@code{error}.
18b519c0 6960@end deffn
88bce5a2 6961
18b519c0 6962@deffn {Symbol} error
bfa74976
RS
6963A token name reserved for error recovery. This token may be used in
6964grammar rules so as to allow the Bison parser to recognize an error in
6965the grammar without halting the process. In effect, a sentence
6e649e65 6966containing an error may be recognized as valid. On a syntax error, the
bfa74976
RS
6967token @code{error} becomes the current look-ahead token. Actions
6968corresponding to @code{error} are then executed, and the look-ahead
6969token is reset to the token that originally caused the violation.
6970@xref{Error Recovery}.
18b519c0 6971@end deffn
bfa74976 6972
18b519c0 6973@deffn {Macro} YYABORT
bfa74976
RS
6974Macro to pretend that an unrecoverable syntax error has occurred, by
6975making @code{yyparse} return 1 immediately. The error reporting
ceed8467
AD
6976function @code{yyerror} is not called. @xref{Parser Function, ,The
6977Parser Function @code{yyparse}}.
18b519c0 6978@end deffn
bfa74976 6979
18b519c0 6980@deffn {Macro} YYACCEPT
bfa74976 6981Macro to pretend that a complete utterance of the language has been
13863333 6982read, by making @code{yyparse} return 0 immediately.
bfa74976 6983@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6984@end deffn
bfa74976 6985
18b519c0 6986@deffn {Macro} YYBACKUP
bfa74976
RS
6987Macro to discard a value from the parser stack and fake a look-ahead
6988token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 6989@end deffn
bfa74976 6990
18b519c0 6991@deffn {Macro} YYDEBUG
72d2299c 6992Macro to define to equip the parser with tracing code. @xref{Tracing,
ec3bc396 6993,Tracing Your Parser}.
18b519c0 6994@end deffn
3ded9a63 6995
18b519c0 6996@deffn {Macro} YYERROR
bfa74976
RS
6997Macro to pretend that a syntax error has just been detected: call
6998@code{yyerror} and then perform normal error recovery if possible
6999(@pxref{Error Recovery}), or (if recovery is impossible) make
7000@code{yyparse} return 1. @xref{Error Recovery}.
18b519c0 7001@end deffn
bfa74976 7002
18b519c0 7003@deffn {Macro} YYERROR_VERBOSE
b69d743e
PE
7004An obsolete macro that you define with @code{#define} in the prologue
7005to request verbose, specific error message strings
2a8d363a
AD
7006when @code{yyerror} is called. It doesn't matter what definition you
7007use for @code{YYERROR_VERBOSE}, just whether you define it. Using
7008@code{%error-verbose} is preferred.
18b519c0 7009@end deffn
bfa74976 7010
18b519c0 7011@deffn {Macro} YYINITDEPTH
bfa74976
RS
7012Macro for specifying the initial size of the parser stack.
7013@xref{Stack Overflow}.
18b519c0 7014@end deffn
bfa74976 7015
18b519c0 7016@deffn {Macro} YYLEX_PARAM
2a8d363a
AD
7017An obsolete macro for specifying an extra argument (or list of extra
7018arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
7019macro is deprecated, and is supported only for Yacc like parsers.
7020@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
18b519c0 7021@end deffn
c656404a 7022
6273355b
PE
7023@deffn {Type} YYLTYPE
7024Data type of @code{yylloc}; by default, a structure with four
847bf1f5 7025members. @xref{Location Type, , Data Types of Locations}.
18b519c0 7026@end deffn
bfa74976 7027
18b519c0
AD
7028@deffn {Macro} YYMAXDEPTH
7029Macro for specifying the maximum size of the parser stack. @xref{Stack
7030Overflow}.
7031@end deffn
bfa74976 7032
18b519c0 7033@deffn {Macro} YYPARSE_PARAM
2a8d363a
AD
7034An obsolete macro for specifying the name of a parameter that
7035@code{yyparse} should accept. The use of this macro is deprecated, and
7036is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
7037Conventions for Pure Parsers}.
18b519c0 7038@end deffn
c656404a 7039
18b519c0 7040@deffn {Macro} YYRECOVERING
bfa74976
RS
7041Macro whose value indicates whether the parser is recovering from a
7042syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7043@end deffn
bfa74976 7044
18b519c0 7045@deffn {Macro} YYSTACK_USE_ALLOCA
72d2299c 7046Macro used to control the use of @code{alloca}. If defined to @samp{0},
f9a8293a 7047the parser will not use @code{alloca} but @code{malloc} when trying to
72d2299c 7048grow its internal stacks. Do @emph{not} define @code{YYSTACK_USE_ALLOCA}
f9a8293a 7049to anything else.
