]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
Bind examples/calc++ to the package.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
e62f1a89 471999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
150* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
151
bfa74976
RS
152Examples
153
154* RPN Calc:: Reverse polish notation calculator;
155 a first example with no operator precedence.
156* Infix Calc:: Infix (algebraic) notation calculator.
157 Operator precedence is introduced.
158* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 159* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
160* Multi-function Calc:: Calculator with memory and trig functions.
161 It uses multiple data-types for semantic values.
bfa74976
RS
162* Exercises:: Ideas for improving the multi-function calculator.
163
164Reverse Polish Notation Calculator
165
75f5aaea 166* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
167* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
168* Lexer: Rpcalc Lexer. The lexical analyzer.
169* Main: Rpcalc Main. The controlling function.
170* Error: Rpcalc Error. The error reporting function.
171* Gen: Rpcalc Gen. Running Bison on the grammar file.
172* Comp: Rpcalc Compile. Run the C compiler on the output code.
173
174Grammar Rules for @code{rpcalc}
175
13863333
AD
176* Rpcalc Input::
177* Rpcalc Line::
178* Rpcalc Expr::
bfa74976 179
342b8b6e
AD
180Location Tracking Calculator: @code{ltcalc}
181
182* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
183* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
184* Lexer: Ltcalc Lexer. The lexical analyzer.
185
bfa74976
RS
186Multi-Function Calculator: @code{mfcalc}
187
188* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
189* Rules: Mfcalc Rules. Grammar rules for the calculator.
190* Symtab: Mfcalc Symtab. Symbol table management subroutines.
191
192Bison Grammar Files
193
194* Grammar Outline:: Overall layout of the grammar file.
195* Symbols:: Terminal and nonterminal symbols.
196* Rules:: How to write grammar rules.
197* Recursion:: Writing recursive rules.
198* Semantics:: Semantic values and actions.
93dd49ab 199* Locations:: Locations and actions.
bfa74976
RS
200* Declarations:: All kinds of Bison declarations are described here.
201* Multiple Parsers:: Putting more than one Bison parser in one program.
202
203Outline of a Bison Grammar
204
93dd49ab 205* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
206* Bison Declarations:: Syntax and usage of the Bison declarations section.
207* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 208* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
209
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
228* Token Decl:: Declaring terminal symbols.
229* Precedence Decl:: Declaring terminals with precedence and associativity.
230* Union Decl:: Declaring the set of all semantic value types.
231* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 232* Initial Action Decl:: Code run before parsing starts.
72f889cc 233* Destructor Decl:: Declaring how symbols are freed.
d6328241 234* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
235* Start Decl:: Specifying the start symbol.
236* Pure Decl:: Requesting a reentrant parser.
237* Decl Summary:: Table of all Bison declarations.
238
239Parser C-Language Interface
240
241* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 242* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246
247The Lexical Analyzer Function @code{yylex}
248
249* Calling Convention:: How @code{yyparse} calls @code{yylex}.
250* Token Values:: How @code{yylex} must return the semantic value
251 of the token it has read.
95923bd6 252* Token Locations:: How @code{yylex} must return the text location
bfa74976 253 (line number, etc.) of the token, if the
93dd49ab 254 actions want that.
bfa74976
RS
255* Pure Calling:: How the calling convention differs
256 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
257
13863333 258The Bison Parser Algorithm
bfa74976
RS
259
260* Look-Ahead:: Parser looks one token ahead when deciding what to do.
261* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
262* Precedence:: Operator precedence works by resolving conflicts.
263* Contextual Precedence:: When an operator's precedence depends on context.
264* Parser States:: The parser is a finite-state-machine with stack.
265* Reduce/Reduce:: When two rules are applicable in the same situation.
266* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 267* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
268* Stack Overflow:: What happens when stack gets full. How to avoid it.
269
270Operator Precedence
271
272* Why Precedence:: An example showing why precedence is needed.
273* Using Precedence:: How to specify precedence in Bison grammars.
274* Precedence Examples:: How these features are used in the previous example.
275* How Precedence:: How they work.
276
277Handling Context Dependencies
278
279* Semantic Tokens:: Token parsing can depend on the semantic context.
280* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
281* Tie-in Recovery:: Lexical tie-ins have implications for how
282 error recovery rules must be written.
283
93dd49ab 284Debugging Your Parser
ec3bc396
AD
285
286* Understanding:: Understanding the structure of your parser.
287* Tracing:: Tracing the execution of your parser.
288
bfa74976
RS
289Invoking Bison
290
13863333 291* Bison Options:: All the options described in detail,
c827f760 292 in alphabetical order by short options.
bfa74976 293* Option Cross Key:: Alphabetical list of long options.
93dd49ab 294* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 295
12545799
AD
296C++ Language Interface
297
298* C++ Parsers:: The interface to generate C++ parser classes
299* A Complete C++ Example:: Demonstrating their use
300
301C++ Parsers
302
303* C++ Bison Interface:: Asking for C++ parser generation
304* C++ Semantic Values:: %union vs. C++
305* C++ Location Values:: The position and location classes
306* C++ Parser Interface:: Instantiating and running the parser
307* C++ Scanner Interface:: Exchanges between yylex and parse
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
d1a1114f
AD
317Frequently Asked Questions
318
319* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 320* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 321* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 322* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 323
f2b5126e
PB
324Copying This Manual
325
326* GNU Free Documentation License:: License for copying this manual.
327
342b8b6e 328@end detailmenu
bfa74976
RS
329@end menu
330
342b8b6e 331@node Introduction
bfa74976
RS
332@unnumbered Introduction
333@cindex introduction
334
335@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 336grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
337program to parse that grammar. Once you are proficient with Bison,
338you may use it to develop a wide range of language parsers, from those
339used in simple desk calculators to complex programming languages.
340
341Bison is upward compatible with Yacc: all properly-written Yacc grammars
342ought to work with Bison with no change. Anyone familiar with Yacc
343should be able to use Bison with little trouble. You need to be fluent in
344C programming in order to use Bison or to understand this manual.
345
346We begin with tutorial chapters that explain the basic concepts of using
347Bison and show three explained examples, each building on the last. If you
348don't know Bison or Yacc, start by reading these chapters. Reference
349chapters follow which describe specific aspects of Bison in detail.
350
931c7513
RS
351Bison was written primarily by Robert Corbett; Richard Stallman made it
352Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 353multi-character string literals and other features.
931c7513 354
df1af54c 355This edition corresponds to version @value{VERSION} of Bison.
bfa74976 356
342b8b6e 357@node Conditions
bfa74976
RS
358@unnumbered Conditions for Using Bison
359
a31239f1 360As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 361@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 362Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 363parsers could be used only in programs that were free software.
a31239f1 364
c827f760
PE
365The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
366compiler, have never
9ecbd125 367had such a requirement. They could always be used for nonfree
a31239f1
RS
368software. The reason Bison was different was not due to a special
369policy decision; it resulted from applying the usual General Public
370License to all of the Bison source code.
371
372The output of the Bison utility---the Bison parser file---contains a
373verbatim copy of a sizable piece of Bison, which is the code for the
374@code{yyparse} function. (The actions from your grammar are inserted
375into this function at one point, but the rest of the function is not
c827f760
PE
376changed.) When we applied the @acronym{GPL} terms to the code for
377@code{yyparse},
a31239f1
RS
378the effect was to restrict the use of Bison output to free software.
379
380We didn't change the terms because of sympathy for people who want to
381make software proprietary. @strong{Software should be free.} But we
382concluded that limiting Bison's use to free software was doing little to
383encourage people to make other software free. So we decided to make the
384practical conditions for using Bison match the practical conditions for
c827f760 385using the other @acronym{GNU} tools.
bfa74976 386
eda42934 387This exception applies only when Bison is generating C code for an
c827f760
PE
388@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
389as usual. You can
262aa8dd
PE
390tell whether the exception applies to your @samp{.c} output file by
391inspecting it to see whether it says ``As a special exception, when
392this file is copied by Bison into a Bison output file, you may use
393that output file without restriction.''
394
c67a198d 395@include gpl.texi
bfa74976 396
342b8b6e 397@node Concepts
bfa74976
RS
398@chapter The Concepts of Bison
399
400This chapter introduces many of the basic concepts without which the
401details of Bison will not make sense. If you do not already know how to
402use Bison or Yacc, we suggest you start by reading this chapter carefully.
403
404@menu
405* Language and Grammar:: Languages and context-free grammars,
406 as mathematical ideas.
407* Grammar in Bison:: How we represent grammars for Bison's sake.
408* Semantic Values:: Each token or syntactic grouping can have
409 a semantic value (the value of an integer,
410 the name of an identifier, etc.).
411* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 412* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 413* Locations Overview:: Tracking Locations.
bfa74976
RS
414* Bison Parser:: What are Bison's input and output,
415 how is the output used?
416* Stages:: Stages in writing and running Bison grammars.
417* Grammar Layout:: Overall structure of a Bison grammar file.
418@end menu
419
342b8b6e 420@node Language and Grammar
bfa74976
RS
421@section Languages and Context-Free Grammars
422
bfa74976
RS
423@cindex context-free grammar
424@cindex grammar, context-free
425In order for Bison to parse a language, it must be described by a
426@dfn{context-free grammar}. This means that you specify one or more
427@dfn{syntactic groupings} and give rules for constructing them from their
428parts. For example, in the C language, one kind of grouping is called an
429`expression'. One rule for making an expression might be, ``An expression
430can be made of a minus sign and another expression''. Another would be,
431``An expression can be an integer''. As you can see, rules are often
432recursive, but there must be at least one rule which leads out of the
433recursion.
434
c827f760 435@cindex @acronym{BNF}
bfa74976
RS
436@cindex Backus-Naur form
437The most common formal system for presenting such rules for humans to read
c827f760
PE
438is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
439order to specify the language Algol 60. Any grammar expressed in
440@acronym{BNF} is a context-free grammar. The input to Bison is
441essentially machine-readable @acronym{BNF}.
bfa74976 442
c827f760
PE
443@cindex @acronym{LALR}(1) grammars
444@cindex @acronym{LR}(1) grammars
676385e2
PH
445There are various important subclasses of context-free grammar. Although it
446can handle almost all context-free grammars, Bison is optimized for what
c827f760 447are called @acronym{LALR}(1) grammars.
676385e2 448In brief, in these grammars, it must be possible to
bfa74976
RS
449tell how to parse any portion of an input string with just a single
450token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
451@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
452restrictions that are
bfa74976 453hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
454@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
455@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
456more information on this.
bfa74976 457
c827f760
PE
458@cindex @acronym{GLR} parsing
459@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
460@cindex ambiguous grammars
461@cindex non-deterministic parsing
9501dc6e
AD
462
463Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
464roughly that the next grammar rule to apply at any point in the input is
465uniquely determined by the preceding input and a fixed, finite portion
466(called a @dfn{look-ahead}) of the remaining input. A context-free
467grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 468apply the grammar rules to get the same inputs. Even unambiguous
9501dc6e
AD
469grammars can be @dfn{non-deterministic}, meaning that no fixed
470look-ahead always suffices to determine the next grammar rule to apply.
471With the proper declarations, Bison is also able to parse these more
472general context-free grammars, using a technique known as @acronym{GLR}
473parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
474are able to handle any context-free grammar for which the number of
475possible parses of any given string is finite.
676385e2 476
bfa74976
RS
477@cindex symbols (abstract)
478@cindex token
479@cindex syntactic grouping
480@cindex grouping, syntactic
9501dc6e
AD
481In the formal grammatical rules for a language, each kind of syntactic
482unit or grouping is named by a @dfn{symbol}. Those which are built by
483grouping smaller constructs according to grammatical rules are called
bfa74976
RS
484@dfn{nonterminal symbols}; those which can't be subdivided are called
485@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
486corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 487corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
488
489We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
490nonterminal, mean. The tokens of C are identifiers, constants (numeric
491and string), and the various keywords, arithmetic operators and
492punctuation marks. So the terminal symbols of a grammar for C include
493`identifier', `number', `string', plus one symbol for each keyword,
494operator or punctuation mark: `if', `return', `const', `static', `int',
495`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
496(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
497lexicography, not grammar.)
498
499Here is a simple C function subdivided into tokens:
500
9edcd895
AD
501@ifinfo
502@example
503int /* @r{keyword `int'} */
14d4662b 504square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
505 @r{identifier, close-paren} */
506@{ /* @r{open-brace} */
507 return x * x; /* @r{keyword `return', identifier, asterisk,
508 identifier, semicolon} */
509@} /* @r{close-brace} */
510@end example
511@end ifinfo
512@ifnotinfo
bfa74976
RS
513@example
514int /* @r{keyword `int'} */
14d4662b 515square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 516@{ /* @r{open-brace} */
9edcd895 517 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
518@} /* @r{close-brace} */
519@end example
9edcd895 520@end ifnotinfo
bfa74976
RS
521
522The syntactic groupings of C include the expression, the statement, the
523declaration, and the function definition. These are represented in the
524grammar of C by nonterminal symbols `expression', `statement',
525`declaration' and `function definition'. The full grammar uses dozens of
526additional language constructs, each with its own nonterminal symbol, in
527order to express the meanings of these four. The example above is a
528function definition; it contains one declaration, and one statement. In
529the statement, each @samp{x} is an expression and so is @samp{x * x}.
530
531Each nonterminal symbol must have grammatical rules showing how it is made
532out of simpler constructs. For example, one kind of C statement is the
533@code{return} statement; this would be described with a grammar rule which
534reads informally as follows:
535
536@quotation
537A `statement' can be made of a `return' keyword, an `expression' and a
538`semicolon'.
539@end quotation
540
541@noindent
542There would be many other rules for `statement', one for each kind of
543statement in C.
544
545@cindex start symbol
546One nonterminal symbol must be distinguished as the special one which
547defines a complete utterance in the language. It is called the @dfn{start
548symbol}. In a compiler, this means a complete input program. In the C
549language, the nonterminal symbol `sequence of definitions and declarations'
550plays this role.
551
552For example, @samp{1 + 2} is a valid C expression---a valid part of a C
553program---but it is not valid as an @emph{entire} C program. In the
554context-free grammar of C, this follows from the fact that `expression' is
555not the start symbol.
556
557The Bison parser reads a sequence of tokens as its input, and groups the
558tokens using the grammar rules. If the input is valid, the end result is
559that the entire token sequence reduces to a single grouping whose symbol is
560the grammar's start symbol. If we use a grammar for C, the entire input
561must be a `sequence of definitions and declarations'. If not, the parser
562reports a syntax error.
563
342b8b6e 564@node Grammar in Bison
bfa74976
RS
565@section From Formal Rules to Bison Input
566@cindex Bison grammar
567@cindex grammar, Bison
568@cindex formal grammar
569
570A formal grammar is a mathematical construct. To define the language
571for Bison, you must write a file expressing the grammar in Bison syntax:
572a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
573
574A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 575as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
576in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
577
578The Bison representation for a terminal symbol is also called a @dfn{token
579type}. Token types as well can be represented as C-like identifiers. By
580convention, these identifiers should be upper case to distinguish them from
581nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
582@code{RETURN}. A terminal symbol that stands for a particular keyword in
583the language should be named after that keyword converted to upper case.
584The terminal symbol @code{error} is reserved for error recovery.
931c7513 585@xref{Symbols}.
bfa74976
RS
586
587A terminal symbol can also be represented as a character literal, just like
588a C character constant. You should do this whenever a token is just a
589single character (parenthesis, plus-sign, etc.): use that same character in
590a literal as the terminal symbol for that token.
591
931c7513
RS
592A third way to represent a terminal symbol is with a C string constant
593containing several characters. @xref{Symbols}, for more information.
594
bfa74976
RS
595The grammar rules also have an expression in Bison syntax. For example,
596here is the Bison rule for a C @code{return} statement. The semicolon in
597quotes is a literal character token, representing part of the C syntax for
598the statement; the naked semicolon, and the colon, are Bison punctuation
599used in every rule.
600
601@example
602stmt: RETURN expr ';'
603 ;
604@end example
605
606@noindent
607@xref{Rules, ,Syntax of Grammar Rules}.
608
342b8b6e 609@node Semantic Values
bfa74976
RS
610@section Semantic Values
611@cindex semantic value
612@cindex value, semantic
613
614A formal grammar selects tokens only by their classifications: for example,
615if a rule mentions the terminal symbol `integer constant', it means that
616@emph{any} integer constant is grammatically valid in that position. The
617precise value of the constant is irrelevant to how to parse the input: if
618@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 619grammatical.
bfa74976
RS
620
621But the precise value is very important for what the input means once it is
622parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6233989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
624has both a token type and a @dfn{semantic value}. @xref{Semantics,
625,Defining Language Semantics},
bfa74976
RS
626for details.
627
628The token type is a terminal symbol defined in the grammar, such as
629@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
630you need to know to decide where the token may validly appear and how to
631group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 632except their types.
bfa74976
RS
633
634The semantic value has all the rest of the information about the
635meaning of the token, such as the value of an integer, or the name of an
636identifier. (A token such as @code{','} which is just punctuation doesn't
637need to have any semantic value.)
638
639For example, an input token might be classified as token type
640@code{INTEGER} and have the semantic value 4. Another input token might
641have the same token type @code{INTEGER} but value 3989. When a grammar
642rule says that @code{INTEGER} is allowed, either of these tokens is
643acceptable because each is an @code{INTEGER}. When the parser accepts the
644token, it keeps track of the token's semantic value.
645
646Each grouping can also have a semantic value as well as its nonterminal
647symbol. For example, in a calculator, an expression typically has a
648semantic value that is a number. In a compiler for a programming
649language, an expression typically has a semantic value that is a tree
650structure describing the meaning of the expression.
651
342b8b6e 652@node Semantic Actions
bfa74976
RS
653@section Semantic Actions
654@cindex semantic actions
655@cindex actions, semantic
656
657In order to be useful, a program must do more than parse input; it must
658also produce some output based on the input. In a Bison grammar, a grammar
659rule can have an @dfn{action} made up of C statements. Each time the
660parser recognizes a match for that rule, the action is executed.
661@xref{Actions}.
13863333 662
bfa74976
RS
663Most of the time, the purpose of an action is to compute the semantic value
664of the whole construct from the semantic values of its parts. For example,
665suppose we have a rule which says an expression can be the sum of two
666expressions. When the parser recognizes such a sum, each of the
667subexpressions has a semantic value which describes how it was built up.
668The action for this rule should create a similar sort of value for the
669newly recognized larger expression.
670
671For example, here is a rule that says an expression can be the sum of
672two subexpressions:
673
674@example
675expr: expr '+' expr @{ $$ = $1 + $3; @}
676 ;
677@end example
678
679@noindent
680The action says how to produce the semantic value of the sum expression
681from the values of the two subexpressions.
682
676385e2 683@node GLR Parsers
c827f760
PE
684@section Writing @acronym{GLR} Parsers
685@cindex @acronym{GLR} parsing
686@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
687@findex %glr-parser
688@cindex conflicts
689@cindex shift/reduce conflicts
fa7e68c3 690@cindex reduce/reduce conflicts
676385e2 691
fa7e68c3 692In some grammars, Bison's standard
9501dc6e
AD
693@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
694certain grammar rule at a given point. That is, it may not be able to
695decide (on the basis of the input read so far) which of two possible
696reductions (applications of a grammar rule) applies, or whether to apply
697a reduction or read more of the input and apply a reduction later in the
698input. These are known respectively as @dfn{reduce/reduce} conflicts
699(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
700(@pxref{Shift/Reduce}).
701
702To use a grammar that is not easily modified to be @acronym{LALR}(1), a
703more general parsing algorithm is sometimes necessary. If you include
676385e2 704@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 705(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
706(@acronym{GLR}) parser. These parsers handle Bison grammars that
707contain no unresolved conflicts (i.e., after applying precedence
708declarations) identically to @acronym{LALR}(1) parsers. However, when
709faced with unresolved shift/reduce and reduce/reduce conflicts,
710@acronym{GLR} parsers use the simple expedient of doing both,
711effectively cloning the parser to follow both possibilities. Each of
712the resulting parsers can again split, so that at any given time, there
713can be any number of possible parses being explored. The parsers
676385e2
PH
714proceed in lockstep; that is, all of them consume (shift) a given input
715symbol before any of them proceed to the next. Each of the cloned
716parsers eventually meets one of two possible fates: either it runs into
717a parsing error, in which case it simply vanishes, or it merges with
718another parser, because the two of them have reduced the input to an
719identical set of symbols.
720
721During the time that there are multiple parsers, semantic actions are
722recorded, but not performed. When a parser disappears, its recorded
723semantic actions disappear as well, and are never performed. When a
724reduction makes two parsers identical, causing them to merge, Bison
725records both sets of semantic actions. Whenever the last two parsers
726merge, reverting to the single-parser case, Bison resolves all the
727outstanding actions either by precedences given to the grammar rules
728involved, or by performing both actions, and then calling a designated
729user-defined function on the resulting values to produce an arbitrary
730merged result.
731
fa7e68c3
PE
732@menu
733* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
734* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
735* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
736@end menu
737
738@node Simple GLR Parsers
739@subsection Using @acronym{GLR} on Unambiguous Grammars
740@cindex @acronym{GLR} parsing, unambiguous grammars
741@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
742@findex %glr-parser
743@findex %expect-rr
744@cindex conflicts
745@cindex reduce/reduce conflicts
746@cindex shift/reduce conflicts
747
748In the simplest cases, you can use the @acronym{GLR} algorithm
749to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
750Such grammars typically require more than one symbol of look-ahead,
751or (in rare cases) fall into the category of grammars in which the
752@acronym{LALR}(1) algorithm throws away too much information (they are in
753@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
754
755Consider a problem that
756arises in the declaration of enumerated and subrange types in the
757programming language Pascal. Here are some examples:
758
759@example
760type subrange = lo .. hi;
761type enum = (a, b, c);
762@end example
763
764@noindent
765The original language standard allows only numeric
766literals and constant identifiers for the subrange bounds (@samp{lo}
767and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
76810206) and many other
769Pascal implementations allow arbitrary expressions there. This gives
770rise to the following situation, containing a superfluous pair of
771parentheses:
772
773@example
774type subrange = (a) .. b;
775@end example
776
777@noindent
778Compare this to the following declaration of an enumerated
779type with only one value:
780
781@example
782type enum = (a);
783@end example
784
785@noindent
786(These declarations are contrived, but they are syntactically
787valid, and more-complicated cases can come up in practical programs.)
788
789These two declarations look identical until the @samp{..} token.
790With normal @acronym{LALR}(1) one-token look-ahead it is not
791possible to decide between the two forms when the identifier
792@samp{a} is parsed. It is, however, desirable
793for a parser to decide this, since in the latter case
794@samp{a} must become a new identifier to represent the enumeration
795value, while in the former case @samp{a} must be evaluated with its
796current meaning, which may be a constant or even a function call.
797
798You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
799to be resolved later, but this typically requires substantial
800contortions in both semantic actions and large parts of the
801grammar, where the parentheses are nested in the recursive rules for
802expressions.
803
804You might think of using the lexer to distinguish between the two
805forms by returning different tokens for currently defined and
806undefined identifiers. But if these declarations occur in a local
807scope, and @samp{a} is defined in an outer scope, then both forms
808are possible---either locally redefining @samp{a}, or using the
809value of @samp{a} from the outer scope. So this approach cannot
810work.
811
e757bb10 812A simple solution to this problem is to declare the parser to
fa7e68c3
PE
813use the @acronym{GLR} algorithm.
814When the @acronym{GLR} parser reaches the critical state, it
815merely splits into two branches and pursues both syntax rules
816simultaneously. Sooner or later, one of them runs into a parsing
817error. If there is a @samp{..} token before the next
818@samp{;}, the rule for enumerated types fails since it cannot
819accept @samp{..} anywhere; otherwise, the subrange type rule
820fails since it requires a @samp{..} token. So one of the branches
821fails silently, and the other one continues normally, performing
822all the intermediate actions that were postponed during the split.
823
824If the input is syntactically incorrect, both branches fail and the parser
825reports a syntax error as usual.
826
827The effect of all this is that the parser seems to ``guess'' the
828correct branch to take, or in other words, it seems to use more
829look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
830for. In this example, @acronym{LALR}(2) would suffice, but also some cases
831that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
832
833In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
834and the current Bison parser even takes exponential time and space
835for some grammars. In practice, this rarely happens, and for many
836grammars it is possible to prove that it cannot happen.
837The present example contains only one conflict between two
838rules, and the type-declaration context containing the conflict
839cannot be nested. So the number of
840branches that can exist at any time is limited by the constant 2,
841and the parsing time is still linear.
842
843Here is a Bison grammar corresponding to the example above. It
844parses a vastly simplified form of Pascal type declarations.
845
846@example
847%token TYPE DOTDOT ID
848
849@group
850%left '+' '-'
851%left '*' '/'
852@end group
853
854%%
855
856@group
857type_decl : TYPE ID '=' type ';'
858 ;
859@end group
860
861@group
862type : '(' id_list ')'
863 | expr DOTDOT expr
864 ;
865@end group
866
867@group
868id_list : ID
869 | id_list ',' ID
870 ;
871@end group
872
873@group
874expr : '(' expr ')'
875 | expr '+' expr
876 | expr '-' expr
877 | expr '*' expr
878 | expr '/' expr
879 | ID
880 ;
881@end group
882@end example
883
884When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
885about one reduce/reduce conflict. In the conflicting situation the
886parser chooses one of the alternatives, arbitrarily the one
887declared first. Therefore the following correct input is not
888recognized:
889
890@example
891type t = (a) .. b;
892@end example
893
894The parser can be turned into a @acronym{GLR} parser, while also telling Bison
895to be silent about the one known reduce/reduce conflict, by
e757bb10 896adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
897@samp{%%}):
898
899@example
900%glr-parser
901%expect-rr 1
902@end example
903
904@noindent
905No change in the grammar itself is required. Now the
906parser recognizes all valid declarations, according to the
907limited syntax above, transparently. In fact, the user does not even
908notice when the parser splits.
909
910So here we have a case where we can use the benefits of @acronym{GLR}, almost
911without disadvantages. Even in simple cases like this, however, there
912are at least two potential problems to beware.
913First, always analyze the conflicts reported by
914Bison to make sure that @acronym{GLR} splitting is only done where it is
915intended. A @acronym{GLR} parser splitting inadvertently may cause
916problems less obvious than an @acronym{LALR} parser statically choosing the
917wrong alternative in a conflict.
e757bb10 918Second, consider interactions with the lexer (@pxref{Semantic Tokens})
fa7e68c3
PE
919with great care. Since a split parser consumes tokens
920without performing any actions during the split, the lexer cannot
921obtain information via parser actions. Some cases of
922lexer interactions can be eliminated by using @acronym{GLR} to
923shift the complications from the lexer to the parser. You must check
924the remaining cases for correctness.
925
926In our example, it would be safe for the lexer to return tokens
927based on their current meanings in some symbol table, because no new
928symbols are defined in the middle of a type declaration. Though it
929is possible for a parser to define the enumeration
930constants as they are parsed, before the type declaration is
931completed, it actually makes no difference since they cannot be used
932within the same enumerated type declaration.
933
934@node Merging GLR Parses
935@subsection Using @acronym{GLR} to Resolve Ambiguities
936@cindex @acronym{GLR} parsing, ambiguous grammars
937@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
938@findex %dprec
939@findex %merge
940@cindex conflicts
941@cindex reduce/reduce conflicts
942
2a8d363a 943Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
944
945@example
946%@{
38a92d50
PE
947 #include <stdio.h>
948 #define YYSTYPE char const *
949 int yylex (void);
950 void yyerror (char const *);
676385e2
PH
951%@}
952
953%token TYPENAME ID
954
955%right '='
956%left '+'
957
958%glr-parser
959
960%%
961
fae437e8 962prog :
676385e2
PH
963 | prog stmt @{ printf ("\n"); @}
964 ;
965
966stmt : expr ';' %dprec 1
967 | decl %dprec 2
968 ;
969
2a8d363a 970expr : ID @{ printf ("%s ", $$); @}
fae437e8 971 | TYPENAME '(' expr ')'
2a8d363a
AD
972 @{ printf ("%s <cast> ", $1); @}
973 | expr '+' expr @{ printf ("+ "); @}
974 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
975 ;
976
fae437e8 977decl : TYPENAME declarator ';'
2a8d363a 978 @{ printf ("%s <declare> ", $1); @}
676385e2 979 | TYPENAME declarator '=' expr ';'
2a8d363a 980 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
981 ;
982
2a8d363a 983declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
984 | '(' declarator ')'
985 ;
986@end example
987
988@noindent
989This models a problematic part of the C++ grammar---the ambiguity between
990certain declarations and statements. For example,
991
992@example
993T (x) = y+z;
994@end example
995
996@noindent
997parses as either an @code{expr} or a @code{stmt}
c827f760
PE
998(assuming that @samp{T} is recognized as a @code{TYPENAME} and
999@samp{x} as an @code{ID}).
676385e2 1000Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1001@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1002time it encounters @code{x} in the example above. Since this is a
1003@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1004each choice of resolving the reduce/reduce conflict.
1005Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1006however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1007ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1008the other reduces @code{stmt : decl}, after which both parsers are in an
1009identical state: they've seen @samp{prog stmt} and have the same unprocessed
1010input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1011
1012At this point, the @acronym{GLR} parser requires a specification in the
1013grammar of how to choose between the competing parses.
1014In the example above, the two @code{%dprec}
e757bb10 1015declarations specify that Bison is to give precedence
fa7e68c3 1016to the parse that interprets the example as a
676385e2
PH
1017@code{decl}, which implies that @code{x} is a declarator.
1018The parser therefore prints
1019
1020@example
fae437e8 1021"x" y z + T <init-declare>
676385e2
PH
1022@end example
1023
fa7e68c3
PE
1024The @code{%dprec} declarations only come into play when more than one
1025parse survives. Consider a different input string for this parser:
676385e2
PH
1026
1027@example
1028T (x) + y;
1029@end example
1030
1031@noindent
e757bb10 1032This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1033construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1034Here, there is no ambiguity (this cannot be parsed as a declaration).
1035However, at the time the Bison parser encounters @code{x}, it does not
1036have enough information to resolve the reduce/reduce conflict (again,
1037between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1038case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1039into two, one assuming that @code{x} is an @code{expr}, and the other
1040assuming @code{x} is a @code{declarator}. The second of these parsers
1041then vanishes when it sees @code{+}, and the parser prints
1042
1043@example
fae437e8 1044x T <cast> y +
676385e2
PH
1045@end example
1046
1047Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1048the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1049actions of the two possible parsers, rather than choosing one over the
1050other. To do so, you could change the declaration of @code{stmt} as
1051follows:
1052
1053@example
1054stmt : expr ';' %merge <stmtMerge>
1055 | decl %merge <stmtMerge>
1056 ;
1057@end example
1058
1059@noindent
676385e2
PH
1060and define the @code{stmtMerge} function as:
1061
1062@example
38a92d50
PE
1063static YYSTYPE
1064stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1065@{
1066 printf ("<OR> ");
1067 return "";
1068@}
1069@end example
1070
1071@noindent
1072with an accompanying forward declaration
1073in the C declarations at the beginning of the file:
1074
1075@example
1076%@{
38a92d50 1077 #define YYSTYPE char const *
676385e2
PH
1078 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1079%@}
1080@end example
1081
1082@noindent
fa7e68c3
PE
1083With these declarations, the resulting parser parses the first example
1084as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1085
1086@example
fae437e8 1087"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1088@end example
1089
fa7e68c3 1090Bison requires that all of the
e757bb10 1091productions that participate in any particular merge have identical
fa7e68c3
PE
1092@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1093and the parser will report an error during any parse that results in
1094the offending merge.
9501dc6e 1095
fa7e68c3
PE
1096@node Compiler Requirements
1097@subsection Considerations when Compiling @acronym{GLR} Parsers
1098@cindex @code{inline}
9501dc6e 1099@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1100
38a92d50
PE
1101The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1102later. In addition, they use the @code{inline} keyword, which is not
1103C89, but is C99 and is a common extension in pre-C99 compilers. It is
1104up to the user of these parsers to handle
9501dc6e
AD
1105portability issues. For instance, if using Autoconf and the Autoconf
1106macro @code{AC_C_INLINE}, a mere
1107
1108@example
1109%@{
38a92d50 1110 #include <config.h>
9501dc6e
AD
1111%@}
1112@end example
1113
1114@noindent
1115will suffice. Otherwise, we suggest
1116
1117@example
1118%@{
38a92d50
PE
1119 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1120 #define inline
1121 #endif
9501dc6e
AD
1122%@}
1123@end example
676385e2 1124
342b8b6e 1125@node Locations Overview
847bf1f5
AD
1126@section Locations
1127@cindex location
95923bd6
AD
1128@cindex textual location
1129@cindex location, textual
847bf1f5
AD
1130
1131Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1132and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1133the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1134Bison provides a mechanism for handling these locations.
1135
72d2299c 1136Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1137associated location, but the type of locations is the same for all tokens and
72d2299c 1138groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1139structure for storing locations (@pxref{Locations}, for more details).
1140
1141Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1142set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1143is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1144@code{@@3}.
1145
1146When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1147of its left hand side (@pxref{Actions}). In the same way, another default
1148action is used for locations. However, the action for locations is general
847bf1f5 1149enough for most cases, meaning there is usually no need to describe for each
72d2299c 1150rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1151grouping, the default behavior of the output parser is to take the beginning
1152of the first symbol, and the end of the last symbol.
1153
342b8b6e 1154@node Bison Parser
bfa74976
RS
1155@section Bison Output: the Parser File
1156@cindex Bison parser
1157@cindex Bison utility
1158@cindex lexical analyzer, purpose
1159@cindex parser
1160
1161When you run Bison, you give it a Bison grammar file as input. The output
1162is a C source file that parses the language described by the grammar.
1163This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1164utility and the Bison parser are two distinct programs: the Bison utility
1165is a program whose output is the Bison parser that becomes part of your
1166program.
1167
1168The job of the Bison parser is to group tokens into groupings according to
1169the grammar rules---for example, to build identifiers and operators into
1170expressions. As it does this, it runs the actions for the grammar rules it
1171uses.
