]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
* NEWS: Document minor wording changes in diagnostics of
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
bfa74976
RS
15@c Set following if you have the new `shorttitlepage' command
16@c @clear shorttitlepage-enabled
17@c @set shorttitlepage-enabled
18
91d2c560
PE
19@c Set following if you want to document %default-prec and %no-default-prec.
20@c This feature is experimental and may change in future Bison versions.
21@c @set defaultprec
22
bfa74976
RS
23@c ISPELL CHECK: done, 14 Jan 1993 --bob
24
25@c Check COPYRIGHT dates. should be updated in the titlepage, ifinfo
26@c titlepage; should NOT be changed in the GPL. --mew
27
ec3bc396 28@c FIXME: I don't understand this `iftex'. Obsolete? --akim.
bfa74976
RS
29@iftex
30@syncodeindex fn cp
31@syncodeindex vr cp
32@syncodeindex tp cp
33@end iftex
34@ifinfo
35@synindex fn cp
36@synindex vr cp
37@synindex tp cp
38@end ifinfo
39@comment %**end of header
40
fae437e8 41@copying
bd773d73 42
c827f760
PE
43This manual is for @acronym{GNU} Bison (version @value{VERSION},
44@value{UPDATED}), the @acronym{GNU} parser generator.
fae437e8 45
a06ea4aa 46Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
e62f1a89 471999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
fae437e8
AD
48
49@quotation
50Permission is granted to copy, distribute and/or modify this document
c827f760 51under the terms of the @acronym{GNU} Free Documentation License,
592fde95 52Version 1.2 or any later version published by the Free Software
c827f760
PE
53Foundation; with no Invariant Sections, with the Front-Cover texts
54being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
55(a) below. A copy of the license is included in the section entitled
56``@acronym{GNU} Free Documentation License.''
57
58(a) The @acronym{FSF}'s Back-Cover Text is: ``You have freedom to copy
59and modify this @acronym{GNU} Manual, like @acronym{GNU} software.
60Copies published by the Free Software Foundation raise funds for
61@acronym{GNU} development.''
fae437e8
AD
62@end quotation
63@end copying
64
e62f1a89 65@dircategory Software development
fae437e8 66@direntry
c827f760 67* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 68@end direntry
bfa74976
RS
69
70@ifset shorttitlepage-enabled
71@shorttitlepage Bison
72@end ifset
73@titlepage
74@title Bison
c827f760 75@subtitle The Yacc-compatible Parser Generator
df1af54c 76@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
77
78@author by Charles Donnelly and Richard Stallman
79
80@page
81@vskip 0pt plus 1filll
fae437e8 82@insertcopying
bfa74976
RS
83@sp 2
84Published by the Free Software Foundation @*
0fb669f9
PE
8551 Franklin Street, Fifth Floor @*
86Boston, MA 02110-1301 USA @*
9ecbd125 87Printed copies are available from the Free Software Foundation.@*
c827f760 88@acronym{ISBN} 1-882114-44-2
bfa74976
RS
89@sp 2
90Cover art by Etienne Suvasa.
91@end titlepage
d5796688
JT
92
93@contents
bfa74976 94
342b8b6e
AD
95@ifnottex
96@node Top
97@top Bison
fae437e8 98@insertcopying
342b8b6e 99@end ifnottex
bfa74976
RS
100
101@menu
13863333
AD
102* Introduction::
103* Conditions::
c827f760 104* Copying:: The @acronym{GNU} General Public License says
bfa74976
RS
105 how you can copy and share Bison
106
107Tutorial sections:
108* Concepts:: Basic concepts for understanding Bison.
109* Examples:: Three simple explained examples of using Bison.
110
111Reference sections:
112* Grammar File:: Writing Bison declarations and rules.
113* Interface:: C-language interface to the parser function @code{yyparse}.
114* Algorithm:: How the Bison parser works at run-time.
115* Error Recovery:: Writing rules for error recovery.
116* Context Dependency:: What to do if your language syntax is too
117 messy for Bison to handle straightforwardly.
ec3bc396 118* Debugging:: Understanding or debugging Bison parsers.
bfa74976 119* Invocation:: How to run Bison (to produce the parser source file).
12545799
AD
120* C++ Language Interface:: Creating C++ parser objects.
121* FAQ:: Frequently Asked Questions
bfa74976
RS
122* Table of Symbols:: All the keywords of the Bison language are explained.
123* Glossary:: Basic concepts are explained.
f2b5126e 124* Copying This Manual:: License for copying this manual.
bfa74976
RS
125* Index:: Cross-references to the text.
126
93dd49ab
PE
127@detailmenu
128 --- The Detailed Node Listing ---
bfa74976
RS
129
130The Concepts of Bison
131
132* Language and Grammar:: Languages and context-free grammars,
133 as mathematical ideas.
134* Grammar in Bison:: How we represent grammars for Bison's sake.
135* Semantic Values:: Each token or syntactic grouping can have
136 a semantic value (the value of an integer,
137 the name of an identifier, etc.).
138* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 139* GLR Parsers:: Writing parsers for general context-free languages.
93dd49ab 140* Locations Overview:: Tracking Locations.
bfa74976
RS
141* Bison Parser:: What are Bison's input and output,
142 how is the output used?
143* Stages:: Stages in writing and running Bison grammars.
144* Grammar Layout:: Overall structure of a Bison grammar file.
145
fa7e68c3
PE
146Writing @acronym{GLR} Parsers
147
148* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
149* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
150* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
151
bfa74976
RS
152Examples
153
154* RPN Calc:: Reverse polish notation calculator;
155 a first example with no operator precedence.
156* Infix Calc:: Infix (algebraic) notation calculator.
157 Operator precedence is introduced.
158* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 159* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
93dd49ab
PE
160* Multi-function Calc:: Calculator with memory and trig functions.
161 It uses multiple data-types for semantic values.
bfa74976
RS
162* Exercises:: Ideas for improving the multi-function calculator.
163
164Reverse Polish Notation Calculator
165
75f5aaea 166* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
167* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
168* Lexer: Rpcalc Lexer. The lexical analyzer.
169* Main: Rpcalc Main. The controlling function.
170* Error: Rpcalc Error. The error reporting function.
171* Gen: Rpcalc Gen. Running Bison on the grammar file.
172* Comp: Rpcalc Compile. Run the C compiler on the output code.
173
174Grammar Rules for @code{rpcalc}
175
13863333
AD
176* Rpcalc Input::
177* Rpcalc Line::
178* Rpcalc Expr::
bfa74976 179
342b8b6e
AD
180Location Tracking Calculator: @code{ltcalc}
181
182* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
183* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
184* Lexer: Ltcalc Lexer. The lexical analyzer.
185
bfa74976
RS
186Multi-Function Calculator: @code{mfcalc}
187
188* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
189* Rules: Mfcalc Rules. Grammar rules for the calculator.
190* Symtab: Mfcalc Symtab. Symbol table management subroutines.
191
192Bison Grammar Files
193
194* Grammar Outline:: Overall layout of the grammar file.
195* Symbols:: Terminal and nonterminal symbols.
196* Rules:: How to write grammar rules.
197* Recursion:: Writing recursive rules.
198* Semantics:: Semantic values and actions.
93dd49ab 199* Locations:: Locations and actions.
bfa74976
RS
200* Declarations:: All kinds of Bison declarations are described here.
201* Multiple Parsers:: Putting more than one Bison parser in one program.
202
203Outline of a Bison Grammar
204
93dd49ab 205* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
206* Bison Declarations:: Syntax and usage of the Bison declarations section.
207* Grammar Rules:: Syntax and usage of the grammar rules section.
93dd49ab 208* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
209
210Defining Language Semantics
211
212* Value Type:: Specifying one data type for all semantic values.
213* Multiple Types:: Specifying several alternative data types.
214* Actions:: An action is the semantic definition of a grammar rule.
215* Action Types:: Specifying data types for actions to operate on.
216* Mid-Rule Actions:: Most actions go at the end of a rule.
217 This says when, why and how to use the exceptional
218 action in the middle of a rule.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
228* Token Decl:: Declaring terminal symbols.
229* Precedence Decl:: Declaring terminals with precedence and associativity.
230* Union Decl:: Declaring the set of all semantic value types.
231* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 232* Initial Action Decl:: Code run before parsing starts.
72f889cc 233* Destructor Decl:: Declaring how symbols are freed.
d6328241 234* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
235* Start Decl:: Specifying the start symbol.
236* Pure Decl:: Requesting a reentrant parser.
237* Decl Summary:: Table of all Bison declarations.
238
239Parser C-Language Interface
240
241* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 242* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
f7ab6a50
PE
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
95923bd6 254* Token Locations:: How @code{yylex} must return the text location
bfa74976 255 (line number, etc.) of the token, if the
93dd49ab 256 actions want that.
bfa74976
RS
257* Pure Calling:: How the calling convention differs
258 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
259
13863333 260The Bison Parser Algorithm
bfa74976
RS
261
262* Look-Ahead:: Parser looks one token ahead when deciding what to do.
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
268* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
279Handling Context Dependencies
280
281* Semantic Tokens:: Token parsing can depend on the semantic context.
282* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
283* Tie-in Recovery:: Lexical tie-ins have implications for how
284 error recovery rules must be written.
285
93dd49ab 286Debugging Your Parser
ec3bc396
AD
287
288* Understanding:: Understanding the structure of your parser.
289* Tracing:: Tracing the execution of your parser.
290
bfa74976
RS
291Invoking Bison
292
13863333 293* Bison Options:: All the options described in detail,
c827f760 294 in alphabetical order by short options.
bfa74976 295* Option Cross Key:: Alphabetical list of long options.
93dd49ab 296* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 297
12545799
AD
298C++ Language Interface
299
300* C++ Parsers:: The interface to generate C++ parser classes
301* A Complete C++ Example:: Demonstrating their use
302
303C++ Parsers
304
305* C++ Bison Interface:: Asking for C++ parser generation
306* C++ Semantic Values:: %union vs. C++
307* C++ Location Values:: The position and location classes
308* C++ Parser Interface:: Instantiating and running the parser
309* C++ Scanner Interface:: Exchanges between yylex and parse
310
311A Complete C++ Example
312
313* Calc++ --- C++ Calculator:: The specifications
314* Calc++ Parsing Driver:: An active parsing context
315* Calc++ Parser:: A parser class
316* Calc++ Scanner:: A pure C++ Flex scanner
317* Calc++ Top Level:: Conducting the band
318
d1a1114f
AD
319Frequently Asked Questions
320
1a059451 321* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 322* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 323* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 324* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f 325
f2b5126e
PB
326Copying This Manual
327
328* GNU Free Documentation License:: License for copying this manual.
329
342b8b6e 330@end detailmenu
bfa74976
RS
331@end menu
332
342b8b6e 333@node Introduction
bfa74976
RS
334@unnumbered Introduction
335@cindex introduction
336
337@dfn{Bison} is a general-purpose parser generator that converts a
c827f760 338grammar description for an @acronym{LALR}(1) context-free grammar into a C
bfa74976
RS
339program to parse that grammar. Once you are proficient with Bison,
340you may use it to develop a wide range of language parsers, from those
341used in simple desk calculators to complex programming languages.
342
343Bison is upward compatible with Yacc: all properly-written Yacc grammars
344ought to work with Bison with no change. Anyone familiar with Yacc
345should be able to use Bison with little trouble. You need to be fluent in
346C programming in order to use Bison or to understand this manual.
347
348We begin with tutorial chapters that explain the basic concepts of using
349Bison and show three explained examples, each building on the last. If you
350don't know Bison or Yacc, start by reading these chapters. Reference
351chapters follow which describe specific aspects of Bison in detail.
352
931c7513
RS
353Bison was written primarily by Robert Corbett; Richard Stallman made it
354Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 355multi-character string literals and other features.
931c7513 356
df1af54c 357This edition corresponds to version @value{VERSION} of Bison.
bfa74976 358
342b8b6e 359@node Conditions
bfa74976
RS
360@unnumbered Conditions for Using Bison
361
a31239f1 362As of Bison version 1.24, we have changed the distribution terms for
262aa8dd 363@code{yyparse} to permit using Bison's output in nonfree programs when
c827f760 364Bison is generating C code for @acronym{LALR}(1) parsers. Formerly, these
262aa8dd 365parsers could be used only in programs that were free software.
a31239f1 366
c827f760
PE
367The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
368compiler, have never
9ecbd125 369had such a requirement. They could always be used for nonfree
a31239f1
RS
370software. The reason Bison was different was not due to a special
371policy decision; it resulted from applying the usual General Public
372License to all of the Bison source code.