18b519c0 7050@end deffn
f9a8293a 7051
6273355b
PE
7052@deffn {Type} YYSTYPE
7053Data type of semantic values; @code{int} by default.
bfa74976 7054@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 7055@end deffn
bfa74976 7056
18b519c0 7057@deffn {Variable} yychar
13863333
AD
7058External integer variable that contains the integer value of the current
7059look-ahead token. (In a pure parser, it is a local variable within
7060@code{yyparse}.) Error-recovery rule actions may examine this variable.
7061@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7062@end deffn
bfa74976 7063
18b519c0 7064@deffn {Variable} yyclearin
bfa74976
RS
7065Macro used in error-recovery rule actions. It clears the previous
7066look-ahead token. @xref{Error Recovery}.
18b519c0 7067@end deffn
bfa74976 7068
18b519c0 7069@deffn {Variable} yydebug
bfa74976
RS
7070External integer variable set to zero by default. If @code{yydebug}
7071is given a nonzero value, the parser will output information on input
ec3bc396 7072symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 7073@end deffn
bfa74976 7074
18b519c0 7075@deffn {Macro} yyerrok
bfa74976 7076Macro to cause parser to recover immediately to its normal mode
6e649e65 7077after a syntax error. @xref{Error Recovery}.
18b519c0 7078@end deffn
bfa74976 7079
18b519c0 7080@deffn {Function} yyerror
38a92d50
PE
7081User-supplied function to be called by @code{yyparse} on error.
7082@xref{Error Reporting, ,The Error
13863333 7083Reporting Function @code{yyerror}}.
18b519c0 7084@end deffn
bfa74976 7085
18b519c0 7086@deffn {Function} yylex
704a47c4
AD
7087User-supplied lexical analyzer function, called with no arguments to get
7088the next token. @xref{Lexical, ,The Lexical Analyzer Function
7089@code{yylex}}.
18b519c0 7090@end deffn
bfa74976 7091
18b519c0 7092@deffn {Variable} yylval
bfa74976
RS
7093External variable in which @code{yylex} should place the semantic
7094value associated with a token. (In a pure parser, it is a local
7095variable within @code{yyparse}, and its address is passed to
7096@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 7097@end deffn
bfa74976 7098
18b519c0 7099@deffn {Variable} yylloc
13863333
AD
7100External variable in which @code{yylex} should place the line and column
7101numbers associated with a token. (In a pure parser, it is a local
7102variable within @code{yyparse}, and its address is passed to
bfa74976 7103@code{yylex}.) You can ignore this variable if you don't use the
95923bd6
AD
7104@samp{@@} feature in the grammar actions. @xref{Token Locations,
7105,Textual Locations of Tokens}.
18b519c0 7106@end deffn
bfa74976 7107
18b519c0 7108@deffn {Variable} yynerrs
6e649e65 7109Global variable which Bison increments each time there is a syntax error.
13863333
AD
7110(In a pure parser, it is a local variable within @code{yyparse}.)
7111@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
18b519c0 7112@end deffn
bfa74976 7113
18b519c0 7114@deffn {Function} yyparse
bfa74976
RS
7115The parser function produced by Bison; call this function to start
7116parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 7117@end deffn
bfa74976 7118
18b519c0 7119@deffn {Directive} %debug
6deb4447 7120Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7121@end deffn
6deb4447 7122
91d2c560 7123@ifset defaultprec
22fccf95
PE
7124@deffn {Directive} %default-prec
7125Assign a precedence to rules that lack an explicit @samp{%prec}
7126modifier. @xref{Contextual Precedence, ,Context-Dependent
7127Precedence}.
39a06c25 7128@end deffn
91d2c560 7129@end ifset
39a06c25 7130
18b519c0 7131@deffn {Directive} %defines
6deb4447
AD
7132Bison declaration to create a header file meant for the scanner.
7133@xref{Decl Summary}.
18b519c0 7134@end deffn
6deb4447 7135
18b519c0 7136@deffn {Directive} %destructor
72f889cc 7137Specifying how the parser should reclaim the memory associated to
fa7e68c3 7138discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7139@end deffn
72f889cc 7140
18b519c0 7141@deffn {Directive} %dprec
676385e2 7142Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7143time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7144@acronym{GLR} Parsers}.