1172
704a47c4
AD
1173The tokens come from a function called the @dfn{lexical analyzer} that
1174you must supply in some fashion (such as by writing it in C). The Bison
1175parser calls the lexical analyzer each time it wants a new token. It
1176doesn't know what is ``inside'' the tokens (though their semantic values
1177may reflect this). Typically the lexical analyzer makes the tokens by
1178parsing characters of text, but Bison does not depend on this.
1179@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1180
1181The Bison parser file is C code which defines a function named
1182@code{yyparse} which implements that grammar. This function does not make
1183a complete C program: you must supply some additional functions. One is
1184the lexical analyzer. Another is an error-reporting function which the
1185parser calls to report an error. In addition, a complete C program must
1186start with a function called @code{main}; you have to provide this, and
1187arrange for it to call @code{yyparse} or the parser will never run.
1188@xref{Interface, ,Parser C-Language Interface}.
1189
1ce59070
PE
1190If your code defines a C preprocessor macro @code{_} (a single
1191underscore), Bison assumes that it can be used to translate
1192English-language strings to the user's preferred language using a
1193function-like syntax, e.g., @code{_("syntax error")}. Otherwise,
1194Bison defines a no-op macro by that name that merely returns its
1195argument, so strings are not translated.
1196
1197Aside from @code{_} and the token type names and the symbols in the actions you
7093d0f5 1198write, all symbols defined in the Bison parser file itself
bfa74976
RS
1199begin with @samp{yy} or @samp{YY}. This includes interface functions
1200such as the lexical analyzer function @code{yylex}, the error reporting
1201function @code{yyerror} and the parser function @code{yyparse} itself.
1202This also includes numerous identifiers used for internal purposes.
1203Therefore, you should avoid using C identifiers starting with @samp{yy}
1204or @samp{YY} in the Bison grammar file except for the ones defined in
1205this manual.
1206
7093d0f5
AD
1207In some cases the Bison parser file includes system headers, and in
1208those cases your code should respect the identifiers reserved by those
c827f760 1209headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 1210@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
ec3bc396
AD
1211declare memory allocators and related types. Other system headers may
1212be included if you define @code{YYDEBUG} to a nonzero value
1213(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1214
342b8b6e 1215@node Stages
bfa74976
RS
1216@section Stages in Using Bison
1217@cindex stages in using Bison
1218@cindex using Bison
1219
1220The actual language-design process using Bison, from grammar specification
1221to a working compiler or interpreter, has these parts:
1222
1223@enumerate
1224@item
1225Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1226(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1227in the language, describe the action that is to be taken when an
1228instance of that rule is recognized. The action is described by a
1229sequence of C statements.
bfa74976
RS
1230
1231@item
704a47c4
AD
1232Write a lexical analyzer to process input and pass tokens to the parser.
1233The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1234Lexical Analyzer Function @code{yylex}}). It could also be produced
1235using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1236
1237@item
1238Write a controlling function that calls the Bison-produced parser.
1239
1240@item
1241Write error-reporting routines.
1242@end enumerate
1243
1244To turn this source code as written into a runnable program, you
1245must follow these steps:
1246
1247@enumerate
1248@item
1249Run Bison on the grammar to produce the parser.
1250
1251@item
1252Compile the code output by Bison, as well as any other source files.
1253
1254@item
1255Link the object files to produce the finished product.
1256@end enumerate
1257
342b8b6e 1258@node Grammar Layout
bfa74976
RS
1259@section The Overall Layout of a Bison Grammar
1260@cindex grammar file
1261@cindex file format
1262@cindex format of grammar file
1263@cindex layout of Bison grammar
1264
1265The input file for the Bison utility is a @dfn{Bison grammar file}. The
1266general form of a Bison grammar file is as follows:
1267
1268@example
1269%@{
08e49d20 1270@var{Prologue}
bfa74976
RS
1271%@}
1272
1273@var{Bison declarations}
1274
1275%%
1276@var{Grammar rules}
1277%%
08e49d20 1278@var{Epilogue}
bfa74976
RS
1279@end example
1280
1281@noindent
1282The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1283in every Bison grammar file to separate the sections.
1284
72d2299c 1285The prologue may define types and variables used in the actions. You can
342b8b6e 1286also use preprocessor commands to define macros used there, and use
bfa74976 1287@code{#include} to include header files that do any of these things.
38a92d50
PE
1288You need to declare the lexical analyzer @code{yylex} and the error
1289printer @code{yyerror} here, along with any other global identifiers
1290used by the actions in the grammar rules.
bfa74976
RS
1291
1292The Bison declarations declare the names of the terminal and nonterminal
1293symbols, and may also describe operator precedence and the data types of
1294semantic values of various symbols.
1295
1296The grammar rules define how to construct each nonterminal symbol from its
1297parts.
1298
38a92d50
PE
1299The epilogue can contain any code you want to use. Often the
1300definitions of functions declared in the prologue go here. In a
1301simple program, all the rest of the program can go here.
bfa74976 1302
342b8b6e 1303@node Examples
bfa74976
RS
1304@chapter Examples
1305@cindex simple examples
1306@cindex examples, simple
1307
1308Now we show and explain three sample programs written using Bison: a
1309reverse polish notation calculator, an algebraic (infix) notation
1310calculator, and a multi-function calculator. All three have been tested
1311under BSD Unix 4.3; each produces a usable, though limited, interactive
1312desk-top calculator.
1313
1314These examples are simple, but Bison grammars for real programming
1315languages are written the same way.
1316@ifinfo
1317You can copy these examples out of the Info file and into a source file
1318to try them.
1319@end ifinfo
1320
1321@menu
1322* RPN Calc:: Reverse polish notation calculator;
1323 a first example with no operator precedence.
1324* Infix Calc:: Infix (algebraic) notation calculator.
1325 Operator precedence is introduced.
1326* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1327* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1328* Multi-function Calc:: Calculator with memory and trig functions.
1329 It uses multiple data-types for semantic values.
1330* Exercises:: Ideas for improving the multi-function calculator.
1331@end menu
1332
342b8b6e 1333@node RPN Calc
bfa74976
RS
1334@section Reverse Polish Notation Calculator
1335@cindex reverse polish notation
1336@cindex polish notation calculator
1337@cindex @code{rpcalc}
1338@cindex calculator, simple
1339
1340The first example is that of a simple double-precision @dfn{reverse polish
1341notation} calculator (a calculator using postfix operators). This example
1342provides a good starting point, since operator precedence is not an issue.
1343The second example will illustrate how operator precedence is handled.
1344
1345The source code for this calculator is named @file{rpcalc.y}. The
1346@samp{.y} extension is a convention used for Bison input files.
1347
1348@menu
75f5aaea 1349* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1350* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1351* Lexer: Rpcalc Lexer. The lexical analyzer.
1352* Main: Rpcalc Main. The controlling function.
1353* Error: Rpcalc Error. The error reporting function.
1354* Gen: Rpcalc Gen. Running Bison on the grammar file.
1355* Comp: Rpcalc Compile. Run the C compiler on the output code.
1356@end menu
1357
342b8b6e 1358@node Rpcalc Decls
bfa74976
RS
1359@subsection Declarations for @code{rpcalc}
1360
1361Here are the C and Bison declarations for the reverse polish notation
1362calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1363
1364@example
72d2299c 1365/* Reverse polish notation calculator. */
bfa74976
RS
1366
1367%@{
38a92d50
PE
1368 #define YYSTYPE double
1369 #include <math.h>
1370 int yylex (void);
1371 void yyerror (char const *);
bfa74976
RS
1372%@}
1373
1374%token NUM
1375
72d2299c 1376%% /* Grammar rules and actions follow. */
bfa74976
RS
1377@end example
1378
75f5aaea 1379The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1380preprocessor directives and two forward declarations.
bfa74976
RS
1381
1382The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1383specifying the C data type for semantic values of both tokens and
1384groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1385Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1386don't define it, @code{int} is the default. Because we specify
1387@code{double}, each token and each expression has an associated value,
1388which is a floating point number.
bfa74976
RS
1389
1390The @code{#include} directive is used to declare the exponentiation
1391function @code{pow}.
1392
38a92d50
PE
1393The forward declarations for @code{yylex} and @code{yyerror} are
1394needed because the C language requires that functions be declared
1395before they are used. These functions will be defined in the
1396epilogue, but the parser calls them so they must be declared in the
1397prologue.
1398
704a47c4
AD
1399The second section, Bison declarations, provides information to Bison
1400about the token types (@pxref{Bison Declarations, ,The Bison
1401Declarations Section}). Each terminal symbol that is not a
1402single-character literal must be declared here. (Single-character
bfa74976
RS
1403literals normally don't need to be declared.) In this example, all the
1404arithmetic operators are designated by single-character literals, so the
1405only terminal symbol that needs to be declared is @code{NUM}, the token
1406type for numeric constants.
1407
342b8b6e 1408@node Rpcalc Rules
bfa74976
RS
1409@subsection Grammar Rules for @code{rpcalc}
1410
1411Here are the grammar rules for the reverse polish notation calculator.
1412
1413@example
1414input: /* empty */
1415 | input line
1416;
1417
1418line: '\n'
18b519c0 1419 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1420;
1421
18b519c0
AD
1422exp: NUM @{ $$ = $1; @}
1423 | exp exp '+' @{ $$ = $1 + $2; @}
1424 | exp exp '-' @{ $$ = $1 - $2; @}
1425 | exp exp '*' @{ $$ = $1 * $2; @}
1426 | exp exp '/' @{ $$ = $1 / $2; @}
1427 /* Exponentiation */
1428 | exp exp '^' @{ $$ = pow ($1, $2); @}
1429 /* Unary minus */
1430 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1431;
1432%%
1433@end example
1434
1435The groupings of the rpcalc ``language'' defined here are the expression
1436(given the name @code{exp}), the line of input (@code{line}), and the
1437complete input transcript (@code{input}). Each of these nonterminal
1438symbols has several alternate rules, joined by the @samp{|} punctuator
1439which is read as ``or''. The following sections explain what these rules
1440mean.
1441
1442The semantics of the language is determined by the actions taken when a
1443grouping is recognized. The actions are the C code that appears inside
1444braces. @xref{Actions}.
1445
1446You must specify these actions in C, but Bison provides the means for
1447passing semantic values between the rules. In each action, the
1448pseudo-variable @code{$$} stands for the semantic value for the grouping
1449that the rule is going to construct. Assigning a value to @code{$$} is the
1450main job of most actions. The semantic values of the components of the
1451rule are referred to as @code{$1}, @code{$2}, and so on.
1452
1453@menu
13863333
AD
1454* Rpcalc Input::
1455* Rpcalc Line::
1456* Rpcalc Expr::
bfa74976
RS
1457@end menu
1458
342b8b6e 1459@node Rpcalc Input
bfa74976
RS
1460@subsubsection Explanation of @code{input}
1461
1462Consider the definition of @code{input}:
1463
1464@example
1465input: /* empty */
1466 | input line
1467;
1468@end example
1469
1470This definition reads as follows: ``A complete input is either an empty
1471string, or a complete input followed by an input line''. Notice that
1472``complete input'' is defined in terms of itself. This definition is said
1473to be @dfn{left recursive} since @code{input} appears always as the
1474leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1475
1476The first alternative is empty because there are no symbols between the
1477colon and the first @samp{|}; this means that @code{input} can match an
1478empty string of input (no tokens). We write the rules this way because it
1479is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1480It's conventional to put an empty alternative first and write the comment
1481@samp{/* empty */} in it.
1482
1483The second alternate rule (@code{input line}) handles all nontrivial input.
1484It means, ``After reading any number of lines, read one more line if
1485possible.'' The left recursion makes this rule into a loop. Since the
1486first alternative matches empty input, the loop can be executed zero or
1487more times.
1488
1489The parser function @code{yyparse} continues to process input until a
1490grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1491input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1492
342b8b6e 1493@node Rpcalc Line
bfa74976
RS
1494@subsubsection Explanation of @code{line}
1495
1496Now consider the definition of @code{line}:
1497
1498@example
1499line: '\n'
1500 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1501;
1502@end example
1503
1504The first alternative is a token which is a newline character; this means
1505that rpcalc accepts a blank line (and ignores it, since there is no
1506action). The second alternative is an expression followed by a newline.
1507This is the alternative that makes rpcalc useful. The semantic value of
1508the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1509question is the first symbol in the alternative. The action prints this
1510value, which is the result of the computation the user asked for.
1511
1512This action is unusual because it does not assign a value to @code{$$}. As
1513a consequence, the semantic value associated with the @code{line} is
1514uninitialized (its value will be unpredictable). This would be a bug if
1515that value were ever used, but we don't use it: once rpcalc has printed the
1516value of the user's input line, that value is no longer needed.
1517
342b8b6e 1518@node Rpcalc Expr
bfa74976
RS
1519@subsubsection Explanation of @code{expr}
1520
1521The @code{exp} grouping has several rules, one for each kind of expression.
1522The first rule handles the simplest expressions: those that are just numbers.
1523The second handles an addition-expression, which looks like two expressions
1524followed by a plus-sign. The third handles subtraction, and so on.
1525
1526@example
1527exp: NUM
1528 | exp exp '+' @{ $$ = $1 + $2; @}
1529 | exp exp '-' @{ $$ = $1 - $2; @}
1530 @dots{}
1531 ;
1532@end example
1533
1534We have used @samp{|} to join all the rules for @code{exp}, but we could
1535equally well have written them separately:
1536
1537@example
1538exp: NUM ;
1539exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1540exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1541 @dots{}
1542@end example
1543
1544Most of the rules have actions that compute the value of the expression in
1545terms of the value of its parts. For example, in the rule for addition,
1546@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1547the second one. The third component, @code{'+'}, has no meaningful
1548associated semantic value, but if it had one you could refer to it as
1549@code{$3}. When @code{yyparse} recognizes a sum expression using this
1550rule, the sum of the two subexpressions' values is produced as the value of
1551the entire expression. @xref{Actions}.
1552
1553You don't have to give an action for every rule. When a rule has no
1554action, Bison by default copies the value of @code{$1} into @code{$$}.
1555This is what happens in the first rule (the one that uses @code{NUM}).
1556
1557The formatting shown here is the recommended convention, but Bison does
72d2299c 1558not require it. You can add or change white space as much as you wish.
bfa74976
RS
1559For example, this:
1560
1561@example
99a9344e 1562exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1563@end example
1564
1565@noindent
1566means the same thing as this:
1567
1568@example
1569exp: NUM
1570 | exp exp '+' @{ $$ = $1 + $2; @}
1571 | @dots{}
99a9344e 1572;
bfa74976
RS
1573@end example
1574
1575@noindent
1576The latter, however, is much more readable.
1577
342b8b6e 1578@node Rpcalc Lexer
bfa74976
RS
1579@subsection The @code{rpcalc} Lexical Analyzer
1580@cindex writing a lexical analyzer
1581@cindex lexical analyzer, writing
1582
704a47c4
AD
1583The lexical analyzer's job is low-level parsing: converting characters
1584or sequences of characters into tokens. The Bison parser gets its
1585tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1586Analyzer Function @code{yylex}}.
bfa74976 1587
c827f760
PE
1588Only a simple lexical analyzer is needed for the @acronym{RPN}
1589calculator. This
bfa74976
RS
1590lexical analyzer skips blanks and tabs, then reads in numbers as
1591@code{double} and returns them as @code{NUM} tokens. Any other character
1592that isn't part of a number is a separate token. Note that the token-code
1593for such a single-character token is the character itself.
1594
1595The return value of the lexical analyzer function is a numeric code which
1596represents a token type. The same text used in Bison rules to stand for
1597this token type is also a C expression for the numeric code for the type.
1598This works in two ways. If the token type is a character literal, then its
e966383b 1599numeric code is that of the character; you can use the same
bfa74976
RS
1600character literal in the lexical analyzer to express the number. If the
1601token type is an identifier, that identifier is defined by Bison as a C
1602macro whose definition is the appropriate number. In this example,
1603therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1604
1964ad8c
AD
1605The semantic value of the token (if it has one) is stored into the
1606global variable @code{yylval}, which is where the Bison parser will look
1607for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1608defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1609,Declarations for @code{rpcalc}}.)
bfa74976 1610
72d2299c
PE
1611A token type code of zero is returned if the end-of-input is encountered.
1612(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1613
1614Here is the code for the lexical analyzer:
1615
1616@example
1617@group
72d2299c 1618/* The lexical analyzer returns a double floating point
e966383b 1619 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1620 of the character read if not a number. It skips all blanks
1621 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1622
1623#include <ctype.h>
1624@end group
1625
1626@group
13863333
AD
1627int
1628yylex (void)
bfa74976
RS
1629@{
1630 int c;
1631
72d2299c 1632 /* Skip white space. */
13863333 1633 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1634 ;
1635@end group
1636@group
72d2299c 1637 /* Process numbers. */
13863333 1638 if (c == '.' || isdigit (c))
bfa74976
RS
1639 @{
1640 ungetc (c, stdin);
1641 scanf ("%lf", &yylval);
1642 return NUM;
1643 @}
1644@end group
1645@group
72d2299c 1646 /* Return end-of-input. */
13863333 1647 if (c == EOF)
bfa74976 1648 return 0;
72d2299c 1649 /* Return a single char. */
13863333 1650 return c;
bfa74976
RS
1651@}
1652@end group
1653@end example
1654
342b8b6e 1655@node Rpcalc Main
bfa74976
RS
1656@subsection The Controlling Function
1657@cindex controlling function
1658@cindex main function in simple example
1659
1660In keeping with the spirit of this example, the controlling function is
1661kept to the bare minimum. The only requirement is that it call
1662@code{yyparse} to start the process of parsing.
1663
1664@example
1665@group
13863333
AD
1666int
1667main (void)
bfa74976 1668@{
13863333 1669 return yyparse ();
bfa74976
RS
1670@}
1671@end group
1672@end example
1673
342b8b6e 1674@node Rpcalc Error
bfa74976
RS
1675@subsection The Error Reporting Routine
1676@cindex error reporting routine
1677
1678When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1679function @code{yyerror} to print an error message (usually but not
6e649e65 1680always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1681@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1682here is the definition we will use:
bfa74976
RS
1683
1684@example
1685@group
1686#include <stdio.h>
1687
38a92d50 1688/* Called by yyparse on error. */
13863333 1689void
38a92d50 1690yyerror (char const *s)
bfa74976 1691@{
4e03e201 1692 fprintf (stderr, "%s\n", s);
bfa74976
RS
1693@}
1694@end group
1695@end example
1696
1697After @code{yyerror} returns, the Bison parser may recover from the error
1698and continue parsing if the grammar contains a suitable error rule
1699(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1700have not written any error rules in this example, so any invalid input will
1701cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1702real calculator, but it is adequate for the first example.
bfa74976 1703
342b8b6e 1704@node Rpcalc Gen
bfa74976
RS
1705@subsection Running Bison to Make the Parser
1706@cindex running Bison (introduction)
1707
ceed8467
AD
1708Before running Bison to produce a parser, we need to decide how to
1709arrange all the source code in one or more source files. For such a
1710simple example, the easiest thing is to put everything in one file. The
1711definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1712end, in the epilogue of the file
75f5aaea 1713(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1714
1715For a large project, you would probably have several source files, and use
1716@code{make} to arrange to recompile them.
1717
1718With all the source in a single file, you use the following command to
1719convert it into a parser file:
1720
1721@example
1722bison @var{file_name}.y
1723@end example
1724
1725@noindent
1726In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1727@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1728removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1729Bison contains the source code for @code{yyparse}. The additional
1730functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1731are copied verbatim to the output.
1732
342b8b6e 1733@node Rpcalc Compile
bfa74976
RS
1734@subsection Compiling the Parser File
1735@cindex compiling the parser
1736
1737Here is how to compile and run the parser file:
1738
1739@example
1740@group
1741# @r{List files in current directory.}
9edcd895 1742$ @kbd{ls}
bfa74976
RS
1743rpcalc.tab.c rpcalc.y
1744@end group
1745
1746@group
1747# @r{Compile the Bison parser.}
1748# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1749$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1750@end group
1751
1752@group
1753# @r{List files again.}
9edcd895 1754$ @kbd{ls}
bfa74976
RS
1755rpcalc rpcalc.tab.c rpcalc.y
1756@end group
1757@end example
1758
1759The file @file{rpcalc} now contains the executable code. Here is an
1760example session using @code{rpcalc}.
1761
1762@example
9edcd895
AD
1763$ @kbd{rpcalc}
1764@kbd{4 9 +}
bfa74976 176513
9edcd895 1766@kbd{3 7 + 3 4 5 *+-}
bfa74976 1767-13
9edcd895 1768@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 176913
9edcd895 1770@kbd{5 6 / 4 n +}
bfa74976 1771-3.166666667
9edcd895 1772@kbd{3 4 ^} @r{Exponentiation}
bfa74976 177381
9edcd895
AD
1774@kbd{^D} @r{End-of-file indicator}
1775$
bfa74976
RS
1776@end example
1777
342b8b6e 1778@node Infix Calc
bfa74976
RS
1779@section Infix Notation Calculator: @code{calc}
1780@cindex infix notation calculator
1781@cindex @code{calc}
1782@cindex calculator, infix notation
1783
1784We now modify rpcalc to handle infix operators instead of postfix. Infix
1785notation involves the concept of operator precedence and the need for
1786parentheses nested to arbitrary depth. Here is the Bison code for
1787@file{calc.y}, an infix desk-top calculator.
1788
1789@example
38a92d50 1790/* Infix notation calculator. */
bfa74976
RS
1791
1792%@{
38a92d50
PE
1793 #define YYSTYPE double
1794 #include <math.h>
1795 #include <stdio.h>
1796 int yylex (void);
1797 void yyerror (char const *);
bfa74976
RS
1798%@}
1799
38a92d50 1800/* Bison declarations. */
bfa74976
RS
1801%token NUM
1802%left '-' '+'
1803%left '*' '/'
1804%left NEG /* negation--unary minus */
38a92d50 1805%right '^' /* exponentiation */
bfa74976 1806
38a92d50
PE
1807%% /* The grammar follows. */
1808input: /* empty */
bfa74976
RS
1809 | input line
1810;
1811
1812line: '\n'
1813 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1814;
1815
1816exp: NUM @{ $$ = $1; @}
1817 | exp '+' exp @{ $$ = $1 + $3; @}
1818 | exp '-' exp @{ $$ = $1 - $3; @}
1819 | exp '*' exp @{ $$ = $1 * $3; @}
1820 | exp '/' exp @{ $$ = $1 / $3; @}
1821 | '-' exp %prec NEG @{ $$ = -$2; @}
1822 | exp '^' exp @{ $$ = pow ($1, $3); @}
1823 | '(' exp ')' @{ $$ = $2; @}
1824;
1825%%
1826@end example
1827
1828@noindent
ceed8467
AD
1829The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1830same as before.
bfa74976
RS
1831
1832There are two important new features shown in this code.
1833
1834In the second section (Bison declarations), @code{%left} declares token
1835types and says they are left-associative operators. The declarations
1836@code{%left} and @code{%right} (right associativity) take the place of
1837@code{%token} which is used to declare a token type name without
1838associativity. (These tokens are single-character literals, which
1839ordinarily don't need to be declared. We declare them here to specify
1840the associativity.)
1841
1842Operator precedence is determined by the line ordering of the
1843declarations; the higher the line number of the declaration (lower on
1844the page or screen), the higher the precedence. Hence, exponentiation
1845has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1846by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1847Precedence}.
bfa74976 1848
704a47c4
AD
1849The other important new feature is the @code{%prec} in the grammar
1850section for the unary minus operator. The @code{%prec} simply instructs
1851Bison that the rule @samp{| '-' exp} has the same precedence as
1852@code{NEG}---in this case the next-to-highest. @xref{Contextual
1853Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1854
1855Here is a sample run of @file{calc.y}:
1856
1857@need 500
1858@example
9edcd895
AD
1859$ @kbd{calc}
1860@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18616.880952381
9edcd895 1862@kbd{-56 + 2}
bfa74976 1863-54
9edcd895 1864@kbd{3 ^ 2}
bfa74976
RS
18659
1866@end example
1867
342b8b6e 1868@node Simple Error Recovery
bfa74976
RS
1869@section Simple Error Recovery
1870@cindex error recovery, simple
1871
1872Up to this point, this manual has not addressed the issue of @dfn{error
1873recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1874error. All we have handled is error reporting with @code{yyerror}.
1875Recall that by default @code{yyparse} returns after calling
1876@code{yyerror}. This means that an erroneous input line causes the
1877calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1878
1879The Bison language itself includes the reserved word @code{error}, which
1880may be included in the grammar rules. In the example below it has
1881been added to one of the alternatives for @code{line}:
1882
1883@example
1884@group
1885line: '\n'
1886 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1887 | error '\n' @{ yyerrok; @}
1888;
1889@end group
1890@end example
1891
ceed8467 1892This addition to the grammar allows for simple error recovery in the
6e649e65 1893event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1894read, the error will be recognized by the third rule for @code{line},
1895and parsing will continue. (The @code{yyerror} function is still called
1896upon to print its message as well.) The action executes the statement
1897@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1898that error recovery is complete (@pxref{Error Recovery}). Note the
1899difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1900misprint.
bfa74976
RS
1901
1902This form of error recovery deals with syntax errors. There are other
1903kinds of errors; for example, division by zero, which raises an exception
1904signal that is normally fatal. A real calculator program must handle this
1905signal and use @code{longjmp} to return to @code{main} and resume parsing
1906input lines; it would also have to discard the rest of the current line of
1907input. We won't discuss this issue further because it is not specific to
1908Bison programs.
1909
342b8b6e
AD
1910@node Location Tracking Calc
1911@section Location Tracking Calculator: @code{ltcalc}
1912@cindex location tracking calculator
1913@cindex @code{ltcalc}
1914@cindex calculator, location tracking
1915
9edcd895
AD
1916This example extends the infix notation calculator with location
1917tracking. This feature will be used to improve the error messages. For
1918the sake of clarity, this example is a simple integer calculator, since
1919most of the work needed to use locations will be done in the lexical
72d2299c 1920analyzer.
342b8b6e
AD
1921
1922@menu
1923* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1924* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1925* Lexer: Ltcalc Lexer. The lexical analyzer.
1926@end menu
1927
1928@node Ltcalc Decls
1929@subsection Declarations for @code{ltcalc}
1930
9edcd895
AD
1931The C and Bison declarations for the location tracking calculator are
1932the same as the declarations for the infix notation calculator.
342b8b6e
AD
1933
1934@example
1935/* Location tracking calculator. */
1936
1937%@{
38a92d50
PE
1938 #define YYSTYPE int
1939 #include <math.h>
1940 int yylex (void);
1941 void yyerror (char const *);
342b8b6e
AD
1942%@}
1943
1944/* Bison declarations. */
1945%token NUM
1946
1947%left '-' '+'
1948%left '*' '/'
1949%left NEG
1950%right '^'
1951
38a92d50 1952%% /* The grammar follows. */
342b8b6e
AD
1953@end example
1954
9edcd895
AD
1955@noindent
1956Note there are no declarations specific to locations. Defining a data
1957type for storing locations is not needed: we will use the type provided
1958by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1959four member structure with the following integer fields:
1960@code{first_line}, @code{first_column}, @code{last_line} and
1961@code{last_column}.
342b8b6e
AD
1962
1963@node Ltcalc Rules
1964@subsection Grammar Rules for @code{ltcalc}
1965
9edcd895
AD
1966Whether handling locations or not has no effect on the syntax of your
1967language. Therefore, grammar rules for this example will be very close
1968to those of the previous example: we will only modify them to benefit
1969from the new information.
342b8b6e 1970
9edcd895
AD
1971Here, we will use locations to report divisions by zero, and locate the
1972wrong expressions or subexpressions.
342b8b6e
AD
1973
1974@example
1975@group
1976input : /* empty */
1977 | input line
1978;
1979@end group
1980
1981@group
1982line : '\n'
1983 | exp '\n' @{ printf ("%d\n", $1); @}
1984;
1985@end group
1986
1987@group
1988exp : NUM @{ $$ = $1; @}
1989 | exp '+' exp @{ $$ = $1 + $3; @}
1990 | exp '-' exp @{ $$ = $1 - $3; @}
1991 | exp '*' exp @{ $$ = $1 * $3; @}
1992@end group
342b8b6e 1993@group
9edcd895 1994 | exp '/' exp
342b8b6e
AD
1995 @{
1996 if ($3)
1997 $$ = $1 / $3;
1998 else
1999 @{
2000 $$ = 1;
9edcd895
AD
2001 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2002 @@3.first_line, @@3.first_column,
2003 @@3.last_line, @@3.last_column);
342b8b6e
AD
2004 @}
2005 @}
2006@end group
2007@group
2008 | '-' exp %preg NEG @{ $$ = -$2; @}
2009 | exp '^' exp @{ $$ = pow ($1, $3); @}
2010 | '(' exp ')' @{ $$ = $2; @}
2011@end group
2012@end example
2013
2014This code shows how to reach locations inside of semantic actions, by
2015using the pseudo-variables @code{@@@var{n}} for rule components, and the
2016pseudo-variable @code{@@$} for groupings.
2017
9edcd895
AD
2018We don't need to assign a value to @code{@@$}: the output parser does it
2019automatically. By default, before executing the C code of each action,
2020@code{@@$} is set to range from the beginning of @code{@@1} to the end
2021of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2022can be redefined (@pxref{Location Default Action, , Default Action for
2023Locations}), and for very specific rules, @code{@@$} can be computed by
2024hand.
342b8b6e
AD
2025
2026@node Ltcalc Lexer
2027@subsection The @code{ltcalc} Lexical Analyzer.
2028
9edcd895 2029Until now, we relied on Bison's defaults to enable location
72d2299c 2030tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2031able to feed the parser with the token locations, as it already does for
2032semantic values.
342b8b6e 2033
9edcd895
AD
2034To this end, we must take into account every single character of the
2035input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2036
2037@example
2038@group
2039int
2040yylex (void)
2041@{
2042 int c;
18b519c0 2043@end group
342b8b6e 2044
18b519c0 2045@group
72d2299c 2046 /* Skip white space. */
342b8b6e
AD
2047 while ((c = getchar ()) == ' ' || c == '\t')
2048 ++yylloc.last_column;
18b519c0 2049@end group
342b8b6e 2050
18b519c0 2051@group
72d2299c 2052 /* Step. */
342b8b6e
AD
2053 yylloc.first_line = yylloc.last_line;
2054 yylloc.first_column = yylloc.last_column;
2055@end group
2056
2057@group
72d2299c 2058 /* Process numbers. */
342b8b6e
AD
2059 if (isdigit (c))
2060 @{
2061 yylval = c - '0';
2062 ++yylloc.last_column;
2063 while (isdigit (c = getchar ()))
2064 @{
2065 ++yylloc.last_column;
2066 yylval = yylval * 10 + c - '0';
2067 @}
2068 ungetc (c, stdin);
2069 return NUM;
2070 @}
2071@end group
2072
72d2299c 2073 /* Return end-of-input. */
342b8b6e
AD
2074 if (c == EOF)
2075 return 0;
2076
72d2299c 2077 /* Return a single char, and update location. */
342b8b6e
AD
2078 if (c == '\n')
2079 @{
2080 ++yylloc.last_line;
2081 yylloc.last_column = 0;
2082 @}
2083 else
2084 ++yylloc.last_column;
2085 return c;
2086@}
2087@end example
2088
9edcd895
AD
2089Basically, the lexical analyzer performs the same processing as before:
2090it skips blanks and tabs, and reads numbers or single-character tokens.
2091In addition, it updates @code{yylloc}, the global variable (of type
2092@code{YYLTYPE}) containing the token's location.
342b8b6e 2093
9edcd895 2094Now, each time this function returns a token, the parser has its number
72d2299c 2095as well as its semantic value, and its location in the text. The last
9edcd895
AD
2096needed change is to initialize @code{yylloc}, for example in the
2097controlling function:
342b8b6e
AD
2098
2099@example
9edcd895 2100@group
342b8b6e
AD
2101int
2102main (void)
2103@{
2104 yylloc.first_line = yylloc.last_line = 1;
2105 yylloc.first_column = yylloc.last_column = 0;
2106 return yyparse ();
2107@}
9edcd895 2108@end group
342b8b6e
AD
2109@end example
2110
9edcd895
AD
2111Remember that computing locations is not a matter of syntax. Every
2112character must be associated to a location update, whether it is in
2113valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2114
2115@node Multi-function Calc
bfa74976
RS
2116@section Multi-Function Calculator: @code{mfcalc}
2117@cindex multi-function calculator
2118@cindex @code{mfcalc}
2119@cindex calculator, multi-function
2120
2121Now that the basics of Bison have been discussed, it is time to move on to
2122a more advanced problem. The above calculators provided only five
2123functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2124be nice to have a calculator that provides other mathematical functions such
2125as @code{sin}, @code{cos}, etc.
2126
2127It is easy to add new operators to the infix calculator as long as they are
2128only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2129back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2130adding a new operator. But we want something more flexible: built-in
2131functions whose syntax has this form:
2132
2133@example
2134@var{function_name} (@var{argument})
2135@end example
2136
2137@noindent
2138At the same time, we will add memory to the calculator, by allowing you
2139to create named variables, store values in them, and use them later.
2140Here is a sample session with the multi-function calculator:
2141
2142@example
9edcd895
AD
2143$ @kbd{mfcalc}
2144@kbd{pi = 3.141592653589}
bfa74976 21453.1415926536
9edcd895 2146@kbd{sin(pi)}
bfa74976 21470.0000000000
9edcd895 2148@kbd{alpha = beta1 = 2.3}
bfa74976 21492.3000000000
9edcd895 2150@kbd{alpha}
bfa74976 21512.3000000000
9edcd895 2152@kbd{ln(alpha)}
bfa74976 21530.8329091229
9edcd895 2154@kbd{exp(ln(beta1))}
bfa74976 21552.3000000000
9edcd895 2156$
bfa74976
RS
2157@end example
2158
2159Note that multiple assignment and nested function calls are permitted.