373
374The output of the Bison utility---the Bison parser file---contains a
375verbatim copy of a sizable piece of Bison, which is the code for the
376@code{yyparse} function. (The actions from your grammar are inserted
377into this function at one point, but the rest of the function is not
c827f760
PE
378changed.) When we applied the @acronym{GPL} terms to the code for
379@code{yyparse},
a31239f1
RS
380the effect was to restrict the use of Bison output to free software.
381
382We didn't change the terms because of sympathy for people who want to
383make software proprietary. @strong{Software should be free.} But we
384concluded that limiting Bison's use to free software was doing little to
385encourage people to make other software free. So we decided to make the
386practical conditions for using Bison match the practical conditions for
c827f760 387using the other @acronym{GNU} tools.
bfa74976 388
eda42934 389This exception applies only when Bison is generating C code for an
c827f760
PE
390@acronym{LALR}(1) parser; otherwise, the @acronym{GPL} terms operate
391as usual. You can
262aa8dd
PE
392tell whether the exception applies to your @samp{.c} output file by
393inspecting it to see whether it says ``As a special exception, when
394this file is copied by Bison into a Bison output file, you may use
395that output file without restriction.''
396
c67a198d 397@include gpl.texi
bfa74976 398
342b8b6e 399@node Concepts
bfa74976
RS
400@chapter The Concepts of Bison
401
402This chapter introduces many of the basic concepts without which the
403details of Bison will not make sense. If you do not already know how to
404use Bison or Yacc, we suggest you start by reading this chapter carefully.
405
406@menu
407* Language and Grammar:: Languages and context-free grammars,
408 as mathematical ideas.
409* Grammar in Bison:: How we represent grammars for Bison's sake.
410* Semantic Values:: Each token or syntactic grouping can have
411 a semantic value (the value of an integer,
412 the name of an identifier, etc.).
413* Semantic Actions:: Each rule can have an action containing C code.
99a9344e 414* GLR Parsers:: Writing parsers for general context-free languages.
847bf1f5 415* Locations Overview:: Tracking Locations.
bfa74976
RS
416* Bison Parser:: What are Bison's input and output,
417 how is the output used?
418* Stages:: Stages in writing and running Bison grammars.
419* Grammar Layout:: Overall structure of a Bison grammar file.
420@end menu
421
342b8b6e 422@node Language and Grammar
bfa74976
RS
423@section Languages and Context-Free Grammars
424
bfa74976
RS
425@cindex context-free grammar
426@cindex grammar, context-free
427In order for Bison to parse a language, it must be described by a
428@dfn{context-free grammar}. This means that you specify one or more
429@dfn{syntactic groupings} and give rules for constructing them from their
430parts. For example, in the C language, one kind of grouping is called an
431`expression'. One rule for making an expression might be, ``An expression
432can be made of a minus sign and another expression''. Another would be,
433``An expression can be an integer''. As you can see, rules are often
434recursive, but there must be at least one rule which leads out of the
435recursion.
436
c827f760 437@cindex @acronym{BNF}
bfa74976
RS
438@cindex Backus-Naur form
439The most common formal system for presenting such rules for humans to read
c827f760
PE
440is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
441order to specify the language Algol 60. Any grammar expressed in
442@acronym{BNF} is a context-free grammar. The input to Bison is
443essentially machine-readable @acronym{BNF}.
bfa74976 444
c827f760
PE
445@cindex @acronym{LALR}(1) grammars
446@cindex @acronym{LR}(1) grammars
676385e2
PH
447There are various important subclasses of context-free grammar. Although it
448can handle almost all context-free grammars, Bison is optimized for what
c827f760 449are called @acronym{LALR}(1) grammars.
676385e2 450In brief, in these grammars, it must be possible to
bfa74976
RS
451tell how to parse any portion of an input string with just a single
452token of look-ahead. Strictly speaking, that is a description of an
c827f760
PE
453@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
454restrictions that are
bfa74976 455hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
456@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
457@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
458more information on this.
bfa74976 459
c827f760
PE
460@cindex @acronym{GLR} parsing
461@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
462@cindex ambiguous grammars
463@cindex non-deterministic parsing
9501dc6e
AD
464
465Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
466roughly that the next grammar rule to apply at any point in the input is
467uniquely determined by the preceding input and a fixed, finite portion
468(called a @dfn{look-ahead}) of the remaining input. A context-free
469grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 470apply the grammar rules to get the same inputs. Even unambiguous
9501dc6e
AD
471grammars can be @dfn{non-deterministic}, meaning that no fixed
472look-ahead always suffices to determine the next grammar rule to apply.
473With the proper declarations, Bison is also able to parse these more
474general context-free grammars, using a technique known as @acronym{GLR}
475parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
476are able to handle any context-free grammar for which the number of
477possible parses of any given string is finite.
676385e2 478
bfa74976
RS
479@cindex symbols (abstract)
480@cindex token
481@cindex syntactic grouping
482@cindex grouping, syntactic
9501dc6e
AD
483In the formal grammatical rules for a language, each kind of syntactic
484unit or grouping is named by a @dfn{symbol}. Those which are built by
485grouping smaller constructs according to grammatical rules are called
bfa74976
RS
486@dfn{nonterminal symbols}; those which can't be subdivided are called
487@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
488corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 489corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
490
491We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
492nonterminal, mean. The tokens of C are identifiers, constants (numeric
493and string), and the various keywords, arithmetic operators and
494punctuation marks. So the terminal symbols of a grammar for C include
495`identifier', `number', `string', plus one symbol for each keyword,
496operator or punctuation mark: `if', `return', `const', `static', `int',
497`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
498(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
499lexicography, not grammar.)
500
501Here is a simple C function subdivided into tokens:
502
9edcd895
AD
503@ifinfo
504@example
505int /* @r{keyword `int'} */
14d4662b 506square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
507 @r{identifier, close-paren} */
508@{ /* @r{open-brace} */
509 return x * x; /* @r{keyword `return', identifier, asterisk,
510 identifier, semicolon} */
511@} /* @r{close-brace} */
512@end example
513@end ifinfo
514@ifnotinfo
bfa74976
RS
515@example
516int /* @r{keyword `int'} */
14d4662b 517square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 518@{ /* @r{open-brace} */
9edcd895 519 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
520@} /* @r{close-brace} */
521@end example
9edcd895 522@end ifnotinfo
bfa74976
RS
523
524The syntactic groupings of C include the expression, the statement, the
525declaration, and the function definition. These are represented in the
526grammar of C by nonterminal symbols `expression', `statement',
527`declaration' and `function definition'. The full grammar uses dozens of
528additional language constructs, each with its own nonterminal symbol, in
529order to express the meanings of these four. The example above is a
530function definition; it contains one declaration, and one statement. In
531the statement, each @samp{x} is an expression and so is @samp{x * x}.
532
533Each nonterminal symbol must have grammatical rules showing how it is made
534out of simpler constructs. For example, one kind of C statement is the
535@code{return} statement; this would be described with a grammar rule which
536reads informally as follows:
537
538@quotation
539A `statement' can be made of a `return' keyword, an `expression' and a
540`semicolon'.
541@end quotation
542
543@noindent
544There would be many other rules for `statement', one for each kind of
545statement in C.
546
547@cindex start symbol
548One nonterminal symbol must be distinguished as the special one which
549defines a complete utterance in the language. It is called the @dfn{start
550symbol}. In a compiler, this means a complete input program. In the C
551language, the nonterminal symbol `sequence of definitions and declarations'
552plays this role.
553
554For example, @samp{1 + 2} is a valid C expression---a valid part of a C
555program---but it is not valid as an @emph{entire} C program. In the
556context-free grammar of C, this follows from the fact that `expression' is
557not the start symbol.
558
559The Bison parser reads a sequence of tokens as its input, and groups the
560tokens using the grammar rules. If the input is valid, the end result is
561that the entire token sequence reduces to a single grouping whose symbol is
562the grammar's start symbol. If we use a grammar for C, the entire input
563must be a `sequence of definitions and declarations'. If not, the parser
564reports a syntax error.
565
342b8b6e 566@node Grammar in Bison
bfa74976
RS
567@section From Formal Rules to Bison Input
568@cindex Bison grammar
569@cindex grammar, Bison
570@cindex formal grammar
571
572A formal grammar is a mathematical construct. To define the language
573for Bison, you must write a file expressing the grammar in Bison syntax:
574a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
575
576A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 577as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
578in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
579
580The Bison representation for a terminal symbol is also called a @dfn{token
581type}. Token types as well can be represented as C-like identifiers. By
582convention, these identifiers should be upper case to distinguish them from
583nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
584@code{RETURN}. A terminal symbol that stands for a particular keyword in
585the language should be named after that keyword converted to upper case.
586The terminal symbol @code{error} is reserved for error recovery.
931c7513 587@xref{Symbols}.
bfa74976
RS
588
589A terminal symbol can also be represented as a character literal, just like
590a C character constant. You should do this whenever a token is just a
591single character (parenthesis, plus-sign, etc.): use that same character in
592a literal as the terminal symbol for that token.
593
931c7513
RS
594A third way to represent a terminal symbol is with a C string constant
595containing several characters. @xref{Symbols}, for more information.
596
bfa74976
RS
597The grammar rules also have an expression in Bison syntax. For example,
598here is the Bison rule for a C @code{return} statement. The semicolon in
599quotes is a literal character token, representing part of the C syntax for
600the statement; the naked semicolon, and the colon, are Bison punctuation
601used in every rule.
602
603@example
604stmt: RETURN expr ';'
605 ;
606@end example
607
608@noindent
609@xref{Rules, ,Syntax of Grammar Rules}.
610
342b8b6e 611@node Semantic Values
bfa74976
RS
612@section Semantic Values
613@cindex semantic value
614@cindex value, semantic
615
616A formal grammar selects tokens only by their classifications: for example,
617if a rule mentions the terminal symbol `integer constant', it means that
618@emph{any} integer constant is grammatically valid in that position. The
619precise value of the constant is irrelevant to how to parse the input: if
620@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 621grammatical.
bfa74976
RS
622
623But the precise value is very important for what the input means once it is
624parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6253989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
626has both a token type and a @dfn{semantic value}. @xref{Semantics,
627,Defining Language Semantics},
bfa74976
RS
628for details.
629
630The token type is a terminal symbol defined in the grammar, such as
631@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
632you need to know to decide where the token may validly appear and how to
633group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 634except their types.
bfa74976
RS
635
636The semantic value has all the rest of the information about the
637meaning of the token, such as the value of an integer, or the name of an
638identifier. (A token such as @code{','} which is just punctuation doesn't
639need to have any semantic value.)
640
641For example, an input token might be classified as token type
642@code{INTEGER} and have the semantic value 4. Another input token might
643have the same token type @code{INTEGER} but value 3989. When a grammar
644rule says that @code{INTEGER} is allowed, either of these tokens is
645acceptable because each is an @code{INTEGER}. When the parser accepts the
646token, it keeps track of the token's semantic value.
647
648Each grouping can also have a semantic value as well as its nonterminal
649symbol. For example, in a calculator, an expression typically has a
650semantic value that is a number. In a compiler for a programming
651language, an expression typically has a semantic value that is a tree
652structure describing the meaning of the expression.
653
342b8b6e 654@node Semantic Actions
bfa74976
RS
655@section Semantic Actions
656@cindex semantic actions
657@cindex actions, semantic
658
659In order to be useful, a program must do more than parse input; it must
660also produce some output based on the input. In a Bison grammar, a grammar
661rule can have an @dfn{action} made up of C statements. Each time the
662parser recognizes a match for that rule, the action is executed.
663@xref{Actions}.
13863333 664
bfa74976
RS
665Most of the time, the purpose of an action is to compute the semantic value
666of the whole construct from the semantic values of its parts. For example,
667suppose we have a rule which says an expression can be the sum of two
668expressions. When the parser recognizes such a sum, each of the
669subexpressions has a semantic value which describes how it was built up.