18b519c0 7145@end deffn
676385e2 7146
18b519c0 7147@deffn {Directive} %error-verbose
2a8d363a
AD
7148Bison declaration to request verbose, specific error message strings
7149when @code{yyerror} is called.
18b519c0 7150@end deffn
2a8d363a 7151
18b519c0 7152@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7153Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7154Summary}.
18b519c0 7155@end deffn
d8988b2f 7156
18b519c0 7157@deffn {Directive} %glr-parser
c827f760
PE
7158Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7159Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7160@end deffn
676385e2 7161
18b519c0 7162@deffn {Directive} %left
bfa74976
RS
7163Bison declaration to assign left associativity to token(s).
7164@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7165@end deffn
bfa74976 7166
feeb0eda 7167@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7168Bison declaration to specifying an additional parameter that
7169@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7170for Pure Parsers}.
18b519c0 7171@end deffn
2a8d363a 7172
18b519c0 7173@deffn {Directive} %merge
676385e2 7174Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7175reduce/reduce conflict with a rule having the same merging function, the
676385e2 7176function is applied to the two semantic values to get a single result.
c827f760 7177@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7178@end deffn
676385e2 7179
18b519c0 7180@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7181Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7182@end deffn
d8988b2f 7183
91d2c560 7184@ifset defaultprec
22fccf95
PE
7185@deffn {Directive} %no-default-prec
7186Do not assign a precedence to rules that lack an explicit @samp{%prec}
7187modifier. @xref{Contextual Precedence, ,Context-Dependent
7188Precedence}.
7189@end deffn
91d2c560 7190@end ifset
22fccf95 7191
18b519c0 7192@deffn {Directive} %no-lines
931c7513
RS
7193Bison declaration to avoid generating @code{#line} directives in the
7194parser file. @xref{Decl Summary}.
18b519c0 7195@end deffn
931c7513 7196
18b519c0 7197@deffn {Directive} %nonassoc
14ded682 7198Bison declaration to assign non-associativity to token(s).
bfa74976 7199@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7200@end deffn
bfa74976 7201
18b519c0 7202@deffn {Directive} %output="@var{filename}"
72d2299c 7203Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7204Summary}.
18b519c0 7205@end deffn
d8988b2f 7206
feeb0eda 7207@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7208Bison declaration to specifying an additional parameter that
7209@code{yyparse} should accept. @xref{Parser Function,, The Parser
7210Function @code{yyparse}}.
18b519c0 7211@end deffn
2a8d363a 7212
18b519c0 7213@deffn {Directive} %prec
bfa74976
RS
7214Bison declaration to assign a precedence to a specific rule.
7215@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7216@end deffn
bfa74976 7217
18b519c0 7218@deffn {Directive} %pure-parser
bfa74976
RS
7219Bison declaration to request a pure (reentrant) parser.
7220@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7221@end deffn
bfa74976 7222
18b519c0 7223@deffn {Directive} %right
bfa74976
RS
7224Bison declaration to assign right associativity to token(s).
7225@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7226@end deffn
bfa74976 7227
18b519c0 7228@deffn {Directive} %start
704a47c4
AD
7229Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7230Start-Symbol}.
18b519c0 7231@end deffn
bfa74976 7232
18b519c0 7233@deffn {Directive} %token
bfa74976
RS
7234Bison declaration to declare token(s) without specifying precedence.
7235@xref{Token Decl, ,Token Type Names}.
18b519c0 7236@end deffn
bfa74976 7237
18b519c0 7238@deffn {Directive} %token-table
931c7513
RS
7239Bison declaration to include a token name table in the parser file.
7240@xref{Decl Summary}.
18b519c0 7241@end deffn
931c7513 7242
18b519c0 7243@deffn {Directive} %type
704a47c4
AD
7244Bison declaration to declare nonterminals. @xref{Type Decl,
7245,Nonterminal Symbols}.