2160
2161@menu
2162* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2163* Rules: Mfcalc Rules. Grammar rules for the calculator.
2164* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2165@end menu
2166
342b8b6e 2167@node Mfcalc Decl
bfa74976
RS
2168@subsection Declarations for @code{mfcalc}
2169
2170Here are the C and Bison declarations for the multi-function calculator.
2171
2172@smallexample
18b519c0 2173@group
bfa74976 2174%@{
38a92d50
PE
2175 #include <math.h> /* For math functions, cos(), sin(), etc. */
2176 #include "calc.h" /* Contains definition of `symrec'. */
2177 int yylex (void);
2178 void yyerror (char const *);
bfa74976 2179%@}
18b519c0
AD
2180@end group
2181@group
bfa74976 2182%union @{
38a92d50
PE
2183 double val; /* For returning numbers. */
2184 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2185@}
18b519c0 2186@end group
38a92d50
PE
2187%token <val> NUM /* Simple double precision number. */
2188%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2189%type <val> exp
2190
18b519c0 2191@group
bfa74976
RS
2192%right '='
2193%left '-' '+'
2194%left '*' '/'
38a92d50
PE
2195%left NEG /* negation--unary minus */
2196%right '^' /* exponentiation */
18b519c0 2197@end group
38a92d50 2198%% /* The grammar follows. */
bfa74976
RS
2199@end smallexample
2200
2201The above grammar introduces only two new features of the Bison language.
2202These features allow semantic values to have various data types
2203(@pxref{Multiple Types, ,More Than One Value Type}).
2204
2205The @code{%union} declaration specifies the entire list of possible types;
2206this is instead of defining @code{YYSTYPE}. The allowable types are now
2207double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2208the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2209
2210Since values can now have various types, it is necessary to associate a
2211type with each grammar symbol whose semantic value is used. These symbols
2212are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2213declarations are augmented with information about their data type (placed
2214between angle brackets).
2215
704a47c4
AD
2216The Bison construct @code{%type} is used for declaring nonterminal
2217symbols, just as @code{%token} is used for declaring token types. We
2218have not used @code{%type} before because nonterminal symbols are
2219normally declared implicitly by the rules that define them. But
2220@code{exp} must be declared explicitly so we can specify its value type.
2221@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2222
342b8b6e 2223@node Mfcalc Rules
bfa74976
RS
2224@subsection Grammar Rules for @code{mfcalc}
2225
2226Here are the grammar rules for the multi-function calculator.
2227Most of them are copied directly from @code{calc}; three rules,
2228those which mention @code{VAR} or @code{FNCT}, are new.
2229
2230@smallexample
18b519c0 2231@group
bfa74976
RS
2232input: /* empty */
2233 | input line
2234;
18b519c0 2235@end group
bfa74976 2236
18b519c0 2237@group
bfa74976
RS
2238line:
2239 '\n'
2240 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2241 | error '\n' @{ yyerrok; @}
2242;
18b519c0 2243@end group
bfa74976 2244
18b519c0 2245@group
bfa74976
RS
2246exp: NUM @{ $$ = $1; @}
2247 | VAR @{ $$ = $1->value.var; @}
2248 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2249 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2250 | exp '+' exp @{ $$ = $1 + $3; @}
2251 | exp '-' exp @{ $$ = $1 - $3; @}
2252 | exp '*' exp @{ $$ = $1 * $3; @}
2253 | exp '/' exp @{ $$ = $1 / $3; @}
2254 | '-' exp %prec NEG @{ $$ = -$2; @}
2255 | exp '^' exp @{ $$ = pow ($1, $3); @}
2256 | '(' exp ')' @{ $$ = $2; @}
2257;
18b519c0 2258@end group
38a92d50 2259/* End of grammar. */
bfa74976
RS
2260%%
2261@end smallexample
2262
342b8b6e 2263@node Mfcalc Symtab
bfa74976
RS
2264@subsection The @code{mfcalc} Symbol Table
2265@cindex symbol table example
2266
2267The multi-function calculator requires a symbol table to keep track of the
2268names and meanings of variables and functions. This doesn't affect the
2269grammar rules (except for the actions) or the Bison declarations, but it
2270requires some additional C functions for support.
2271
2272The symbol table itself consists of a linked list of records. Its
2273definition, which is kept in the header @file{calc.h}, is as follows. It
2274provides for either functions or variables to be placed in the table.
2275
2276@smallexample
2277@group
38a92d50 2278/* Function type. */
32dfccf8 2279typedef double (*func_t) (double);
72f889cc 2280@end group
32dfccf8 2281
72f889cc 2282@group
38a92d50 2283/* Data type for links in the chain of symbols. */
bfa74976
RS
2284struct symrec
2285@{
38a92d50 2286 char *name; /* name of symbol */
bfa74976 2287 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2288 union
2289 @{
38a92d50
PE
2290 double var; /* value of a VAR */
2291 func_t fnctptr; /* value of a FNCT */
bfa74976 2292 @} value;
38a92d50 2293 struct symrec *next; /* link field */
bfa74976
RS
2294@};
2295@end group
2296
2297@group
2298typedef struct symrec symrec;
2299
38a92d50 2300/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2301extern symrec *sym_table;
2302
a730d142 2303symrec *putsym (char const *, int);
38a92d50 2304symrec *getsym (char const *);
bfa74976
RS
2305@end group
2306@end smallexample
2307
2308The new version of @code{main} includes a call to @code{init_table}, a
2309function that initializes the symbol table. Here it is, and
2310@code{init_table} as well:
2311
2312@smallexample
bfa74976
RS
2313#include <stdio.h>
2314
18b519c0 2315@group
38a92d50 2316/* Called by yyparse on error. */
13863333 2317void
38a92d50 2318yyerror (char const *s)
bfa74976
RS
2319@{
2320 printf ("%s\n", s);
2321@}
18b519c0 2322@end group
bfa74976 2323
18b519c0 2324@group
bfa74976
RS
2325struct init
2326@{
38a92d50
PE
2327 char const *fname;
2328 double (*fnct) (double);
bfa74976
RS
2329@};
2330@end group
2331
2332@group
38a92d50 2333struct init const arith_fncts[] =
13863333 2334@{
32dfccf8
AD
2335 "sin", sin,
2336 "cos", cos,
13863333 2337 "atan", atan,
32dfccf8
AD
2338 "ln", log,
2339 "exp", exp,
13863333
AD
2340 "sqrt", sqrt,
2341 0, 0
2342@};
18b519c0 2343@end group
bfa74976 2344
18b519c0 2345@group
bfa74976 2346/* The symbol table: a chain of `struct symrec'. */
38a92d50 2347symrec *sym_table;
bfa74976
RS
2348@end group
2349
2350@group
72d2299c 2351/* Put arithmetic functions in table. */
13863333
AD
2352void
2353init_table (void)
bfa74976
RS
2354@{
2355 int i;
2356 symrec *ptr;
2357 for (i = 0; arith_fncts[i].fname != 0; i++)
2358 @{
2359 ptr = putsym (arith_fncts[i].fname, FNCT);
2360 ptr->value.fnctptr = arith_fncts[i].fnct;
2361 @}
2362@}
2363@end group
38a92d50
PE
2364
2365@group
2366int
2367main (void)
2368@{
2369 init_table ();
2370 return yyparse ();
2371@}
2372@end group
bfa74976
RS
2373@end smallexample
2374
2375By simply editing the initialization list and adding the necessary include
2376files, you can add additional functions to the calculator.
2377
2378Two important functions allow look-up and installation of symbols in the
2379symbol table. The function @code{putsym} is passed a name and the type
2380(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2381linked to the front of the list, and a pointer to the object is returned.
2382The function @code{getsym} is passed the name of the symbol to look up. If
2383found, a pointer to that symbol is returned; otherwise zero is returned.
2384
2385@smallexample
2386symrec *
38a92d50 2387putsym (char const *sym_name, int sym_type)
bfa74976
RS
2388@{
2389 symrec *ptr;
2390 ptr = (symrec *) malloc (sizeof (symrec));
2391 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2392 strcpy (ptr->name,sym_name);
2393 ptr->type = sym_type;
72d2299c 2394 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2395 ptr->next = (struct symrec *)sym_table;
2396 sym_table = ptr;
2397 return ptr;
2398@}
2399
2400symrec *
38a92d50 2401getsym (char const *sym_name)
bfa74976
RS
2402@{
2403 symrec *ptr;
2404 for (ptr = sym_table; ptr != (symrec *) 0;
2405 ptr = (symrec *)ptr->next)
2406 if (strcmp (ptr->name,sym_name) == 0)
2407 return ptr;
2408 return 0;
2409@}
2410@end smallexample
2411
2412The function @code{yylex} must now recognize variables, numeric values, and
2413the single-character arithmetic operators. Strings of alphanumeric
14ded682 2414characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2415functions depending on what the symbol table says about them.
2416
2417The string is passed to @code{getsym} for look up in the symbol table. If
2418the name appears in the table, a pointer to its location and its type
2419(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2420already in the table, then it is installed as a @code{VAR} using
2421@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2422returned to @code{yyparse}.
bfa74976
RS
2423
2424No change is needed in the handling of numeric values and arithmetic
2425operators in @code{yylex}.
2426
2427@smallexample
2428@group
2429#include <ctype.h>
18b519c0 2430@end group
13863333 2431
18b519c0 2432@group
13863333
AD
2433int
2434yylex (void)
bfa74976
RS
2435@{
2436 int c;
2437
72d2299c 2438 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2439 while ((c = getchar ()) == ' ' || c == '\t');
2440
2441 if (c == EOF)
2442 return 0;
2443@end group
2444
2445@group
2446 /* Char starts a number => parse the number. */
2447 if (c == '.' || isdigit (c))
2448 @{
2449 ungetc (c, stdin);
2450 scanf ("%lf", &yylval.val);
2451 return NUM;
2452 @}
2453@end group
2454
2455@group
2456 /* Char starts an identifier => read the name. */
2457 if (isalpha (c))
2458 @{
2459 symrec *s;
2460 static char *symbuf = 0;
2461 static int length = 0;
2462 int i;
2463@end group
2464
2465@group
2466 /* Initially make the buffer long enough
2467 for a 40-character symbol name. */
2468 if (length == 0)
2469 length = 40, symbuf = (char *)malloc (length + 1);
2470
2471 i = 0;
2472 do
2473@end group
2474@group
2475 @{
2476 /* If buffer is full, make it bigger. */
2477 if (i == length)
2478 @{
2479 length *= 2;
18b519c0 2480 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2481 @}
2482 /* Add this character to the buffer. */
2483 symbuf[i++] = c;
2484 /* Get another character. */
2485 c = getchar ();
2486 @}
2487@end group
2488@group
72d2299c 2489 while (isalnum (c));
bfa74976
RS
2490
2491 ungetc (c, stdin);
2492 symbuf[i] = '\0';
2493@end group
2494
2495@group
2496 s = getsym (symbuf);
2497 if (s == 0)
2498 s = putsym (symbuf, VAR);
2499 yylval.tptr = s;
2500 return s->type;
2501 @}
2502
2503 /* Any other character is a token by itself. */
2504 return c;
2505@}
2506@end group
2507@end smallexample
2508
72d2299c 2509This program is both powerful and flexible. You may easily add new
704a47c4
AD
2510functions, and it is a simple job to modify this code to install
2511predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2512
342b8b6e 2513@node Exercises
bfa74976
RS
2514@section Exercises
2515@cindex exercises
2516
2517@enumerate
2518@item
2519Add some new functions from @file{math.h} to the initialization list.
2520
2521@item
2522Add another array that contains constants and their values. Then
2523modify @code{init_table} to add these constants to the symbol table.
2524It will be easiest to give the constants type @code{VAR}.
2525
2526@item
2527Make the program report an error if the user refers to an
2528uninitialized variable in any way except to store a value in it.
2529@end enumerate
2530
342b8b6e 2531@node Grammar File
bfa74976
RS
2532@chapter Bison Grammar Files
2533
2534Bison takes as input a context-free grammar specification and produces a
2535C-language function that recognizes correct instances of the grammar.
2536
2537The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2538@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2539
2540@menu
2541* Grammar Outline:: Overall layout of the grammar file.
2542* Symbols:: Terminal and nonterminal symbols.
2543* Rules:: How to write grammar rules.
2544* Recursion:: Writing recursive rules.
2545* Semantics:: Semantic values and actions.
847bf1f5 2546* Locations:: Locations and actions.
bfa74976
RS
2547* Declarations:: All kinds of Bison declarations are described here.
2548* Multiple Parsers:: Putting more than one Bison parser in one program.
2549@end menu
2550
342b8b6e 2551@node Grammar Outline
bfa74976
RS
2552@section Outline of a Bison Grammar
2553
2554A Bison grammar file has four main sections, shown here with the
2555appropriate delimiters:
2556
2557@example
2558%@{
38a92d50 2559 @var{Prologue}
bfa74976
RS
2560%@}
2561
2562@var{Bison declarations}
2563
2564%%
2565@var{Grammar rules}
2566%%
2567
75f5aaea 2568@var{Epilogue}
bfa74976
RS
2569@end example
2570
2571Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2572As a @acronym{GNU} extension, @samp{//} introduces a comment that
2573continues until end of line.
bfa74976
RS
2574
2575@menu
75f5aaea 2576* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2577* Bison Declarations:: Syntax and usage of the Bison declarations section.
2578* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2579* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2580@end menu
2581
38a92d50 2582@node Prologue
75f5aaea
MA
2583@subsection The prologue
2584@cindex declarations section
2585@cindex Prologue
2586@cindex declarations
bfa74976 2587
08e49d20 2588The @var{Prologue} section contains macro definitions and
bfa74976
RS
2589declarations of functions and variables that are used in the actions in the
2590grammar rules. These are copied to the beginning of the parser file so
2591that they precede the definition of @code{yyparse}. You can use
2592@samp{#include} to get the declarations from a header file. If you don't
2593need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2594delimiters that bracket this section.
2595
c732d2c6
AD
2596You may have more than one @var{Prologue} section, intermixed with the
2597@var{Bison declarations}. This allows you to have C and Bison
2598declarations that refer to each other. For example, the @code{%union}
2599declaration may use types defined in a header file, and you may wish to
2600prototype functions that take arguments of type @code{YYSTYPE}. This
2601can be done with two @var{Prologue} blocks, one before and one after the
2602@code{%union} declaration.
2603
2604@smallexample
2605%@{
38a92d50
PE
2606 #include <stdio.h>
2607 #include "ptypes.h"
c732d2c6
AD
2608%@}
2609
2610%union @{
779e7ceb 2611 long int n;
c732d2c6
AD
2612 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2613@}
2614
2615%@{
38a92d50
PE
2616 static void print_token_value (FILE *, int, YYSTYPE);
2617 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2618%@}
2619
2620@dots{}
2621@end smallexample
2622
342b8b6e 2623@node Bison Declarations
bfa74976
RS
2624@subsection The Bison Declarations Section
2625@cindex Bison declarations (introduction)
2626@cindex declarations, Bison (introduction)
2627
2628The @var{Bison declarations} section contains declarations that define
2629terminal and nonterminal symbols, specify precedence, and so on.
2630In some simple grammars you may not need any declarations.
2631@xref{Declarations, ,Bison Declarations}.
2632
342b8b6e 2633@node Grammar Rules
bfa74976
RS
2634@subsection The Grammar Rules Section
2635@cindex grammar rules section
2636@cindex rules section for grammar
2637
2638The @dfn{grammar rules} section contains one or more Bison grammar
2639rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2640
2641There must always be at least one grammar rule, and the first
2642@samp{%%} (which precedes the grammar rules) may never be omitted even
2643if it is the first thing in the file.
2644
38a92d50 2645@node Epilogue
75f5aaea 2646@subsection The epilogue
bfa74976 2647@cindex additional C code section
75f5aaea 2648@cindex epilogue
bfa74976
RS
2649@cindex C code, section for additional
2650
08e49d20
PE
2651The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2652the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2653place to put anything that you want to have in the parser file but which need
2654not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2655definitions of @code{yylex} and @code{yyerror} often go here. Because
2656C requires functions to be declared before being used, you often need
2657to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2658even if you define them in the Epilogue.
75f5aaea 2659@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2660
2661If the last section is empty, you may omit the @samp{%%} that separates it
2662from the grammar rules.
2663
38a92d50
PE
2664The Bison parser itself contains many macros and identifiers whose
2665names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2666good idea to avoid using any such names (except those documented in this
75f5aaea 2667manual) in the epilogue of the grammar file.
bfa74976 2668
342b8b6e 2669@node Symbols
bfa74976
RS
2670@section Symbols, Terminal and Nonterminal
2671@cindex nonterminal symbol
2672@cindex terminal symbol
2673@cindex token type
2674@cindex symbol
2675
2676@dfn{Symbols} in Bison grammars represent the grammatical classifications
2677of the language.
2678
2679A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2680class of syntactically equivalent tokens. You use the symbol in grammar
2681rules to mean that a token in that class is allowed. The symbol is
2682represented in the Bison parser by a numeric code, and the @code{yylex}
2683function returns a token type code to indicate what kind of token has been
2684read. You don't need to know what the code value is; you can use the
2685symbol to stand for it.
2686
2687A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2688groupings. The symbol name is used in writing grammar rules. By convention,
2689it should be all lower case.
2690
2691Symbol names can contain letters, digits (not at the beginning),
2692underscores and periods. Periods make sense only in nonterminals.
2693
931c7513 2694There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2695
2696@itemize @bullet
2697@item
2698A @dfn{named token type} is written with an identifier, like an
c827f760 2699identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2700such name must be defined with a Bison declaration such as
2701@code{%token}. @xref{Token Decl, ,Token Type Names}.
2702
2703@item
2704@cindex character token
2705@cindex literal token
2706@cindex single-character literal
931c7513
RS
2707A @dfn{character token type} (or @dfn{literal character token}) is
2708written in the grammar using the same syntax used in C for character
2709constants; for example, @code{'+'} is a character token type. A
2710character token type doesn't need to be declared unless you need to
2711specify its semantic value data type (@pxref{Value Type, ,Data Types of
2712Semantic Values}), associativity, or precedence (@pxref{Precedence,
2713,Operator Precedence}).
bfa74976
RS
2714
2715By convention, a character token type is used only to represent a
2716token that consists of that particular character. Thus, the token
2717type @code{'+'} is used to represent the character @samp{+} as a
2718token. Nothing enforces this convention, but if you depart from it,
2719your program will confuse other readers.
2720
2721All the usual escape sequences used in character literals in C can be
2722used in Bison as well, but you must not use the null character as a
72d2299c
PE
2723character literal because its numeric code, zero, signifies
2724end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2725for @code{yylex}}). Also, unlike standard C, trigraphs have no
2726special meaning in Bison character literals, nor is backslash-newline
2727allowed.
931c7513
RS
2728
2729@item
2730@cindex string token
2731@cindex literal string token
9ecbd125 2732@cindex multicharacter literal
931c7513
RS
2733A @dfn{literal string token} is written like a C string constant; for
2734example, @code{"<="} is a literal string token. A literal string token
2735doesn't need to be declared unless you need to specify its semantic
14ded682 2736value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2737(@pxref{Precedence}).
2738
2739You can associate the literal string token with a symbolic name as an
2740alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2741Declarations}). If you don't do that, the lexical analyzer has to
2742retrieve the token number for the literal string token from the
2743@code{yytname} table (@pxref{Calling Convention}).
2744
c827f760 2745@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2746
2747By convention, a literal string token is used only to represent a token
2748that consists of that particular string. Thus, you should use the token
2749type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2750does not enforce this convention, but if you depart from it, people who
931c7513
RS
2751read your program will be confused.
2752
2753All the escape sequences used in string literals in C can be used in
92ac3705
PE
2754Bison as well, except that you must not use a null character within a
2755string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2756meaning in Bison string literals, nor is backslash-newline allowed. A
2757literal string token must contain two or more characters; for a token
2758containing just one character, use a character token (see above).
bfa74976
RS
2759@end itemize
2760
2761How you choose to write a terminal symbol has no effect on its
2762grammatical meaning. That depends only on where it appears in rules and
2763on when the parser function returns that symbol.
2764
72d2299c
PE
2765The value returned by @code{yylex} is always one of the terminal
2766symbols, except that a zero or negative value signifies end-of-input.
2767Whichever way you write the token type in the grammar rules, you write
2768it the same way in the definition of @code{yylex}. The numeric code
2769for a character token type is simply the positive numeric code of the
2770character, so @code{yylex} can use the identical value to generate the
2771requisite code, though you may need to convert it to @code{unsigned
2772char} to avoid sign-extension on hosts where @code{char} is signed.
2773Each named token type becomes a C macro in
bfa74976 2774the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2775(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2776@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2777
2778If @code{yylex} is defined in a separate file, you need to arrange for the
2779token-type macro definitions to be available there. Use the @samp{-d}
2780option when you run Bison, so that it will write these macro definitions
2781into a separate header file @file{@var{name}.tab.h} which you can include
2782in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2783
72d2299c
PE
2784If you want to write a grammar that is portable to any Standard C
2785host, you must use only non-null character tokens taken from the basic
c827f760 2786execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2787digits, the 52 lower- and upper-case English letters, and the
2788characters in the following C-language string:
2789
2790@example
2791"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2792@end example
2793
2794The @code{yylex} function and Bison must use a consistent character
2795set and encoding for character tokens. For example, if you run Bison in an
c827f760 2796@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2797in an environment that uses an incompatible character set like
c827f760
PE
2798@acronym{EBCDIC}, the resulting program may not work because the
2799tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2800character tokens. It is standard
e966383b 2801practice for software distributions to contain C source files that
c827f760
PE
2802were generated by Bison in an @acronym{ASCII} environment, so installers on
2803platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2804files before compiling them.
2805
bfa74976
RS
2806The symbol @code{error} is a terminal symbol reserved for error recovery
2807(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2808In particular, @code{yylex} should never return this value. The default
2809value of the error token is 256, unless you explicitly assigned 256 to
2810one of your tokens with a @code{%token} declaration.
bfa74976 2811
342b8b6e 2812@node Rules
bfa74976
RS
2813@section Syntax of Grammar Rules
2814@cindex rule syntax
2815@cindex grammar rule syntax
2816@cindex syntax of grammar rules
2817
2818A Bison grammar rule has the following general form:
2819
2820@example
e425e872 2821@group
bfa74976
RS
2822@var{result}: @var{components}@dots{}
2823 ;
e425e872 2824@end group
bfa74976
RS
2825@end example
2826
2827@noindent
9ecbd125 2828where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2829and @var{components} are various terminal and nonterminal symbols that
13863333 2830are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2831
2832For example,
2833
2834@example
2835@group
2836exp: exp '+' exp
2837 ;
2838@end group
2839@end example
2840
2841@noindent
2842says that two groupings of type @code{exp}, with a @samp{+} token in between,
2843can be combined into a larger grouping of type @code{exp}.
2844
72d2299c
PE
2845White space in rules is significant only to separate symbols. You can add
2846extra white space as you wish.
bfa74976
RS
2847
2848Scattered among the components can be @var{actions} that determine
2849the semantics of the rule. An action looks like this:
2850
2851@example
2852@{@var{C statements}@}
2853@end example
2854
2855@noindent
2856Usually there is only one action and it follows the components.
2857@xref{Actions}.
2858
2859@findex |
2860Multiple rules for the same @var{result} can be written separately or can
2861be joined with the vertical-bar character @samp{|} as follows:
2862
2863@ifinfo
2864@example
2865@var{result}: @var{rule1-components}@dots{}
2866 | @var{rule2-components}@dots{}
2867 @dots{}
2868 ;
2869@end example
2870@end ifinfo
2871@iftex
2872@example
2873@group
2874@var{result}: @var{rule1-components}@dots{}
2875 | @var{rule2-components}@dots{}
2876 @dots{}
2877 ;
2878@end group
2879@end example
2880@end iftex
2881
2882@noindent
2883They are still considered distinct rules even when joined in this way.
2884
2885If @var{components} in a rule is empty, it means that @var{result} can
2886match the empty string. For example, here is how to define a
2887comma-separated sequence of zero or more @code{exp} groupings:
2888
2889@example
2890@group
2891expseq: /* empty */
2892 | expseq1
2893 ;
2894@end group
2895
2896@group
2897expseq1: exp
2898 | expseq1 ',' exp
2899 ;
2900@end group
2901@end example
2902
2903@noindent
2904It is customary to write a comment @samp{/* empty */} in each rule
2905with no components.
2906
342b8b6e 2907@node Recursion
bfa74976
RS
2908@section Recursive Rules
2909@cindex recursive rule
2910
2911A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2912also on its right hand side. Nearly all Bison grammars need to use
2913recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2914of a particular thing. Consider this recursive definition of a
2915comma-separated sequence of one or more expressions:
bfa74976
RS
2916
2917@example
2918@group
2919expseq1: exp
2920 | expseq1 ',' exp
2921 ;
2922@end group
2923@end example
2924
2925@cindex left recursion
2926@cindex right recursion
2927@noindent
2928Since the recursive use of @code{expseq1} is the leftmost symbol in the
2929right hand side, we call this @dfn{left recursion}. By contrast, here
2930the same construct is defined using @dfn{right recursion}:
2931
2932@example
2933@group
2934expseq1: exp
2935 | exp ',' expseq1
2936 ;
2937@end group
2938@end example
2939
2940@noindent
ec3bc396
AD
2941Any kind of sequence can be defined using either left recursion or right
2942recursion, but you should always use left recursion, because it can
2943parse a sequence of any number of elements with bounded stack space.
2944Right recursion uses up space on the Bison stack in proportion to the
2945number of elements in the sequence, because all the elements must be
2946shifted onto the stack before the rule can be applied even once.
2947@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2948of this.
bfa74976
RS
2949
2950@cindex mutual recursion
2951@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2952rule does not appear directly on its right hand side, but does appear
2953in rules for other nonterminals which do appear on its right hand
13863333 2954side.
bfa74976
RS
2955
2956For example:
2957
2958@example
2959@group
2960expr: primary
2961 | primary '+' primary
2962 ;
2963@end group
2964
2965@group
2966primary: constant
2967 | '(' expr ')'
2968 ;
2969@end group
2970@end example
2971
2972@noindent
2973defines two mutually-recursive nonterminals, since each refers to the
2974other.
2975
342b8b6e 2976@node Semantics
bfa74976
RS
2977@section Defining Language Semantics
2978@cindex defining language semantics
13863333 2979@cindex language semantics, defining
bfa74976
RS
2980
2981The grammar rules for a language determine only the syntax. The semantics
2982are determined by the semantic values associated with various tokens and
2983groupings, and by the actions taken when various groupings are recognized.
2984
2985For example, the calculator calculates properly because the value
2986associated with each expression is the proper number; it adds properly
2987because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2988the numbers associated with @var{x} and @var{y}.
2989
2990@menu
2991* Value Type:: Specifying one data type for all semantic values.
2992* Multiple Types:: Specifying several alternative data types.
2993* Actions:: An action is the semantic definition of a grammar rule.
2994* Action Types:: Specifying data types for actions to operate on.
2995* Mid-Rule Actions:: Most actions go at the end of a rule.
2996 This says when, why and how to use the exceptional
2997 action in the middle of a rule.
2998@end menu
2999
342b8b6e 3000@node Value Type
bfa74976
RS
3001@subsection Data Types of Semantic Values
3002@cindex semantic value type
3003@cindex value type, semantic
3004@cindex data types of semantic values
3005@cindex default data type
3006
3007In a simple program it may be sufficient to use the same data type for
3008the semantic values of all language constructs. This was true in the
c827f760 3009@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3010Notation Calculator}).
bfa74976
RS
3011
3012Bison's default is to use type @code{int} for all semantic values. To
3013specify some other type, define @code{YYSTYPE} as a macro, like this:
3014
3015@example
3016#define YYSTYPE double
3017@end example
3018
3019@noindent
342b8b6e 3020This macro definition must go in the prologue of the grammar file
75f5aaea 3021(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3022
342b8b6e 3023@node Multiple Types
bfa74976
RS
3024@subsection More Than One Value Type
3025
3026In most programs, you will need different data types for different kinds
3027of tokens and groupings. For example, a numeric constant may need type
779e7ceb 3028@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3029and an identifier might need a pointer to an entry in the symbol table.
3030
3031To use more than one data type for semantic values in one parser, Bison
3032requires you to do two things:
3033
3034@itemize @bullet
3035@item
3036Specify the entire collection of possible data types, with the
704a47c4
AD
3037@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3038Value Types}).
bfa74976
RS
3039
3040@item
14ded682
AD
3041Choose one of those types for each symbol (terminal or nonterminal) for
3042which semantic values are used. This is done for tokens with the
3043@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3044and for groupings with the @code{%type} Bison declaration (@pxref{Type
3045Decl, ,Nonterminal Symbols}).
bfa74976
RS
3046@end itemize
3047
342b8b6e 3048@node Actions
bfa74976
RS
3049@subsection Actions
3050@cindex action
3051@vindex $$
3052@vindex $@var{n}
3053
3054An action accompanies a syntactic rule and contains C code to be executed
3055each time an instance of that rule is recognized. The task of most actions
3056is to compute a semantic value for the grouping built by the rule from the
3057semantic values associated with tokens or smaller groupings.
3058
3059An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3060compound statement in C@. An action can contain any sequence of C
3061statements. Bison does not look for trigraphs, though, so if your C
3062code uses trigraphs you should ensure that they do not affect the
3063nesting of braces or the boundaries of comments, strings, or character
3064literals.
3065
3066An action can be placed at any position in the rule;
704a47c4
AD
3067it is executed at that position. Most rules have just one action at the
3068end of the rule, following all the components. Actions in the middle of
3069a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3070Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3071
3072The C code in an action can refer to the semantic values of the components
3073matched by the rule with the construct @code{$@var{n}}, which stands for
3074the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3075being constructed is @code{$$}. Bison translates both of these
3076constructs into expressions of the appropriate type when it copies the
3077actions into the parser file. @code{$$} is translated to a modifiable
3078lvalue, so it can be assigned to.
bfa74976
RS
3079
3080Here is a typical example:
3081
3082@example
3083@group
3084exp: @dots{}
3085 | exp '+' exp
3086 @{ $$ = $1 + $3; @}
3087@end group
3088@end example
3089
3090@noindent
3091This rule constructs an @code{exp} from two smaller @code{exp} groupings
3092connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3093refer to the semantic values of the two component @code{exp} groupings,
3094which are the first and third symbols on the right hand side of the rule.
3095The sum is stored into @code{$$} so that it becomes the semantic value of
3096the addition-expression just recognized by the rule. If there were a
3097useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3098referred to as @code{$2}.
bfa74976 3099
3ded9a63
AD
3100Note that the vertical-bar character @samp{|} is really a rule
3101separator, and actions are attached to a single rule. This is a
3102difference with tools like Flex, for which @samp{|} stands for either
3103``or'', or ``the same action as that of the next rule''. In the
3104following example, the action is triggered only when @samp{b} is found:
3105
3106@example
3107@group
3108a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3109@end group
3110@end example
3111
bfa74976
RS
3112@cindex default action
3113If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3114@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3115becomes the value of the whole rule. Of course, the default action is
3116valid only if the two data types match. There is no meaningful default
3117action for an empty rule; every empty rule must have an explicit action
3118unless the rule's value does not matter.
bfa74976
RS
3119
3120@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3121to tokens and groupings on the stack @emph{before} those that match the
3122current rule. This is a very risky practice, and to use it reliably
3123you must be certain of the context in which the rule is applied. Here
3124is a case in which you can use this reliably:
3125
3126@example
3127@group
3128foo: expr bar '+' expr @{ @dots{} @}
3129 | expr bar '-' expr @{ @dots{} @}
3130 ;
3131@end group
3132
3133@group
3134bar: /* empty */
3135 @{ previous_expr = $0; @}
3136 ;
3137@end group
3138@end example
3139
3140As long as @code{bar} is used only in the fashion shown here, @code{$0}
3141always refers to the @code{expr} which precedes @code{bar} in the
3142definition of @code{foo}.
3143
342b8b6e 3144@node Action Types
bfa74976
RS
3145@subsection Data Types of Values in Actions
3146@cindex action data types
3147@cindex data types in actions
3148
3149If you have chosen a single data type for semantic values, the @code{$$}
3150and @code{$@var{n}} constructs always have that data type.
3151
3152If you have used @code{%union} to specify a variety of data types, then you
3153must declare a choice among these types for each terminal or nonterminal
3154symbol that can have a semantic value. Then each time you use @code{$$} or
3155@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3156in the rule. In this example,
bfa74976
RS
3157
3158@example
3159@group
3160exp: @dots{}
3161 | exp '+' exp
3162 @{ $$ = $1 + $3; @}
3163@end group
3164@end example
3165
3166@noindent
3167@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3168have the data type declared for the nonterminal symbol @code{exp}. If
3169@code{$2} were used, it would have the data type declared for the
e0c471a9 3170terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3171
3172Alternatively, you can specify the data type when you refer to the value,
3173by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3174reference. For example, if you have defined types as shown here:
3175
3176@example
3177@group
3178%union @{
3179 int itype;
3180 double dtype;
3181@}
3182@end group
3183@end example
3184
3185@noindent
3186then you can write @code{$<itype>1} to refer to the first subunit of the
3187rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3188
342b8b6e 3189@node Mid-Rule Actions
bfa74976
RS
3190@subsection Actions in Mid-Rule
3191@cindex actions in mid-rule
3192@cindex mid-rule actions
3193
3194Occasionally it is useful to put an action in the middle of a rule.
3195These actions are written just like usual end-of-rule actions, but they
3196are executed before the parser even recognizes the following components.
3197
3198A mid-rule action may refer to the components preceding it using
3199@code{$@var{n}}, but it may not refer to subsequent components because
3200it is run before they are parsed.
3201
3202The mid-rule action itself counts as one of the components of the rule.
3203This makes a difference when there is another action later in the same rule
3204(and usually there is another at the end): you have to count the actions
3205along with the symbols when working out which number @var{n} to use in
3206@code{$@var{n}}.