670The action for this rule should create a similar sort of value for the
671newly recognized larger expression.
672
673For example, here is a rule that says an expression can be the sum of
674two subexpressions:
675
676@example
677expr: expr '+' expr @{ $$ = $1 + $3; @}
678 ;
679@end example
680
681@noindent
682The action says how to produce the semantic value of the sum expression
683from the values of the two subexpressions.
684
676385e2 685@node GLR Parsers
c827f760
PE
686@section Writing @acronym{GLR} Parsers
687@cindex @acronym{GLR} parsing
688@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
689@findex %glr-parser
690@cindex conflicts
691@cindex shift/reduce conflicts
fa7e68c3 692@cindex reduce/reduce conflicts
676385e2 693
fa7e68c3 694In some grammars, Bison's standard
9501dc6e
AD
695@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
696certain grammar rule at a given point. That is, it may not be able to
697decide (on the basis of the input read so far) which of two possible
698reductions (applications of a grammar rule) applies, or whether to apply
699a reduction or read more of the input and apply a reduction later in the
700input. These are known respectively as @dfn{reduce/reduce} conflicts
701(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
702(@pxref{Shift/Reduce}).
703
704To use a grammar that is not easily modified to be @acronym{LALR}(1), a
705more general parsing algorithm is sometimes necessary. If you include
676385e2 706@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 707(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
708(@acronym{GLR}) parser. These parsers handle Bison grammars that
709contain no unresolved conflicts (i.e., after applying precedence
710declarations) identically to @acronym{LALR}(1) parsers. However, when
711faced with unresolved shift/reduce and reduce/reduce conflicts,
712@acronym{GLR} parsers use the simple expedient of doing both,
713effectively cloning the parser to follow both possibilities. Each of
714the resulting parsers can again split, so that at any given time, there
715can be any number of possible parses being explored. The parsers
676385e2
PH
716proceed in lockstep; that is, all of them consume (shift) a given input
717symbol before any of them proceed to the next. Each of the cloned
718parsers eventually meets one of two possible fates: either it runs into
719a parsing error, in which case it simply vanishes, or it merges with
720another parser, because the two of them have reduced the input to an
721identical set of symbols.
722
723During the time that there are multiple parsers, semantic actions are
724recorded, but not performed. When a parser disappears, its recorded
725semantic actions disappear as well, and are never performed. When a
726reduction makes two parsers identical, causing them to merge, Bison
727records both sets of semantic actions. Whenever the last two parsers
728merge, reverting to the single-parser case, Bison resolves all the
729outstanding actions either by precedences given to the grammar rules
730involved, or by performing both actions, and then calling a designated
731user-defined function on the resulting values to produce an arbitrary
732merged result.
733
fa7e68c3
PE
734@menu
735* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars
736* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities
737* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler
738@end menu
739
740@node Simple GLR Parsers
741@subsection Using @acronym{GLR} on Unambiguous Grammars
742@cindex @acronym{GLR} parsing, unambiguous grammars
743@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
744@findex %glr-parser
745@findex %expect-rr
746@cindex conflicts
747@cindex reduce/reduce conflicts
748@cindex shift/reduce conflicts
749
750In the simplest cases, you can use the @acronym{GLR} algorithm
751to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
752Such grammars typically require more than one symbol of look-ahead,
753or (in rare cases) fall into the category of grammars in which the
754@acronym{LALR}(1) algorithm throws away too much information (they are in
755@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
756
757Consider a problem that
758arises in the declaration of enumerated and subrange types in the
759programming language Pascal. Here are some examples:
760
761@example
762type subrange = lo .. hi;
763type enum = (a, b, c);
764@end example
765
766@noindent
767The original language standard allows only numeric
768literals and constant identifiers for the subrange bounds (@samp{lo}
769and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
77010206) and many other
771Pascal implementations allow arbitrary expressions there. This gives
772rise to the following situation, containing a superfluous pair of
773parentheses:
774
775@example
776type subrange = (a) .. b;
777@end example
778
779@noindent
780Compare this to the following declaration of an enumerated
781type with only one value:
782
783@example
784type enum = (a);
785@end example
786
787@noindent
788(These declarations are contrived, but they are syntactically
789valid, and more-complicated cases can come up in practical programs.)
790
791These two declarations look identical until the @samp{..} token.
792With normal @acronym{LALR}(1) one-token look-ahead it is not
793possible to decide between the two forms when the identifier
794@samp{a} is parsed. It is, however, desirable
795for a parser to decide this, since in the latter case
796@samp{a} must become a new identifier to represent the enumeration
797value, while in the former case @samp{a} must be evaluated with its
798current meaning, which may be a constant or even a function call.
799
800You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
801to be resolved later, but this typically requires substantial
802contortions in both semantic actions and large parts of the
803grammar, where the parentheses are nested in the recursive rules for
804expressions.
805
806You might think of using the lexer to distinguish between the two
807forms by returning different tokens for currently defined and
808undefined identifiers. But if these declarations occur in a local
809scope, and @samp{a} is defined in an outer scope, then both forms
810are possible---either locally redefining @samp{a}, or using the
811value of @samp{a} from the outer scope. So this approach cannot
812work.
813
e757bb10 814A simple solution to this problem is to declare the parser to
fa7e68c3
PE
815use the @acronym{GLR} algorithm.
816When the @acronym{GLR} parser reaches the critical state, it
817merely splits into two branches and pursues both syntax rules
818simultaneously. Sooner or later, one of them runs into a parsing
819error. If there is a @samp{..} token before the next
820@samp{;}, the rule for enumerated types fails since it cannot
821accept @samp{..} anywhere; otherwise, the subrange type rule
822fails since it requires a @samp{..} token. So one of the branches
823fails silently, and the other one continues normally, performing
824all the intermediate actions that were postponed during the split.
825
826If the input is syntactically incorrect, both branches fail and the parser
827reports a syntax error as usual.
828
829The effect of all this is that the parser seems to ``guess'' the
830correct branch to take, or in other words, it seems to use more
831look-ahead than the underlying @acronym{LALR}(1) algorithm actually allows
832for. In this example, @acronym{LALR}(2) would suffice, but also some cases
833that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
834
835In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
836and the current Bison parser even takes exponential time and space
837for some grammars. In practice, this rarely happens, and for many
838grammars it is possible to prove that it cannot happen.
839The present example contains only one conflict between two
840rules, and the type-declaration context containing the conflict
841cannot be nested. So the number of
842branches that can exist at any time is limited by the constant 2,
843and the parsing time is still linear.
844
845Here is a Bison grammar corresponding to the example above. It
846parses a vastly simplified form of Pascal type declarations.
847
848@example
849%token TYPE DOTDOT ID
850
851@group
852%left '+' '-'
853%left '*' '/'
854@end group
855
856%%
857
858@group
859type_decl : TYPE ID '=' type ';'
860 ;
861@end group
862
863@group
864type : '(' id_list ')'
865 | expr DOTDOT expr
866 ;
867@end group
868
869@group
870id_list : ID
871 | id_list ',' ID
872 ;
873@end group
874
875@group
876expr : '(' expr ')'
877 | expr '+' expr
878 | expr '-' expr
879 | expr '*' expr
880 | expr '/' expr
881 | ID
882 ;
883@end group
884@end example
885
886When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
887about one reduce/reduce conflict. In the conflicting situation the
888parser chooses one of the alternatives, arbitrarily the one
889declared first. Therefore the following correct input is not
890recognized:
891
892@example
893type t = (a) .. b;
894@end example
895
896The parser can be turned into a @acronym{GLR} parser, while also telling Bison
897to be silent about the one known reduce/reduce conflict, by
e757bb10 898adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
899@samp{%%}):
900
901@example
902%glr-parser
903%expect-rr 1
904@end example
905
906@noindent
907No change in the grammar itself is required. Now the
908parser recognizes all valid declarations, according to the
909limited syntax above, transparently. In fact, the user does not even
910notice when the parser splits.
911
912So here we have a case where we can use the benefits of @acronym{GLR}, almost
913without disadvantages. Even in simple cases like this, however, there
914are at least two potential problems to beware.
915First, always analyze the conflicts reported by
916Bison to make sure that @acronym{GLR} splitting is only done where it is
917intended. A @acronym{GLR} parser splitting inadvertently may cause
918problems less obvious than an @acronym{LALR} parser statically choosing the
919wrong alternative in a conflict.
e757bb10 920Second, consider interactions with the lexer (@pxref{Semantic Tokens})
fa7e68c3
PE
921with great care. Since a split parser consumes tokens
922without performing any actions during the split, the lexer cannot
923obtain information via parser actions. Some cases of
924lexer interactions can be eliminated by using @acronym{GLR} to
925shift the complications from the lexer to the parser. You must check
926the remaining cases for correctness.
927
928In our example, it would be safe for the lexer to return tokens
929based on their current meanings in some symbol table, because no new
930symbols are defined in the middle of a type declaration. Though it
931is possible for a parser to define the enumeration
932constants as they are parsed, before the type declaration is
933completed, it actually makes no difference since they cannot be used
934within the same enumerated type declaration.
935
936@node Merging GLR Parses
937@subsection Using @acronym{GLR} to Resolve Ambiguities
938@cindex @acronym{GLR} parsing, ambiguous grammars
939@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
940@findex %dprec
941@findex %merge
942@cindex conflicts
943@cindex reduce/reduce conflicts
944
2a8d363a 945Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
946
947@example
948%@{
38a92d50
PE
949 #include <stdio.h>
950 #define YYSTYPE char const *
951 int yylex (void);
952 void yyerror (char const *);
676385e2
PH
953%@}
954
955%token TYPENAME ID
956
957%right '='
958%left '+'
959
960%glr-parser
961
962%%
963
fae437e8 964prog :
676385e2
PH
965 | prog stmt @{ printf ("\n"); @}
966 ;
967
968stmt : expr ';' %dprec 1
969 | decl %dprec 2
970 ;
971
2a8d363a 972expr : ID @{ printf ("%s ", $$); @}
fae437e8 973 | TYPENAME '(' expr ')'
2a8d363a
AD
974 @{ printf ("%s <cast> ", $1); @}
975 | expr '+' expr @{ printf ("+ "); @}
976 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
977 ;
978
fae437e8 979decl : TYPENAME declarator ';'
2a8d363a 980 @{ printf ("%s <declare> ", $1); @}
676385e2 981 | TYPENAME declarator '=' expr ';'
2a8d363a 982 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
983 ;
984
2a8d363a 985declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
986 | '(' declarator ')'
987 ;
988@end example
989
990@noindent
991This models a problematic part of the C++ grammar---the ambiguity between
992certain declarations and statements. For example,
993
994@example
995T (x) = y+z;
996@end example
997
998@noindent
999parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1000(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1001@samp{x} as an @code{ID}).
676385e2 1002Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1003@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1004time it encounters @code{x} in the example above. Since this is a
1005@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1006each choice of resolving the reduce/reduce conflict.
1007Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1008however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1009ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1010the other reduces @code{stmt : decl}, after which both parsers are in an
1011identical state: they've seen @samp{prog stmt} and have the same unprocessed
1012input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1013
1014At this point, the @acronym{GLR} parser requires a specification in the
1015grammar of how to choose between the competing parses.
1016In the example above, the two @code{%dprec}
e757bb10 1017declarations specify that Bison is to give precedence
fa7e68c3 1018to the parse that interprets the example as a
676385e2
PH
1019@code{decl}, which implies that @code{x} is a declarator.
1020The parser therefore prints
1021
1022@example
fae437e8 1023"x" y z + T <init-declare>
676385e2
PH
1024@end example
1025
fa7e68c3
PE
1026The @code{%dprec} declarations only come into play when more than one
1027parse survives. Consider a different input string for this parser:
676385e2
PH
1028
1029@example
1030T (x) + y;
1031@end example
1032
1033@noindent
e757bb10 1034This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1035construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1036Here, there is no ambiguity (this cannot be parsed as a declaration).