18b519c0 7246@end deffn
bfa74976 7247
18b519c0 7248@deffn {Directive} %union
bfa74976
RS
7249Bison declaration to specify several possible data types for semantic
7250values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 7251@end deffn
bfa74976 7252
3ded9a63
AD
7253@sp 1
7254
bfa74976
RS
7255These are the punctuation and delimiters used in Bison input:
7256
18b519c0 7257@deffn {Delimiter} %%
bfa74976 7258Delimiter used to separate the grammar rule section from the
75f5aaea 7259Bison declarations section or the epilogue.
bfa74976 7260@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7261@end deffn
bfa74976 7262
18b519c0
AD
7263@c Don't insert spaces, or check the DVI output.
7264@deffn {Delimiter} %@{@var{code}%@}
89cab50d 7265All code listed between @samp{%@{} and @samp{%@}} is copied directly to
342b8b6e 7266the output file uninterpreted. Such code forms the prologue of the input
75f5aaea 7267file. @xref{Grammar Outline, ,Outline of a Bison
89cab50d 7268Grammar}.
18b519c0 7269@end deffn
bfa74976 7270
18b519c0 7271@deffn {Construct} /*@dots{}*/
bfa74976 7272Comment delimiters, as in C.
18b519c0 7273@end deffn
bfa74976 7274
18b519c0 7275@deffn {Delimiter} :
89cab50d
AD
7276Separates a rule's result from its components. @xref{Rules, ,Syntax of
7277Grammar Rules}.
18b519c0 7278@end deffn
bfa74976 7279
18b519c0 7280@deffn {Delimiter} ;
bfa74976 7281Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7282@end deffn
bfa74976 7283
18b519c0 7284@deffn {Delimiter} |
bfa74976
RS
7285Separates alternate rules for the same result nonterminal.
7286@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7287@end deffn
bfa74976 7288
342b8b6e 7289@node Glossary
bfa74976
RS
7290@appendix Glossary
7291@cindex glossary
7292
7293@table @asis
c827f760
PE
7294@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
7295Formal method of specifying context-free grammars originally proposed
7296by John Backus, and slightly improved by Peter Naur in his 1960-01-02
7297committee document contributing to what became the Algol 60 report.
7298@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7299
7300@item Context-free grammars
7301Grammars specified as rules that can be applied regardless of context.
7302Thus, if there is a rule which says that an integer can be used as an
7303expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
7304permitted. @xref{Language and Grammar, ,Languages and Context-Free
7305Grammars}.
bfa74976
RS
7306
7307@item Dynamic allocation
7308Allocation of memory that occurs during execution, rather than at
7309compile time or on entry to a function.
7310
7311@item Empty string
7312Analogous to the empty set in set theory, the empty string is a
7313character string of length zero.
7314
7315@item Finite-state stack machine
7316A ``machine'' that has discrete states in which it is said to exist at
7317each instant in time. As input to the machine is processed, the
7318machine moves from state to state as specified by the logic of the
7319machine. In the case of the parser, the input is the language being
7320parsed, and the states correspond to various stages in the grammar
c827f760 7321rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 7322
c827f760 7323@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 7324A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
7325that are not @acronym{LALR}(1). It resolves situations that Bison's
7326usual @acronym{LALR}(1)
676385e2
PH
7327algorithm cannot by effectively splitting off multiple parsers, trying all
7328possible parsers, and discarding those that fail in the light of additional
c827f760
PE
7329right context. @xref{Generalized LR Parsing, ,Generalized
7330@acronym{LR} Parsing}.
676385e2 7331
bfa74976
RS
7332@item Grouping
7333A language construct that is (in general) grammatically divisible;
c827f760 7334for example, `expression' or `declaration' in C@.
bfa74976
RS
7335@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7336
7337@item Infix operator
7338An arithmetic operator that is placed between the operands on which it
7339performs some operation.
7340
7341@item Input stream
7342A continuous flow of data between devices or programs.
7343
7344@item Language construct
7345One of the typical usage schemas of the language. For example, one of
7346the constructs of the C language is the @code{if} statement.
7347@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7348
7349@item Left associativity
7350Operators having left associativity are analyzed from left to right:
7351@samp{a+b+c} first computes @samp{a+b} and then combines with
7352@samp{c}. @xref{Precedence, ,Operator Precedence}.
7353
7354@item Left recursion
89cab50d
AD
7355A rule whose result symbol is also its first component symbol; for
7356example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
7357Rules}.
bfa74976
RS
7358
7359@item Left-to-right parsing
7360Parsing a sentence of a language by analyzing it token by token from
c827f760 7361left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7362
7363@item Lexical analyzer (scanner)
7364A function that reads an input stream and returns tokens one by one.