3207
3208The mid-rule action can also have a semantic value. The action can set
3209its value with an assignment to @code{$$}, and actions later in the rule
3210can refer to the value using @code{$@var{n}}. Since there is no symbol
3211to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3212in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3213specify a data type each time you refer to this value.
bfa74976
RS
3214
3215There is no way to set the value of the entire rule with a mid-rule
3216action, because assignments to @code{$$} do not have that effect. The
3217only way to set the value for the entire rule is with an ordinary action
3218at the end of the rule.
3219
3220Here is an example from a hypothetical compiler, handling a @code{let}
3221statement that looks like @samp{let (@var{variable}) @var{statement}} and
3222serves to create a variable named @var{variable} temporarily for the
3223duration of @var{statement}. To parse this construct, we must put
3224@var{variable} into the symbol table while @var{statement} is parsed, then
3225remove it afterward. Here is how it is done:
3226
3227@example
3228@group
3229stmt: LET '(' var ')'
3230 @{ $<context>$ = push_context ();
3231 declare_variable ($3); @}
3232 stmt @{ $$ = $6;
3233 pop_context ($<context>5); @}
3234@end group
3235@end example
3236
3237@noindent
3238As soon as @samp{let (@var{variable})} has been recognized, the first
3239action is run. It saves a copy of the current semantic context (the
3240list of accessible variables) as its semantic value, using alternative
3241@code{context} in the data-type union. Then it calls
3242@code{declare_variable} to add the new variable to that list. Once the
3243first action is finished, the embedded statement @code{stmt} can be
3244parsed. Note that the mid-rule action is component number 5, so the
3245@samp{stmt} is component number 6.
3246
3247After the embedded statement is parsed, its semantic value becomes the
3248value of the entire @code{let}-statement. Then the semantic value from the
3249earlier action is used to restore the prior list of variables. This
3250removes the temporary @code{let}-variable from the list so that it won't
3251appear to exist while the rest of the program is parsed.
3252
3253Taking action before a rule is completely recognized often leads to
3254conflicts since the parser must commit to a parse in order to execute the
3255action. For example, the following two rules, without mid-rule actions,
3256can coexist in a working parser because the parser can shift the open-brace
3257token and look at what follows before deciding whether there is a
3258declaration or not:
3259
3260@example
3261@group
3262compound: '@{' declarations statements '@}'
3263 | '@{' statements '@}'
3264 ;
3265@end group
3266@end example
3267
3268@noindent
3269But when we add a mid-rule action as follows, the rules become nonfunctional:
3270
3271@example
3272@group
3273compound: @{ prepare_for_local_variables (); @}
3274 '@{' declarations statements '@}'
3275@end group
3276@group
3277 | '@{' statements '@}'
3278 ;
3279@end group
3280@end example
3281
3282@noindent
3283Now the parser is forced to decide whether to run the mid-rule action
3284when it has read no farther than the open-brace. In other words, it
3285must commit to using one rule or the other, without sufficient
3286information to do it correctly. (The open-brace token is what is called
3287the @dfn{look-ahead} token at this time, since the parser is still
3288deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3289
3290You might think that you could correct the problem by putting identical
3291actions into the two rules, like this:
3292
3293@example
3294@group
3295compound: @{ prepare_for_local_variables (); @}
3296 '@{' declarations statements '@}'
3297 | @{ prepare_for_local_variables (); @}
3298 '@{' statements '@}'
3299 ;
3300@end group
3301@end example
3302
3303@noindent
3304But this does not help, because Bison does not realize that the two actions
3305are identical. (Bison never tries to understand the C code in an action.)
3306
3307If the grammar is such that a declaration can be distinguished from a
3308statement by the first token (which is true in C), then one solution which
3309does work is to put the action after the open-brace, like this:
3310
3311@example
3312@group
3313compound: '@{' @{ prepare_for_local_variables (); @}
3314 declarations statements '@}'
3315 | '@{' statements '@}'
3316 ;
3317@end group
3318@end example
3319
3320@noindent
3321Now the first token of the following declaration or statement,
3322which would in any case tell Bison which rule to use, can still do so.
3323
3324Another solution is to bury the action inside a nonterminal symbol which
3325serves as a subroutine:
3326
3327@example
3328@group
3329subroutine: /* empty */
3330 @{ prepare_for_local_variables (); @}
3331 ;
3332
3333@end group
3334
3335@group
3336compound: subroutine
3337 '@{' declarations statements '@}'
3338 | subroutine
3339 '@{' statements '@}'
3340 ;
3341@end group
3342@end example
3343
3344@noindent
3345Now Bison can execute the action in the rule for @code{subroutine} without
3346deciding which rule for @code{compound} it will eventually use. Note that
3347the action is now at the end of its rule. Any mid-rule action can be
3348converted to an end-of-rule action in this way, and this is what Bison
3349actually does to implement mid-rule actions.
3350
342b8b6e 3351@node Locations
847bf1f5
AD
3352@section Tracking Locations
3353@cindex location
95923bd6
AD
3354@cindex textual location
3355@cindex location, textual
847bf1f5
AD
3356
3357Though grammar rules and semantic actions are enough to write a fully
72d2299c 3358functional parser, it can be useful to process some additional information,
3e259915
MA
3359especially symbol locations.
3360
704a47c4
AD
3361The way locations are handled is defined by providing a data type, and
3362actions to take when rules are matched.
847bf1f5
AD
3363
3364@menu
3365* Location Type:: Specifying a data type for locations.
3366* Actions and Locations:: Using locations in actions.
3367* Location Default Action:: Defining a general way to compute locations.
3368@end menu
3369
342b8b6e 3370@node Location Type
847bf1f5
AD
3371@subsection Data Type of Locations
3372@cindex data type of locations
3373@cindex default location type
3374
3375Defining a data type for locations is much simpler than for semantic values,
3376since all tokens and groupings always use the same type.
3377
3378The type of locations is specified by defining a macro called @code{YYLTYPE}.
3379When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3380four members:
3381
3382@example
6273355b 3383typedef struct YYLTYPE
847bf1f5
AD
3384@{
3385 int first_line;
3386 int first_column;
3387 int last_line;
3388 int last_column;
6273355b 3389@} YYLTYPE;
847bf1f5
AD
3390@end example
3391
342b8b6e 3392@node Actions and Locations
847bf1f5
AD
3393@subsection Actions and Locations
3394@cindex location actions
3395@cindex actions, location
3396@vindex @@$
3397@vindex @@@var{n}
3398
3399Actions are not only useful for defining language semantics, but also for
3400describing the behavior of the output parser with locations.
3401
3402The most obvious way for building locations of syntactic groupings is very
72d2299c 3403similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3404constructs can be used to access the locations of the elements being matched.
3405The location of the @var{n}th component of the right hand side is
3406@code{@@@var{n}}, while the location of the left hand side grouping is
3407@code{@@$}.
3408
3e259915 3409Here is a basic example using the default data type for locations:
847bf1f5
AD
3410
3411@example
3412@group
3413exp: @dots{}
3e259915 3414 | exp '/' exp
847bf1f5 3415 @{
3e259915
MA
3416 @@$.first_column = @@1.first_column;
3417 @@$.first_line = @@1.first_line;
847bf1f5
AD
3418 @@$.last_column = @@3.last_column;
3419 @@$.last_line = @@3.last_line;
3e259915
MA
3420 if ($3)
3421 $$ = $1 / $3;
3422 else
3423 @{
3424 $$ = 1;
4e03e201
AD
3425 fprintf (stderr,
3426 "Division by zero, l%d,c%d-l%d,c%d",
3427 @@3.first_line, @@3.first_column,
3428 @@3.last_line, @@3.last_column);
3e259915 3429 @}
847bf1f5
AD
3430 @}
3431@end group
3432@end example
3433
3e259915 3434As for semantic values, there is a default action for locations that is
72d2299c 3435run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3436beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3437last symbol.
3e259915 3438
72d2299c 3439With this default action, the location tracking can be fully automatic. The
3e259915
MA
3440example above simply rewrites this way:
3441
3442@example
3443@group
3444exp: @dots{}
3445 | exp '/' exp
3446 @{
3447 if ($3)
3448 $$ = $1 / $3;
3449 else
3450 @{
3451 $$ = 1;
4e03e201
AD
3452 fprintf (stderr,
3453 "Division by zero, l%d,c%d-l%d,c%d",
3454 @@3.first_line, @@3.first_column,
3455 @@3.last_line, @@3.last_column);
3e259915
MA
3456 @}
3457 @}
3458@end group
3459@end example
847bf1f5 3460
342b8b6e 3461@node Location Default Action
847bf1f5
AD
3462@subsection Default Action for Locations
3463@vindex YYLLOC_DEFAULT
3464
72d2299c 3465Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3466locations are much more general than semantic values, there is room in
3467the output parser to redefine the default action to take for each
72d2299c 3468rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3469matched, before the associated action is run. It is also invoked
3470while processing a syntax error, to compute the error's location.
847bf1f5 3471
3e259915 3472Most of the time, this macro is general enough to suppress location
79282c6c 3473dedicated code from semantic actions.
847bf1f5 3474
72d2299c 3475The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3476the location of the grouping (the result of the computation). When a
766de5eb 3477rule is matched, the second parameter identifies locations of
96b93a3d
PE
3478all right hand side elements of the rule being matched, and the third
3479parameter is the size of the rule's right hand side. When processing
766de5eb 3480a syntax error, the second parameter identifies locations of
96b93a3d
PE
3481the symbols that were discarded during error processing, and the third
3482parameter is the number of discarded symbols.
847bf1f5 3483
766de5eb 3484By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3485
766de5eb 3486@smallexample
847bf1f5 3487@group
766de5eb
PE
3488# define YYLLOC_DEFAULT(Current, Rhs, N) \
3489 do \
3490 if (N) \
3491 @{ \
3492 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3493 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3494 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3495 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3496 @} \
3497 else \
3498 @{ \
3499 (Current).first_line = (Current).last_line = \
3500 YYRHSLOC(Rhs, 0).last_line; \
3501 (Current).first_column = (Current).last_column = \
3502 YYRHSLOC(Rhs, 0).last_column; \
3503 @} \
3504 while (0)
847bf1f5 3505@end group
766de5eb 3506@end smallexample
676385e2 3507
766de5eb
PE
3508where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3509in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3510just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3511
3e259915 3512When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3513
3e259915 3514@itemize @bullet
79282c6c 3515@item
72d2299c 3516All arguments are free of side-effects. However, only the first one (the
3e259915 3517result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3518
3e259915 3519@item
766de5eb
PE
3520For consistency with semantic actions, valid indexes within the
3521right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3522valid index, and it refers to the symbol just before the reduction.
3523During error processing @var{n} is always positive.
0ae99356
PE
3524
3525@item
3526Your macro should parenthesize its arguments, if need be, since the
3527actual arguments may not be surrounded by parentheses. Also, your
3528macro should expand to something that can be used as a single
3529statement when it is followed by a semicolon.
3e259915 3530@end itemize
847bf1f5 3531
342b8b6e 3532@node Declarations
bfa74976
RS
3533@section Bison Declarations
3534@cindex declarations, Bison
3535@cindex Bison declarations
3536
3537The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3538used in formulating the grammar and the data types of semantic values.
3539@xref{Symbols}.
3540
3541All token type names (but not single-character literal tokens such as
3542@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3543declared if you need to specify which data type to use for the semantic
3544value (@pxref{Multiple Types, ,More Than One Value Type}).
3545
3546The first rule in the file also specifies the start symbol, by default.
3547If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3548it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3549Grammars}).
bfa74976
RS
3550
3551@menu
3552* Token Decl:: Declaring terminal symbols.
3553* Precedence Decl:: Declaring terminals with precedence and associativity.
3554* Union Decl:: Declaring the set of all semantic value types.
3555* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3556* Initial Action Decl:: Code run before parsing starts.
72f889cc 3557* Destructor Decl:: Declaring how symbols are freed.
d6328241 3558* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3559* Start Decl:: Specifying the start symbol.
3560* Pure Decl:: Requesting a reentrant parser.
3561* Decl Summary:: Table of all Bison declarations.
3562@end menu
3563
342b8b6e 3564@node Token Decl
bfa74976
RS
3565@subsection Token Type Names
3566@cindex declaring token type names
3567@cindex token type names, declaring
931c7513 3568@cindex declaring literal string tokens
bfa74976
RS
3569@findex %token
3570
3571The basic way to declare a token type name (terminal symbol) is as follows:
3572
3573@example
3574%token @var{name}
3575@end example
3576
3577Bison will convert this into a @code{#define} directive in
3578the parser, so that the function @code{yylex} (if it is in this file)
3579can use the name @var{name} to stand for this token type's code.
3580
14ded682
AD
3581Alternatively, you can use @code{%left}, @code{%right}, or
3582@code{%nonassoc} instead of @code{%token}, if you wish to specify
3583associativity and precedence. @xref{Precedence Decl, ,Operator
3584Precedence}.
bfa74976
RS
3585
3586You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3587a decimal or hexadecimal integer value in the field immediately
3588following the token name:
bfa74976
RS
3589
3590@example
3591%token NUM 300
1452af69 3592%token XNUM 0x12d // a GNU extension
bfa74976
RS
3593@end example
3594
3595@noindent
3596It is generally best, however, to let Bison choose the numeric codes for
3597all token types. Bison will automatically select codes that don't conflict
e966383b 3598with each other or with normal characters.
bfa74976
RS
3599
3600In the event that the stack type is a union, you must augment the
3601@code{%token} or other token declaration to include the data type
704a47c4
AD
3602alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3603Than One Value Type}).
bfa74976
RS
3604
3605For example:
3606
3607@example
3608@group
3609%union @{ /* define stack type */
3610 double val;
3611 symrec *tptr;
3612@}
3613%token <val> NUM /* define token NUM and its type */
3614@end group
3615@end example
3616
931c7513
RS
3617You can associate a literal string token with a token type name by
3618writing the literal string at the end of a @code{%token}
3619declaration which declares the name. For example:
3620
3621@example
3622%token arrow "=>"
3623@end example
3624
3625@noindent
3626For example, a grammar for the C language might specify these names with
3627equivalent literal string tokens:
3628
3629@example
3630%token <operator> OR "||"
3631%token <operator> LE 134 "<="
3632%left OR "<="
3633@end example
3634
3635@noindent
3636Once you equate the literal string and the token name, you can use them
3637interchangeably in further declarations or the grammar rules. The
3638@code{yylex} function can use the token name or the literal string to
3639obtain the token type code number (@pxref{Calling Convention}).
3640
342b8b6e 3641@node Precedence Decl
bfa74976
RS
3642@subsection Operator Precedence
3643@cindex precedence declarations
3644@cindex declaring operator precedence
3645@cindex operator precedence, declaring
3646
3647Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3648declare a token and specify its precedence and associativity, all at
3649once. These are called @dfn{precedence declarations}.
704a47c4
AD
3650@xref{Precedence, ,Operator Precedence}, for general information on
3651operator precedence.
bfa74976
RS
3652
3653The syntax of a precedence declaration is the same as that of
3654@code{%token}: either
3655
3656@example
3657%left @var{symbols}@dots{}
3658@end example
3659
3660@noindent
3661or
3662
3663@example
3664%left <@var{type}> @var{symbols}@dots{}
3665@end example
3666
3667And indeed any of these declarations serves the purposes of @code{%token}.
3668But in addition, they specify the associativity and relative precedence for
3669all the @var{symbols}:
3670
3671@itemize @bullet
3672@item
3673The associativity of an operator @var{op} determines how repeated uses
3674of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3675@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3676grouping @var{y} with @var{z} first. @code{%left} specifies
3677left-associativity (grouping @var{x} with @var{y} first) and
3678@code{%right} specifies right-associativity (grouping @var{y} with
3679@var{z} first). @code{%nonassoc} specifies no associativity, which
3680means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3681considered a syntax error.
3682
3683@item
3684The precedence of an operator determines how it nests with other operators.
3685All the tokens declared in a single precedence declaration have equal
3686precedence and nest together according to their associativity.
3687When two tokens declared in different precedence declarations associate,
3688the one declared later has the higher precedence and is grouped first.
3689@end itemize
3690
342b8b6e 3691@node Union Decl
bfa74976
RS
3692@subsection The Collection of Value Types
3693@cindex declaring value types
3694@cindex value types, declaring
3695@findex %union
3696
3697The @code{%union} declaration specifies the entire collection of possible
3698data types for semantic values. The keyword @code{%union} is followed by a
3699pair of braces containing the same thing that goes inside a @code{union} in
13863333 3700C.
bfa74976
RS
3701
3702For example:
3703
3704@example
3705@group
3706%union @{
3707 double val;
3708 symrec *tptr;
3709@}
3710@end group
3711@end example
3712
3713@noindent
3714This says that the two alternative types are @code{double} and @code{symrec
3715*}. They are given names @code{val} and @code{tptr}; these names are used
3716in the @code{%token} and @code{%type} declarations to pick one of the types
3717for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3718
6273355b
PE
3719As an extension to @acronym{POSIX}, a tag is allowed after the
3720@code{union}. For example:
3721
3722@example
3723@group
3724%union value @{
3725 double val;
3726 symrec *tptr;
3727@}
3728@end group
3729@end example
3730
3731specifies the union tag @code{value}, so the corresponding C type is
3732@code{union value}. If you do not specify a tag, it defaults to
3733@code{YYSTYPE}.
3734
3735Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3736a semicolon after the closing brace.
3737
342b8b6e 3738@node Type Decl
bfa74976
RS
3739@subsection Nonterminal Symbols
3740@cindex declaring value types, nonterminals
3741@cindex value types, nonterminals, declaring
3742@findex %type
3743
3744@noindent
3745When you use @code{%union} to specify multiple value types, you must
3746declare the value type of each nonterminal symbol for which values are
3747used. This is done with a @code{%type} declaration, like this:
3748
3749@example
3750%type <@var{type}> @var{nonterminal}@dots{}
3751@end example
3752
3753@noindent
704a47c4
AD
3754Here @var{nonterminal} is the name of a nonterminal symbol, and
3755@var{type} is the name given in the @code{%union} to the alternative
3756that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3757can give any number of nonterminal symbols in the same @code{%type}
3758declaration, if they have the same value type. Use spaces to separate
3759the symbol names.
bfa74976 3760
931c7513
RS
3761You can also declare the value type of a terminal symbol. To do this,
3762use the same @code{<@var{type}>} construction in a declaration for the
3763terminal symbol. All kinds of token declarations allow
3764@code{<@var{type}>}.
3765
18d192f0
AD
3766@node Initial Action Decl
3767@subsection Performing Actions before Parsing
3768@findex %initial-action
3769
3770Sometimes your parser needs to perform some initializations before
3771parsing. The @code{%initial-action} directive allows for such arbitrary
3772code.
3773
3774@deffn {Directive} %initial-action @{ @var{code} @}
3775@findex %initial-action
3776Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3777@code{yyparse} is called. The @var{code} may use @code{$$} and
3778@code{@@$} --- initial value and location of the look-ahead --- and the
3779@code{%parse-param}.
18d192f0
AD
3780@end deffn
3781
451364ed
AD
3782For instance, if your locations use a file name, you may use
3783
3784@example
3785%parse-param @{ const char *filename @};
3786%initial-action
3787@{
3788 @@$.begin.filename = @@$.end.filename = filename;
3789@};
3790@end example
3791
18d192f0 3792
72f889cc
AD
3793@node Destructor Decl
3794@subsection Freeing Discarded Symbols
3795@cindex freeing discarded symbols
3796@findex %destructor
3797
e757bb10
AD
3798Some symbols can be discarded by the parser. For instance, during error
3799recovery (@pxref{Error Recovery}), embarrassing symbols already pushed
3800on the stack, and embarrassing tokens coming from the rest of the file
3801are thrown away until the parser falls on its feet. If these symbols
3802convey heap based information, this memory is lost. While this behavior
3803can be tolerable for batch parsers, such as in compilers, it is not for
3804possibly ``never ending'' parsers such as shells, or implementations of
72f889cc
AD
3805communication protocols.
3806
3807The @code{%destructor} directive allows for the definition of code that
3808is called when a symbol is thrown away.
3809
3810@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3811@findex %destructor
3812Declare that the @var{code} must be invoked for each of the
3813@var{symbols} that will be discarded by the parser. The @var{code}
3814should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3815@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3816(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3817
3818@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3819experimental, as there was not enough user feedback. In particular,
3df37415 3820the syntax might still change.
72f889cc
AD
3821@end deffn
3822
3823For instance:
3824
3825@smallexample
3826%union
3827@{
3828 char *string;
3829@}
3830%token <string> STRING
3831%type <string> string
3832%destructor @{ free ($$); @} STRING string
3833@end smallexample
3834
3835@noindent
3836guarantees that when a @code{STRING} or a @code{string} will be discarded,
3837its associated memory will be freed.
3838
3839Note that in the future, Bison might also consider that right hand side
3840members that are not mentioned in the action can be destroyed. For
3841instance, in:
3842
3843@smallexample
3844comment: "/*" STRING "*/";
3845@end smallexample
3846
3847@noindent
3848the parser is entitled to destroy the semantic value of the
3849@code{string}. Of course, this will not apply to the default action;
3850compare:
3851
3852@smallexample
3853typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3854typefull: string; // $$ = $1 applies, $1 is not destroyed.
3855@end smallexample
3856
e757bb10
AD
3857@sp 1
3858
3859@cindex discarded symbols
3860@dfn{Discarded symbols} are the following:
3861
3862@itemize
3863@item
3864stacked symbols popped during the first phase of error recovery,
3865@item
3866incoming terminals during the second phase of error recovery,
3867@item
451364ed 3868the current look-ahead when the parser aborts (either via an explicit
e757bb10
AD
3869call to @code{YYABORT}, or as a consequence of a failed error recovery).
3870@end itemize
3871
3872
342b8b6e 3873@node Expect Decl
bfa74976
RS
3874@subsection Suppressing Conflict Warnings
3875@cindex suppressing conflict warnings
3876@cindex preventing warnings about conflicts
3877@cindex warnings, preventing
3878@cindex conflicts, suppressing warnings of
3879@findex %expect
d6328241 3880@findex %expect-rr
bfa74976
RS
3881
3882Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3883(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3884have harmless shift/reduce conflicts which are resolved in a predictable
3885way and would be difficult to eliminate. It is desirable to suppress
3886the warning about these conflicts unless the number of conflicts
3887changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3888
3889The declaration looks like this:
3890
3891@example
3892%expect @var{n}
3893@end example
3894
7da99ede
AD
3895Here @var{n} is a decimal integer. The declaration says there should be
3896no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3897reduce/reduce conflicts. The usual warning is
7da99ede
AD
3898given if there are either more or fewer conflicts, or if there are any
3899reduce/reduce conflicts.
bfa74976 3900
fa7e68c3 3901For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3902and should be eliminated entirely. Bison will always report
fa7e68c3 3903reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3904both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3905would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3906to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3907parsers, using the declaration:
3908
3909@example
3910%expect-rr @var{n}
3911@end example
3912
bfa74976
RS
3913In general, using @code{%expect} involves these steps:
3914
3915@itemize @bullet
3916@item
3917Compile your grammar without @code{%expect}. Use the @samp{-v} option
3918to get a verbose list of where the conflicts occur. Bison will also
3919print the number of conflicts.
3920
3921@item
3922Check each of the conflicts to make sure that Bison's default
3923resolution is what you really want. If not, rewrite the grammar and
3924go back to the beginning.
3925
3926@item
3927Add an @code{%expect} declaration, copying the number @var{n} from the
3928number which Bison printed.
3929@end itemize
3930
69363a9e
PE
3931Now Bison will stop annoying you if you do not change the number of
3932conflicts, but it will warn you again if changes in the grammar result
3933in more or fewer conflicts.
bfa74976 3934
342b8b6e 3935@node Start Decl
bfa74976
RS
3936@subsection The Start-Symbol
3937@cindex declaring the start symbol
3938@cindex start symbol, declaring
3939@cindex default start symbol
3940@findex %start
3941
3942Bison assumes by default that the start symbol for the grammar is the first
3943nonterminal specified in the grammar specification section. The programmer
3944may override this restriction with the @code{%start} declaration as follows:
3945
3946@example
3947%start @var{symbol}
3948@end example
3949
342b8b6e 3950@node Pure Decl
bfa74976
RS
3951@subsection A Pure (Reentrant) Parser
3952@cindex reentrant parser
3953@cindex pure parser
8c9a50be 3954@findex %pure-parser
bfa74976
RS
3955
3956A @dfn{reentrant} program is one which does not alter in the course of
3957execution; in other words, it consists entirely of @dfn{pure} (read-only)
3958code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3959for example, a non-reentrant program may not be safe to call from a signal
3960handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3961program must be called only within interlocks.
3962
70811b85 3963Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3964suitable for most uses, and it permits compatibility with Yacc. (The
3965standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3966statically allocated variables for communication with @code{yylex},
3967including @code{yylval} and @code{yylloc}.)
bfa74976 3968
70811b85 3969Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3970declaration @code{%pure-parser} says that you want the parser to be
70811b85 3971reentrant. It looks like this:
bfa74976
RS
3972
3973@example
8c9a50be 3974%pure-parser
bfa74976
RS
3975@end example
3976
70811b85
RS
3977The result is that the communication variables @code{yylval} and
3978@code{yylloc} become local variables in @code{yyparse}, and a different
3979calling convention is used for the lexical analyzer function
3980@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3981Parsers}, for the details of this. The variable @code{yynerrs} also
3982becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3983Reporting Function @code{yyerror}}). The convention for calling
3984@code{yyparse} itself is unchanged.
3985
3986Whether the parser is pure has nothing to do with the grammar rules.
3987You can generate either a pure parser or a nonreentrant parser from any
3988valid grammar.
bfa74976 3989
342b8b6e 3990@node Decl Summary
bfa74976
RS
3991@subsection Bison Declaration Summary
3992@cindex Bison declaration summary
3993@cindex declaration summary
3994@cindex summary, Bison declaration
3995
d8988b2f 3996Here is a summary of the declarations used to define a grammar:
bfa74976 3997
18b519c0 3998@deffn {Directive} %union
bfa74976
RS
3999Declare the collection of data types that semantic values may have
4000(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4001@end deffn
bfa74976 4002
18b519c0 4003@deffn {Directive} %token
bfa74976
RS
4004Declare a terminal symbol (token type name) with no precedence
4005or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4006@end deffn
bfa74976 4007
18b519c0 4008@deffn {Directive} %right
bfa74976
RS
4009Declare a terminal symbol (token type name) that is right-associative
4010(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4011@end deffn
bfa74976 4012
18b519c0 4013@deffn {Directive} %left
bfa74976
RS
4014Declare a terminal symbol (token type name) that is left-associative
4015(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4016@end deffn
bfa74976 4017
18b519c0 4018@deffn {Directive} %nonassoc
bfa74976 4019Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4020(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4021Using it in a way that would be associative is a syntax error.
4022@end deffn
4023
91d2c560 4024@ifset defaultprec
39a06c25 4025@deffn {Directive} %default-prec
22fccf95 4026Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4027(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4028@end deffn
91d2c560 4029@end ifset
bfa74976 4030
18b519c0 4031@deffn {Directive} %type
bfa74976
RS
4032Declare the type of semantic values for a nonterminal symbol
4033(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4034@end deffn
bfa74976 4035
18b519c0 4036@deffn {Directive} %start
89cab50d
AD
4037Specify the grammar's start symbol (@pxref{Start Decl, ,The
4038Start-Symbol}).
18b519c0 4039@end deffn
bfa74976 4040
18b519c0 4041@deffn {Directive} %expect
bfa74976
RS
4042Declare the expected number of shift-reduce conflicts
4043(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4044@end deffn
4045
bfa74976 4046
d8988b2f
AD
4047@sp 1
4048@noindent
4049In order to change the behavior of @command{bison}, use the following
4050directives:
4051
18b519c0 4052@deffn {Directive} %debug
4947ebdb
PE
4053In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4054already defined, so that the debugging facilities are compiled.
18b519c0 4055@end deffn
ec3bc396 4056@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4057
18b519c0 4058@deffn {Directive} %defines
4bfd5e4e
PE
4059Write a header file containing macro definitions for the token type
4060names defined in the grammar as well as a few other declarations.
d8988b2f 4061If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4062is named @file{@var{name}.h}.
d8988b2f 4063
4bfd5e4e 4064Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
4065declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
4066(@pxref{Multiple Types, ,More Than One Value Type}) with components
4067that require other definitions, or if you have defined a
4bfd5e4e 4068@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
4069Values}), you need to arrange for these definitions to be propagated to
4070all modules, e.g., by putting them in a
4bfd5e4e
PE
4071prerequisite header that is included both by your parser and by any
4072other module that needs @code{YYSTYPE}.
4073
4074Unless your parser is pure, the output header declares @code{yylval}
4075as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4076Parser}.
4077
4078If you have also used locations, the output header declares
4079@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4080@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4081Locations}.
4082
4083This output file is normally essential if you wish to put the
4084definition of @code{yylex} in a separate source file, because
4085@code{yylex} typically needs to be able to refer to the
4086above-mentioned declarations and to the token type codes.
4087@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4088@end deffn
d8988b2f 4089
18b519c0 4090@deffn {Directive} %destructor
72f889cc 4091Specifying how the parser should reclaim the memory associated to
fa7e68c3 4092discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4093@end deffn
72f889cc 4094
18b519c0 4095@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4096Specify a prefix to use for all Bison output file names. The names are
4097chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4098@end deffn
d8988b2f 4099
18b519c0 4100@deffn {Directive} %locations
89cab50d
AD
4101Generate the code processing the locations (@pxref{Action Features,
4102,Special Features for Use in Actions}). This mode is enabled as soon as
4103the grammar uses the special @samp{@@@var{n}} tokens, but if your
4104grammar does not use it, using @samp{%locations} allows for more
6e649e65 4105accurate syntax error messages.
18b519c0 4106@end deffn
89cab50d 4107
18b519c0 4108@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4109Rename the external symbols used in the parser so that they start with
4110@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4111is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4112@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4113possible @code{yylloc}. For example, if you use
4114@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4115and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4116Program}.
18b519c0 4117@end deffn
931c7513 4118
91d2c560 4119@ifset defaultprec
22fccf95
PE
4120@deffn {Directive} %no-default-prec
4121Do not assign a precedence to rules lacking an explicit @code{%prec}
4122modifier (@pxref{Contextual Precedence, ,Context-Dependent
4123Precedence}).
4124@end deffn
91d2c560 4125@end ifset
22fccf95 4126
18b519c0 4127@deffn {Directive} %no-parser
6deb4447
AD
4128Do not include any C code in the parser file; generate tables only. The
4129parser file contains just @code{#define} directives and static variable
4130declarations.
4131
4132This option also tells Bison to write the C code for the grammar actions
4133into a file named @file{@var{filename}.act}, in the form of a
4134brace-surrounded body fit for a @code{switch} statement.
18b519c0 4135@end deffn
6deb4447 4136
18b519c0 4137@deffn {Directive} %no-lines
931c7513
RS
4138Don't generate any @code{#line} preprocessor commands in the parser
4139file. Ordinarily Bison writes these commands in the parser file so that
4140the C compiler and debuggers will associate errors and object code with
4141your source file (the grammar file). This directive causes them to
4142associate errors with the parser file, treating it an independent source
4143file in its own right.
18b519c0 4144@end deffn
931c7513 4145
18b519c0 4146@deffn {Directive} %output="@var{filename}"
d8988b2f 4147Specify the @var{filename} for the parser file.
18b519c0 4148@end deffn
6deb4447 4149
18b519c0 4150@deffn {Directive} %pure-parser
d8988b2f
AD
4151Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4152(Reentrant) Parser}).
18b519c0 4153@end deffn
6deb4447 4154
18b519c0 4155@deffn {Directive} %token-table
931c7513
RS
4156Generate an array of token names in the parser file. The name of the
4157array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4158token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4159three elements of @code{yytname} correspond to the predefined tokens
4160@code{"$end"},
88bce5a2
AD
4161@code{"error"}, and @code{"$undefined"}; after these come the symbols
4162defined in the grammar file.
931c7513
RS
4163
4164For single-character literal tokens and literal string tokens, the name
4165in the table includes the single-quote or double-quote characters: for
4166example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
4167is a literal string token. All the characters of the literal string
4168token appear verbatim in the string found in the table; even
4169double-quote characters are not escaped. For example, if the token
4170consists of three characters @samp{*"*}, its string in @code{yytname}
4171contains @samp{"*"*"}. (In C, that would be written as
4172@code{"\"*\"*\""}).
4173
8c9a50be 4174When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4175definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4176@code{YYNRULES}, and @code{YYNSTATES}:
4177
4178@table @code
4179@item YYNTOKENS
4180The highest token number, plus one.
4181@item YYNNTS
9ecbd125 4182The number of nonterminal symbols.
931c7513
RS
4183@item YYNRULES
4184The number of grammar rules,
4185@item YYNSTATES
4186The number of parser states (@pxref{Parser States}).
4187@end table
18b519c0 4188@end deffn
d8988b2f 4189
18b519c0 4190@deffn {Directive} %verbose
d8988b2f
AD
4191Write an extra output file containing verbose descriptions of the
4192parser states and what is done for each type of look-ahead token in
72d2299c 4193that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4194information.
18b519c0 4195@end deffn
d8988b2f 4196
18b519c0 4197@deffn {Directive} %yacc
d8988b2f
AD
4198Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4199including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4200@end deffn
d8988b2f
AD
4201
4202
342b8b6e 4203@node Multiple Parsers
bfa74976
RS
4204@section Multiple Parsers in the Same Program
4205
4206Most programs that use Bison parse only one language and therefore contain
4207only one Bison parser. But what if you want to parse more than one
4208language with the same program? Then you need to avoid a name conflict
4209between different definitions of @code{yyparse}, @code{yylval}, and so on.