1037However, at the time the Bison parser encounters @code{x}, it does not
1038have enough information to resolve the reduce/reduce conflict (again,
1039between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1040case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1041into two, one assuming that @code{x} is an @code{expr}, and the other
1042assuming @code{x} is a @code{declarator}. The second of these parsers
1043then vanishes when it sees @code{+}, and the parser prints
1044
1045@example
fae437e8 1046x T <cast> y +
676385e2
PH
1047@end example
1048
1049Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1050the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1051actions of the two possible parsers, rather than choosing one over the
1052other. To do so, you could change the declaration of @code{stmt} as
1053follows:
1054
1055@example
1056stmt : expr ';' %merge <stmtMerge>
1057 | decl %merge <stmtMerge>
1058 ;
1059@end example
1060
1061@noindent
676385e2
PH
1062and define the @code{stmtMerge} function as:
1063
1064@example
38a92d50
PE
1065static YYSTYPE
1066stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1067@{
1068 printf ("<OR> ");
1069 return "";
1070@}
1071@end example
1072
1073@noindent
1074with an accompanying forward declaration
1075in the C declarations at the beginning of the file:
1076
1077@example
1078%@{
38a92d50 1079 #define YYSTYPE char const *
676385e2
PH
1080 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1081%@}
1082@end example
1083
1084@noindent
fa7e68c3
PE
1085With these declarations, the resulting parser parses the first example
1086as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1087
1088@example
fae437e8 1089"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1090@end example
1091
fa7e68c3 1092Bison requires that all of the
e757bb10 1093productions that participate in any particular merge have identical
fa7e68c3
PE
1094@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1095and the parser will report an error during any parse that results in
1096the offending merge.
9501dc6e 1097
fa7e68c3
PE
1098@node Compiler Requirements
1099@subsection Considerations when Compiling @acronym{GLR} Parsers
1100@cindex @code{inline}
9501dc6e 1101@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1102
38a92d50
PE
1103The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1104later. In addition, they use the @code{inline} keyword, which is not
1105C89, but is C99 and is a common extension in pre-C99 compilers. It is
1106up to the user of these parsers to handle
9501dc6e
AD
1107portability issues. For instance, if using Autoconf and the Autoconf
1108macro @code{AC_C_INLINE}, a mere
1109
1110@example
1111%@{
38a92d50 1112 #include <config.h>
9501dc6e
AD
1113%@}
1114@end example
1115
1116@noindent
1117will suffice. Otherwise, we suggest
1118
1119@example
1120%@{
38a92d50
PE
1121 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1122 #define inline
1123 #endif
9501dc6e
AD
1124%@}
1125@end example
676385e2 1126
342b8b6e 1127@node Locations Overview
847bf1f5
AD
1128@section Locations
1129@cindex location
95923bd6
AD
1130@cindex textual location
1131@cindex location, textual
847bf1f5
AD
1132
1133Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1134and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1135the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1136Bison provides a mechanism for handling these locations.
1137
72d2299c 1138Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1139associated location, but the type of locations is the same for all tokens and
72d2299c 1140groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1141structure for storing locations (@pxref{Locations}, for more details).
1142
1143Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1144set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1145is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1146@code{@@3}.
1147
1148When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1149of its left hand side (@pxref{Actions}). In the same way, another default
1150action is used for locations. However, the action for locations is general
847bf1f5 1151enough for most cases, meaning there is usually no need to describe for each
72d2299c 1152rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1153grouping, the default behavior of the output parser is to take the beginning
1154of the first symbol, and the end of the last symbol.
1155
342b8b6e 1156@node Bison Parser
bfa74976
RS
1157@section Bison Output: the Parser File
1158@cindex Bison parser
1159@cindex Bison utility
1160@cindex lexical analyzer, purpose
1161@cindex parser
1162
1163When you run Bison, you give it a Bison grammar file as input. The output
1164is a C source file that parses the language described by the grammar.
1165This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1166utility and the Bison parser are two distinct programs: the Bison utility
1167is a program whose output is the Bison parser that becomes part of your
1168program.
1169
1170The job of the Bison parser is to group tokens into groupings according to
1171the grammar rules---for example, to build identifiers and operators into
1172expressions. As it does this, it runs the actions for the grammar rules it
1173uses.
1174
704a47c4
AD
1175The tokens come from a function called the @dfn{lexical analyzer} that
1176you must supply in some fashion (such as by writing it in C). The Bison
1177parser calls the lexical analyzer each time it wants a new token. It
1178doesn't know what is ``inside'' the tokens (though their semantic values
1179may reflect this). Typically the lexical analyzer makes the tokens by
1180parsing characters of text, but Bison does not depend on this.
1181@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1182
1183The Bison parser file is C code which defines a function named
1184@code{yyparse} which implements that grammar. This function does not make
1185a complete C program: you must supply some additional functions. One is
1186the lexical analyzer. Another is an error-reporting function which the
1187parser calls to report an error. In addition, a complete C program must
1188start with a function called @code{main}; you have to provide this, and
1189arrange for it to call @code{yyparse} or the parser will never run.
1190@xref{Interface, ,Parser C-Language Interface}.
1191
f7ab6a50 1192Aside from the token type names and the symbols in the actions you
7093d0f5 1193write, all symbols defined in the Bison parser file itself
bfa74976
RS
1194begin with @samp{yy} or @samp{YY}. This includes interface functions
1195such as the lexical analyzer function @code{yylex}, the error reporting
1196function @code{yyerror} and the parser function @code{yyparse} itself.
1197This also includes numerous identifiers used for internal purposes.
1198Therefore, you should avoid using C identifiers starting with @samp{yy}
1199or @samp{YY} in the Bison grammar file except for the ones defined in
1200this manual.
1201
7093d0f5
AD
1202In some cases the Bison parser file includes system headers, and in
1203those cases your code should respect the identifiers reserved by those
c827f760 1204headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>},
7093d0f5 1205@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1206declare memory allocators and related types. @code{<libintl.h>} is
1207included if message translation is in use
1208(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1209be included if you define @code{YYDEBUG} to a nonzero value
1210(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1211
342b8b6e 1212@node Stages
bfa74976
RS
1213@section Stages in Using Bison
1214@cindex stages in using Bison
1215@cindex using Bison
1216
1217The actual language-design process using Bison, from grammar specification
1218to a working compiler or interpreter, has these parts:
1219
1220@enumerate
1221@item
1222Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1223(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1224in the language, describe the action that is to be taken when an
1225instance of that rule is recognized. The action is described by a
1226sequence of C statements.
bfa74976
RS
1227
1228@item
704a47c4
AD
1229Write a lexical analyzer to process input and pass tokens to the parser.
1230The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1231Lexical Analyzer Function @code{yylex}}). It could also be produced
1232using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1233
1234@item
1235Write a controlling function that calls the Bison-produced parser.
1236
1237@item
1238Write error-reporting routines.
1239@end enumerate
1240
1241To turn this source code as written into a runnable program, you
1242must follow these steps:
1243
1244@enumerate
1245@item
1246Run Bison on the grammar to produce the parser.
1247
1248@item
1249Compile the code output by Bison, as well as any other source files.
1250
1251@item
1252Link the object files to produce the finished product.
1253@end enumerate
1254
342b8b6e 1255@node Grammar Layout
bfa74976
RS
1256@section The Overall Layout of a Bison Grammar
1257@cindex grammar file
1258@cindex file format
1259@cindex format of grammar file
1260@cindex layout of Bison grammar
1261
1262The input file for the Bison utility is a @dfn{Bison grammar file}. The
1263general form of a Bison grammar file is as follows:
1264
1265@example
1266%@{
08e49d20 1267@var{Prologue}
bfa74976
RS
1268%@}
1269
1270@var{Bison declarations}
1271
1272%%
1273@var{Grammar rules}
1274%%
08e49d20 1275@var{Epilogue}
bfa74976
RS
1276@end example
1277
1278@noindent
1279The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1280in every Bison grammar file to separate the sections.
1281
72d2299c 1282The prologue may define types and variables used in the actions. You can
342b8b6e 1283also use preprocessor commands to define macros used there, and use
bfa74976 1284@code{#include} to include header files that do any of these things.
38a92d50
PE
1285You need to declare the lexical analyzer @code{yylex} and the error
1286printer @code{yyerror} here, along with any other global identifiers
1287used by the actions in the grammar rules.
bfa74976
RS
1288
1289The Bison declarations declare the names of the terminal and nonterminal
1290symbols, and may also describe operator precedence and the data types of
1291semantic values of various symbols.
1292
1293The grammar rules define how to construct each nonterminal symbol from its
1294parts.
1295
38a92d50
PE
1296The epilogue can contain any code you want to use. Often the
1297definitions of functions declared in the prologue go here. In a
1298simple program, all the rest of the program can go here.
bfa74976 1299
342b8b6e 1300@node Examples
bfa74976
RS
1301@chapter Examples
1302@cindex simple examples
1303@cindex examples, simple
1304
1305Now we show and explain three sample programs written using Bison: a
1306reverse polish notation calculator, an algebraic (infix) notation
1307calculator, and a multi-function calculator. All three have been tested
1308under BSD Unix 4.3; each produces a usable, though limited, interactive
1309desk-top calculator.
1310
1311These examples are simple, but Bison grammars for real programming
1312languages are written the same way.
1313@ifinfo
1314You can copy these examples out of the Info file and into a source file
1315to try them.
1316@end ifinfo
1317
1318@menu
1319* RPN Calc:: Reverse polish notation calculator;
1320 a first example with no operator precedence.
1321* Infix Calc:: Infix (algebraic) notation calculator.
1322 Operator precedence is introduced.
1323* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1324* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
bfa74976
RS
1325* Multi-function Calc:: Calculator with memory and trig functions.
1326 It uses multiple data-types for semantic values.
1327* Exercises:: Ideas for improving the multi-function calculator.
1328@end menu
1329
342b8b6e 1330@node RPN Calc
bfa74976
RS
1331@section Reverse Polish Notation Calculator
1332@cindex reverse polish notation
1333@cindex polish notation calculator
1334@cindex @code{rpcalc}
1335@cindex calculator, simple
1336
1337The first example is that of a simple double-precision @dfn{reverse polish
1338notation} calculator (a calculator using postfix operators). This example
1339provides a good starting point, since operator precedence is not an issue.
1340The second example will illustrate how operator precedence is handled.
1341
1342The source code for this calculator is named @file{rpcalc.y}. The
1343@samp{.y} extension is a convention used for Bison input files.
1344
1345@menu
75f5aaea 1346* Decls: Rpcalc Decls. Prologue (declarations) for rpcalc.
bfa74976
RS
1347* Rules: Rpcalc Rules. Grammar Rules for rpcalc, with explanation.
1348* Lexer: Rpcalc Lexer. The lexical analyzer.
1349* Main: Rpcalc Main. The controlling function.
1350* Error: Rpcalc Error. The error reporting function.
1351* Gen: Rpcalc Gen. Running Bison on the grammar file.
1352* Comp: Rpcalc Compile. Run the C compiler on the output code.
1353@end menu
1354
342b8b6e 1355@node Rpcalc Decls
bfa74976
RS
1356@subsection Declarations for @code{rpcalc}
1357
1358Here are the C and Bison declarations for the reverse polish notation
1359calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1360
1361@example
72d2299c 1362/* Reverse polish notation calculator. */
bfa74976
RS
1363
1364%@{
38a92d50
PE
1365 #define YYSTYPE double
1366 #include <math.h>
1367 int yylex (void);
1368 void yyerror (char const *);
bfa74976
RS
1369%@}
1370
1371%token NUM
1372
72d2299c 1373%% /* Grammar rules and actions follow. */
bfa74976
RS
1374@end example
1375
75f5aaea 1376The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1377preprocessor directives and two forward declarations.
bfa74976
RS
1378
1379The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1380specifying the C data type for semantic values of both tokens and
1381groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1382Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1383don't define it, @code{int} is the default. Because we specify
1384@code{double}, each token and each expression has an associated value,
1385which is a floating point number.
bfa74976
RS
1386
1387The @code{#include} directive is used to declare the exponentiation
1388function @code{pow}.
1389
38a92d50
PE
1390The forward declarations for @code{yylex} and @code{yyerror} are
1391needed because the C language requires that functions be declared
1392before they are used. These functions will be defined in the
1393epilogue, but the parser calls them so they must be declared in the
1394prologue.