7365@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
7366
7367@item Lexical tie-in
7368A flag, set by actions in the grammar rules, which alters the way
7369tokens are parsed. @xref{Lexical Tie-ins}.
7370
931c7513 7371@item Literal string token
14ded682 7372A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 7373
bfa74976 7374@item Look-ahead token
89cab50d
AD
7375A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
7376Tokens}.
bfa74976 7377
c827f760 7378@item @acronym{LALR}(1)
bfa74976 7379The class of context-free grammars that Bison (like most other parser
c827f760
PE
7380generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
7381Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 7382
c827f760 7383@item @acronym{LR}(1)
bfa74976
RS
7384The class of context-free grammars in which at most one token of
7385look-ahead is needed to disambiguate the parsing of any piece of input.
7386
7387@item Nonterminal symbol
7388A grammar symbol standing for a grammatical construct that can
7389be expressed through rules in terms of smaller constructs; in other
7390words, a construct that is not a token. @xref{Symbols}.
7391
bfa74976
RS
7392@item Parser
7393A function that recognizes valid sentences of a language by analyzing
7394the syntax structure of a set of tokens passed to it from a lexical
7395analyzer.
7396
7397@item Postfix operator
7398An arithmetic operator that is placed after the operands upon which it
7399performs some operation.
7400
7401@item Reduction
7402Replacing a string of nonterminals and/or terminals with a single
89cab50d 7403nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 7404Parser Algorithm}.
bfa74976
RS
7405
7406@item Reentrant
7407A reentrant subprogram is a subprogram which can be in invoked any
7408number of times in parallel, without interference between the various
7409invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
7410
7411@item Reverse polish notation
7412A language in which all operators are postfix operators.
7413
7414@item Right recursion
89cab50d
AD
7415A rule whose result symbol is also its last component symbol; for
7416example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
7417Rules}.
bfa74976
RS
7418
7419@item Semantics
7420In computer languages, the semantics are specified by the actions
7421taken for each instance of the language, i.e., the meaning of
7422each statement. @xref{Semantics, ,Defining Language Semantics}.
7423
7424@item Shift
7425A parser is said to shift when it makes the choice of analyzing
7426further input from the stream rather than reducing immediately some
c827f760 7427already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
7428
7429@item Single-character literal
7430A single character that is recognized and interpreted as is.
7431@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
7432
7433@item Start symbol
7434The nonterminal symbol that stands for a complete valid utterance in
7435the language being parsed. The start symbol is usually listed as the
13863333 7436first nonterminal symbol in a language specification.
bfa74976
RS
7437@xref{Start Decl, ,The Start-Symbol}.
7438
7439@item Symbol table
7440A data structure where symbol names and associated data are stored
7441during parsing to allow for recognition and use of existing
7442information in repeated uses of a symbol. @xref{Multi-function Calc}.
7443
6e649e65
PE
7444@item Syntax error
7445An error encountered during parsing of an input stream due to invalid
7446syntax. @xref{Error Recovery}.
7447
bfa74976
RS
7448@item Token
7449A basic, grammatically indivisible unit of a language. The symbol
7450that describes a token in the grammar is a terminal symbol.
7451The input of the Bison parser is a stream of tokens which comes from
7452the lexical analyzer. @xref{Symbols}.
7453
7454@item Terminal symbol
89cab50d
AD
7455A grammar symbol that has no rules in the grammar and therefore is
7456grammatically indivisible. The piece of text it represents is a token.
7457@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
7458@end table
7459
342b8b6e 7460@node Copying This Manual
f2b5126e 7461@appendix Copying This Manual
f9a8293a 7462
f2b5126e
PB
7463@menu
7464* GNU Free Documentation License:: License for copying this manual.
7465@end menu
f9a8293a 7466
f2b5126e
PB
7467@include fdl.texi
7468
342b8b6e 7469@node Index
bfa74976
RS
7470@unnumbered Index
7471
7472@printindex cp
7473
bfa74976 7474@bye
a06ea4aa
AD
7475
7476@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
7477@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
7478@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
7479@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
7480@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
7481@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
7482@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
7483@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
7484@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
7485@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
7486@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
7487@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
7488@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
7489@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
7490@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
7491@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
7492@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
7493@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
7494@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
7495@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
7496@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
7497@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
7498@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
7499@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
7500@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
7501@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
7502@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
7503@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
7504@c LocalWords: YYSTACK DVI fdl printindex