4210
4211The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4212(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4213functions and variables of the Bison parser to start with @var{prefix}
4214instead of @samp{yy}. You can use this to give each parser distinct
4215names that do not conflict.
bfa74976
RS
4216
4217The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4218@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4219@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4220the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4221
4222@strong{All the other variables and macros associated with Bison are not
4223renamed.} These others are not global; there is no conflict if the same
4224name is used in different parsers. For example, @code{YYSTYPE} is not
4225renamed, but defining this in different ways in different parsers causes
4226no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4227
4228The @samp{-p} option works by adding macro definitions to the beginning
4229of the parser source file, defining @code{yyparse} as
4230@code{@var{prefix}parse}, and so on. This effectively substitutes one
4231name for the other in the entire parser file.
4232
342b8b6e 4233@node Interface
bfa74976
RS
4234@chapter Parser C-Language Interface
4235@cindex C-language interface
4236@cindex interface
4237
4238The Bison parser is actually a C function named @code{yyparse}. Here we
4239describe the interface conventions of @code{yyparse} and the other
4240functions that it needs to use.
4241
4242Keep in mind that the parser uses many C identifiers starting with
4243@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4244identifier (aside from those in this manual) in an action or in epilogue
4245in the grammar file, you are likely to run into trouble.
bfa74976
RS
4246
4247@menu
4248* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4249* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4250 which reads tokens.
4251* Error Reporting:: You must supply a function @code{yyerror}.
4252* Action Features:: Special features for use in actions.
4253@end menu
4254
342b8b6e 4255@node Parser Function
bfa74976
RS
4256@section The Parser Function @code{yyparse}
4257@findex yyparse
4258
4259You call the function @code{yyparse} to cause parsing to occur. This
4260function reads tokens, executes actions, and ultimately returns when it
4261encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4262write an action which directs @code{yyparse} to return immediately
4263without reading further.
bfa74976 4264
2a8d363a
AD
4265
4266@deftypefun int yyparse (void)
bfa74976
RS
4267The value returned by @code{yyparse} is 0 if parsing was successful (return
4268is due to end-of-input).
4269
4270The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 4271@end deftypefun
bfa74976
RS
4272
4273In an action, you can cause immediate return from @code{yyparse} by using
4274these macros:
4275
2a8d363a 4276@defmac YYACCEPT
bfa74976
RS
4277@findex YYACCEPT
4278Return immediately with value 0 (to report success).
2a8d363a 4279@end defmac
bfa74976 4280
2a8d363a 4281@defmac YYABORT
bfa74976
RS
4282@findex YYABORT
4283Return immediately with value 1 (to report failure).
2a8d363a
AD
4284@end defmac
4285
4286If you use a reentrant parser, you can optionally pass additional
4287parameter information to it in a reentrant way. To do so, use the
4288declaration @code{%parse-param}:
4289
feeb0eda 4290@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4291@findex %parse-param
feeb0eda 4292Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4293additional @code{yyparse} argument.
4294The @var{argument-declaration} is used when declaring
feeb0eda
PE
4295functions or prototypes. The last identifier in
4296@var{argument-declaration} must be the argument name.
2a8d363a
AD
4297@end deffn
4298
4299Here's an example. Write this in the parser:
4300
4301@example
feeb0eda
PE
4302%parse-param @{int *nastiness@}
4303%parse-param @{int *randomness@}
2a8d363a
AD
4304@end example
4305
4306@noindent
4307Then call the parser like this:
4308
4309@example
4310@{
4311 int nastiness, randomness;
4312 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4313 value = yyparse (&nastiness, &randomness);
4314 @dots{}
4315@}
4316@end example
4317
4318@noindent
4319In the grammar actions, use expressions like this to refer to the data:
4320
4321@example
4322exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4323@end example
4324
bfa74976 4325
342b8b6e 4326@node Lexical
bfa74976
RS
4327@section The Lexical Analyzer Function @code{yylex}
4328@findex yylex
4329@cindex lexical analyzer
4330
4331The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4332the input stream and returns them to the parser. Bison does not create
4333this function automatically; you must write it so that @code{yyparse} can
4334call it. The function is sometimes referred to as a lexical scanner.
4335
4336In simple programs, @code{yylex} is often defined at the end of the Bison
4337grammar file. If @code{yylex} is defined in a separate source file, you
4338need to arrange for the token-type macro definitions to be available there.
4339To do this, use the @samp{-d} option when you run Bison, so that it will
4340write these macro definitions into a separate header file
4341@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4342that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4343
4344@menu
4345* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4346* Token Values:: How @code{yylex} must return the semantic value
4347 of the token it has read.
95923bd6 4348* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4349 (line number, etc.) of the token, if the
4350 actions want that.
4351* Pure Calling:: How the calling convention differs
4352 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4353@end menu
4354
342b8b6e 4355@node Calling Convention
bfa74976
RS
4356@subsection Calling Convention for @code{yylex}
4357
72d2299c
PE
4358The value that @code{yylex} returns must be the positive numeric code
4359for the type of token it has just found; a zero or negative value
4360signifies end-of-input.
bfa74976
RS
4361
4362When a token is referred to in the grammar rules by a name, that name
4363in the parser file becomes a C macro whose definition is the proper
4364numeric code for that token type. So @code{yylex} can use the name
4365to indicate that type. @xref{Symbols}.
4366
4367When a token is referred to in the grammar rules by a character literal,
4368the numeric code for that character is also the code for the token type.
72d2299c
PE
4369So @code{yylex} can simply return that character code, possibly converted
4370to @code{unsigned char} to avoid sign-extension. The null character
4371must not be used this way, because its code is zero and that
bfa74976
RS
4372signifies end-of-input.
4373
4374Here is an example showing these things:
4375
4376@example
13863333
AD
4377int
4378yylex (void)
bfa74976
RS
4379@{
4380 @dots{}
72d2299c 4381 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4382 return 0;
4383 @dots{}
4384 if (c == '+' || c == '-')
72d2299c 4385 return c; /* Assume token type for `+' is '+'. */
bfa74976 4386 @dots{}
72d2299c 4387 return INT; /* Return the type of the token. */
bfa74976
RS
4388 @dots{}
4389@}
4390@end example
4391
4392@noindent
4393This interface has been designed so that the output from the @code{lex}
4394utility can be used without change as the definition of @code{yylex}.
4395
931c7513
RS
4396If the grammar uses literal string tokens, there are two ways that
4397@code{yylex} can determine the token type codes for them:
4398
4399@itemize @bullet
4400@item
4401If the grammar defines symbolic token names as aliases for the
4402literal string tokens, @code{yylex} can use these symbolic names like
4403all others. In this case, the use of the literal string tokens in
4404the grammar file has no effect on @code{yylex}.
4405
4406@item
9ecbd125 4407@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4408table. The index of the token in the table is the token type's code.
9ecbd125 4409The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4410double-quote, the token's characters, and another double-quote. The
4411token's characters are not escaped in any way; they appear verbatim in
4412the contents of the string in the table.
4413
4414Here's code for looking up a token in @code{yytname}, assuming that the
4415characters of the token are stored in @code{token_buffer}.
4416
4417@smallexample
4418for (i = 0; i < YYNTOKENS; i++)
4419 @{
4420 if (yytname[i] != 0
4421 && yytname[i][0] == '"'
68449b3a
PE
4422 && ! strncmp (yytname[i] + 1, token_buffer,
4423 strlen (token_buffer))
931c7513
RS
4424 && yytname[i][strlen (token_buffer) + 1] == '"'
4425 && yytname[i][strlen (token_buffer) + 2] == 0)
4426 break;
4427 @}
4428@end smallexample
4429
4430The @code{yytname} table is generated only if you use the
8c9a50be 4431@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4432@end itemize
4433
342b8b6e 4434@node Token Values
bfa74976
RS
4435@subsection Semantic Values of Tokens
4436
4437@vindex yylval
14ded682 4438In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4439be stored into the global variable @code{yylval}. When you are using
4440just one data type for semantic values, @code{yylval} has that type.
4441Thus, if the type is @code{int} (the default), you might write this in
4442@code{yylex}:
4443
4444@example
4445@group
4446 @dots{}
72d2299c
PE
4447 yylval = value; /* Put value onto Bison stack. */
4448 return INT; /* Return the type of the token. */
bfa74976
RS
4449 @dots{}
4450@end group
4451@end example
4452
4453When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4454made from the @code{%union} declaration (@pxref{Union Decl, ,The
4455Collection of Value Types}). So when you store a token's value, you
4456must use the proper member of the union. If the @code{%union}
4457declaration looks like this:
bfa74976
RS
4458
4459@example
4460@group
4461%union @{
4462 int intval;
4463 double val;
4464 symrec *tptr;
4465@}
4466@end group
4467@end example
4468
4469@noindent
4470then the code in @code{yylex} might look like this:
4471
4472@example
4473@group
4474 @dots{}
72d2299c
PE
4475 yylval.intval = value; /* Put value onto Bison stack. */
4476 return INT; /* Return the type of the token. */
bfa74976
RS
4477 @dots{}
4478@end group
4479@end example
4480
95923bd6
AD
4481@node Token Locations
4482@subsection Textual Locations of Tokens
bfa74976
RS
4483
4484@vindex yylloc
847bf1f5
AD
4485If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4486Tracking Locations}) in actions to keep track of the
89cab50d
AD
4487textual locations of tokens and groupings, then you must provide this
4488information in @code{yylex}. The function @code{yyparse} expects to
4489find the textual location of a token just parsed in the global variable
4490@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4491variable.
4492
4493By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4494initialize the members that are going to be used by the actions. The
4495four members are called @code{first_line}, @code{first_column},
4496@code{last_line} and @code{last_column}. Note that the use of this
4497feature makes the parser noticeably slower.
bfa74976
RS
4498
4499@tindex YYLTYPE
4500The data type of @code{yylloc} has the name @code{YYLTYPE}.
4501
342b8b6e 4502@node Pure Calling
c656404a 4503@subsection Calling Conventions for Pure Parsers
bfa74976 4504
8c9a50be 4505When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4506pure, reentrant parser, the global communication variables @code{yylval}
4507and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4508Parser}.) In such parsers the two global variables are replaced by
4509pointers passed as arguments to @code{yylex}. You must declare them as
4510shown here, and pass the information back by storing it through those
4511pointers.
bfa74976
RS
4512
4513@example
13863333
AD
4514int
4515yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4516@{
4517 @dots{}
4518 *lvalp = value; /* Put value onto Bison stack. */
4519 return INT; /* Return the type of the token. */
4520 @dots{}
4521@}
4522@end example
4523
4524If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4525textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4526this case, omit the second argument; @code{yylex} will be called with
4527only one argument.
4528
e425e872 4529
2a8d363a
AD
4530If you wish to pass the additional parameter data to @code{yylex}, use
4531@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4532Function}).
e425e872 4533
feeb0eda 4534@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4535@findex %lex-param
feeb0eda
PE
4536Declare that @code{argument-declaration} is an additional @code{yylex}
4537argument declaration.
2a8d363a 4538@end deffn
e425e872 4539
2a8d363a 4540For instance:
e425e872
RS
4541
4542@example
feeb0eda
PE
4543%parse-param @{int *nastiness@}
4544%lex-param @{int *nastiness@}
4545%parse-param @{int *randomness@}
e425e872
RS
4546@end example
4547
4548@noindent
2a8d363a 4549results in the following signature:
e425e872
RS
4550
4551@example
2a8d363a
AD
4552int yylex (int *nastiness);
4553int yyparse (int *nastiness, int *randomness);
e425e872
RS
4554@end example
4555
2a8d363a 4556If @code{%pure-parser} is added:
c656404a
RS
4557
4558@example
2a8d363a
AD
4559int yylex (YYSTYPE *lvalp, int *nastiness);
4560int yyparse (int *nastiness, int *randomness);
c656404a
RS
4561@end example
4562
2a8d363a
AD
4563@noindent
4564and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4565
2a8d363a
AD
4566@example
4567int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4568int yyparse (int *nastiness, int *randomness);
4569@end example
931c7513 4570
342b8b6e 4571@node Error Reporting
bfa74976
RS
4572@section The Error Reporting Function @code{yyerror}
4573@cindex error reporting function
4574@findex yyerror
4575@cindex parse error
4576@cindex syntax error
4577
6e649e65 4578The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4579whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4580action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4581macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4582in Actions}).
bfa74976
RS
4583
4584The Bison parser expects to report the error by calling an error
4585reporting function named @code{yyerror}, which you must supply. It is
4586called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4587receives one argument. For a syntax error, the string is normally
4588@w{@code{"syntax error"}}.
bfa74976 4589
2a8d363a
AD
4590@findex %error-verbose
4591If you invoke the directive @code{%error-verbose} in the Bison
4592declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4593Section}), then Bison provides a more verbose and specific error message
6e649e65 4594string instead of just plain @w{@code{"syntax error"}}.
bfa74976
RS
4595
4596The parser can detect one other kind of error: stack overflow. This
4597happens when the input contains constructions that are very deeply
4598nested. It isn't likely you will encounter this, since the Bison
4599parser extends its stack automatically up to a very large limit. But
4600if overflow happens, @code{yyparse} calls @code{yyerror} in the usual
4601fashion, except that the argument string is @w{@code{"parser stack
4602overflow"}}.
4603
4604The following definition suffices in simple programs:
4605
4606@example
4607@group
13863333 4608void
38a92d50 4609yyerror (char const *s)
bfa74976
RS
4610@{
4611@end group
4612@group
4613 fprintf (stderr, "%s\n", s);
4614@}
4615@end group
4616@end example
4617
4618After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4619error recovery if you have written suitable error recovery grammar rules
4620(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4621immediately return 1.
4622
93724f13 4623Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4624an access to the current location.
4625This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4626parsers, but not for the Yacc parser, for historical reasons. I.e., if
4627@samp{%locations %pure-parser} is passed then the prototypes for
4628@code{yyerror} are:
4629
4630@example
38a92d50
PE
4631void yyerror (char const *msg); /* Yacc parsers. */
4632void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4633@end example
4634
feeb0eda 4635If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4636
4637@example
b317297e
PE
4638void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4639void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4640@end example
4641
fa7e68c3 4642Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4643convention for absolutely pure parsers, i.e., when the calling
4644convention of @code{yylex} @emph{and} the calling convention of
4645@code{%pure-parser} are pure. I.e.:
4646
4647@example
4648/* Location tracking. */
4649%locations
4650/* Pure yylex. */
4651%pure-parser
feeb0eda 4652%lex-param @{int *nastiness@}
2a8d363a 4653/* Pure yyparse. */
feeb0eda
PE
4654%parse-param @{int *nastiness@}
4655%parse-param @{int *randomness@}
2a8d363a
AD
4656@end example
4657
4658@noindent
4659results in the following signatures for all the parser kinds:
4660
4661@example
4662int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4663int yyparse (int *nastiness, int *randomness);
93724f13
AD
4664void yyerror (YYLTYPE *locp,
4665 int *nastiness, int *randomness,
38a92d50 4666 char const *msg);
2a8d363a
AD
4667@end example
4668
1c0c3e95 4669@noindent
38a92d50
PE
4670The prototypes are only indications of how the code produced by Bison
4671uses @code{yyerror}. Bison-generated code always ignores the returned
4672value, so @code{yyerror} can return any type, including @code{void}.
4673Also, @code{yyerror} can be a variadic function; that is why the
4674message is always passed last.
4675
4676Traditionally @code{yyerror} returns an @code{int} that is always
4677ignored, but this is purely for historical reasons, and @code{void} is
4678preferable since it more accurately describes the return type for
4679@code{yyerror}.
93724f13 4680
bfa74976
RS
4681@vindex yynerrs
4682The variable @code{yynerrs} contains the number of syntax errors
4683encountered so far. Normally this variable is global; but if you
704a47c4
AD
4684request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4685then it is a local variable which only the actions can access.
bfa74976 4686
342b8b6e 4687@node Action Features
bfa74976
RS
4688@section Special Features for Use in Actions
4689@cindex summary, action features
4690@cindex action features summary
4691
4692Here is a table of Bison constructs, variables and macros that
4693are useful in actions.
4694
18b519c0 4695@deffn {Variable} $$
bfa74976
RS
4696Acts like a variable that contains the semantic value for the
4697grouping made by the current rule. @xref{Actions}.
18b519c0 4698@end deffn
bfa74976 4699
18b519c0 4700@deffn {Variable} $@var{n}
bfa74976
RS
4701Acts like a variable that contains the semantic value for the
4702@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4703@end deffn
bfa74976 4704
18b519c0 4705@deffn {Variable} $<@var{typealt}>$
bfa74976 4706Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4707specified by the @code{%union} declaration. @xref{Action Types, ,Data
4708Types of Values in Actions}.
18b519c0 4709@end deffn
bfa74976 4710
18b519c0 4711@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4712Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4713union specified by the @code{%union} declaration.
e0c471a9 4714@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4715@end deffn
bfa74976 4716
18b519c0 4717@deffn {Macro} YYABORT;
bfa74976
RS
4718Return immediately from @code{yyparse}, indicating failure.
4719@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4720@end deffn
bfa74976 4721
18b519c0 4722@deffn {Macro} YYACCEPT;
bfa74976
RS
4723Return immediately from @code{yyparse}, indicating success.
4724@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4725@end deffn
bfa74976 4726
18b519c0 4727@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4728@findex YYBACKUP
4729Unshift a token. This macro is allowed only for rules that reduce
4730a single value, and only when there is no look-ahead token.
c827f760 4731It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4732It installs a look-ahead token with token type @var{token} and
4733semantic value @var{value}; then it discards the value that was
4734going to be reduced by this rule.
4735
4736If the macro is used when it is not valid, such as when there is
4737a look-ahead token already, then it reports a syntax error with
4738a message @samp{cannot back up} and performs ordinary error
4739recovery.
4740
4741In either case, the rest of the action is not executed.
18b519c0 4742@end deffn
bfa74976 4743
18b519c0 4744@deffn {Macro} YYEMPTY
bfa74976
RS
4745@vindex YYEMPTY
4746Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4747@end deffn
bfa74976 4748
18b519c0 4749@deffn {Macro} YYERROR;
bfa74976
RS
4750@findex YYERROR
4751Cause an immediate syntax error. This statement initiates error
4752recovery just as if the parser itself had detected an error; however, it
4753does not call @code{yyerror}, and does not print any message. If you
4754want to print an error message, call @code{yyerror} explicitly before
4755the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4756@end deffn
bfa74976 4757
18b519c0 4758@deffn {Macro} YYRECOVERING
bfa74976
RS
4759This macro stands for an expression that has the value 1 when the parser
4760is recovering from a syntax error, and 0 the rest of the time.
4761@xref{Error Recovery}.
18b519c0 4762@end deffn
bfa74976 4763
18b519c0 4764@deffn {Variable} yychar
bfa74976
RS
4765Variable containing the current look-ahead token. (In a pure parser,
4766this is actually a local variable within @code{yyparse}.) When there is
4767no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4768@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4769@end deffn
bfa74976 4770
18b519c0 4771@deffn {Macro} yyclearin;
bfa74976
RS
4772Discard the current look-ahead token. This is useful primarily in
4773error rules. @xref{Error Recovery}.
18b519c0 4774@end deffn
bfa74976 4775
18b519c0 4776@deffn {Macro} yyerrok;
bfa74976 4777Resume generating error messages immediately for subsequent syntax
13863333 4778errors. This is useful primarily in error rules.
bfa74976 4779@xref{Error Recovery}.
18b519c0 4780@end deffn
bfa74976 4781
18b519c0 4782@deffn {Value} @@$
847bf1f5 4783@findex @@$
95923bd6 4784Acts like a structure variable containing information on the textual location
847bf1f5
AD
4785of the grouping made by the current rule. @xref{Locations, ,
4786Tracking Locations}.
bfa74976 4787
847bf1f5
AD
4788@c Check if those paragraphs are still useful or not.
4789
4790@c @example
4791@c struct @{
4792@c int first_line, last_line;
4793@c int first_column, last_column;
4794@c @};
4795@c @end example
4796
4797@c Thus, to get the starting line number of the third component, you would
4798@c use @samp{@@3.first_line}.
bfa74976 4799
847bf1f5
AD
4800@c In order for the members of this structure to contain valid information,
4801@c you must make @code{yylex} supply this information about each token.
4802@c If you need only certain members, then @code{yylex} need only fill in
4803@c those members.
bfa74976 4804
847bf1f5 4805@c The use of this feature makes the parser noticeably slower.
18b519c0 4806@end deffn
847bf1f5 4807
18b519c0 4808@deffn {Value} @@@var{n}
847bf1f5 4809@findex @@@var{n}
95923bd6 4810Acts like a structure variable containing information on the textual location
847bf1f5
AD
4811of the @var{n}th component of the current rule. @xref{Locations, ,
4812Tracking Locations}.
18b519c0 4813@end deffn
bfa74976 4814
bfa74976 4815
342b8b6e 4816@node Algorithm
13863333
AD
4817@chapter The Bison Parser Algorithm
4818@cindex Bison parser algorithm
bfa74976
RS
4819@cindex algorithm of parser
4820@cindex shifting
4821@cindex reduction
4822@cindex parser stack
4823@cindex stack, parser
4824
4825As Bison reads tokens, it pushes them onto a stack along with their
4826semantic values. The stack is called the @dfn{parser stack}. Pushing a
4827token is traditionally called @dfn{shifting}.
4828
4829For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4830@samp{3} to come. The stack will have four elements, one for each token
4831that was shifted.
4832
4833But the stack does not always have an element for each token read. When
4834the last @var{n} tokens and groupings shifted match the components of a
4835grammar rule, they can be combined according to that rule. This is called
4836@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4837single grouping whose symbol is the result (left hand side) of that rule.
4838Running the rule's action is part of the process of reduction, because this
4839is what computes the semantic value of the resulting grouping.
4840
4841For example, if the infix calculator's parser stack contains this:
4842
4843@example
48441 + 5 * 3
4845@end example
4846
4847@noindent
4848and the next input token is a newline character, then the last three
4849elements can be reduced to 15 via the rule:
4850
4851@example
4852expr: expr '*' expr;
4853@end example
4854
4855@noindent
4856Then the stack contains just these three elements:
4857
4858@example
48591 + 15
4860@end example
4861
4862@noindent
4863At this point, another reduction can be made, resulting in the single value
486416. Then the newline token can be shifted.
4865
4866The parser tries, by shifts and reductions, to reduce the entire input down
4867to a single grouping whose symbol is the grammar's start-symbol
4868(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4869
4870This kind of parser is known in the literature as a bottom-up parser.
4871
4872@menu
4873* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4874* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4875* Precedence:: Operator precedence works by resolving conflicts.
4876* Contextual Precedence:: When an operator's precedence depends on context.
4877* Parser States:: The parser is a finite-state-machine with stack.
4878* Reduce/Reduce:: When two rules are applicable in the same situation.
4879* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4880* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
bfa74976
RS
4881* Stack Overflow:: What happens when stack gets full. How to avoid it.
4882@end menu
4883
342b8b6e 4884@node Look-Ahead
bfa74976
RS
4885@section Look-Ahead Tokens
4886@cindex look-ahead token
4887
4888The Bison parser does @emph{not} always reduce immediately as soon as the
4889last @var{n} tokens and groupings match a rule. This is because such a
4890simple strategy is inadequate to handle most languages. Instead, when a
4891reduction is possible, the parser sometimes ``looks ahead'' at the next
4892token in order to decide what to do.
4893
4894When a token is read, it is not immediately shifted; first it becomes the
4895@dfn{look-ahead token}, which is not on the stack. Now the parser can
4896perform one or more reductions of tokens and groupings on the stack, while
4897the look-ahead token remains off to the side. When no more reductions
4898should take place, the look-ahead token is shifted onto the stack. This
4899does not mean that all possible reductions have been done; depending on the
4900token type of the look-ahead token, some rules may choose to delay their
4901application.
4902
4903Here is a simple case where look-ahead is needed. These three rules define
4904expressions which contain binary addition operators and postfix unary
4905factorial operators (@samp{!}), and allow parentheses for grouping.
4906
4907@example
4908@group
4909expr: term '+' expr
4910 | term
4911 ;
4912@end group
4913
4914@group
4915term: '(' expr ')'
4916 | term '!'
4917 | NUMBER
4918 ;
4919@end group
4920@end example
4921
4922Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
4923should be done? If the following token is @samp{)}, then the first three
4924tokens must be reduced to form an @code{expr}. This is the only valid
4925course, because shifting the @samp{)} would produce a sequence of symbols
4926@w{@code{term ')'}}, and no rule allows this.
4927
4928If the following token is @samp{!}, then it must be shifted immediately so
4929that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
4930parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
4931@code{expr}. It would then be impossible to shift the @samp{!} because
4932doing so would produce on the stack the sequence of symbols @code{expr
4933'!'}. No rule allows that sequence.
4934
4935@vindex yychar
4936The current look-ahead token is stored in the variable @code{yychar}.
4937@xref{Action Features, ,Special Features for Use in Actions}.
4938
342b8b6e 4939@node Shift/Reduce
bfa74976
RS
4940@section Shift/Reduce Conflicts
4941@cindex conflicts
4942@cindex shift/reduce conflicts
4943@cindex dangling @code{else}
4944@cindex @code{else}, dangling
4945
4946Suppose we are parsing a language which has if-then and if-then-else
4947statements, with a pair of rules like this:
4948
4949@example
4950@group
4951if_stmt:
4952 IF expr THEN stmt
4953 | IF expr THEN stmt ELSE stmt
4954 ;
4955@end group
4956@end example
4957
4958@noindent
4959Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
4960terminal symbols for specific keyword tokens.
4961
4962When the @code{ELSE} token is read and becomes the look-ahead token, the
4963contents of the stack (assuming the input is valid) are just right for
4964reduction by the first rule. But it is also legitimate to shift the
4965@code{ELSE}, because that would lead to eventual reduction by the second
4966rule.
4967
4968This situation, where either a shift or a reduction would be valid, is
4969called a @dfn{shift/reduce conflict}. Bison is designed to resolve
4970these conflicts by choosing to shift, unless otherwise directed by
4971operator precedence declarations. To see the reason for this, let's
4972contrast it with the other alternative.
4973
4974Since the parser prefers to shift the @code{ELSE}, the result is to attach
4975the else-clause to the innermost if-statement, making these two inputs
4976equivalent:
4977
4978@example
4979if x then if y then win (); else lose;
4980
4981if x then do; if y then win (); else lose; end;
4982@end example
4983
4984But if the parser chose to reduce when possible rather than shift, the
4985result would be to attach the else-clause to the outermost if-statement,
4986making these two inputs equivalent:
4987
4988@example
4989if x then if y then win (); else lose;
4990
4991if x then do; if y then win (); end; else lose;
4992@end example
4993
4994The conflict exists because the grammar as written is ambiguous: either
4995parsing of the simple nested if-statement is legitimate. The established
4996convention is that these ambiguities are resolved by attaching the
4997else-clause to the innermost if-statement; this is what Bison accomplishes
4998by choosing to shift rather than reduce. (It would ideally be cleaner to
4999write an unambiguous grammar, but that is very hard to do in this case.)
5000This particular ambiguity was first encountered in the specifications of
5001Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5002
5003To avoid warnings from Bison about predictable, legitimate shift/reduce
5004conflicts, use the @code{%expect @var{n}} declaration. There will be no
5005warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5006@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5007
5008The definition of @code{if_stmt} above is solely to blame for the
5009conflict, but the conflict does not actually appear without additional
5010rules. Here is a complete Bison input file that actually manifests the
5011conflict:
5012
5013@example
5014@group
5015%token IF THEN ELSE variable
5016%%
5017@end group
5018@group
5019stmt: expr
5020 | if_stmt
5021 ;
5022@end group
5023
5024@group
5025if_stmt:
5026 IF expr THEN stmt
5027 | IF expr THEN stmt ELSE stmt
5028 ;
5029@end group
5030
5031expr: variable
5032 ;
5033@end example
5034
342b8b6e 5035@node Precedence
bfa74976
RS
5036@section Operator Precedence
5037@cindex operator precedence
5038@cindex precedence of operators
5039
5040Another situation where shift/reduce conflicts appear is in arithmetic
5041expressions. Here shifting is not always the preferred resolution; the
5042Bison declarations for operator precedence allow you to specify when to
5043shift and when to reduce.
5044
5045@menu
5046* Why Precedence:: An example showing why precedence is needed.
5047* Using Precedence:: How to specify precedence in Bison grammars.
5048* Precedence Examples:: How these features are used in the previous example.
5049* How Precedence:: How they work.
5050@end menu
5051
342b8b6e 5052@node Why Precedence
bfa74976
RS
5053@subsection When Precedence is Needed
5054
5055Consider the following ambiguous grammar fragment (ambiguous because the
5056input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5057
5058@example
5059@group
5060expr: expr '-' expr
5061 | expr '*' expr
5062 | expr '<' expr
5063 | '(' expr ')'
5064 @dots{}
5065 ;
5066@end group
5067@end example
5068
5069@noindent
5070Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5071should it reduce them via the rule for the subtraction operator? It
5072depends on the next token. Of course, if the next token is @samp{)}, we
5073must reduce; shifting is invalid because no single rule can reduce the
5074token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5075the next token is @samp{*} or @samp{<}, we have a choice: either
5076shifting or reduction would allow the parse to complete, but with
5077different results.
5078
5079To decide which one Bison should do, we must consider the results. If
5080the next operator token @var{op} is shifted, then it must be reduced
5081first in order to permit another opportunity to reduce the difference.
5082The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5083hand, if the subtraction is reduced before shifting @var{op}, the result
5084is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5085reduce should depend on the relative precedence of the operators
5086@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5087@samp{<}.
bfa74976
RS
5088
5089@cindex associativity
5090What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5091@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5092operators we prefer the former, which is called @dfn{left association}.
5093The latter alternative, @dfn{right association}, is desirable for
5094assignment operators. The choice of left or right association is a
5095matter of whether the parser chooses to shift or reduce when the stack
5096contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5097makes right-associativity.
bfa74976 5098
342b8b6e 5099@node Using Precedence
bfa74976
RS
5100@subsection Specifying Operator Precedence
5101@findex %left
5102@findex %right
5103@findex %nonassoc
5104
5105Bison allows you to specify these choices with the operator precedence
5106declarations @code{%left} and @code{%right}. Each such declaration
5107contains a list of tokens, which are operators whose precedence and
5108associativity is being declared. The @code{%left} declaration makes all
5109those operators left-associative and the @code{%right} declaration makes
5110them right-associative. A third alternative is @code{%nonassoc}, which
5111declares that it is a syntax error to find the same operator twice ``in a
5112row''.
5113
5114The relative precedence of different operators is controlled by the
5115order in which they are declared. The first @code{%left} or
5116@code{%right} declaration in the file declares the operators whose
5117precedence is lowest, the next such declaration declares the operators
5118whose precedence is a little higher, and so on.
5119
342b8b6e 5120@node Precedence Examples
bfa74976
RS
5121@subsection Precedence Examples
5122
5123In our example, we would want the following declarations:
5124
5125@example
5126%left '<'
5127%left '-'
5128%left '*'
5129@end example
5130
5131In a more complete example, which supports other operators as well, we
5132would declare them in groups of equal precedence. For example, @code{'+'} is
5133declared with @code{'-'}:
5134
5135@example
5136%left '<' '>' '=' NE LE GE
5137%left '+' '-'
5138%left '*' '/'
5139@end example
5140
5141@noindent
5142(Here @code{NE} and so on stand for the operators for ``not equal''
5143and so on. We assume that these tokens are more than one character long
5144and therefore are represented by names, not character literals.)
5145
342b8b6e 5146@node How Precedence
bfa74976
RS
5147@subsection How Precedence Works
5148
5149The first effect of the precedence declarations is to assign precedence
5150levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5151precedence levels to certain rules: each rule gets its precedence from
5152the last terminal symbol mentioned in the components. (You can also
5153specify explicitly the precedence of a rule. @xref{Contextual
5154Precedence, ,Context-Dependent Precedence}.)
5155
5156Finally, the resolution of conflicts works by comparing the precedence
5157of the rule being considered with that of the look-ahead token. If the
5158token's precedence is higher, the choice is to shift. If the rule's
5159precedence is higher, the choice is to reduce. If they have equal
5160precedence, the choice is made based on the associativity of that
5161precedence level. The verbose output file made by @samp{-v}
5162(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5163resolved.
bfa74976
RS
5164
5165Not all rules and not all tokens have precedence. If either the rule or
5166the look-ahead token has no precedence, then the default is to shift.
5167
342b8b6e 5168@node Contextual Precedence
bfa74976
RS
5169@section Context-Dependent Precedence
5170@cindex context-dependent precedence
5171@cindex unary operator precedence
5172@cindex precedence, context-dependent
5173@cindex precedence, unary operator
5174@findex %prec
5175
5176Often the precedence of an operator depends on the context. This sounds
5177outlandish at first, but it is really very common. For example, a minus
5178sign typically has a very high precedence as a unary operator, and a
5179somewhat lower precedence (lower than multiplication) as a binary operator.
5180
5181The Bison precedence declarations, @code{%left}, @code{%right} and
5182@code{%nonassoc}, can only be used once for a given token; so a token has
5183only one precedence declared in this way. For context-dependent
5184precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5185modifier for rules.
bfa74976
RS
5186
5187The @code{%prec} modifier declares the precedence of a particular rule by
5188specifying a terminal symbol whose precedence should be used for that rule.
5189It's not necessary for that symbol to appear otherwise in the rule. The
5190modifier's syntax is:
5191
5192@example
5193%prec @var{terminal-symbol}
5194@end example
5195
5196@noindent
5197and it is written after the components of the rule. Its effect is to
5198assign the rule the precedence of @var{terminal-symbol}, overriding
5199the precedence that would be deduced for it in the ordinary way. The
5200altered rule precedence then affects how conflicts involving that rule
5201are resolved (@pxref{Precedence, ,Operator Precedence}).