1395
704a47c4
AD
1396The second section, Bison declarations, provides information to Bison
1397about the token types (@pxref{Bison Declarations, ,The Bison
1398Declarations Section}). Each terminal symbol that is not a
1399single-character literal must be declared here. (Single-character
bfa74976
RS
1400literals normally don't need to be declared.) In this example, all the
1401arithmetic operators are designated by single-character literals, so the
1402only terminal symbol that needs to be declared is @code{NUM}, the token
1403type for numeric constants.
1404
342b8b6e 1405@node Rpcalc Rules
bfa74976
RS
1406@subsection Grammar Rules for @code{rpcalc}
1407
1408Here are the grammar rules for the reverse polish notation calculator.
1409
1410@example
1411input: /* empty */
1412 | input line
1413;
1414
1415line: '\n'
18b519c0 1416 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1417;
1418
18b519c0
AD
1419exp: NUM @{ $$ = $1; @}
1420 | exp exp '+' @{ $$ = $1 + $2; @}
1421 | exp exp '-' @{ $$ = $1 - $2; @}
1422 | exp exp '*' @{ $$ = $1 * $2; @}
1423 | exp exp '/' @{ $$ = $1 / $2; @}
1424 /* Exponentiation */
1425 | exp exp '^' @{ $$ = pow ($1, $2); @}
1426 /* Unary minus */
1427 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1428;
1429%%
1430@end example
1431
1432The groupings of the rpcalc ``language'' defined here are the expression
1433(given the name @code{exp}), the line of input (@code{line}), and the
1434complete input transcript (@code{input}). Each of these nonterminal
1435symbols has several alternate rules, joined by the @samp{|} punctuator
1436which is read as ``or''. The following sections explain what these rules
1437mean.
1438
1439The semantics of the language is determined by the actions taken when a
1440grouping is recognized. The actions are the C code that appears inside
1441braces. @xref{Actions}.
1442
1443You must specify these actions in C, but Bison provides the means for
1444passing semantic values between the rules. In each action, the
1445pseudo-variable @code{$$} stands for the semantic value for the grouping
1446that the rule is going to construct. Assigning a value to @code{$$} is the
1447main job of most actions. The semantic values of the components of the
1448rule are referred to as @code{$1}, @code{$2}, and so on.
1449
1450@menu
13863333
AD
1451* Rpcalc Input::
1452* Rpcalc Line::
1453* Rpcalc Expr::
bfa74976
RS
1454@end menu
1455
342b8b6e 1456@node Rpcalc Input
bfa74976
RS
1457@subsubsection Explanation of @code{input}
1458
1459Consider the definition of @code{input}:
1460
1461@example
1462input: /* empty */
1463 | input line
1464;
1465@end example
1466
1467This definition reads as follows: ``A complete input is either an empty
1468string, or a complete input followed by an input line''. Notice that
1469``complete input'' is defined in terms of itself. This definition is said
1470to be @dfn{left recursive} since @code{input} appears always as the
1471leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1472
1473The first alternative is empty because there are no symbols between the
1474colon and the first @samp{|}; this means that @code{input} can match an
1475empty string of input (no tokens). We write the rules this way because it
1476is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1477It's conventional to put an empty alternative first and write the comment
1478@samp{/* empty */} in it.
1479
1480The second alternate rule (@code{input line}) handles all nontrivial input.
1481It means, ``After reading any number of lines, read one more line if
1482possible.'' The left recursion makes this rule into a loop. Since the
1483first alternative matches empty input, the loop can be executed zero or
1484more times.
1485
1486The parser function @code{yyparse} continues to process input until a
1487grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1488input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1489
342b8b6e 1490@node Rpcalc Line
bfa74976
RS
1491@subsubsection Explanation of @code{line}
1492
1493Now consider the definition of @code{line}:
1494
1495@example
1496line: '\n'
1497 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1498;
1499@end example
1500
1501The first alternative is a token which is a newline character; this means
1502that rpcalc accepts a blank line (and ignores it, since there is no
1503action). The second alternative is an expression followed by a newline.
1504This is the alternative that makes rpcalc useful. The semantic value of
1505the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1506question is the first symbol in the alternative. The action prints this
1507value, which is the result of the computation the user asked for.
1508
1509This action is unusual because it does not assign a value to @code{$$}. As
1510a consequence, the semantic value associated with the @code{line} is
1511uninitialized (its value will be unpredictable). This would be a bug if
1512that value were ever used, but we don't use it: once rpcalc has printed the
1513value of the user's input line, that value is no longer needed.
1514
342b8b6e 1515@node Rpcalc Expr
bfa74976
RS
1516@subsubsection Explanation of @code{expr}
1517
1518The @code{exp} grouping has several rules, one for each kind of expression.
1519The first rule handles the simplest expressions: those that are just numbers.
1520The second handles an addition-expression, which looks like two expressions
1521followed by a plus-sign. The third handles subtraction, and so on.
1522
1523@example
1524exp: NUM
1525 | exp exp '+' @{ $$ = $1 + $2; @}
1526 | exp exp '-' @{ $$ = $1 - $2; @}
1527 @dots{}
1528 ;
1529@end example
1530
1531We have used @samp{|} to join all the rules for @code{exp}, but we could
1532equally well have written them separately:
1533
1534@example
1535exp: NUM ;
1536exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1537exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1538 @dots{}
1539@end example
1540
1541Most of the rules have actions that compute the value of the expression in
1542terms of the value of its parts. For example, in the rule for addition,
1543@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1544the second one. The third component, @code{'+'}, has no meaningful
1545associated semantic value, but if it had one you could refer to it as
1546@code{$3}. When @code{yyparse} recognizes a sum expression using this
1547rule, the sum of the two subexpressions' values is produced as the value of
1548the entire expression. @xref{Actions}.
1549
1550You don't have to give an action for every rule. When a rule has no
1551action, Bison by default copies the value of @code{$1} into @code{$$}.
1552This is what happens in the first rule (the one that uses @code{NUM}).
1553
1554The formatting shown here is the recommended convention, but Bison does
72d2299c 1555not require it. You can add or change white space as much as you wish.
bfa74976
RS
1556For example, this:
1557
1558@example
99a9344e 1559exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1560@end example
1561
1562@noindent
1563means the same thing as this:
1564
1565@example
1566exp: NUM
1567 | exp exp '+' @{ $$ = $1 + $2; @}
1568 | @dots{}
99a9344e 1569;
bfa74976
RS
1570@end example
1571
1572@noindent
1573The latter, however, is much more readable.
1574
342b8b6e 1575@node Rpcalc Lexer
bfa74976
RS
1576@subsection The @code{rpcalc} Lexical Analyzer
1577@cindex writing a lexical analyzer
1578@cindex lexical analyzer, writing
1579
704a47c4
AD
1580The lexical analyzer's job is low-level parsing: converting characters
1581or sequences of characters into tokens. The Bison parser gets its
1582tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1583Analyzer Function @code{yylex}}.
bfa74976 1584
c827f760
PE
1585Only a simple lexical analyzer is needed for the @acronym{RPN}
1586calculator. This
bfa74976
RS
1587lexical analyzer skips blanks and tabs, then reads in numbers as
1588@code{double} and returns them as @code{NUM} tokens. Any other character
1589that isn't part of a number is a separate token. Note that the token-code
1590for such a single-character token is the character itself.
1591
1592The return value of the lexical analyzer function is a numeric code which
1593represents a token type. The same text used in Bison rules to stand for
1594this token type is also a C expression for the numeric code for the type.
1595This works in two ways. If the token type is a character literal, then its
e966383b 1596numeric code is that of the character; you can use the same
bfa74976
RS
1597character literal in the lexical analyzer to express the number. If the
1598token type is an identifier, that identifier is defined by Bison as a C
1599macro whose definition is the appropriate number. In this example,
1600therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1601
1964ad8c
AD
1602The semantic value of the token (if it has one) is stored into the
1603global variable @code{yylval}, which is where the Bison parser will look
1604for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
1605defined at the beginning of the grammar; @pxref{Rpcalc Decls,
1606,Declarations for @code{rpcalc}}.)
bfa74976 1607
72d2299c
PE
1608A token type code of zero is returned if the end-of-input is encountered.
1609(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1610
1611Here is the code for the lexical analyzer:
1612
1613@example
1614@group
72d2299c 1615/* The lexical analyzer returns a double floating point
e966383b 1616 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1617 of the character read if not a number. It skips all blanks
1618 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1619
1620#include <ctype.h>
1621@end group
1622
1623@group
13863333
AD
1624int
1625yylex (void)
bfa74976
RS
1626@{
1627 int c;
1628
72d2299c 1629 /* Skip white space. */
13863333 1630 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1631 ;
1632@end group
1633@group
72d2299c 1634 /* Process numbers. */
13863333 1635 if (c == '.' || isdigit (c))
bfa74976
RS
1636 @{
1637 ungetc (c, stdin);
1638 scanf ("%lf", &yylval);
1639 return NUM;
1640 @}
1641@end group
1642@group
72d2299c 1643 /* Return end-of-input. */
13863333 1644 if (c == EOF)
bfa74976 1645 return 0;
72d2299c 1646 /* Return a single char. */
13863333 1647 return c;
bfa74976
RS
1648@}
1649@end group
1650@end example
1651
342b8b6e 1652@node Rpcalc Main
bfa74976
RS
1653@subsection The Controlling Function
1654@cindex controlling function
1655@cindex main function in simple example
1656
1657In keeping with the spirit of this example, the controlling function is
1658kept to the bare minimum. The only requirement is that it call
1659@code{yyparse} to start the process of parsing.
1660
1661@example
1662@group
13863333
AD
1663int
1664main (void)
bfa74976 1665@{
13863333 1666 return yyparse ();
bfa74976
RS
1667@}
1668@end group
1669@end example
1670
342b8b6e 1671@node Rpcalc Error
bfa74976
RS
1672@subsection The Error Reporting Routine
1673@cindex error reporting routine
1674
1675When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1676function @code{yyerror} to print an error message (usually but not
6e649e65 1677always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1678@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1679here is the definition we will use:
bfa74976
RS
1680
1681@example
1682@group
1683#include <stdio.h>
1684
38a92d50 1685/* Called by yyparse on error. */
13863333 1686void
38a92d50 1687yyerror (char const *s)
bfa74976 1688@{
4e03e201 1689 fprintf (stderr, "%s\n", s);
bfa74976
RS
1690@}
1691@end group
1692@end example
1693
1694After @code{yyerror} returns, the Bison parser may recover from the error
1695and continue parsing if the grammar contains a suitable error rule
1696(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1697have not written any error rules in this example, so any invalid input will
1698cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1699real calculator, but it is adequate for the first example.
bfa74976 1700
342b8b6e 1701@node Rpcalc Gen
bfa74976
RS
1702@subsection Running Bison to Make the Parser
1703@cindex running Bison (introduction)
1704
ceed8467
AD
1705Before running Bison to produce a parser, we need to decide how to
1706arrange all the source code in one or more source files. For such a
1707simple example, the easiest thing is to put everything in one file. The
1708definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1709end, in the epilogue of the file
75f5aaea 1710(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1711
1712For a large project, you would probably have several source files, and use
1713@code{make} to arrange to recompile them.
1714
1715With all the source in a single file, you use the following command to
1716convert it into a parser file:
1717
1718@example
1719bison @var{file_name}.y
1720@end example
1721
1722@noindent
1723In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
c827f760 1724@sc{calc}ulator''). Bison produces a file named @file{@var{file_name}.tab.c},
72d2299c 1725removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1726Bison contains the source code for @code{yyparse}. The additional
1727functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1728are copied verbatim to the output.
1729
342b8b6e 1730@node Rpcalc Compile
bfa74976
RS
1731@subsection Compiling the Parser File
1732@cindex compiling the parser
1733
1734Here is how to compile and run the parser file:
1735
1736@example
1737@group
1738# @r{List files in current directory.}
9edcd895 1739$ @kbd{ls}
bfa74976
RS
1740rpcalc.tab.c rpcalc.y
1741@end group
1742
1743@group
1744# @r{Compile the Bison parser.}
1745# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1746$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1747@end group
1748
1749@group
1750# @r{List files again.}
9edcd895 1751$ @kbd{ls}
bfa74976
RS
1752rpcalc rpcalc.tab.c rpcalc.y
1753@end group
1754@end example
1755
1756The file @file{rpcalc} now contains the executable code. Here is an
1757example session using @code{rpcalc}.