5202
5203Here is how @code{%prec} solves the problem of unary minus. First, declare
5204a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5205are no tokens of this type, but the symbol serves to stand for its
5206precedence:
5207
5208@example
5209@dots{}
5210%left '+' '-'
5211%left '*'
5212%left UMINUS
5213@end example
5214
5215Now the precedence of @code{UMINUS} can be used in specific rules:
5216
5217@example
5218@group
5219exp: @dots{}
5220 | exp '-' exp
5221 @dots{}
5222 | '-' exp %prec UMINUS
5223@end group
5224@end example
5225
91d2c560 5226@ifset defaultprec
39a06c25
PE
5227If you forget to append @code{%prec UMINUS} to the rule for unary
5228minus, Bison silently assumes that minus has its usual precedence.
5229This kind of problem can be tricky to debug, since one typically
5230discovers the mistake only by testing the code.
5231
22fccf95 5232The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5233this kind of problem systematically. It causes rules that lack a
5234@code{%prec} modifier to have no precedence, even if the last terminal
5235symbol mentioned in their components has a declared precedence.
5236
22fccf95 5237If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5238for all rules that participate in precedence conflict resolution.
5239Then you will see any shift/reduce conflict until you tell Bison how
5240to resolve it, either by changing your grammar or by adding an
5241explicit precedence. This will probably add declarations to the
5242grammar, but it helps to protect against incorrect rule precedences.
5243
22fccf95
PE
5244The effect of @code{%no-default-prec;} can be reversed by giving
5245@code{%default-prec;}, which is the default.
91d2c560 5246@end ifset
39a06c25 5247
342b8b6e 5248@node Parser States
bfa74976
RS
5249@section Parser States
5250@cindex finite-state machine
5251@cindex parser state
5252@cindex state (of parser)
5253
5254The function @code{yyparse} is implemented using a finite-state machine.
5255The values pushed on the parser stack are not simply token type codes; they
5256represent the entire sequence of terminal and nonterminal symbols at or
5257near the top of the stack. The current state collects all the information
5258about previous input which is relevant to deciding what to do next.
5259
5260Each time a look-ahead token is read, the current parser state together
5261with the type of look-ahead token are looked up in a table. This table
5262entry can say, ``Shift the look-ahead token.'' In this case, it also
5263specifies the new parser state, which is pushed onto the top of the
5264parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5265This means that a certain number of tokens or groupings are taken off
5266the top of the stack, and replaced by one grouping. In other words,
5267that number of states are popped from the stack, and one new state is
5268pushed.
5269
5270There is one other alternative: the table can say that the look-ahead token
5271is erroneous in the current state. This causes error processing to begin
5272(@pxref{Error Recovery}).
5273
342b8b6e 5274@node Reduce/Reduce
bfa74976
RS
5275@section Reduce/Reduce Conflicts
5276@cindex reduce/reduce conflict
5277@cindex conflicts, reduce/reduce
5278
5279A reduce/reduce conflict occurs if there are two or more rules that apply
5280to the same sequence of input. This usually indicates a serious error
5281in the grammar.
5282
5283For example, here is an erroneous attempt to define a sequence
5284of zero or more @code{word} groupings.
5285
5286@example
5287sequence: /* empty */
5288 @{ printf ("empty sequence\n"); @}
5289 | maybeword
5290 | sequence word
5291 @{ printf ("added word %s\n", $2); @}
5292 ;
5293
5294maybeword: /* empty */
5295 @{ printf ("empty maybeword\n"); @}
5296 | word
5297 @{ printf ("single word %s\n", $1); @}
5298 ;
5299@end example
5300
5301@noindent
5302The error is an ambiguity: there is more than one way to parse a single
5303@code{word} into a @code{sequence}. It could be reduced to a
5304@code{maybeword} and then into a @code{sequence} via the second rule.
5305Alternatively, nothing-at-all could be reduced into a @code{sequence}
5306via the first rule, and this could be combined with the @code{word}
5307using the third rule for @code{sequence}.
5308
5309There is also more than one way to reduce nothing-at-all into a
5310@code{sequence}. This can be done directly via the first rule,
5311or indirectly via @code{maybeword} and then the second rule.
5312
5313You might think that this is a distinction without a difference, because it
5314does not change whether any particular input is valid or not. But it does
5315affect which actions are run. One parsing order runs the second rule's
5316action; the other runs the first rule's action and the third rule's action.
5317In this example, the output of the program changes.
5318
5319Bison resolves a reduce/reduce conflict by choosing to use the rule that
5320appears first in the grammar, but it is very risky to rely on this. Every
5321reduce/reduce conflict must be studied and usually eliminated. Here is the
5322proper way to define @code{sequence}:
5323
5324@example
5325sequence: /* empty */
5326 @{ printf ("empty sequence\n"); @}
5327 | sequence word
5328 @{ printf ("added word %s\n", $2); @}
5329 ;
5330@end example
5331
5332Here is another common error that yields a reduce/reduce conflict:
5333
5334@example
5335sequence: /* empty */
5336 | sequence words
5337 | sequence redirects
5338 ;
5339
5340words: /* empty */
5341 | words word
5342 ;
5343
5344redirects:/* empty */
5345 | redirects redirect
5346 ;
5347@end example
5348
5349@noindent
5350The intention here is to define a sequence which can contain either
5351@code{word} or @code{redirect} groupings. The individual definitions of
5352@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5353three together make a subtle ambiguity: even an empty input can be parsed
5354in infinitely many ways!
5355
5356Consider: nothing-at-all could be a @code{words}. Or it could be two
5357@code{words} in a row, or three, or any number. It could equally well be a
5358@code{redirects}, or two, or any number. Or it could be a @code{words}
5359followed by three @code{redirects} and another @code{words}. And so on.
5360
5361Here are two ways to correct these rules. First, to make it a single level
5362of sequence:
5363
5364@example
5365sequence: /* empty */
5366 | sequence word
5367 | sequence redirect
5368 ;
5369@end example
5370
5371Second, to prevent either a @code{words} or a @code{redirects}
5372from being empty:
5373
5374@example
5375sequence: /* empty */
5376 | sequence words
5377 | sequence redirects
5378 ;
5379
5380words: word
5381 | words word
5382 ;
5383
5384redirects:redirect
5385 | redirects redirect
5386 ;
5387@end example
5388
342b8b6e 5389@node Mystery Conflicts
bfa74976
RS
5390@section Mysterious Reduce/Reduce Conflicts
5391
5392Sometimes reduce/reduce conflicts can occur that don't look warranted.
5393Here is an example:
5394
5395@example
5396@group
5397%token ID
5398
5399%%
5400def: param_spec return_spec ','
5401 ;
5402param_spec:
5403 type
5404 | name_list ':' type
5405 ;
5406@end group
5407@group
5408return_spec:
5409 type
5410 | name ':' type
5411 ;
5412@end group
5413@group
5414type: ID
5415 ;
5416@end group
5417@group
5418name: ID
5419 ;
5420name_list:
5421 name
5422 | name ',' name_list
5423 ;
5424@end group
5425@end example
5426
5427It would seem that this grammar can be parsed with only a single token
13863333 5428of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5429a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5430@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5431
c827f760
PE
5432@cindex @acronym{LR}(1)
5433@cindex @acronym{LALR}(1)
bfa74976 5434However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5435@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5436an @code{ID}
bfa74976
RS
5437at the beginning of a @code{param_spec} and likewise at the beginning of
5438a @code{return_spec}, are similar enough that Bison assumes they are the
5439same. They appear similar because the same set of rules would be
5440active---the rule for reducing to a @code{name} and that for reducing to
5441a @code{type}. Bison is unable to determine at that stage of processing
5442that the rules would require different look-ahead tokens in the two
5443contexts, so it makes a single parser state for them both. Combining
5444the two contexts causes a conflict later. In parser terminology, this
c827f760 5445occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5446
5447In general, it is better to fix deficiencies than to document them. But
5448this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5449generators that can handle @acronym{LR}(1) grammars are hard to write
5450and tend to
bfa74976
RS
5451produce parsers that are very large. In practice, Bison is more useful
5452as it is now.
5453
5454When the problem arises, you can often fix it by identifying the two
a220f555
MA
5455parser states that are being confused, and adding something to make them
5456look distinct. In the above example, adding one rule to
bfa74976
RS
5457@code{return_spec} as follows makes the problem go away:
5458
5459@example
5460@group
5461%token BOGUS
5462@dots{}
5463%%
5464@dots{}
5465return_spec:
5466 type
5467 | name ':' type
5468 /* This rule is never used. */
5469 | ID BOGUS
5470 ;
5471@end group
5472@end example
5473
5474This corrects the problem because it introduces the possibility of an
5475additional active rule in the context after the @code{ID} at the beginning of
5476@code{return_spec}. This rule is not active in the corresponding context
5477in a @code{param_spec}, so the two contexts receive distinct parser states.
5478As long as the token @code{BOGUS} is never generated by @code{yylex},
5479the added rule cannot alter the way actual input is parsed.
5480
5481In this particular example, there is another way to solve the problem:
5482rewrite the rule for @code{return_spec} to use @code{ID} directly
5483instead of via @code{name}. This also causes the two confusing
5484contexts to have different sets of active rules, because the one for
5485@code{return_spec} activates the altered rule for @code{return_spec}
5486rather than the one for @code{name}.
5487
5488@example
5489param_spec:
5490 type
5491 | name_list ':' type
5492 ;
5493return_spec:
5494 type
5495 | ID ':' type
5496 ;
5497@end example
5498
fae437e8 5499@node Generalized LR Parsing
c827f760
PE
5500@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5501@cindex @acronym{GLR} parsing
5502@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5503@cindex ambiguous grammars
5504@cindex non-deterministic parsing
5505
fae437e8
AD
5506Bison produces @emph{deterministic} parsers that choose uniquely
5507when to reduce and which reduction to apply
8dd162d3 5508based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5509As a result, normal Bison handles a proper subset of the family of
5510context-free languages.
fae437e8 5511Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5512sequence of reductions cannot have deterministic parsers in this sense.
5513The same is true of languages that require more than one symbol of
8dd162d3 5514look-ahead, since the parser lacks the information necessary to make a
676385e2 5515decision at the point it must be made in a shift-reduce parser.
fae437e8 5516Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5517there are languages where Bison's particular choice of how to
5518summarize the input seen so far loses necessary information.
5519
5520When you use the @samp{%glr-parser} declaration in your grammar file,
5521Bison generates a parser that uses a different algorithm, called
c827f760
PE
5522Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5523parser uses the same basic
676385e2
PH
5524algorithm for parsing as an ordinary Bison parser, but behaves
5525differently in cases where there is a shift-reduce conflict that has not
fae437e8 5526been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5527reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5528situation, it
fae437e8 5529effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5530shift or reduction. These parsers then proceed as usual, consuming
5531tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5532and split further, with the result that instead of a sequence of states,
c827f760 5533a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5534
5535In effect, each stack represents a guess as to what the proper parse
5536is. Additional input may indicate that a guess was wrong, in which case
5537the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5538actions generated in each stack are saved, rather than being executed
676385e2 5539immediately. When a stack disappears, its saved semantic actions never
fae437e8 5540get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5541their sets of semantic actions are both saved with the state that
5542results from the reduction. We say that two stacks are equivalent
fae437e8 5543when they both represent the same sequence of states,
676385e2
PH
5544and each pair of corresponding states represents a
5545grammar symbol that produces the same segment of the input token
5546stream.
5547
5548Whenever the parser makes a transition from having multiple
c827f760 5549states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5550algorithm, after resolving and executing the saved-up actions.
5551At this transition, some of the states on the stack will have semantic
5552values that are sets (actually multisets) of possible actions. The
5553parser tries to pick one of the actions by first finding one whose rule
5554has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5555declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5556precedence, but there the same merging function is declared for both
fae437e8 5557rules by the @samp{%merge} declaration,
676385e2
PH
5558Bison resolves and evaluates both and then calls the merge function on
5559the result. Otherwise, it reports an ambiguity.
5560
c827f760
PE
5561It is possible to use a data structure for the @acronym{GLR} parsing tree that
5562permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5563size of the input), any unambiguous (not necessarily
5564@acronym{LALR}(1)) grammar in
fae437e8 5565quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5566context-free grammar in cubic worst-case time. However, Bison currently
5567uses a simpler data structure that requires time proportional to the
5568length of the input times the maximum number of stacks required for any
5569prefix of the input. Thus, really ambiguous or non-deterministic
5570grammars can require exponential time and space to process. Such badly
5571behaving examples, however, are not generally of practical interest.
5572Usually, non-determinism in a grammar is local---the parser is ``in
5573doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5574structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5575grammar, in particular, it is only slightly slower than with the default
5576Bison parser.
5577
fa7e68c3 5578For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5579Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5580Generalised @acronym{LR} Parsers, Royal Holloway, University of
5581London, Department of Computer Science, TR-00-12,
5582@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5583(2000-12-24).
5584
342b8b6e 5585@node Stack Overflow
bfa74976
RS
5586@section Stack Overflow, and How to Avoid It
5587@cindex stack overflow
5588@cindex parser stack overflow
5589@cindex overflow of parser stack
5590
5591The Bison parser stack can overflow if too many tokens are shifted and
5592not reduced. When this happens, the parser function @code{yyparse}
5593returns a nonzero value, pausing only to call @code{yyerror} to report
5594the overflow.
5595
c827f760 5596Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5597usually results from using a right recursion instead of a left
5598recursion, @xref{Recursion, ,Recursive Rules}.
5599
bfa74976
RS
5600@vindex YYMAXDEPTH
5601By defining the macro @code{YYMAXDEPTH}, you can control how deep the
5602parser stack can become before a stack overflow occurs. Define the
5603macro with a value that is an integer. This value is the maximum number
5604of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5605
5606The stack space allowed is not necessarily allocated. If you specify a
5607large value for @code{YYMAXDEPTH}, the parser actually allocates a small
5608stack at first, and then makes it bigger by stages as needed. This
5609increasing allocation happens automatically and silently. Therefore,
5610you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5611space for ordinary inputs that do not need much stack.
5612
d7e14fc0
PE
5613However, do not allow @code{YYMAXDEPTH} to be a value so large that
5614arithmetic overflow could occur when calculating the size of the stack
5615space. Also, do not allow @code{YYMAXDEPTH} to be less than
5616@code{YYINITDEPTH}.
5617
bfa74976
RS
5618@cindex default stack limit
5619The default value of @code{YYMAXDEPTH}, if you do not define it, is
562010000.
5621
5622@vindex YYINITDEPTH
5623You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5624macro @code{YYINITDEPTH} to a positive integer. For the C
5625@acronym{LALR}(1) parser, this value must be a compile-time constant
5626unless you are assuming C99 or some other target language or compiler
5627that allows variable-length arrays. The default is 200.
5628
5629Do not allow @code{YYINITDEPTH} to be a value so large that arithmetic
5630overflow would occur when calculating the size of the stack space.
5631Also, do not allow @code{YYINITDEPTH} to be greater than
5632@code{YYMAXDEPTH}.
bfa74976 5633
d1a1114f 5634@c FIXME: C++ output.
c827f760 5635Because of semantical differences between C and C++, the
451364ed
AD
5636@acronym{LALR}(1) parsers in C produced by Bison by compiled as C++
5637cannot grow. In this precise case (compiling a C parser as C++) you are
5638suggested to grow @code{YYINITDEPTH}. In the near future, a C++ output
5639output will be provided which addresses this issue.
d1a1114f 5640
342b8b6e 5641@node Error Recovery
bfa74976
RS
5642@chapter Error Recovery
5643@cindex error recovery
5644@cindex recovery from errors
5645
6e649e65 5646It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5647error. For example, a compiler should recover sufficiently to parse the
5648rest of the input file and check it for errors; a calculator should accept
5649another expression.
5650
5651In a simple interactive command parser where each input is one line, it may
5652be sufficient to allow @code{yyparse} to return 1 on error and have the
5653caller ignore the rest of the input line when that happens (and then call
5654@code{yyparse} again). But this is inadequate for a compiler, because it
5655forgets all the syntactic context leading up to the error. A syntax error
5656deep within a function in the compiler input should not cause the compiler
5657to treat the following line like the beginning of a source file.
5658
5659@findex error
5660You can define how to recover from a syntax error by writing rules to
5661recognize the special token @code{error}. This is a terminal symbol that
5662is always defined (you need not declare it) and reserved for error
5663handling. The Bison parser generates an @code{error} token whenever a
5664syntax error happens; if you have provided a rule to recognize this token
13863333 5665in the current context, the parse can continue.
bfa74976
RS
5666
5667For example:
5668
5669@example
5670stmnts: /* empty string */
5671 | stmnts '\n'
5672 | stmnts exp '\n'
5673 | stmnts error '\n'
5674@end example
5675
5676The fourth rule in this example says that an error followed by a newline
5677makes a valid addition to any @code{stmnts}.
5678
5679What happens if a syntax error occurs in the middle of an @code{exp}? The
5680error recovery rule, interpreted strictly, applies to the precise sequence
5681of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5682the middle of an @code{exp}, there will probably be some additional tokens
5683and subexpressions on the stack after the last @code{stmnts}, and there
5684will be tokens to read before the next newline. So the rule is not
5685applicable in the ordinary way.
5686
5687But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5688the semantic context and part of the input. First it discards states
5689and objects from the stack until it gets back to a state in which the
bfa74976 5690@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5691already parsed are discarded, back to the last complete @code{stmnts}.)
5692At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5693look-ahead token is not acceptable to be shifted next, the parser reads
5694tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5695this example, Bison reads and discards input until the next newline so
5696that the fourth rule can apply. Note that discarded symbols are
5697possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5698Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5699
5700The choice of error rules in the grammar is a choice of strategies for
5701error recovery. A simple and useful strategy is simply to skip the rest of
5702the current input line or current statement if an error is detected:
5703
5704@example
72d2299c 5705stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5706@end example
5707
5708It is also useful to recover to the matching close-delimiter of an
5709opening-delimiter that has already been parsed. Otherwise the
5710close-delimiter will probably appear to be unmatched, and generate another,
5711spurious error message:
5712
5713@example
5714primary: '(' expr ')'
5715 | '(' error ')'
5716 @dots{}
5717 ;
5718@end example
5719
5720Error recovery strategies are necessarily guesses. When they guess wrong,
5721one syntax error often leads to another. In the above example, the error
5722recovery rule guesses that an error is due to bad input within one
5723@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5724middle of a valid @code{stmnt}. After the error recovery rule recovers
5725from the first error, another syntax error will be found straightaway,
5726since the text following the spurious semicolon is also an invalid
5727@code{stmnt}.
5728
5729To prevent an outpouring of error messages, the parser will output no error
5730message for another syntax error that happens shortly after the first; only
5731after three consecutive input tokens have been successfully shifted will
5732error messages resume.
5733
5734Note that rules which accept the @code{error} token may have actions, just
5735as any other rules can.
5736
5737@findex yyerrok
5738You can make error messages resume immediately by using the macro
5739@code{yyerrok} in an action. If you do this in the error rule's action, no
5740error messages will be suppressed. This macro requires no arguments;
5741@samp{yyerrok;} is a valid C statement.
5742
5743@findex yyclearin
5744The previous look-ahead token is reanalyzed immediately after an error. If
5745this is unacceptable, then the macro @code{yyclearin} may be used to clear
5746this token. Write the statement @samp{yyclearin;} in the error rule's
5747action.
5748
6e649e65 5749For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5750called that advances the input stream to some point where parsing should
5751once again commence. The next symbol returned by the lexical scanner is
5752probably correct. The previous look-ahead token ought to be discarded
5753with @samp{yyclearin;}.
5754
5755@vindex YYRECOVERING
5756The macro @code{YYRECOVERING} stands for an expression that has the
5757value 1 when the parser is recovering from a syntax error, and 0 the
5758rest of the time. A value of 1 indicates that error messages are
5759currently suppressed for new syntax errors.
5760
342b8b6e 5761@node Context Dependency
bfa74976
RS
5762@chapter Handling Context Dependencies
5763
5764The Bison paradigm is to parse tokens first, then group them into larger
5765syntactic units. In many languages, the meaning of a token is affected by
5766its context. Although this violates the Bison paradigm, certain techniques
5767(known as @dfn{kludges}) may enable you to write Bison parsers for such
5768languages.
5769
5770@menu
5771* Semantic Tokens:: Token parsing can depend on the semantic context.
5772* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5773* Tie-in Recovery:: Lexical tie-ins have implications for how
5774 error recovery rules must be written.
5775@end menu
5776
5777(Actually, ``kludge'' means any technique that gets its job done but is
5778neither clean nor robust.)
5779
342b8b6e 5780@node Semantic Tokens
bfa74976
RS
5781@section Semantic Info in Token Types
5782
5783The C language has a context dependency: the way an identifier is used
5784depends on what its current meaning is. For example, consider this:
5785
5786@example
5787foo (x);
5788@end example
5789
5790This looks like a function call statement, but if @code{foo} is a typedef
5791name, then this is actually a declaration of @code{x}. How can a Bison
5792parser for C decide how to parse this input?
5793
c827f760 5794The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5795@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5796identifier, it looks up the current declaration of the identifier in order
5797to decide which token type to return: @code{TYPENAME} if the identifier is
5798declared as a typedef, @code{IDENTIFIER} otherwise.
5799
5800The grammar rules can then express the context dependency by the choice of
5801token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5802but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5803@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5804is @emph{not} significant, such as in declarations that can shadow a
5805typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5806accepted---there is one rule for each of the two token types.
5807
5808This technique is simple to use if the decision of which kinds of
5809identifiers to allow is made at a place close to where the identifier is
5810parsed. But in C this is not always so: C allows a declaration to
5811redeclare a typedef name provided an explicit type has been specified
5812earlier:
5813
5814@example
3a4f411f
PE
5815typedef int foo, bar;
5816int baz (void)
5817@{
5818 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
5819 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
5820 return foo (bar);
5821@}
bfa74976
RS
5822@end example
5823
5824Unfortunately, the name being declared is separated from the declaration
5825construct itself by a complicated syntactic structure---the ``declarator''.
5826
9ecbd125 5827As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5828all the nonterminal names changed: once for parsing a declaration in
5829which a typedef name can be redefined, and once for parsing a
5830declaration in which that can't be done. Here is a part of the
5831duplication, with actions omitted for brevity:
bfa74976
RS
5832
5833@example
5834initdcl:
5835 declarator maybeasm '='
5836 init
5837 | declarator maybeasm
5838 ;
5839
5840notype_initdcl:
5841 notype_declarator maybeasm '='
5842 init
5843 | notype_declarator maybeasm
5844 ;
5845@end example
5846
5847@noindent
5848Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5849cannot. The distinction between @code{declarator} and
5850@code{notype_declarator} is the same sort of thing.
5851
5852There is some similarity between this technique and a lexical tie-in
5853(described next), in that information which alters the lexical analysis is
5854changed during parsing by other parts of the program. The difference is
5855here the information is global, and is used for other purposes in the
5856program. A true lexical tie-in has a special-purpose flag controlled by
5857the syntactic context.
5858
342b8b6e 5859@node Lexical Tie-ins
bfa74976
RS
5860@section Lexical Tie-ins
5861@cindex lexical tie-in
5862
5863One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5864which is set by Bison actions, whose purpose is to alter the way tokens are
5865parsed.
5866
5867For example, suppose we have a language vaguely like C, but with a special
5868construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5869an expression in parentheses in which all integers are hexadecimal. In
5870particular, the token @samp{a1b} must be treated as an integer rather than
5871as an identifier if it appears in that context. Here is how you can do it:
5872
5873@example
5874@group
5875%@{
38a92d50
PE
5876 int hexflag;
5877 int yylex (void);
5878 void yyerror (char const *);
bfa74976
RS
5879%@}
5880%%
5881@dots{}
5882@end group
5883@group
5884expr: IDENTIFIER
5885 | constant
5886 | HEX '('
5887 @{ hexflag = 1; @}
5888 expr ')'
5889 @{ hexflag = 0;
5890 $$ = $4; @}
5891 | expr '+' expr
5892 @{ $$ = make_sum ($1, $3); @}
5893 @dots{}
5894 ;
5895@end group
5896
5897@group
5898constant:
5899 INTEGER
5900 | STRING
5901 ;
5902@end group
5903@end example
5904
5905@noindent
5906Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5907it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5908with letters are parsed as integers if possible.
5909
342b8b6e
AD
5910The declaration of @code{hexflag} shown in the prologue of the parser file
5911is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 5912You must also write the code in @code{yylex} to obey the flag.
bfa74976 5913
342b8b6e 5914@node Tie-in Recovery
bfa74976
RS
5915@section Lexical Tie-ins and Error Recovery
5916
5917Lexical tie-ins make strict demands on any error recovery rules you have.
5918@xref{Error Recovery}.
5919
5920The reason for this is that the purpose of an error recovery rule is to
5921abort the parsing of one construct and resume in some larger construct.
5922For example, in C-like languages, a typical error recovery rule is to skip
5923tokens until the next semicolon, and then start a new statement, like this:
5924
5925@example
5926stmt: expr ';'
5927 | IF '(' expr ')' stmt @{ @dots{} @}
5928 @dots{}
5929 error ';'
5930 @{ hexflag = 0; @}
5931 ;
5932@end example
5933
5934If there is a syntax error in the middle of a @samp{hex (@var{expr})}
5935construct, this error rule will apply, and then the action for the
5936completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
5937remain set for the entire rest of the input, or until the next @code{hex}
5938keyword, causing identifiers to be misinterpreted as integers.
5939
5940To avoid this problem the error recovery rule itself clears @code{hexflag}.
5941
5942There may also be an error recovery rule that works within expressions.
5943For example, there could be a rule which applies within parentheses
5944and skips to the close-parenthesis:
5945
5946@example
5947@group
5948expr: @dots{}
5949 | '(' expr ')'
5950 @{ $$ = $2; @}
5951 | '(' error ')'
5952 @dots{}
5953@end group
5954@end example
5955
5956If this rule acts within the @code{hex} construct, it is not going to abort
5957that construct (since it applies to an inner level of parentheses within
5958the construct). Therefore, it should not clear the flag: the rest of
5959the @code{hex} construct should be parsed with the flag still in effect.
5960
5961What if there is an error recovery rule which might abort out of the
5962@code{hex} construct or might not, depending on circumstances? There is no
5963way you can write the action to determine whether a @code{hex} construct is
5964being aborted or not. So if you are using a lexical tie-in, you had better
5965make sure your error recovery rules are not of this kind. Each rule must
5966be such that you can be sure that it always will, or always won't, have to
5967clear the flag.
5968
ec3bc396
AD
5969@c ================================================== Debugging Your Parser
5970
342b8b6e 5971@node Debugging
bfa74976 5972@chapter Debugging Your Parser
ec3bc396
AD
5973
5974Developing a parser can be a challenge, especially if you don't
5975understand the algorithm (@pxref{Algorithm, ,The Bison Parser
5976Algorithm}). Even so, sometimes a detailed description of the automaton
5977can help (@pxref{Understanding, , Understanding Your Parser}), or
5978tracing the execution of the parser can give some insight on why it
5979behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
5980
5981@menu
5982* Understanding:: Understanding the structure of your parser.
5983* Tracing:: Tracing the execution of your parser.
5984@end menu
5985
5986@node Understanding
5987@section Understanding Your Parser
5988
5989As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
5990Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
5991frequent than one would hope), looking at this automaton is required to
5992tune or simply fix a parser. Bison provides two different
c827f760 5993representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
5994file).
5995
5996The textual file is generated when the options @option{--report} or
5997@option{--verbose} are specified, see @xref{Invocation, , Invoking
5998Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
5999the parser output file name, and adding @samp{.output} instead.
6000Therefore, if the input file is @file{foo.y}, then the parser file is
6001called @file{foo.tab.c} by default. As a consequence, the verbose
6002output file is called @file{foo.output}.
6003
6004The following grammar file, @file{calc.y}, will be used in the sequel:
6005
6006@example
6007%token NUM STR
6008%left '+' '-'
6009%left '*'
6010%%
6011exp: exp '+' exp
6012 | exp '-' exp
6013 | exp '*' exp
6014 | exp '/' exp
6015 | NUM
6016 ;
6017useless: STR;
6018%%
6019@end example
6020
88bce5a2
AD
6021@command{bison} reports:
6022
6023@example
6024calc.y: warning: 1 useless nonterminal and 1 useless rule
6025calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6026calc.y:11.10-12: warning: useless rule: useless: STR
6027calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6028@end example
6029
6030When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6031creates a file @file{calc.output} with contents detailed below. The
6032order of the output and the exact presentation might vary, but the
6033interpretation is the same.
ec3bc396
AD
6034
6035The first section includes details on conflicts that were solved thanks
6036to precedence and/or associativity:
6037
6038@example
6039Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6040Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6041Conflict in state 8 between rule 2 and token '*' resolved as shift.
6042@exdent @dots{}
6043@end example
6044
6045@noindent
6046The next section lists states that still have conflicts.
6047
6048@example
5a99098d
PE
6049State 8 conflicts: 1 shift/reduce
6050State 9 conflicts: 1 shift/reduce
6051State 10 conflicts: 1 shift/reduce
6052State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6053@end example
6054
6055@noindent
6056@cindex token, useless
6057@cindex useless token
6058@cindex nonterminal, useless
6059@cindex useless nonterminal
6060@cindex rule, useless
6061@cindex useless rule
6062The next section reports useless tokens, nonterminal and rules. Useless
6063nonterminals and rules are removed in order to produce a smaller parser,
6064but useless tokens are preserved, since they might be used by the
6065scanner (note the difference between ``useless'' and ``not used''
6066below):
6067
6068@example
6069Useless nonterminals:
6070 useless
6071
6072Terminals which are not used:
6073 STR
6074
6075Useless rules:
6076#6 useless: STR;
6077@end example
6078
6079@noindent
6080The next section reproduces the exact grammar that Bison used:
6081
6082@example
6083Grammar
6084
6085 Number, Line, Rule
88bce5a2 6086 0 5 $accept -> exp $end
ec3bc396
AD
6087 1 5 exp -> exp '+' exp
6088 2 6 exp -> exp '-' exp
6089 3 7 exp -> exp '*' exp
6090 4 8 exp -> exp '/' exp
6091 5 9 exp -> NUM
6092@end example
6093
6094@noindent
6095and reports the uses of the symbols:
6096
6097@example
6098Terminals, with rules where they appear
6099
88bce5a2 6100$end (0) 0
ec3bc396
AD
6101'*' (42) 3
6102'+' (43) 1
6103'-' (45) 2
6104'/' (47) 4
6105error (256)
6106NUM (258) 5
6107
6108Nonterminals, with rules where they appear
6109
88bce5a2 6110$accept (8)
ec3bc396
AD
6111 on left: 0
6112exp (9)
6113 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6114@end example
6115
6116@noindent
6117@cindex item
6118@cindex pointed rule
6119@cindex rule, pointed
6120Bison then proceeds onto the automaton itself, describing each state
6121with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6122item is a production rule together with a point (marked by @samp{.})
6123that the input cursor.
6124
6125@example
6126state 0
6127
88bce5a2 6128 $accept -> . exp $ (rule 0)
ec3bc396 6129
2a8d363a 6130 NUM shift, and go to state 1
ec3bc396 6131
2a8d363a 6132 exp go to state 2
ec3bc396
AD
6133@end example
6134
6135This reads as follows: ``state 0 corresponds to being at the very
6136beginning of the parsing, in the initial rule, right before the start
6137symbol (here, @code{exp}). When the parser returns to this state right
6138after having reduced a rule that produced an @code{exp}, the control
6139flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6140symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6141the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6142look-ahead triggers a syntax error.''
ec3bc396
AD
6143
6144@cindex core, item set
6145@cindex item set core
6146@cindex kernel, item set
6147@cindex item set core
6148Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6149report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6150at the beginning of any rule deriving an @code{exp}. By default Bison
6151reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6152you want to see more detail you can invoke @command{bison} with
6153@option{--report=itemset} to list all the items, include those that can
6154be derived:
6155
6156@example
6157state 0
6158
88bce5a2 6159 $accept -> . exp $ (rule 0)
ec3bc396
AD
6160 exp -> . exp '+' exp (rule 1)
6161 exp -> . exp '-' exp (rule 2)
6162 exp -> . exp '*' exp (rule 3)
6163 exp -> . exp '/' exp (rule 4)
6164 exp -> . NUM (rule 5)
6165
6166 NUM shift, and go to state 1
6167
6168 exp go to state 2
6169@end example
6170
6171@noindent
6172In the state 1...
6173
6174@example
6175state 1
6176
6177 exp -> NUM . (rule 5)
6178
2a8d363a 6179 $default reduce using rule 5 (exp)
ec3bc396
AD
6180@end example
6181
6182@noindent
8dd162d3 6183the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6184(@samp{$default}), the parser will reduce it. If it was coming from
6185state 0, then, after this reduction it will return to state 0, and will
6186jump to state 2 (@samp{exp: go to state 2}).
6187
6188@example
6189state 2
6190
88bce5a2 6191 $accept -> exp . $ (rule 0)
ec3bc396
AD
6192 exp -> exp . '+' exp (rule 1)
6193 exp -> exp . '-' exp (rule 2)
6194 exp -> exp . '*' exp (rule 3)
6195 exp -> exp . '/' exp (rule 4)
6196
2a8d363a
AD
6197 $ shift, and go to state 3
6198 '+' shift, and go to state 4
6199 '-' shift, and go to state 5
6200 '*' shift, and go to state 6
6201 '/' shift, and go to state 7
ec3bc396
AD
6202@end example
6203
6204@noindent
6205In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6206because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6207@samp{+}, it will be shifted on the parse stack, and the automaton
6208control will jump to state 4, corresponding to the item @samp{exp -> exp
6209'+' . exp}. Since there is no default action, any other token than
6e649e65 6210those listed above will trigger a syntax error.
ec3bc396
AD
6211
6212The state 3 is named the @dfn{final state}, or the @dfn{accepting
6213state}:
6214
6215@example
6216state 3
6217
88bce5a2 6218 $accept -> exp $ . (rule 0)
ec3bc396 6219
2a8d363a 6220 $default accept
ec3bc396
AD
6221@end example
6222
6223@noindent
6224the initial rule is completed (the start symbol and the end
6225of input were read), the parsing exits successfully.
6226
6227The interpretation of states 4 to 7 is straightforward, and is left to
6228the reader.