1758
1759@example
9edcd895
AD
1760$ @kbd{rpcalc}
1761@kbd{4 9 +}
bfa74976 176213
9edcd895 1763@kbd{3 7 + 3 4 5 *+-}
bfa74976 1764-13
9edcd895 1765@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 176613
9edcd895 1767@kbd{5 6 / 4 n +}
bfa74976 1768-3.166666667
9edcd895 1769@kbd{3 4 ^} @r{Exponentiation}
bfa74976 177081
9edcd895
AD
1771@kbd{^D} @r{End-of-file indicator}
1772$
bfa74976
RS
1773@end example
1774
342b8b6e 1775@node Infix Calc
bfa74976
RS
1776@section Infix Notation Calculator: @code{calc}
1777@cindex infix notation calculator
1778@cindex @code{calc}
1779@cindex calculator, infix notation
1780
1781We now modify rpcalc to handle infix operators instead of postfix. Infix
1782notation involves the concept of operator precedence and the need for
1783parentheses nested to arbitrary depth. Here is the Bison code for
1784@file{calc.y}, an infix desk-top calculator.
1785
1786@example
38a92d50 1787/* Infix notation calculator. */
bfa74976
RS
1788
1789%@{
38a92d50
PE
1790 #define YYSTYPE double
1791 #include <math.h>
1792 #include <stdio.h>
1793 int yylex (void);
1794 void yyerror (char const *);
bfa74976
RS
1795%@}
1796
38a92d50 1797/* Bison declarations. */
bfa74976
RS
1798%token NUM
1799%left '-' '+'
1800%left '*' '/'
1801%left NEG /* negation--unary minus */
38a92d50 1802%right '^' /* exponentiation */
bfa74976 1803
38a92d50
PE
1804%% /* The grammar follows. */
1805input: /* empty */
bfa74976
RS
1806 | input line
1807;
1808
1809line: '\n'
1810 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1811;
1812
1813exp: NUM @{ $$ = $1; @}
1814 | exp '+' exp @{ $$ = $1 + $3; @}
1815 | exp '-' exp @{ $$ = $1 - $3; @}
1816 | exp '*' exp @{ $$ = $1 * $3; @}
1817 | exp '/' exp @{ $$ = $1 / $3; @}
1818 | '-' exp %prec NEG @{ $$ = -$2; @}
1819 | exp '^' exp @{ $$ = pow ($1, $3); @}
1820 | '(' exp ')' @{ $$ = $2; @}
1821;
1822%%
1823@end example
1824
1825@noindent
ceed8467
AD
1826The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1827same as before.
bfa74976
RS
1828
1829There are two important new features shown in this code.
1830
1831In the second section (Bison declarations), @code{%left} declares token
1832types and says they are left-associative operators. The declarations
1833@code{%left} and @code{%right} (right associativity) take the place of
1834@code{%token} which is used to declare a token type name without
1835associativity. (These tokens are single-character literals, which
1836ordinarily don't need to be declared. We declare them here to specify
1837the associativity.)
1838
1839Operator precedence is determined by the line ordering of the
1840declarations; the higher the line number of the declaration (lower on
1841the page or screen), the higher the precedence. Hence, exponentiation
1842has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1843by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1844Precedence}.
bfa74976 1845
704a47c4
AD
1846The other important new feature is the @code{%prec} in the grammar
1847section for the unary minus operator. The @code{%prec} simply instructs
1848Bison that the rule @samp{| '-' exp} has the same precedence as
1849@code{NEG}---in this case the next-to-highest. @xref{Contextual
1850Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1851
1852Here is a sample run of @file{calc.y}:
1853
1854@need 500
1855@example
9edcd895
AD
1856$ @kbd{calc}
1857@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 18586.880952381
9edcd895 1859@kbd{-56 + 2}
bfa74976 1860-54
9edcd895 1861@kbd{3 ^ 2}
bfa74976
RS
18629
1863@end example
1864
342b8b6e 1865@node Simple Error Recovery
bfa74976
RS
1866@section Simple Error Recovery
1867@cindex error recovery, simple
1868
1869Up to this point, this manual has not addressed the issue of @dfn{error
1870recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1871error. All we have handled is error reporting with @code{yyerror}.
1872Recall that by default @code{yyparse} returns after calling
1873@code{yyerror}. This means that an erroneous input line causes the
1874calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1875
1876The Bison language itself includes the reserved word @code{error}, which
1877may be included in the grammar rules. In the example below it has
1878been added to one of the alternatives for @code{line}:
1879
1880@example
1881@group
1882line: '\n'
1883 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1884 | error '\n' @{ yyerrok; @}
1885;
1886@end group
1887@end example
1888
ceed8467 1889This addition to the grammar allows for simple error recovery in the
6e649e65 1890event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1891read, the error will be recognized by the third rule for @code{line},
1892and parsing will continue. (The @code{yyerror} function is still called
1893upon to print its message as well.) The action executes the statement
1894@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1895that error recovery is complete (@pxref{Error Recovery}). Note the
1896difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1897misprint.
bfa74976
RS
1898
1899This form of error recovery deals with syntax errors. There are other
1900kinds of errors; for example, division by zero, which raises an exception
1901signal that is normally fatal. A real calculator program must handle this
1902signal and use @code{longjmp} to return to @code{main} and resume parsing
1903input lines; it would also have to discard the rest of the current line of
1904input. We won't discuss this issue further because it is not specific to
1905Bison programs.
1906
342b8b6e
AD
1907@node Location Tracking Calc
1908@section Location Tracking Calculator: @code{ltcalc}
1909@cindex location tracking calculator
1910@cindex @code{ltcalc}
1911@cindex calculator, location tracking
1912
9edcd895
AD
1913This example extends the infix notation calculator with location
1914tracking. This feature will be used to improve the error messages. For
1915the sake of clarity, this example is a simple integer calculator, since
1916most of the work needed to use locations will be done in the lexical
72d2299c 1917analyzer.
342b8b6e
AD
1918
1919@menu
1920* Decls: Ltcalc Decls. Bison and C declarations for ltcalc.
1921* Rules: Ltcalc Rules. Grammar rules for ltcalc, with explanations.
1922* Lexer: Ltcalc Lexer. The lexical analyzer.
1923@end menu
1924
1925@node Ltcalc Decls
1926@subsection Declarations for @code{ltcalc}
1927
9edcd895
AD
1928The C and Bison declarations for the location tracking calculator are
1929the same as the declarations for the infix notation calculator.
342b8b6e
AD
1930
1931@example
1932/* Location tracking calculator. */
1933
1934%@{
38a92d50
PE
1935 #define YYSTYPE int
1936 #include <math.h>
1937 int yylex (void);
1938 void yyerror (char const *);
342b8b6e
AD
1939%@}
1940
1941/* Bison declarations. */
1942%token NUM
1943
1944%left '-' '+'
1945%left '*' '/'
1946%left NEG
1947%right '^'
1948
38a92d50 1949%% /* The grammar follows. */
342b8b6e
AD
1950@end example
1951
9edcd895
AD
1952@noindent
1953Note there are no declarations specific to locations. Defining a data
1954type for storing locations is not needed: we will use the type provided
1955by default (@pxref{Location Type, ,Data Types of Locations}), which is a
1956four member structure with the following integer fields:
1957@code{first_line}, @code{first_column}, @code{last_line} and
1958@code{last_column}.
342b8b6e
AD
1959
1960@node Ltcalc Rules
1961@subsection Grammar Rules for @code{ltcalc}
1962
9edcd895
AD
1963Whether handling locations or not has no effect on the syntax of your
1964language. Therefore, grammar rules for this example will be very close
1965to those of the previous example: we will only modify them to benefit
1966from the new information.
342b8b6e 1967
9edcd895
AD
1968Here, we will use locations to report divisions by zero, and locate the
1969wrong expressions or subexpressions.
342b8b6e
AD
1970
1971@example
1972@group
1973input : /* empty */
1974 | input line
1975;
1976@end group
1977
1978@group
1979line : '\n'
1980 | exp '\n' @{ printf ("%d\n", $1); @}
1981;
1982@end group
1983
1984@group
1985exp : NUM @{ $$ = $1; @}
1986 | exp '+' exp @{ $$ = $1 + $3; @}
1987 | exp '-' exp @{ $$ = $1 - $3; @}
1988 | exp '*' exp @{ $$ = $1 * $3; @}
1989@end group
342b8b6e 1990@group
9edcd895 1991 | exp '/' exp
342b8b6e
AD
1992 @{
1993 if ($3)
1994 $$ = $1 / $3;
1995 else
1996 @{
1997 $$ = 1;
9edcd895
AD
1998 fprintf (stderr, "%d.%d-%d.%d: division by zero",
1999 @@3.first_line, @@3.first_column,
2000 @@3.last_line, @@3.last_column);
342b8b6e
AD
2001 @}
2002 @}
2003@end group
2004@group
2005 | '-' exp %preg NEG @{ $$ = -$2; @}
2006 | exp '^' exp @{ $$ = pow ($1, $3); @}
2007 | '(' exp ')' @{ $$ = $2; @}
2008@end group
2009@end example
2010
2011This code shows how to reach locations inside of semantic actions, by
2012using the pseudo-variables @code{@@@var{n}} for rule components, and the
2013pseudo-variable @code{@@$} for groupings.
2014
9edcd895
AD
2015We don't need to assign a value to @code{@@$}: the output parser does it
2016automatically. By default, before executing the C code of each action,
2017@code{@@$} is set to range from the beginning of @code{@@1} to the end
2018of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2019can be redefined (@pxref{Location Default Action, , Default Action for
2020Locations}), and for very specific rules, @code{@@$} can be computed by
2021hand.
342b8b6e
AD
2022
2023@node Ltcalc Lexer
2024@subsection The @code{ltcalc} Lexical Analyzer.
2025
9edcd895 2026Until now, we relied on Bison's defaults to enable location
72d2299c 2027tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2028able to feed the parser with the token locations, as it already does for
2029semantic values.
342b8b6e 2030
9edcd895
AD
2031To this end, we must take into account every single character of the
2032input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2033
2034@example
2035@group
2036int
2037yylex (void)
2038@{
2039 int c;
18b519c0 2040@end group
342b8b6e 2041
18b519c0 2042@group
72d2299c 2043 /* Skip white space. */
342b8b6e
AD
2044 while ((c = getchar ()) == ' ' || c == '\t')
2045 ++yylloc.last_column;
18b519c0 2046@end group
342b8b6e 2047
18b519c0 2048@group
72d2299c 2049 /* Step. */
342b8b6e
AD
2050 yylloc.first_line = yylloc.last_line;
2051 yylloc.first_column = yylloc.last_column;
2052@end group
2053
2054@group
72d2299c 2055 /* Process numbers. */
342b8b6e
AD
2056 if (isdigit (c))
2057 @{
2058 yylval = c - '0';
2059 ++yylloc.last_column;
2060 while (isdigit (c = getchar ()))
2061 @{
2062 ++yylloc.last_column;
2063 yylval = yylval * 10 + c - '0';
2064 @}
2065 ungetc (c, stdin);
2066 return NUM;
2067 @}
2068@end group
2069
72d2299c 2070 /* Return end-of-input. */
342b8b6e
AD
2071 if (c == EOF)
2072 return 0;
2073
72d2299c 2074 /* Return a single char, and update location. */
342b8b6e
AD
2075 if (c == '\n')
2076 @{
2077 ++yylloc.last_line;
2078 yylloc.last_column = 0;
2079 @}
2080 else
2081 ++yylloc.last_column;
2082 return c;
2083@}
2084@end example
2085
9edcd895
AD
2086Basically, the lexical analyzer performs the same processing as before:
2087it skips blanks and tabs, and reads numbers or single-character tokens.
2088In addition, it updates @code{yylloc}, the global variable (of type
2089@code{YYLTYPE}) containing the token's location.
342b8b6e 2090
9edcd895 2091Now, each time this function returns a token, the parser has its number
72d2299c 2092as well as its semantic value, and its location in the text. The last
9edcd895
AD
2093needed change is to initialize @code{yylloc}, for example in the
2094controlling function:
342b8b6e
AD
2095
2096@example
9edcd895 2097@group
342b8b6e
AD
2098int
2099main (void)
2100@{
2101 yylloc.first_line = yylloc.last_line = 1;
2102 yylloc.first_column = yylloc.last_column = 0;
2103 return yyparse ();
2104@}
9edcd895 2105@end group
342b8b6e
AD
2106@end example
2107
9edcd895
AD
2108Remember that computing locations is not a matter of syntax. Every
2109character must be associated to a location update, whether it is in
2110valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2111
2112@node Multi-function Calc
bfa74976
RS
2113@section Multi-Function Calculator: @code{mfcalc}
2114@cindex multi-function calculator
2115@cindex @code{mfcalc}
2116@cindex calculator, multi-function
2117
2118Now that the basics of Bison have been discussed, it is time to move on to
2119a more advanced problem. The above calculators provided only five
2120functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2121be nice to have a calculator that provides other mathematical functions such
2122as @code{sin}, @code{cos}, etc.
2123
2124It is easy to add new operators to the infix calculator as long as they are
2125only single-character literals. The lexical analyzer @code{yylex} passes
9ecbd125 2126back all nonnumber characters as tokens, so new grammar rules suffice for
bfa74976
RS
2127adding a new operator. But we want something more flexible: built-in
2128functions whose syntax has this form:
2129
2130@example
2131@var{function_name} (@var{argument})
2132@end example
2133
2134@noindent
2135At the same time, we will add memory to the calculator, by allowing you
2136to create named variables, store values in them, and use them later.
2137Here is a sample session with the multi-function calculator:
2138
2139@example
9edcd895
AD
2140$ @kbd{mfcalc}
2141@kbd{pi = 3.141592653589}
bfa74976 21423.1415926536
9edcd895 2143@kbd{sin(pi)}
bfa74976 21440.0000000000
9edcd895 2145@kbd{alpha = beta1 = 2.3}
bfa74976 21462.3000000000
9edcd895 2147@kbd{alpha}
bfa74976 21482.3000000000
9edcd895 2149@kbd{ln(alpha)}
bfa74976 21500.8329091229
9edcd895 2151@kbd{exp(ln(beta1))}
bfa74976 21522.3000000000
9edcd895 2153$
bfa74976
RS
2154@end example
2155
2156Note that multiple assignment and nested function calls are permitted.
2157
2158@menu
2159* Decl: Mfcalc Decl. Bison declarations for multi-function calculator.
2160* Rules: Mfcalc Rules. Grammar rules for the calculator.
2161* Symtab: Mfcalc Symtab. Symbol table management subroutines.
2162@end menu
2163
342b8b6e 2164@node Mfcalc Decl
bfa74976
RS
2165@subsection Declarations for @code{mfcalc}
2166
2167Here are the C and Bison declarations for the multi-function calculator.
2168
2169@smallexample
18b519c0 2170@group
bfa74976 2171%@{
38a92d50
PE
2172 #include <math.h> /* For math functions, cos(), sin(), etc. */
2173 #include "calc.h" /* Contains definition of `symrec'. */
2174 int yylex (void);
2175 void yyerror (char const *);
bfa74976 2176%@}
18b519c0
AD
2177@end group
2178@group
bfa74976 2179%union @{
38a92d50
PE
2180 double val; /* For returning numbers. */
2181 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2182@}
18b519c0 2183@end group
38a92d50
PE
2184%token <val> NUM /* Simple double precision number. */
2185%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2186%type <val> exp
2187
18b519c0 2188@group
bfa74976
RS
2189%right '='
2190%left '-' '+'
2191%left '*' '/'
38a92d50
PE
2192%left NEG /* negation--unary minus */
2193%right '^' /* exponentiation */
18b519c0 2194@end group
38a92d50 2195%% /* The grammar follows. */
bfa74976
RS
2196@end smallexample
2197
2198The above grammar introduces only two new features of the Bison language.
2199These features allow semantic values to have various data types
2200(@pxref{Multiple Types, ,More Than One Value Type}).
2201
2202The @code{%union} declaration specifies the entire list of possible types;
2203this is instead of defining @code{YYSTYPE}. The allowable types are now
2204double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2205the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2206
2207Since values can now have various types, it is necessary to associate a
2208type with each grammar symbol whose semantic value is used. These symbols
2209are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2210declarations are augmented with information about their data type (placed
2211between angle brackets).
2212
704a47c4
AD
2213The Bison construct @code{%type} is used for declaring nonterminal
2214symbols, just as @code{%token} is used for declaring token types. We
2215have not used @code{%type} before because nonterminal symbols are
2216normally declared implicitly by the rules that define them. But
2217@code{exp} must be declared explicitly so we can specify its value type.
2218@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2219
342b8b6e 2220@node Mfcalc Rules
bfa74976
RS
2221@subsection Grammar Rules for @code{mfcalc}
2222
2223Here are the grammar rules for the multi-function calculator.
2224Most of them are copied directly from @code{calc}; three rules,
2225those which mention @code{VAR} or @code{FNCT}, are new.
2226
2227@smallexample
18b519c0 2228@group
bfa74976
RS
2229input: /* empty */
2230 | input line
2231;
18b519c0 2232@end group
bfa74976 2233
18b519c0 2234@group
bfa74976
RS
2235line:
2236 '\n'
2237 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2238 | error '\n' @{ yyerrok; @}
2239;
18b519c0 2240@end group
bfa74976 2241
18b519c0 2242@group
bfa74976
RS
2243exp: NUM @{ $$ = $1; @}
2244 | VAR @{ $$ = $1->value.var; @}
2245 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2246 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2247 | exp '+' exp @{ $$ = $1 + $3; @}
2248 | exp '-' exp @{ $$ = $1 - $3; @}
2249 | exp '*' exp @{ $$ = $1 * $3; @}
2250 | exp '/' exp @{ $$ = $1 / $3; @}
2251 | '-' exp %prec NEG @{ $$ = -$2; @}
2252 | exp '^' exp @{ $$ = pow ($1, $3); @}
2253 | '(' exp ')' @{ $$ = $2; @}
2254;
18b519c0 2255@end group
38a92d50 2256/* End of grammar. */
bfa74976
RS
2257%%
2258@end smallexample
2259
342b8b6e 2260@node Mfcalc Symtab
bfa74976
RS
2261@subsection The @code{mfcalc} Symbol Table
2262@cindex symbol table example
2263
2264The multi-function calculator requires a symbol table to keep track of the
2265names and meanings of variables and functions. This doesn't affect the
2266grammar rules (except for the actions) or the Bison declarations, but it
2267requires some additional C functions for support.
2268
2269The symbol table itself consists of a linked list of records. Its
2270definition, which is kept in the header @file{calc.h}, is as follows. It
2271provides for either functions or variables to be placed in the table.
2272
2273@smallexample
2274@group
38a92d50 2275/* Function type. */
32dfccf8 2276typedef double (*func_t) (double);
72f889cc 2277@end group
32dfccf8 2278
72f889cc 2279@group
38a92d50 2280/* Data type for links in the chain of symbols. */
bfa74976
RS
2281struct symrec
2282@{
38a92d50 2283 char *name; /* name of symbol */
bfa74976 2284 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2285 union
2286 @{
38a92d50
PE
2287 double var; /* value of a VAR */
2288 func_t fnctptr; /* value of a FNCT */
bfa74976 2289 @} value;
38a92d50 2290 struct symrec *next; /* link field */
bfa74976
RS
2291@};
2292@end group
2293
2294@group
2295typedef struct symrec symrec;
2296
38a92d50 2297/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2298extern symrec *sym_table;
2299
a730d142 2300symrec *putsym (char const *, int);
38a92d50 2301symrec *getsym (char const *);
bfa74976
RS
2302@end group
2303@end smallexample
2304
2305The new version of @code{main} includes a call to @code{init_table}, a
2306function that initializes the symbol table. Here it is, and
2307@code{init_table} as well:
2308
2309@smallexample
bfa74976
RS
2310#include <stdio.h>
2311
18b519c0 2312@group
38a92d50 2313/* Called by yyparse on error. */
13863333 2314void
38a92d50 2315yyerror (char const *s)
bfa74976
RS
2316@{
2317 printf ("%s\n", s);
2318@}
18b519c0 2319@end group
bfa74976 2320
18b519c0 2321@group
bfa74976
RS
2322struct init
2323@{
38a92d50
PE
2324 char const *fname;
2325 double (*fnct) (double);
bfa74976
RS
2326@};
2327@end group
2328
2329@group
38a92d50 2330struct init const arith_fncts[] =
13863333 2331@{
32dfccf8
AD
2332 "sin", sin,
2333 "cos", cos,
13863333 2334 "atan", atan,
32dfccf8
AD
2335 "ln", log,
2336 "exp", exp,
13863333
AD
2337 "sqrt", sqrt,
2338 0, 0
2339@};
18b519c0 2340@end group
bfa74976 2341
18b519c0 2342@group
bfa74976 2343/* The symbol table: a chain of `struct symrec'. */
38a92d50 2344symrec *sym_table;
bfa74976
RS
2345@end group
2346
2347@group
72d2299c 2348/* Put arithmetic functions in table. */
13863333
AD
2349void
2350init_table (void)
bfa74976
RS
2351@{
2352 int i;
2353 symrec *ptr;
2354 for (i = 0; arith_fncts[i].fname != 0; i++)
2355 @{
2356 ptr = putsym (arith_fncts[i].fname, FNCT);
2357 ptr->value.fnctptr = arith_fncts[i].fnct;
2358 @}
2359@}
2360@end group
38a92d50
PE
2361
2362@group
2363int
2364main (void)
2365@{
2366 init_table ();
2367 return yyparse ();
2368@}
2369@end group
bfa74976
RS
2370@end smallexample
2371
2372By simply editing the initialization list and adding the necessary include
2373files, you can add additional functions to the calculator.
2374
2375Two important functions allow look-up and installation of symbols in the
2376symbol table. The function @code{putsym} is passed a name and the type
2377(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2378linked to the front of the list, and a pointer to the object is returned.
2379The function @code{getsym} is passed the name of the symbol to look up. If
2380found, a pointer to that symbol is returned; otherwise zero is returned.
2381
2382@smallexample
2383symrec *
38a92d50 2384putsym (char const *sym_name, int sym_type)
bfa74976
RS
2385@{
2386 symrec *ptr;
2387 ptr = (symrec *) malloc (sizeof (symrec));
2388 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2389 strcpy (ptr->name,sym_name);
2390 ptr->type = sym_type;
72d2299c 2391 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2392 ptr->next = (struct symrec *)sym_table;
2393 sym_table = ptr;
2394 return ptr;
2395@}
2396
2397symrec *
38a92d50 2398getsym (char const *sym_name)
bfa74976
RS
2399@{
2400 symrec *ptr;
2401 for (ptr = sym_table; ptr != (symrec *) 0;
2402 ptr = (symrec *)ptr->next)
2403 if (strcmp (ptr->name,sym_name) == 0)
2404 return ptr;
2405 return 0;
2406@}
2407@end smallexample
2408
2409The function @code{yylex} must now recognize variables, numeric values, and
2410the single-character arithmetic operators. Strings of alphanumeric
14ded682 2411characters with a leading non-digit are recognized as either variables or
bfa74976
RS
2412functions depending on what the symbol table says about them.
2413
2414The string is passed to @code{getsym} for look up in the symbol table. If
2415the name appears in the table, a pointer to its location and its type
2416(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2417already in the table, then it is installed as a @code{VAR} using
2418@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2419returned to @code{yyparse}.
bfa74976
RS
2420
2421No change is needed in the handling of numeric values and arithmetic
2422operators in @code{yylex}.