6229
6230@example
6231state 4
6232
6233 exp -> exp '+' . exp (rule 1)
6234
2a8d363a 6235 NUM shift, and go to state 1
ec3bc396 6236
2a8d363a 6237 exp go to state 8
ec3bc396
AD
6238
6239state 5
6240
6241 exp -> exp '-' . exp (rule 2)
6242
2a8d363a 6243 NUM shift, and go to state 1
ec3bc396 6244
2a8d363a 6245 exp go to state 9
ec3bc396
AD
6246
6247state 6
6248
6249 exp -> exp '*' . exp (rule 3)
6250
2a8d363a 6251 NUM shift, and go to state 1
ec3bc396 6252
2a8d363a 6253 exp go to state 10
ec3bc396
AD
6254
6255state 7
6256
6257 exp -> exp '/' . exp (rule 4)
6258
2a8d363a 6259 NUM shift, and go to state 1
ec3bc396 6260
2a8d363a 6261 exp go to state 11
ec3bc396
AD
6262@end example
6263
5a99098d
PE
6264As was announced in beginning of the report, @samp{State 8 conflicts:
62651 shift/reduce}:
ec3bc396
AD
6266
6267@example
6268state 8
6269
6270 exp -> exp . '+' exp (rule 1)
6271 exp -> exp '+' exp . (rule 1)
6272 exp -> exp . '-' exp (rule 2)
6273 exp -> exp . '*' exp (rule 3)
6274 exp -> exp . '/' exp (rule 4)
6275
2a8d363a
AD
6276 '*' shift, and go to state 6
6277 '/' shift, and go to state 7
ec3bc396 6278
2a8d363a
AD
6279 '/' [reduce using rule 1 (exp)]
6280 $default reduce using rule 1 (exp)
ec3bc396
AD
6281@end example
6282
8dd162d3 6283Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6284either shifting (and going to state 7), or reducing rule 1. The
6285conflict means that either the grammar is ambiguous, or the parser lacks
6286information to make the right decision. Indeed the grammar is
6287ambiguous, as, since we did not specify the precedence of @samp{/}, the
6288sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6289NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6290NUM}, which corresponds to reducing rule 1.
6291
c827f760 6292Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6293arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6294Shift/Reduce Conflicts}. Discarded actions are reported in between
6295square brackets.
6296
6297Note that all the previous states had a single possible action: either
6298shifting the next token and going to the corresponding state, or
6299reducing a single rule. In the other cases, i.e., when shifting
6300@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6301possible, the look-ahead is required to select the action. State 8 is
6302one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6303is shifting, otherwise the action is reducing rule 1. In other words,
6304the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6305look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6306precedence than @samp{+}. More generally, some items are eligible only
6307with some set of possible look-ahead tokens. When run with
6308@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6309
6310@example
6311state 8
6312
6313 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6314 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6315 exp -> exp . '-' exp (rule 2)
6316 exp -> exp . '*' exp (rule 3)
6317 exp -> exp . '/' exp (rule 4)
6318
6319 '*' shift, and go to state 6
6320 '/' shift, and go to state 7
6321
6322 '/' [reduce using rule 1 (exp)]
6323 $default reduce using rule 1 (exp)
6324@end example
6325
6326The remaining states are similar:
6327
6328@example
6329state 9
6330
6331 exp -> exp . '+' exp (rule 1)
6332 exp -> exp . '-' exp (rule 2)
6333 exp -> exp '-' exp . (rule 2)
6334 exp -> exp . '*' exp (rule 3)
6335 exp -> exp . '/' exp (rule 4)
6336
2a8d363a
AD
6337 '*' shift, and go to state 6
6338 '/' shift, and go to state 7
ec3bc396 6339
2a8d363a
AD
6340 '/' [reduce using rule 2 (exp)]
6341 $default reduce using rule 2 (exp)
ec3bc396
AD
6342
6343state 10
6344
6345 exp -> exp . '+' exp (rule 1)
6346 exp -> exp . '-' exp (rule 2)
6347 exp -> exp . '*' exp (rule 3)
6348 exp -> exp '*' exp . (rule 3)
6349 exp -> exp . '/' exp (rule 4)
6350
2a8d363a 6351 '/' shift, and go to state 7
ec3bc396 6352
2a8d363a
AD
6353 '/' [reduce using rule 3 (exp)]
6354 $default reduce using rule 3 (exp)
ec3bc396
AD
6355
6356state 11
6357
6358 exp -> exp . '+' exp (rule 1)
6359 exp -> exp . '-' exp (rule 2)
6360 exp -> exp . '*' exp (rule 3)
6361 exp -> exp . '/' exp (rule 4)
6362 exp -> exp '/' exp . (rule 4)
6363
2a8d363a
AD
6364 '+' shift, and go to state 4
6365 '-' shift, and go to state 5
6366 '*' shift, and go to state 6
6367 '/' shift, and go to state 7
ec3bc396 6368
2a8d363a
AD
6369 '+' [reduce using rule 4 (exp)]
6370 '-' [reduce using rule 4 (exp)]
6371 '*' [reduce using rule 4 (exp)]
6372 '/' [reduce using rule 4 (exp)]
6373 $default reduce using rule 4 (exp)
ec3bc396
AD
6374@end example
6375
6376@noindent
fa7e68c3
PE
6377Observe that state 11 contains conflicts not only due to the lack of
6378precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6379@samp{*}, but also because the
ec3bc396
AD
6380associativity of @samp{/} is not specified.
6381
6382
6383@node Tracing
6384@section Tracing Your Parser
bfa74976
RS
6385@findex yydebug
6386@cindex debugging
6387@cindex tracing the parser
6388
6389If a Bison grammar compiles properly but doesn't do what you want when it
6390runs, the @code{yydebug} parser-trace feature can help you figure out why.
6391
3ded9a63
AD
6392There are several means to enable compilation of trace facilities:
6393
6394@table @asis
6395@item the macro @code{YYDEBUG}
6396@findex YYDEBUG
6397Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6398parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6399@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6400YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6401Prologue}).
6402
6403@item the option @option{-t}, @option{--debug}
6404Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6405,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6406
6407@item the directive @samp{%debug}
6408@findex %debug
6409Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6410Declaration Summary}). This is a Bison extension, which will prove
6411useful when Bison will output parsers for languages that don't use a
c827f760
PE
6412preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6413you, this is
3ded9a63
AD
6414the preferred solution.
6415@end table
6416
6417We suggest that you always enable the debug option so that debugging is
6418always possible.
bfa74976 6419
02a81e05 6420The trace facility outputs messages with macro calls of the form
e2742e46 6421@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6422@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6423arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6424define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6425and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6426
6427Once you have compiled the program with trace facilities, the way to
6428request a trace is to store a nonzero value in the variable @code{yydebug}.
6429You can do this by making the C code do it (in @code{main}, perhaps), or
6430you can alter the value with a C debugger.
6431
6432Each step taken by the parser when @code{yydebug} is nonzero produces a
6433line or two of trace information, written on @code{stderr}. The trace
6434messages tell you these things:
6435
6436@itemize @bullet
6437@item
6438Each time the parser calls @code{yylex}, what kind of token was read.
6439
6440@item
6441Each time a token is shifted, the depth and complete contents of the
6442state stack (@pxref{Parser States}).
6443
6444@item
6445Each time a rule is reduced, which rule it is, and the complete contents
6446of the state stack afterward.
6447@end itemize
6448
6449To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6450produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6451Bison}). This file shows the meaning of each state in terms of
6452positions in various rules, and also what each state will do with each
6453possible input token. As you read the successive trace messages, you
6454can see that the parser is functioning according to its specification in
6455the listing file. Eventually you will arrive at the place where
6456something undesirable happens, and you will see which parts of the
6457grammar are to blame.
bfa74976
RS
6458
6459The parser file is a C program and you can use C debuggers on it, but it's
6460not easy to interpret what it is doing. The parser function is a
6461finite-state machine interpreter, and aside from the actions it executes
6462the same code over and over. Only the values of variables show where in
6463the grammar it is working.
6464
6465@findex YYPRINT
6466The debugging information normally gives the token type of each token
6467read, but not its semantic value. You can optionally define a macro
6468named @code{YYPRINT} to provide a way to print the value. If you define
6469@code{YYPRINT}, it should take three arguments. The parser will pass a
6470standard I/O stream, the numeric code for the token type, and the token
6471value (from @code{yylval}).
6472
6473Here is an example of @code{YYPRINT} suitable for the multi-function
6474calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6475
6476@smallexample
38a92d50
PE
6477%@{
6478 static void print_token_value (FILE *, int, YYSTYPE);
6479 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6480%@}
6481
6482@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6483
6484static void
831d3c99 6485print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6486@{
6487 if (type == VAR)
d3c4e709 6488 fprintf (file, "%s", value.tptr->name);
bfa74976 6489 else if (type == NUM)
d3c4e709 6490 fprintf (file, "%d", value.val);
bfa74976
RS
6491@}
6492@end smallexample
6493
ec3bc396
AD
6494@c ================================================= Invoking Bison
6495
342b8b6e 6496@node Invocation
bfa74976
RS
6497@chapter Invoking Bison
6498@cindex invoking Bison
6499@cindex Bison invocation
6500@cindex options for invoking Bison
6501
6502The usual way to invoke Bison is as follows:
6503
6504@example
6505bison @var{infile}
6506@end example
6507
6508Here @var{infile} is the grammar file name, which usually ends in
6509@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6510with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6511@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6512@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6513C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6514or @file{foo.y++}. Then, the output files will take an extension like
6515the given one as input (respectively @file{foo.tab.cpp} and
6516@file{foo.tab.c++}).
234a3be3
AD
6517This feature takes effect with all options that manipulate filenames like
6518@samp{-o} or @samp{-d}.
6519
6520For example :
6521
6522@example
6523bison -d @var{infile.yxx}
6524@end example
84163231 6525@noindent
72d2299c 6526will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6527
6528@example
b56471a6 6529bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6530@end example
84163231 6531@noindent
234a3be3
AD
6532will produce @file{output.c++} and @file{outfile.h++}.
6533
397ec073
PE
6534For compatibility with @acronym{POSIX}, the standard Bison
6535distribution also contains a shell script called @command{yacc} that
6536invokes Bison with the @option{-y} option.
6537
bfa74976 6538@menu
13863333 6539* Bison Options:: All the options described in detail,
c827f760 6540 in alphabetical order by short options.
bfa74976 6541* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6542* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6543@end menu
6544
342b8b6e 6545@node Bison Options
bfa74976
RS
6546@section Bison Options
6547
6548Bison supports both traditional single-letter options and mnemonic long
6549option names. Long option names are indicated with @samp{--} instead of
6550@samp{-}. Abbreviations for option names are allowed as long as they
6551are unique. When a long option takes an argument, like
6552@samp{--file-prefix}, connect the option name and the argument with
6553@samp{=}.
6554
6555Here is a list of options that can be used with Bison, alphabetized by
6556short option. It is followed by a cross key alphabetized by long
6557option.
6558
89cab50d
AD
6559@c Please, keep this ordered as in `bison --help'.
6560@noindent
6561Operations modes:
6562@table @option
6563@item -h
6564@itemx --help
6565Print a summary of the command-line options to Bison and exit.
bfa74976 6566
89cab50d
AD
6567@item -V
6568@itemx --version
6569Print the version number of Bison and exit.
bfa74976 6570
89cab50d
AD
6571@need 1750
6572@item -y
6573@itemx --yacc
89cab50d
AD
6574Equivalent to @samp{-o y.tab.c}; the parser output file is called
6575@file{y.tab.c}, and the other outputs are called @file{y.output} and
6576@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6577file name conventions. Thus, the following shell script can substitute
397ec073
PE
6578for Yacc, and the Bison distribution contains such a script for
6579compatibility with @acronym{POSIX}:
bfa74976 6580
89cab50d 6581@example
397ec073 6582#! /bin/sh
26e06a21 6583bison -y "$@@"
89cab50d
AD
6584@end example
6585@end table
6586
6587@noindent
6588Tuning the parser:
6589
6590@table @option
cd5bd6ac
AD
6591@item -S @var{file}
6592@itemx --skeleton=@var{file}
6593Specify the skeleton to use. You probably don't need this option unless
6594you are developing Bison.
6595
89cab50d
AD
6596@item -t
6597@itemx --debug
4947ebdb
PE
6598In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6599already defined, so that the debugging facilities are compiled.
ec3bc396 6600@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6601
6602@item --locations
d8988b2f 6603Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6604
6605@item -p @var{prefix}
6606@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6607Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6608@xref{Decl Summary}.
bfa74976
RS
6609
6610@item -l
6611@itemx --no-lines
6612Don't put any @code{#line} preprocessor commands in the parser file.
6613Ordinarily Bison puts them in the parser file so that the C compiler
6614and debuggers will associate errors with your source file, the
6615grammar file. This option causes them to associate errors with the
95e742f7 6616parser file, treating it as an independent source file in its own right.
bfa74976 6617
931c7513
RS
6618@item -n
6619@itemx --no-parser
d8988b2f 6620Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6621
89cab50d
AD
6622@item -k
6623@itemx --token-table
d8988b2f 6624Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6625@end table
bfa74976 6626
89cab50d
AD
6627@noindent
6628Adjust the output:
bfa74976 6629
89cab50d
AD
6630@table @option
6631@item -d
d8988b2f
AD
6632@itemx --defines
6633Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6634file containing macro definitions for the token type names defined in
4bfd5e4e 6635the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6636
342b8b6e 6637@item --defines=@var{defines-file}
d8988b2f 6638Same as above, but save in the file @var{defines-file}.
342b8b6e 6639
89cab50d
AD
6640@item -b @var{file-prefix}
6641@itemx --file-prefix=@var{prefix}
d8988b2f 6642Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6643for all Bison output file names. @xref{Decl Summary}.
bfa74976 6644
ec3bc396
AD
6645@item -r @var{things}
6646@itemx --report=@var{things}
6647Write an extra output file containing verbose description of the comma
6648separated list of @var{things} among:
6649
6650@table @code
6651@item state
6652Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6653@acronym{LALR} automaton.
ec3bc396 6654
8dd162d3 6655@item look-ahead
ec3bc396 6656Implies @code{state} and augments the description of the automaton with
8dd162d3 6657each rule's look-ahead set.
ec3bc396
AD
6658
6659@item itemset
6660Implies @code{state} and augments the description of the automaton with
6661the full set of items for each state, instead of its core only.
6662@end table
6663
6664For instance, on the following grammar
6665
bfa74976
RS
6666@item -v
6667@itemx --verbose
6deb4447
AD
6668Pretend that @code{%verbose} was specified, i.e, write an extra output
6669file containing verbose descriptions of the grammar and
72d2299c 6670parser. @xref{Decl Summary}.
bfa74976 6671
d8988b2f
AD
6672@item -o @var{filename}
6673@itemx --output=@var{filename}
6674Specify the @var{filename} for the parser file.
bfa74976 6675
d8988b2f
AD
6676The other output files' names are constructed from @var{filename} as
6677described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6678
6679@item -g
c827f760
PE
6680Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6681automaton computed by Bison. If the grammar file is @file{foo.y}, the
6682@acronym{VCG} output file will
342b8b6e
AD
6683be @file{foo.vcg}.
6684
6685@item --graph=@var{graph-file}
72d2299c
PE
6686The behavior of @var{--graph} is the same than @samp{-g}. The only
6687difference is that it has an optional argument which is the name of
342b8b6e 6688the output graph filename.
bfa74976
RS
6689@end table
6690
342b8b6e 6691@node Option Cross Key
bfa74976
RS
6692@section Option Cross Key
6693
6694Here is a list of options, alphabetized by long option, to help you find
6695the corresponding short option.
6696
6697@tex
6698\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6699
6700{\tt
6701\line{ --debug \leaderfill -t}
6702\line{ --defines \leaderfill -d}
6703\line{ --file-prefix \leaderfill -b}
342b8b6e 6704\line{ --graph \leaderfill -g}
ff51d159 6705\line{ --help \leaderfill -h}
bfa74976
RS
6706\line{ --name-prefix \leaderfill -p}
6707\line{ --no-lines \leaderfill -l}
931c7513 6708\line{ --no-parser \leaderfill -n}
d8988b2f 6709\line{ --output \leaderfill -o}
931c7513 6710\line{ --token-table \leaderfill -k}
bfa74976
RS
6711\line{ --verbose \leaderfill -v}
6712\line{ --version \leaderfill -V}
6713\line{ --yacc \leaderfill -y}
6714}
6715@end tex
6716
6717@ifinfo
6718@example
6719--debug -t
342b8b6e 6720--defines=@var{defines-file} -d
bfa74976 6721--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6722--graph=@var{graph-file} -d
ff51d159 6723--help -h
931c7513 6724--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6725--no-lines -l
931c7513 6726--no-parser -n
d8988b2f 6727--output=@var{outfile} -o @var{outfile}
931c7513 6728--token-table -k
bfa74976
RS
6729--verbose -v
6730--version -V
8c9a50be 6731--yacc -y
bfa74976
RS
6732@end example
6733@end ifinfo
6734
93dd49ab
PE
6735@node Yacc Library
6736@section Yacc Library
6737
6738The Yacc library contains default implementations of the
6739@code{yyerror} and @code{main} functions. These default
6740implementations are normally not useful, but @acronym{POSIX} requires
6741them. To use the Yacc library, link your program with the
6742@option{-ly} option. Note that Bison's implementation of the Yacc
6743library is distributed under the terms of the @acronym{GNU} General
6744Public License (@pxref{Copying}).
6745
6746If you use the Yacc library's @code{yyerror} function, you should
6747declare @code{yyerror} as follows:
6748
6749@example
6750int yyerror (char const *);
6751@end example
6752
6753Bison ignores the @code{int} value returned by this @code{yyerror}.
6754If you use the Yacc library's @code{main} function, your
6755@code{yyparse} function should have the following type signature:
6756
6757@example
6758int yyparse (void);
6759@end example
6760
12545799
AD
6761@c ================================================= C++ Bison
6762
6763@node C++ Language Interface
6764@chapter C++ Language Interface
6765
6766@menu
6767* C++ Parsers:: The interface to generate C++ parser classes
6768* A Complete C++ Example:: Demonstrating their use
6769@end menu
6770
6771@node C++ Parsers
6772@section C++ Parsers
6773
6774@menu
6775* C++ Bison Interface:: Asking for C++ parser generation
6776* C++ Semantic Values:: %union vs. C++
6777* C++ Location Values:: The position and location classes
6778* C++ Parser Interface:: Instantiating and running the parser
6779* C++ Scanner Interface:: Exchanges between yylex and parse
6780@end menu
6781
6782@node C++ Bison Interface
6783@subsection C++ Bison Interface
6784@c - %skeleton "lalr1.cc"
6785@c - Always pure
6786@c - initial action
6787
6788The C++ parser LALR(1) skeleton is named @file{lalr1.cc}. To select
6789it, you may either pass the option @option{--skeleton=lalr1.cc} to
6790Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
6791grammar preamble. When run, @command{bison} will create several
6792files:
6793@table @file
6794@item position.hh
6795@itemx location.hh
6796The definition of the classes @code{position} and @code{location},
6797used for location tracking. @xref{C++ Location Values}.
6798
6799@item stack.hh
6800An auxiliary class @code{stack} used by the parser.
6801
6802@item @var{filename}.hh
6803@itemx @var{filename}.cc
6804The declaration and implementation of the C++ parser class.
6805@var{filename} is the name of the output file. It follows the same
6806rules as with regular C parsers.
6807
6808Note that @file{@var{filename}.hh} is @emph{mandatory}, the C++ cannot
6809work without the parser class declaration. Therefore, you must either
6810pass @option{-d}/@option{--defines} to @command{bison}, or use the
6811@samp{%defines} directive.
6812@end table
6813
6814All these files are documented using Doxygen; run @command{doxygen}
6815for a complete and accurate documentation.
6816
6817@node C++ Semantic Values
6818@subsection C++ Semantic Values
6819@c - No objects in unions
6820@c - YSTYPE
6821@c - Printer and destructor
6822
6823The @code{%union} directive works as for C, see @ref{Union Decl, ,The
6824Collection of Value Types}. In particular it produces a genuine
6825@code{union}@footnote{In the future techniques to allow complex types
6826within pseudo-unions (variants) might be implemented to alleviate
6827these issues.}, which have a few specific features in C++.
6828@itemize @minus
6829@item
6830The name @code{YYSTYPE} also denotes @samp{union YYSTYPE}. You may
6831forward declare it just with @samp{union YYSTYPE;}.
6832@item
6833Non POD (Plain Old Data) types cannot be used. C++ forbids any
6834instance of classes with constructors in unions: only @emph{pointers}
6835to such objects are allowed.
6836@end itemize
6837
6838Because objects have to be stored via pointers, memory is not
6839reclaimed automatically: using the @code{%destructor} directive is the
6840only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
6841Symbols}.
6842
6843
6844@node C++ Location Values
6845@subsection C++ Location Values
6846@c - %locations
6847@c - class Position
6848@c - class Location
6849@c - %define "filename_type" "const symbol::Symbol"
6850
6851When the directive @code{%locations} is used, the C++ parser supports
6852location tracking, see @ref{Locations, , Locations Overview}. Two
6853auxiliary classes define a @code{position}, a single point in a file,
6854and a @code{location}, a range composed of a pair of
6855@code{position}s (possibly spanning several files).
6856
6857@deftypemethod {position} {std::string*} filename
6858The name of the file. It will always be handled as a pointer, the
6859parser will never duplicate nor deallocate it. As an experimental
6860feature you may change it to @samp{@var{type}*} using @samp{%define
6861"filename_type" "@var{type}"}.
6862@end deftypemethod
6863
6864@deftypemethod {position} {unsigned int} line
6865The line, starting at 1.
6866@end deftypemethod
6867
6868@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
6869Advance by @var{height} lines, resetting the column number.
6870@end deftypemethod
6871
6872@deftypemethod {position} {unsigned int} column
6873The column, starting at 0.
6874@end deftypemethod
6875
6876@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
6877Advance by @var{width} columns, without changing the line number.
6878@end deftypemethod
6879
6880@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
6881@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
6882@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
6883@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
6884Various forms of syntactic sugar for @code{columns}.
6885@end deftypemethod
6886
6887@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
6888Report @var{p} on @var{o} like this:
6889@samp{@var{filename}:@var{line}.@var{column}}, or
6890@samp{@var{line}.@var{column}} if @var{filename} is null.
6891@end deftypemethod
6892
6893@deftypemethod {location} {position} begin
6894@deftypemethodx {location} {position} end
6895The first, inclusive, position of the range, and the first beyond.
6896@end deftypemethod
6897
6898@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
6899@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
6900Advance the @code{end} position.
6901@end deftypemethod
6902
6903@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
6904@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
6905@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
6906Various forms of syntactic sugar.
6907@end deftypemethod
6908
6909@deftypemethod {location} {void} step ()
6910Move @code{begin} onto @code{end}.
6911@end deftypemethod
6912
6913
6914@node C++ Parser Interface
6915@subsection C++ Parser Interface
6916@c - define parser_class_name
6917@c - Ctor
6918@c - parse, error, set_debug_level, debug_level, set_debug_stream,
6919@c debug_stream.
6920@c - Reporting errors
6921
6922The output files @file{@var{output}.hh} and @file{@var{output}.cc}
6923declare and define the parser class in the namespace @code{yy}. The
6924class name defaults to @code{parser}, but may be changed using
6925@samp{%define "parser_class_name" "@var{name}"}. The interface of
6926this class is detailled below. It can be extended using the
6927@code{%parse-param} feature: its semantics is slightly changed since
6928it describes an additional member of the parser class, and an
6929additional argument for its constructor.
6930
8a0adb01
AD
6931@defcv {Type} {parser} {semantic_value_type}
6932@defcvx {Type} {parser} {location_value_type}
12545799 6933The types for semantics value and locations.
8a0adb01 6934@end defcv
12545799
AD
6935
6936@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
6937Build a new parser object. There are no arguments by default, unless
6938@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
6939@end deftypemethod
6940
6941@deftypemethod {parser} {int} parse ()
6942Run the syntactic analysis, and return 0 on success, 1 otherwise.
6943@end deftypemethod
6944
6945@deftypemethod {parser} {std::ostream&} debug_stream ()
6946@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
6947Get or set the stream used for tracing the parsing. It defaults to
6948@code{std::cerr}.
6949@end deftypemethod
6950
6951@deftypemethod {parser} {debug_level_type} debug_level ()
6952@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
6953Get or set the tracing level. Currently its value is either 0, no trace,
6954or non-zero, full tracing.
6955@end deftypemethod
6956
6957@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
6958The definition for this member function must be supplied by the user:
6959the parser uses it to report a parser error occurring at @var{l},
6960described by @var{m}.
6961@end deftypemethod
6962
6963
6964@node C++ Scanner Interface
6965@subsection C++ Scanner Interface
6966@c - prefix for yylex.
6967@c - Pure interface to yylex
6968@c - %lex-param
6969
6970The parser invokes the scanner by calling @code{yylex}. Contrary to C
6971parsers, C++ parsers are always pure: there is no point in using the
6972@code{%pure-parser} directive. Therefore the interface is as follows.
6973
6974@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
6975Return the next token. Its type is the return value, its semantic
6976value and location being @var{yylval} and @var{yylloc}. Invocations of
6977@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
6978@end deftypemethod
6979
6980
6981@node A Complete C++ Example
6982@section A Complete C++ Example
6983
6984This section demonstrates the use of a C++ parser with a simple but
6985complete example. This example should be available on your system,
6986ready to compile, in the directory @dfn{../bison/examples/calc++}. It
6987focuses on the use of Bison, therefore the design of the various C++
6988classes is very naive: no accessors, no encapsulation of members etc.
6989We will use a Lex scanner, and more precisely, a Flex scanner, to
6990demonstrate the various interaction. A hand written scanner is
6991actually easier to interface with.
6992
6993@menu
6994* Calc++ --- C++ Calculator:: The specifications
6995* Calc++ Parsing Driver:: An active parsing context
6996* Calc++ Parser:: A parser class
6997* Calc++ Scanner:: A pure C++ Flex scanner
6998* Calc++ Top Level:: Conducting the band
6999@end menu
7000
7001@node Calc++ --- C++ Calculator
7002@subsection Calc++ --- C++ Calculator
7003
7004Of course the grammar is dedicated to arithmetics, a single
7005expression, possibily preceded by variable assignments. An
7006environment containing possibly predefined variables such as
7007@code{one} and @code{two}, is exchanged with the parser. An example
7008of valid input follows.
7009
7010@example
7011three := 3
7012seven := one + two * three
7013seven * seven
7014@end example
7015
7016@node Calc++ Parsing Driver
7017@subsection Calc++ Parsing Driver
7018@c - An env
7019@c - A place to store error messages
7020@c - A place for the result
7021
7022To support a pure interface with the parser (and the scanner) the
7023technique of the ``parsing context'' is convenient: a structure
7024containing all the data to exchange. Since, in addition to simply
7025launch the parsing, there are several auxiliary tasks to execute (open
7026the file for parsing, instantiate the parser etc.), we recommend
7027transforming the simple parsing context structure into a fully blown
7028@dfn{parsing driver} class.
7029
7030The declaration of this driver class, @file{calc++-driver.hh}, is as
7031follows. The first part includes the CPP guard and imports the
7032required standard library components.
7033
1c59e0a1 7034@comment file: calc++-driver.hh
12545799
AD
7035@example
7036#ifndef CALCXX_DRIVER_HH
7037# define CALCXX_DRIVER_HH
7038# include <string>
7039# include <map>
7040@end example
7041
7042@noindent
7043Then come forward declarations. Because the parser uses the parsing
7044driver and reciprocally, simple inclusions of header files will not
7045do. Because the driver's declaration is the one that will be imported
7046by the rest of the project, it is saner to forward declare the
7047parser's information here.
7048
1c59e0a1 7049@comment file: calc++-driver.hh
12545799
AD
7050@example
7051// Forward declarations.
7052union YYSTYPE;
1c59e0a1
AD
7053namespace yy
7054@{
7055 class location;
7056 class calcxx_parser;
7057@}
12545799
AD
7058class calcxx_driver;
7059@end example
7060
7061@noindent
7062Then comes the declaration of the scanning function. Flex expects
7063the signature of @code{yylex} to be defined in the macro
7064@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7065factor both as follows.
1c59e0a1
AD
7066
7067@comment file: calc++-driver.hh
12545799
AD
7068@example
7069// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7070# define YY_DECL \
12545799
AD
7071 int yylex (YYSTYPE* yylval, yy::location* yylloc, calcxx_driver& driver)
7072// ... and declare it for the parser's sake.
7073YY_DECL;
7074@end example
7075
7076@noindent
7077The @code{calcxx_driver} class is then declared with its most obvious
7078members.
7079
1c59e0a1 7080@comment file: calc++-driver.hh
12545799
AD
7081@example
7082// Conducting the whole scanning and parsing of Calc++.
7083class calcxx_driver
7084@{
7085public:
7086 calcxx_driver ();
7087 virtual ~calcxx_driver ();
7088
7089 std::map<std::string, int> variables;
7090
7091 int result;
7092@end example
7093
7094@noindent
7095To encapsulate the coordination with the Flex scanner, it is useful to
7096have two members function to open and close the scanning phase.
7097members.
7098
1c59e0a1 7099@comment file: calc++-driver.hh
12545799
AD
7100@example
7101 // Handling the scanner.
7102 void scan_begin ();
7103 void scan_end ();
7104 bool trace_scanning;
7105@end example
7106
7107@noindent
7108Similarly for the parser itself.
7109
1c59e0a1 7110@comment file: calc++-driver.hh
12545799
AD
7111@example
7112 // Handling the parser.
7113 void parse (const std::string& f);
7114 std::string file;
7115 bool trace_parsing;
7116@end example
7117
7118@noindent
7119To demonstrate pure handling of parse errors, instead of simply
7120dumping them on the standard error output, we will pass them to the
7121compiler driver using the following two member functions. Finally, we
7122close the class declaration and CPP guard.
7123
1c59e0a1 7124@comment file: calc++-driver.hh
12545799
AD
7125@example
7126 // Error handling.
7127 void error (const yy::location& l, const std::string& m);
7128 void error (const std::string& m);
7129@};
7130#endif // ! CALCXX_DRIVER_HH
7131@end example
7132
7133The implementation of the driver is straightforward. The @code{parse}
7134member function deserves some attention. The @code{error} functions
7135are simple stubs, they should actually register the located error
7136messages and set error state.
7137
1c59e0a1 7138@comment file: calc++-driver.cc
12545799
AD
7139@example
7140#include "calc++-driver.hh"
7141#include "calc++-parser.hh"
7142
7143calcxx_driver::calcxx_driver ()
7144 : trace_scanning (false), trace_parsing (false)
7145@{
7146 variables["one"] = 1;
7147 variables["two"] = 2;
7148@}
7149
7150calcxx_driver::~calcxx_driver ()
7151@{
7152@}
7153
7154void
7155calcxx_driver::parse (const std::string &f)
7156@{
7157 file = f;
7158 scan_begin ();
7159 yy::calcxx_parser parser (*this);
7160 parser.set_debug_level (trace_parsing);
7161 parser.parse ();
7162 scan_end ();
7163@}
7164
7165void
7166calcxx_driver::error (const yy::location& l, const std::string& m)
7167@{
7168 std::cerr << l << ": " << m << std::endl;
7169@}
7170
7171void
7172calcxx_driver::error (const std::string& m)
7173@{
7174 std::cerr << m << std::endl;
7175@}
7176@end example
7177
7178@node Calc++ Parser
7179@subsection Calc++ Parser
7180
7181The parser definition file @file{calc++-parser.yy} starts by asking
7182for the C++ skeleton, the creation of the parser header file, and
7183specifies the name of the parser class. It then includes the required
7184headers.
1c59e0a1
AD
7185
7186@comment file: calc++-parser.yy
12545799
AD
7187@example
7188%skeleton "lalr1.cc" /* -*- C++ -*- */
7189%define "parser_class_name" "calcxx_parser"
7190%defines
7191%@{
7192# include <string>
7193# include "calc++-driver.hh"
7194%@}
7195@end example
7196
7197@noindent
7198The driver is passed by reference to the parser and to the scanner.
7199This provides a simple but effective pure interface, not relying on
7200global variables.
7201
1c59e0a1 7202@comment file: calc++-parser.yy
12545799
AD
7203@example
7204// The parsing context.
7205%parse-param @{ calcxx_driver& driver @}
7206%lex-param @{ calcxx_driver& driver @}
7207@end example
7208
7209@noindent
7210Then we request the location tracking feature, and initialize the
7211first location's file name. Afterwards new locations are computed
7212relatively to the previous locations: the file name will be
7213automatically propagated.
7214
1c59e0a1 7215@comment file: calc++-parser.yy
12545799
AD
7216@example
7217%locations
7218%initial-action
7219@{
7220 // Initialize the initial location.
7221 @@$.begin.filename = @@$.end.filename = &driver.file;
7222@};
7223@end example
7224
7225@noindent
7226Use the two following directives to enable parser tracing and verbose
7227error messages.
7228
1c59e0a1 7229@comment file: calc++-parser.yy
12545799
AD
7230@example
7231%debug
7232%error-verbose
7233@end example
7234
7235@noindent
7236Semantic values cannot use ``real'' objects, but only pointers to
7237them.
7238
1c59e0a1 7239@comment file: calc++-parser.yy
12545799
AD
7240@example
7241// Symbols.
7242%union
7243@{
7244 int ival;
7245 std::string *sval;
7246@};
7247@end example
7248
7249@noindent
7250The token numbered as 0 corresponds to end of file; the following line
7251allows for nicer error messages referring to ``end of file'' instead
7252of ``$end''. Similarly user friendly named are provided for each
7253symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7254avoid name clashes.
7255
1c59e0a1 7256@comment file: calc++-parser.yy
12545799
AD
7257@example
7258%token YYEOF 0 "end of file"
7259%token TOKEN_ASSIGN ":="
7260%token <sval> TOKEN_IDENTIFIER "identifier"
7261%token <ival> TOKEN_NUMBER "number"
7262%type <ival> exp "expression"
7263@end example
7264
7265@noindent
7266To enable memory deallocation during error recovery, use
7267@code{%destructor}.
7268
1c59e0a1 7269@comment file: calc++-parser.yy
12545799
AD
7270@example
7271%printer @{ debug_stream () << *$$; @} "identifier"
7272%destructor @{ delete $$; @} "identifier"
7273
7274%printer @{ debug_stream () << $$; @} "number" "expression"
7275@end example
7276
7277@noindent
7278The grammar itself is straightforward.
7279
1c59e0a1 7280@comment file: calc++-parser.yy
12545799
AD
7281@example
7282%%
7283%start unit;
7284unit: assignments exp @{ driver.result = $2; @};
7285
7286assignments: assignments assignment @{@}
7287 | /* Nothing. */ @{@};
7288
7289assignment: TOKEN_IDENTIFIER ":=" exp @{ driver.variables[*$1] = $3; @};
7290
7291%left '+' '-';
7292%left '*' '/';
7293exp: exp '+' exp @{ $$ = $1 + $3; @}
7294 | exp '-' exp @{ $$ = $1 - $3; @}
7295 | exp '*' exp @{ $$ = $1 * $3; @}
7296 | exp '/' exp @{ $$ = $1 / $3; @}
7297 | TOKEN_IDENTIFIER @{ $$ = driver.variables[*$1]; @}
7298 | TOKEN_NUMBER @{ $$ = $1; @};
7299%%
7300@end example
7301
7302@noindent
7303Finally the @code{error} member function registers the errors to the
7304driver.
7305
1c59e0a1 7306@comment file: calc++-parser.yy
12545799
AD
7307@example
7308void
1c59e0a1
AD
7309yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7310 const std::string& m)
12545799
AD
7311@{
7312 driver.error (l, m);
7313@}
7314@end example
7315
7316@node Calc++ Scanner
7317@subsection Calc++ Scanner
7318
7319The Flex scanner first includes the driver declaration, then the
7320parser's to get the set of defined tokens.
7321
1c59e0a1 7322@comment file: calc++-scanner.ll
12545799
AD
7323@example
7324%@{ /* -*- C++ -*- */
7325# include <string>
7326# include "calc++-driver.hh"
7327# include "calc++-parser.hh"
7328%@}
7329@end example
7330
7331@noindent
7332Because there is no @code{#include}-like feature we don't need
7333@code{yywrap}, we don't need @code{unput} either, and we parse an
7334actual file, this is not an interactive session with the user.
7335Finally we enable the scanner tracing features.
7336
1c59e0a1 7337@comment file: calc++-scanner.ll
12545799
AD
7338@example
7339%option noyywrap nounput batch debug
7340@end example
7341
7342@noindent
7343Abbreviations allow for more readable rules.
7344
1c59e0a1 7345@comment file: calc++-scanner.ll
12545799
AD
7346@example
7347id [a-zA-Z][a-zA-Z_0-9]*
7348int [0-9]+
7349blank [ \t]
7350@end example
7351
7352@noindent
7353The following paragraph suffices to track locations acurately. Each
7354time @code{yylex} is invoked, the begin position is moved onto the end
7355position. Then when a pattern is matched, the end position is
7356advanced of its width. In case it matched ends of lines, the end
7357cursor is adjusted, and each time blanks are matched, the begin cursor
7358is moved onto the end cursor to effectively ignore the blanks
7359preceding tokens. Comments would be treated equally.
7360
1c59e0a1 7361@comment file: calc++-scanner.ll
12545799 7362@example
828c373b
AD
7363%@{
7364# define YY_USER_ACTION yylloc->columns (yyleng);
7365%@}
12545799
AD
7366%%
7367%@{
7368 yylloc->step ();
12545799
AD
7369%@}
7370@{blank@}+ yylloc->step ();
7371[\n]+ yylloc->lines (yyleng); yylloc->step ();
7372@end example
7373
7374@noindent
7375The rules are simple, just note the use of the driver to report
7376errors.
7377
1c59e0a1 7378@comment file: calc++-scanner.ll
12545799
AD
7379@example
7380[-+*/] return yytext[0];
7381":=" return TOKEN_ASSIGN;
7382@{int@} yylval->ival = atoi (yytext); return TOKEN_NUMBER;
7383@{id@} yylval->sval = new std::string (yytext); return TOKEN_IDENTIFIER;
7384. driver.error (*yylloc, "invalid character");
7385%%
7386@end example
7387
7388@noindent
7389Finally, because the scanner related driver's member function depend
7390on the scanner's data, it is simpler to implement them in this file.
7391
1c59e0a1 7392@comment file: calc++-scanner.ll
12545799
AD
7393@example
7394void
7395calcxx_driver::scan_begin ()
7396@{
7397 yy_flex_debug = trace_scanning;
7398 if (!(yyin = fopen (file.c_str (), "r")))
7399 error (std::string ("cannot open ") + file);
7400@}
7401
7402void
7403calcxx_driver::scan_end ()
7404@{
7405 fclose (yyin);
7406@}
7407@end example
7408
7409@node Calc++ Top Level
7410@subsection Calc++ Top Level
7411
7412The top level file, @file{calc++.cc}, poses no problem.
7413
1c59e0a1 7414@comment file: calc++.cc
12545799
AD
7415@example
7416#include <iostream>
7417#include "calc++-driver.hh"
7418
7419int
7420main (int argc, const char* argv[])
7421@{
7422 calcxx_driver driver;
7423 for (++argv; argv[0]; ++argv)
7424 if (*argv == std::string ("-p"))
7425 driver.trace_parsing = true;
7426 else if (*argv == std::string ("-s"))
7427 driver.trace_scanning = true;
7428 else
7429 @{
7430 driver.parse (*argv);
7431 std::cout << driver.result << std::endl;
7432 @}
7433@}
7434@end example
7435
7436@c ================================================= FAQ
d1a1114f
AD
7437
7438@node FAQ
7439@chapter Frequently Asked Questions
7440@cindex frequently asked questions
7441@cindex questions
7442
7443Several questions about Bison come up occasionally. Here some of them
7444are addressed.
7445
7446@menu
7447* Parser Stack Overflow:: Breaking the Stack Limits
e64fec0a 7448* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7449* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7450* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7451@end menu
7452
7453@node Parser Stack Overflow
7454@section Parser Stack Overflow
7455
7456@display
7457My parser returns with error with a @samp{parser stack overflow}
7458message. What can I do?
7459@end display
7460
7461This question is already addressed elsewhere, @xref{Recursion,
7462,Recursive Rules}.
7463
e64fec0a
PE
7464@node How Can I Reset the Parser
7465@section How Can I Reset the Parser
5b066063 7466
0e14ad77
PE
7467The following phenomenon has several symptoms, resulting in the
7468following typical questions:
5b066063
AD
7469
7470@display
7471I invoke @code{yyparse} several times, and on correct input it works
7472properly; but when a parse error is found, all the other calls fail
0e14ad77 7473too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7474@end display
7475
7476@noindent
7477or
7478
7479@display
0e14ad77 7480My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7481which case I run @code{yyparse} from @code{yyparse}. This fails
7482although I did specify I needed a @code{%pure-parser}.
7483@end display
7484
0e14ad77
PE
7485These problems typically come not from Bison itself, but from
7486Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7487speed, they might not notice a change of input file. As a
7488demonstration, consider the following source file,
7489@file{first-line.l}:
7490
7491@verbatim
7492%{
7493#include <stdio.h>
7494#include <stdlib.h>
7495%}
7496%%
7497.*\n ECHO; return 1;
7498%%
7499int
0e14ad77 7500yyparse (char const *file)
5b066063
AD
7501{
7502 yyin = fopen (file, "r");
7503 if (!yyin)
7504 exit (2);
fa7e68c3 7505 /* One token only. */
5b066063 7506 yylex ();
0e14ad77 7507 if (fclose (yyin) != 0)
5b066063
AD
7508 exit (3);
7509 return 0;
7510}
7511
7512int
0e14ad77 7513main (void)
5b066063
AD
7514{
7515 yyparse ("input");
7516 yyparse ("input");
7517 return 0;
7518}
7519@end verbatim
7520
7521@noindent
7522If the file @file{input} contains
7523
7524@verbatim
7525input:1: Hello,
7526input:2: World!
7527@end verbatim
7528
7529@noindent
0e14ad77 7530then instead of getting the first line twice, you get:
5b066063
AD
7531
7532@example
7533$ @kbd{flex -ofirst-line.c first-line.l}
7534$ @kbd{gcc -ofirst-line first-line.c -ll}
7535$ @kbd{./first-line}
7536input:1: Hello,
7537input:2: World!
7538@end example
7539
0e14ad77
PE
7540Therefore, whenever you change @code{yyin}, you must tell the
7541Lex-generated scanner to discard its current buffer and switch to the
7542new one. This depends upon your implementation of Lex; see its
7543documentation for more. For Flex, it suffices to call
7544@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7545Flex-generated scanner needs to read from several input streams to
7546handle features like include files, you might consider using Flex
7547functions like @samp{yy_switch_to_buffer} that manipulate multiple
7548input buffers.
5b066063 7549
b165c324
AD
7550If your Flex-generated scanner uses start conditions (@pxref{Start
7551conditions, , Start conditions, flex, The Flex Manual}), you might
7552also want to reset the scanner's state, i.e., go back to the initial
7553start condition, through a call to @samp{BEGIN (0)}.
7554
fef4cb51
AD
7555@node Strings are Destroyed
7556@section Strings are Destroyed
7557
7558@display
c7e441b4 7559My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7560them. Instead of reporting @samp{"foo", "bar"}, it reports
7561@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7562@end display
7563
7564This error is probably the single most frequent ``bug report'' sent to
7565Bison lists, but is only concerned with a misunderstanding of the role
7566of scanner. Consider the following Lex code:
7567
7568@verbatim
7569%{
7570#include <stdio.h>
7571char *yylval = NULL;
7572%}
7573%%
7574.* yylval = yytext; return 1;
7575\n /* IGNORE */
7576%%
7577int
7578main ()
7579{
fa7e68c3 7580 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7581 char *fst = (yylex (), yylval);
7582 char *snd = (yylex (), yylval);
7583 printf ("\"%s\", \"%s\"\n", fst, snd);
7584 return 0;
7585}
7586@end verbatim
7587
7588If you compile and run this code, you get:
7589
7590@example
7591$ @kbd{flex -osplit-lines.c split-lines.l}
7592$ @kbd{gcc -osplit-lines split-lines.c -ll}
7593$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7594"one
7595two", "two"
7596@end example
7597
7598@noindent
7599this is because @code{yytext} is a buffer provided for @emph{reading}
7600in the action, but if you want to keep it, you have to duplicate it
7601(e.g., using @code{strdup}). Note that the output may depend on how
7602your implementation of Lex handles @code{yytext}. For instance, when
7603given the Lex compatibility option @option{-l} (which triggers the
7604option @samp{%array}) Flex generates a different behavior:
7605
7606@example
7607$ @kbd{flex -l -osplit-lines.c split-lines.l}
7608$ @kbd{gcc -osplit-lines split-lines.c -ll}
7609$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7610"two", "two"
7611@end example
7612
7613
2fa09258
AD
7614@node Implementing Gotos/Loops
7615@section Implementing Gotos/Loops
a06ea4aa
AD
7616
7617@display
7618My simple calculator supports variables, assignments, and functions,
2fa09258 7619but how can I implement gotos, or loops?
a06ea4aa
AD
7620@end display
7621
7622Although very pedagogical, the examples included in the document blur
a1c84f45 7623the distinction to make between the parser---whose job is to recover
a06ea4aa 7624the structure of a text and to transmit it to subsequent modules of
a1c84f45 7625the program---and the processing (such as the execution) of this
a06ea4aa
AD
7626structure. This works well with so called straight line programs,
7627i.e., precisely those that have a straightforward execution model:
7628execute simple instructions one after the others.
7629
7630@cindex abstract syntax tree
7631@cindex @acronym{AST}
7632If you want a richer model, you will probably need to use the parser
7633to construct a tree that does represent the structure it has
7634recovered; this tree is usually called the @dfn{abstract syntax tree},
7635or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7636traversing it in various ways, will enable treatments such as its
7637execution or its translation, which will result in an interpreter or a
7638compiler.
7639
7640This topic is way beyond the scope of this manual, and the reader is
7641invited to consult the dedicated literature.
7642
7643
7644
d1a1114f
AD
7645@c ================================================= Table of Symbols
7646
342b8b6e 7647@node Table of Symbols
bfa74976
RS
7648@appendix Bison Symbols
7649@cindex Bison symbols, table of
7650@cindex symbols in Bison, table of
7651
18b519c0 7652@deffn {Variable} @@$
3ded9a63 7653In an action, the location of the left-hand side of the rule.
88bce5a2 7654@xref{Locations, , Locations Overview}.
18b519c0 7655@end deffn
3ded9a63 7656
18b519c0 7657@deffn {Variable} @@@var{n}
3ded9a63
AD
7658In an action, the location of the @var{n}-th symbol of the right-hand
7659side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7660@end deffn
3ded9a63 7661
18b519c0 7662@deffn {Variable} $$
3ded9a63
AD
7663In an action, the semantic value of the left-hand side of the rule.
7664@xref{Actions}.
18b519c0 7665@end deffn
3ded9a63 7666
18b519c0 7667@deffn {Variable} $@var{n}
3ded9a63
AD
7668In an action, the semantic value of the @var{n}-th symbol of the
7669right-hand side of the rule. @xref{Actions}.
18b519c0 7670@end deffn
3ded9a63 7671
dd8d9022
AD
7672@deffn {Delimiter} %%
7673Delimiter used to separate the grammar rule section from the
7674Bison declarations section or the epilogue.
7675@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7676@end deffn
bfa74976 7677
dd8d9022
AD
7678@c Don't insert spaces, or check the DVI output.
7679@deffn {Delimiter} %@{@var{code}%@}
7680All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7681the output file uninterpreted. Such code forms the prologue of the input
7682file. @xref{Grammar Outline, ,Outline of a Bison
7683Grammar}.
18b519c0 7684@end deffn
bfa74976 7685
dd8d9022
AD
7686@deffn {Construct} /*@dots{}*/
7687Comment delimiters, as in C.
18b519c0 7688@end deffn
bfa74976 7689
dd8d9022
AD
7690@deffn {Delimiter} :
7691Separates a rule's result from its components. @xref{Rules, ,Syntax of
7692Grammar Rules}.
18b519c0 7693@end deffn
bfa74976 7694
dd8d9022
AD
7695@deffn {Delimiter} ;
7696Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7697@end deffn
bfa74976 7698
dd8d9022
AD
7699@deffn {Delimiter} |
7700Separates alternate rules for the same result nonterminal.
7701@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7702@end deffn
bfa74976 7703
dd8d9022
AD
7704@deffn {Symbol} $accept
7705The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7706$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7707Start-Symbol}. It cannot be used in the grammar.
18b519c0 7708@end deffn
bfa74976 7709
18b519c0 7710@deffn {Directive} %debug
6deb4447 7711Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7712@end deffn
6deb4447 7713
91d2c560 7714@ifset defaultprec
22fccf95
PE
7715@deffn {Directive} %default-prec
7716Assign a precedence to rules that lack an explicit @samp{%prec}
7717modifier. @xref{Contextual Precedence, ,Context-Dependent
7718Precedence}.
39a06c25 7719@end deffn
91d2c560 7720@end ifset
39a06c25 7721
18b519c0 7722@deffn {Directive} %defines
6deb4447
AD
7723Bison declaration to create a header file meant for the scanner.
7724@xref{Decl Summary}.
18b519c0 7725@end deffn
6deb4447 7726
18b519c0 7727@deffn {Directive} %destructor
72f889cc 7728Specifying how the parser should reclaim the memory associated to
fa7e68c3 7729discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7730@end deffn
72f889cc 7731
18b519c0 7732@deffn {Directive} %dprec
676385e2 7733Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7734time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7735@acronym{GLR} Parsers}.
18b519c0 7736@end deffn
676385e2 7737
dd8d9022
AD
7738@deffn {Symbol} $end
7739The predefined token marking the end of the token stream. It cannot be
7740used in the grammar.
7741@end deffn
7742
7743@deffn {Symbol} error
7744A token name reserved for error recovery. This token may be used in
7745grammar rules so as to allow the Bison parser to recognize an error in
7746the grammar without halting the process. In effect, a sentence
7747containing an error may be recognized as valid. On a syntax error, the
7748token @code{error} becomes the current look-ahead token. Actions
7749corresponding to @code{error} are then executed, and the look-ahead
7750token is reset to the token that originally caused the violation.
7751@xref{Error Recovery}.
18d192f0
AD
7752@end deffn
7753
18b519c0 7754@deffn {Directive} %error-verbose
2a8d363a
AD
7755Bison declaration to request verbose, specific error message strings
7756when @code{yyerror} is called.
18b519c0 7757@end deffn
2a8d363a 7758
18b519c0 7759@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7760Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7761Summary}.
18b519c0 7762@end deffn
d8988b2f 7763
18b519c0 7764@deffn {Directive} %glr-parser
c827f760
PE
7765Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7766Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7767@end deffn
676385e2 7768
dd8d9022
AD
7769@deffn {Directive} %initial-action
7770Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
7771@end deffn
7772
18b519c0 7773@deffn {Directive} %left
bfa74976
RS
7774Bison declaration to assign left associativity to token(s).
7775@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7776@end deffn
bfa74976 7777
feeb0eda 7778@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7779Bison declaration to specifying an additional parameter that
7780@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7781for Pure Parsers}.
18b519c0 7782@end deffn
2a8d363a 7783
18b519c0 7784@deffn {Directive} %merge
676385e2 7785Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7786reduce/reduce conflict with a rule having the same merging function, the
676385e2 7787function is applied to the two semantic values to get a single result.
c827f760 7788@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7789@end deffn
676385e2 7790
18b519c0 7791@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7792Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7793@end deffn
d8988b2f 7794
91d2c560 7795@ifset defaultprec
22fccf95
PE
7796@deffn {Directive} %no-default-prec
7797Do not assign a precedence to rules that lack an explicit @samp{%prec}
7798modifier. @xref{Contextual Precedence, ,Context-Dependent
7799Precedence}.
7800@end deffn
91d2c560 7801@end ifset
22fccf95 7802
18b519c0 7803@deffn {Directive} %no-lines
931c7513
RS
7804Bison declaration to avoid generating @code{#line} directives in the
7805parser file. @xref{Decl Summary}.
18b519c0 7806@end deffn
931c7513 7807
18b519c0 7808@deffn {Directive} %nonassoc
14ded682 7809Bison declaration to assign non-associativity to token(s).
bfa74976 7810@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7811@end deffn
bfa74976 7812
18b519c0 7813@deffn {Directive} %output="@var{filename}"
72d2299c 7814Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7815Summary}.
18b519c0 7816@end deffn
d8988b2f 7817
feeb0eda 7818@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7819Bison declaration to specifying an additional parameter that
7820@code{yyparse} should accept. @xref{Parser Function,, The Parser
7821Function @code{yyparse}}.
18b519c0 7822@end deffn
2a8d363a 7823
18b519c0 7824@deffn {Directive} %prec
bfa74976
RS
7825Bison declaration to assign a precedence to a specific rule.
7826@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7827@end deffn
bfa74976 7828
18b519c0 7829@deffn {Directive} %pure-parser
bfa74976
RS
7830Bison declaration to request a pure (reentrant) parser.
7831@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7832@end deffn
bfa74976 7833
18b519c0 7834@deffn {Directive} %right
bfa74976
RS
7835Bison declaration to assign right associativity to token(s).
7836@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7837@end deffn
bfa74976 7838
18b519c0 7839@deffn {Directive} %start
704a47c4
AD
7840Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7841Start-Symbol}.
18b519c0 7842@end deffn
bfa74976 7843
18b519c0 7844@deffn {Directive} %token
bfa74976
RS
7845Bison declaration to declare token(s) without specifying precedence.
7846@xref{Token Decl, ,Token Type Names}.
18b519c0 7847@end deffn
bfa74976 7848
18b519c0 7849@deffn {Directive} %token-table
931c7513
RS
7850Bison declaration to include a token name table in the parser file.
7851@xref{Decl Summary}.
18b519c0 7852@end deffn
931c7513 7853
18b519c0 7854@deffn {Directive} %type
704a47c4
AD
7855Bison declaration to declare nonterminals. @xref{Type Decl,
7856,Nonterminal Symbols}.
18b519c0 7857@end deffn
bfa74976 7858
dd8d9022
AD
7859@deffn {Symbol} $undefined
7860The predefined token onto which all undefined values returned by
7861@code{yylex} are mapped. It cannot be used in the grammar, rather, use
7862@code{error}.
7863@end deffn
7864
18b519c0 7865@deffn {Directive} %union
bfa74976
RS
7866Bison declaration to specify several possible data types for semantic
7867values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 7868@end deffn
bfa74976 7869
dd8d9022
AD
7870@deffn {Macro} YYABORT
7871Macro to pretend that an unrecoverable syntax error has occurred, by
7872making @code{yyparse} return 1 immediately. The error reporting
7873function @code{yyerror} is not called. @xref{Parser Function, ,The
7874Parser Function @code{yyparse}}.
7875@end deffn
3ded9a63 7876
dd8d9022
AD
7877@deffn {Macro} YYACCEPT
7878Macro to pretend that a complete utterance of the language has been
7879read, by making @code{yyparse} return 0 immediately.
7880@xref{Parser Function, ,The Parser Function @code{yyparse}}.
7881@end deffn
bfa74976 7882
dd8d9022
AD
7883@deffn {Macro} YYBACKUP
7884Macro to discard a value from the parser stack and fake a look-ahead
7885token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7886@end deffn
bfa74976 7887
dd8d9022
AD
7888@deffn {Variable} yychar
7889External integer variable that contains the integer value of the current
7890look-ahead token. (In a pure parser, it is a local variable within
7891@code{yyparse}.) Error-recovery rule actions may examine this variable.
7892@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7893@end deffn
bfa74976 7894
dd8d9022
AD
7895@deffn {Variable} yyclearin
7896Macro used in error-recovery rule actions. It clears the previous
7897look-ahead token. @xref{Error Recovery}.
18b519c0 7898@end deffn
bfa74976 7899
dd8d9022
AD
7900@deffn {Macro} YYDEBUG
7901Macro to define to equip the parser with tracing code. @xref{Tracing,
7902,Tracing Your Parser}.
18b519c0 7903@end deffn
bfa74976 7904
dd8d9022
AD
7905@deffn {Variable} yydebug
7906External integer variable set to zero by default. If @code{yydebug}
7907is given a nonzero value, the parser will output information on input
7908symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 7909@end deffn
bfa74976 7910
dd8d9022
AD
7911@deffn {Macro} yyerrok
7912Macro to cause parser to recover immediately to its normal mode
7913after a syntax error. @xref{Error Recovery}.
7914@end deffn
7915
7916@deffn {Macro} YYERROR
7917Macro to pretend that a syntax error has just been detected: call
7918@code{yyerror} and then perform normal error recovery if possible
7919(@pxref{Error Recovery}), or (if recovery is impossible) make
7920@code{yyparse} return 1. @xref{Error Recovery}.
7921@end deffn
7922
7923@deffn {Function} yyerror
7924User-supplied function to be called by @code{yyparse} on error.
7925@xref{Error Reporting, ,The Error
7926Reporting Function @code{yyerror}}.
7927@end deffn
7928
7929@deffn {Macro} YYERROR_VERBOSE
7930An obsolete macro that you define with @code{#define} in the prologue
7931to request verbose, specific error message strings
7932when @code{yyerror} is called. It doesn't matter what definition you
7933use for @code{YYERROR_VERBOSE}, just whether you define it. Using
7934@code{%error-verbose} is preferred.
7935@end deffn
7936
7937@deffn {Macro} YYINITDEPTH
7938Macro for specifying the initial size of the parser stack.
7939@xref{Stack Overflow}.
7940@end deffn
7941
7942@deffn {Function} yylex
7943User-supplied lexical analyzer function, called with no arguments to get
7944the next token. @xref{Lexical, ,The Lexical Analyzer Function
7945@code{yylex}}.
7946@end deffn
7947
7948@deffn {Macro} YYLEX_PARAM
7949An obsolete macro for specifying an extra argument (or list of extra
7950arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
7951macro is deprecated, and is supported only for Yacc like parsers.
7952@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
7953@end deffn
7954
7955@deffn {Variable} yylloc
7956External variable in which @code{yylex} should place the line and column
7957numbers associated with a token. (In a pure parser, it is a local
7958variable within @code{yyparse}, and its address is passed to
7959@code{yylex}.) You can ignore this variable if you don't use the
7960@samp{@@} feature in the grammar actions. @xref{Token Locations,
7961,Textual Locations of Tokens}.
7962@end deffn
7963
7964@deffn {Type} YYLTYPE
7965Data type of @code{yylloc}; by default, a structure with four
7966members. @xref{Location Type, , Data Types of Locations}.
7967@end deffn
7968
7969@deffn {Variable} yylval
7970External variable in which @code{yylex} should place the semantic
7971value associated with a token. (In a pure parser, it is a local
7972variable within @code{yyparse}, and its address is passed to
7973@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
7974@end deffn
7975
7976@deffn {Macro} YYMAXDEPTH
7977Macro for specifying the maximum size of the parser stack. @xref{Stack
7978Overflow}.
7979@end deffn
7980
7981@deffn {Variable} yynerrs
7982Global variable which Bison increments each time there is a syntax error.
7983(In a pure parser, it is a local variable within @code{yyparse}.)
7984@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
7985@end deffn
7986
7987@deffn {Function} yyparse
7988The parser function produced by Bison; call this function to start
7989parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
7990@end deffn
7991
7992@deffn {Macro} YYPARSE_PARAM
7993An obsolete macro for specifying the name of a parameter that
7994@code{yyparse} should accept. The use of this macro is deprecated, and
7995is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
7996Conventions for Pure Parsers}.
7997@end deffn
7998
7999@deffn {Macro} YYRECOVERING
8000Macro whose value indicates whether the parser is recovering from a
8001syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8002@end deffn
8003
8004@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8005Macro used to control the use of @code{alloca} when the C
8006@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8007the parser will use @code{malloc} to extend its stacks. If defined to
80081, the parser will use @code{alloca}. Values other than 0 and 1 are
8009reserved for future Bison extensions. If not defined,
8010@code{YYSTACK_USE_ALLOCA} defaults to 0.
8011
8012If you define @code{YYSTACK_USE_ALLOCA} to 1, it is your
8013responsibility to make sure that @code{alloca} is visible, e.g., by
8014using @acronym{GCC} or by including @code{<stdlib.h>}. Furthermore,
8015in the all-too-common case where your code may run on a host with a
8016limited stack and with unreliable stack-overflow checking, you should
8017set @code{YYMAXDEPTH} to a value that cannot possibly result in
8018unchecked stack overflow on any of your target hosts when
8019@code{alloca} is called. You can inspect the code that Bison
8020generates in order to determine the proper numeric values. This will
8021require some expertise in low-level implementation details.
dd8d9022
AD
8022@end deffn
8023
8024@deffn {Type} YYSTYPE
8025Data type of semantic values; @code{int} by default.
8026@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8027@end deffn
bfa74976 8028
342b8b6e 8029@node Glossary
bfa74976
RS
8030@appendix Glossary
8031@cindex glossary
8032
8033@table @asis
c827f760
PE
8034@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8035Formal method of specifying context-free grammars originally proposed
8036by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8037committee document contributing to what became the Algol 60 report.
8038@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8039
8040@item Context-free grammars
8041Grammars specified as rules that can be applied regardless of context.
8042Thus, if there is a rule which says that an integer can be used as an
8043expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8044permitted. @xref{Language and Grammar, ,Languages and Context-Free
8045Grammars}.
bfa74976
RS
8046
8047@item Dynamic allocation
8048Allocation of memory that occurs during execution, rather than at
8049compile time or on entry to a function.
8050
8051@item Empty string
8052Analogous to the empty set in set theory, the empty string is a
8053character string of length zero.
8054
8055@item Finite-state stack machine
8056A ``machine'' that has discrete states in which it is said to exist at
8057each instant in time. As input to the machine is processed, the
8058machine moves from state to state as specified by the logic of the
8059machine. In the case of the parser, the input is the language being
8060parsed, and the states correspond to various stages in the grammar
c827f760 8061rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8062
c827f760 8063@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8064A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8065that are not @acronym{LALR}(1). It resolves situations that Bison's
8066usual @acronym{LALR}(1)
676385e2
PH
8067algorithm cannot by effectively splitting off multiple parsers, trying all
8068possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8069right context. @xref{Generalized LR Parsing, ,Generalized
8070@acronym{LR} Parsing}.
676385e2 8071
bfa74976
RS
8072@item Grouping
8073A language construct that is (in general) grammatically divisible;
c827f760 8074for example, `expression' or `declaration' in C@.
bfa74976
RS
8075@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8076
8077@item Infix operator
8078An arithmetic operator that is placed between the operands on which it
8079performs some operation.
8080
8081@item Input stream
8082A continuous flow of data between devices or programs.
8083
8084@item Language construct
8085One of the typical usage schemas of the language. For example, one of
8086the constructs of the C language is the @code{if} statement.
8087@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8088
8089@item Left associativity
8090Operators having left associativity are analyzed from left to right:
8091@samp{a+b+c} first computes @samp{a+b} and then combines with
8092@samp{c}. @xref{Precedence, ,Operator Precedence}.
8093
8094@item Left recursion
89cab50d
AD
8095A rule whose result symbol is also its first component symbol; for
8096example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8097Rules}.
bfa74976
RS
8098
8099@item Left-to-right parsing
8100Parsing a sentence of a language by analyzing it token by token from
c827f760 8101left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8102
8103@item Lexical analyzer (scanner)
8104A function that reads an input stream and returns tokens one by one.
8105@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8106
8107@item Lexical tie-in
8108A flag, set by actions in the grammar rules, which alters the way
8109tokens are parsed. @xref{Lexical Tie-ins}.
8110
931c7513 8111@item Literal string token
14ded682 8112A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8113
bfa74976 8114@item Look-ahead token
89cab50d
AD
8115A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8116Tokens}.
bfa74976 8117
c827f760 8118@item @acronym{LALR}(1)
bfa74976 8119The class of context-free grammars that Bison (like most other parser
c827f760
PE
8120generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8121Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8122
c827f760 8123@item @acronym{LR}(1)
bfa74976
RS
8124The class of context-free grammars in which at most one token of
8125look-ahead is needed to disambiguate the parsing of any piece of input.
8126
8127@item Nonterminal symbol
8128A grammar symbol standing for a grammatical construct that can
8129be expressed through rules in terms of smaller constructs; in other
8130words, a construct that is not a token. @xref{Symbols}.
8131
bfa74976
RS
8132@item Parser
8133A function that recognizes valid sentences of a language by analyzing
8134the syntax structure of a set of tokens passed to it from a lexical
8135analyzer.
8136
8137@item Postfix operator
8138An arithmetic operator that is placed after the operands upon which it
8139performs some operation.
8140
8141@item Reduction
8142Replacing a string of nonterminals and/or terminals with a single
89cab50d 8143nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8144Parser Algorithm}.
bfa74976
RS
8145
8146@item Reentrant
8147A reentrant subprogram is a subprogram which can be in invoked any
8148number of times in parallel, without interference between the various
8149invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8150
8151@item Reverse polish notation
8152A language in which all operators are postfix operators.
8153
8154@item Right recursion
89cab50d
AD
8155A rule whose result symbol is also its last component symbol; for
8156example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8157Rules}.
bfa74976
RS
8158
8159@item Semantics
8160In computer languages, the semantics are specified by the actions
8161taken for each instance of the language, i.e., the meaning of
8162each statement. @xref{Semantics, ,Defining Language Semantics}.
8163
8164@item Shift
8165A parser is said to shift when it makes the choice of analyzing
8166further input from the stream rather than reducing immediately some
c827f760 8167already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8168
8169@item Single-character literal
8170A single character that is recognized and interpreted as is.
8171@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8172
8173@item Start symbol
8174The nonterminal symbol that stands for a complete valid utterance in
8175the language being parsed. The start symbol is usually listed as the
13863333 8176first nonterminal symbol in a language specification.
bfa74976
RS
8177@xref{Start Decl, ,The Start-Symbol}.
8178
8179@item Symbol table
8180A data structure where symbol names and associated data are stored
8181during parsing to allow for recognition and use of existing
8182information in repeated uses of a symbol. @xref{Multi-function Calc}.
8183
6e649e65
PE
8184@item Syntax error
8185An error encountered during parsing of an input stream due to invalid
8186syntax. @xref{Error Recovery}.
8187
bfa74976
RS
8188@item Token
8189A basic, grammatically indivisible unit of a language. The symbol
8190that describes a token in the grammar is a terminal symbol.
8191The input of the Bison parser is a stream of tokens which comes from
8192the lexical analyzer. @xref{Symbols}.
8193
8194@item Terminal symbol
89cab50d
AD
8195A grammar symbol that has no rules in the grammar and therefore is
8196grammatically indivisible. The piece of text it represents is a token.
8197@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8198@end table
8199
342b8b6e 8200@node Copying This Manual
f2b5126e 8201@appendix Copying This Manual
f9a8293a 8202
f2b5126e
PB
8203@menu
8204* GNU Free Documentation License:: License for copying this manual.
8205@end menu
f9a8293a 8206
f2b5126e
PB
8207@include fdl.texi
8208
342b8b6e 8209@node Index
bfa74976
RS
8210@unnumbered Index
8211
8212@printindex cp
8213
bfa74976 8214@bye
a06ea4aa
AD
8215
8216@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8217@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8218@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8219@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8220@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8221@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8222@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8223@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8224@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8225@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8226@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8227@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8228@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8229@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8230@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8231@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8232@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8233@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8234@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8235@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8236@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
8237@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
8238@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8239@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8240@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8241@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8242@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8243@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8244@c LocalWords: YYSTACK DVI fdl printindex