2423
2424@smallexample
2425@group
2426#include <ctype.h>
18b519c0 2427@end group
13863333 2428
18b519c0 2429@group
13863333
AD
2430int
2431yylex (void)
bfa74976
RS
2432@{
2433 int c;
2434
72d2299c 2435 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2436 while ((c = getchar ()) == ' ' || c == '\t');
2437
2438 if (c == EOF)
2439 return 0;
2440@end group
2441
2442@group
2443 /* Char starts a number => parse the number. */
2444 if (c == '.' || isdigit (c))
2445 @{
2446 ungetc (c, stdin);
2447 scanf ("%lf", &yylval.val);
2448 return NUM;
2449 @}
2450@end group
2451
2452@group
2453 /* Char starts an identifier => read the name. */
2454 if (isalpha (c))
2455 @{
2456 symrec *s;
2457 static char *symbuf = 0;
2458 static int length = 0;
2459 int i;
2460@end group
2461
2462@group
2463 /* Initially make the buffer long enough
2464 for a 40-character symbol name. */
2465 if (length == 0)
2466 length = 40, symbuf = (char *)malloc (length + 1);
2467
2468 i = 0;
2469 do
2470@end group
2471@group
2472 @{
2473 /* If buffer is full, make it bigger. */
2474 if (i == length)
2475 @{
2476 length *= 2;
18b519c0 2477 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2478 @}
2479 /* Add this character to the buffer. */
2480 symbuf[i++] = c;
2481 /* Get another character. */
2482 c = getchar ();
2483 @}
2484@end group
2485@group
72d2299c 2486 while (isalnum (c));
bfa74976
RS
2487
2488 ungetc (c, stdin);
2489 symbuf[i] = '\0';
2490@end group
2491
2492@group
2493 s = getsym (symbuf);
2494 if (s == 0)
2495 s = putsym (symbuf, VAR);
2496 yylval.tptr = s;
2497 return s->type;
2498 @}
2499
2500 /* Any other character is a token by itself. */
2501 return c;
2502@}
2503@end group
2504@end smallexample
2505
72d2299c 2506This program is both powerful and flexible. You may easily add new
704a47c4
AD
2507functions, and it is a simple job to modify this code to install
2508predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2509
342b8b6e 2510@node Exercises
bfa74976
RS
2511@section Exercises
2512@cindex exercises
2513
2514@enumerate
2515@item
2516Add some new functions from @file{math.h} to the initialization list.
2517
2518@item
2519Add another array that contains constants and their values. Then
2520modify @code{init_table} to add these constants to the symbol table.
2521It will be easiest to give the constants type @code{VAR}.
2522
2523@item
2524Make the program report an error if the user refers to an
2525uninitialized variable in any way except to store a value in it.
2526@end enumerate
2527
342b8b6e 2528@node Grammar File
bfa74976
RS
2529@chapter Bison Grammar Files
2530
2531Bison takes as input a context-free grammar specification and produces a
2532C-language function that recognizes correct instances of the grammar.
2533
2534The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2535@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2536
2537@menu
2538* Grammar Outline:: Overall layout of the grammar file.
2539* Symbols:: Terminal and nonterminal symbols.
2540* Rules:: How to write grammar rules.
2541* Recursion:: Writing recursive rules.
2542* Semantics:: Semantic values and actions.
847bf1f5 2543* Locations:: Locations and actions.
bfa74976
RS
2544* Declarations:: All kinds of Bison declarations are described here.
2545* Multiple Parsers:: Putting more than one Bison parser in one program.
2546@end menu
2547
342b8b6e 2548@node Grammar Outline
bfa74976
RS
2549@section Outline of a Bison Grammar
2550
2551A Bison grammar file has four main sections, shown here with the
2552appropriate delimiters:
2553
2554@example
2555%@{
38a92d50 2556 @var{Prologue}
bfa74976
RS
2557%@}
2558
2559@var{Bison declarations}
2560
2561%%
2562@var{Grammar rules}
2563%%
2564
75f5aaea 2565@var{Epilogue}
bfa74976
RS
2566@end example
2567
2568Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2569As a @acronym{GNU} extension, @samp{//} introduces a comment that
2570continues until end of line.
bfa74976
RS
2571
2572@menu
75f5aaea 2573* Prologue:: Syntax and usage of the prologue.
bfa74976
RS
2574* Bison Declarations:: Syntax and usage of the Bison declarations section.
2575* Grammar Rules:: Syntax and usage of the grammar rules section.
75f5aaea 2576* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2577@end menu
2578
38a92d50 2579@node Prologue
75f5aaea
MA
2580@subsection The prologue
2581@cindex declarations section
2582@cindex Prologue
2583@cindex declarations
bfa74976 2584
08e49d20 2585The @var{Prologue} section contains macro definitions and
bfa74976
RS
2586declarations of functions and variables that are used in the actions in the
2587grammar rules. These are copied to the beginning of the parser file so
2588that they precede the definition of @code{yyparse}. You can use
2589@samp{#include} to get the declarations from a header file. If you don't
2590need any C declarations, you may omit the @samp{%@{} and @samp{%@}}
2591delimiters that bracket this section.
2592
c732d2c6
AD
2593You may have more than one @var{Prologue} section, intermixed with the
2594@var{Bison declarations}. This allows you to have C and Bison
2595declarations that refer to each other. For example, the @code{%union}
2596declaration may use types defined in a header file, and you may wish to
2597prototype functions that take arguments of type @code{YYSTYPE}. This
2598can be done with two @var{Prologue} blocks, one before and one after the
2599@code{%union} declaration.
2600
2601@smallexample
2602%@{
38a92d50
PE
2603 #include <stdio.h>
2604 #include "ptypes.h"
c732d2c6
AD
2605%@}
2606
2607%union @{
779e7ceb 2608 long int n;
c732d2c6
AD
2609 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2610@}
2611
2612%@{
38a92d50
PE
2613 static void print_token_value (FILE *, int, YYSTYPE);
2614 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2615%@}
2616
2617@dots{}
2618@end smallexample
2619
342b8b6e 2620@node Bison Declarations
bfa74976
RS
2621@subsection The Bison Declarations Section
2622@cindex Bison declarations (introduction)
2623@cindex declarations, Bison (introduction)
2624
2625The @var{Bison declarations} section contains declarations that define
2626terminal and nonterminal symbols, specify precedence, and so on.
2627In some simple grammars you may not need any declarations.
2628@xref{Declarations, ,Bison Declarations}.
2629
342b8b6e 2630@node Grammar Rules
bfa74976
RS
2631@subsection The Grammar Rules Section
2632@cindex grammar rules section
2633@cindex rules section for grammar
2634
2635The @dfn{grammar rules} section contains one or more Bison grammar
2636rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
2637
2638There must always be at least one grammar rule, and the first
2639@samp{%%} (which precedes the grammar rules) may never be omitted even
2640if it is the first thing in the file.
2641
38a92d50 2642@node Epilogue
75f5aaea 2643@subsection The epilogue
bfa74976 2644@cindex additional C code section
75f5aaea 2645@cindex epilogue
bfa74976
RS
2646@cindex C code, section for additional
2647
08e49d20
PE
2648The @var{Epilogue} is copied verbatim to the end of the parser file, just as
2649the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
2650place to put anything that you want to have in the parser file but which need
2651not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
2652definitions of @code{yylex} and @code{yyerror} often go here. Because
2653C requires functions to be declared before being used, you often need
2654to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 2655even if you define them in the Epilogue.
75f5aaea 2656@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
2657
2658If the last section is empty, you may omit the @samp{%%} that separates it
2659from the grammar rules.
2660
38a92d50
PE
2661The Bison parser itself contains many macros and identifiers whose
2662names start with @samp{yy} or @samp{YY}, so it is a
bfa74976 2663good idea to avoid using any such names (except those documented in this
75f5aaea 2664manual) in the epilogue of the grammar file.
bfa74976 2665
342b8b6e 2666@node Symbols
bfa74976
RS
2667@section Symbols, Terminal and Nonterminal
2668@cindex nonterminal symbol
2669@cindex terminal symbol
2670@cindex token type
2671@cindex symbol
2672
2673@dfn{Symbols} in Bison grammars represent the grammatical classifications
2674of the language.
2675
2676A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
2677class of syntactically equivalent tokens. You use the symbol in grammar
2678rules to mean that a token in that class is allowed. The symbol is
2679represented in the Bison parser by a numeric code, and the @code{yylex}
2680function returns a token type code to indicate what kind of token has been
2681read. You don't need to know what the code value is; you can use the
2682symbol to stand for it.
2683
2684A @dfn{nonterminal symbol} stands for a class of syntactically equivalent
2685groupings. The symbol name is used in writing grammar rules. By convention,
2686it should be all lower case.
2687
2688Symbol names can contain letters, digits (not at the beginning),
2689underscores and periods. Periods make sense only in nonterminals.
2690
931c7513 2691There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
2692
2693@itemize @bullet
2694@item
2695A @dfn{named token type} is written with an identifier, like an
c827f760 2696identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
2697such name must be defined with a Bison declaration such as
2698@code{%token}. @xref{Token Decl, ,Token Type Names}.
2699
2700@item
2701@cindex character token
2702@cindex literal token
2703@cindex single-character literal
931c7513
RS
2704A @dfn{character token type} (or @dfn{literal character token}) is
2705written in the grammar using the same syntax used in C for character
2706constants; for example, @code{'+'} is a character token type. A
2707character token type doesn't need to be declared unless you need to
2708specify its semantic value data type (@pxref{Value Type, ,Data Types of
2709Semantic Values}), associativity, or precedence (@pxref{Precedence,
2710,Operator Precedence}).
bfa74976
RS
2711
2712By convention, a character token type is used only to represent a
2713token that consists of that particular character. Thus, the token
2714type @code{'+'} is used to represent the character @samp{+} as a
2715token. Nothing enforces this convention, but if you depart from it,
2716your program will confuse other readers.
2717
2718All the usual escape sequences used in character literals in C can be
2719used in Bison as well, but you must not use the null character as a
72d2299c
PE
2720character literal because its numeric code, zero, signifies
2721end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
2722for @code{yylex}}). Also, unlike standard C, trigraphs have no
2723special meaning in Bison character literals, nor is backslash-newline
2724allowed.
931c7513
RS
2725
2726@item
2727@cindex string token
2728@cindex literal string token
9ecbd125 2729@cindex multicharacter literal
931c7513
RS
2730A @dfn{literal string token} is written like a C string constant; for
2731example, @code{"<="} is a literal string token. A literal string token
2732doesn't need to be declared unless you need to specify its semantic
14ded682 2733value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
2734(@pxref{Precedence}).
2735
2736You can associate the literal string token with a symbolic name as an
2737alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
2738Declarations}). If you don't do that, the lexical analyzer has to
2739retrieve the token number for the literal string token from the
2740@code{yytname} table (@pxref{Calling Convention}).
2741
c827f760 2742@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
2743
2744By convention, a literal string token is used only to represent a token
2745that consists of that particular string. Thus, you should use the token
2746type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 2747does not enforce this convention, but if you depart from it, people who
931c7513
RS
2748read your program will be confused.
2749
2750All the escape sequences used in string literals in C can be used in
92ac3705
PE
2751Bison as well, except that you must not use a null character within a
2752string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
2753meaning in Bison string literals, nor is backslash-newline allowed. A
2754literal string token must contain two or more characters; for a token
2755containing just one character, use a character token (see above).
bfa74976
RS
2756@end itemize
2757
2758How you choose to write a terminal symbol has no effect on its
2759grammatical meaning. That depends only on where it appears in rules and
2760on when the parser function returns that symbol.
2761
72d2299c
PE
2762The value returned by @code{yylex} is always one of the terminal
2763symbols, except that a zero or negative value signifies end-of-input.
2764Whichever way you write the token type in the grammar rules, you write
2765it the same way in the definition of @code{yylex}. The numeric code
2766for a character token type is simply the positive numeric code of the
2767character, so @code{yylex} can use the identical value to generate the
2768requisite code, though you may need to convert it to @code{unsigned
2769char} to avoid sign-extension on hosts where @code{char} is signed.
2770Each named token type becomes a C macro in
bfa74976 2771the parser file, so @code{yylex} can use the name to stand for the code.
13863333 2772(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
2773@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
2774
2775If @code{yylex} is defined in a separate file, you need to arrange for the
2776token-type macro definitions to be available there. Use the @samp{-d}
2777option when you run Bison, so that it will write these macro definitions
2778into a separate header file @file{@var{name}.tab.h} which you can include
2779in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
2780
72d2299c
PE
2781If you want to write a grammar that is portable to any Standard C
2782host, you must use only non-null character tokens taken from the basic
c827f760 2783execution character set of Standard C@. This set consists of the ten
72d2299c
PE
2784digits, the 52 lower- and upper-case English letters, and the
2785characters in the following C-language string:
2786
2787@example
2788"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
2789@end example
2790
2791The @code{yylex} function and Bison must use a consistent character
2792set and encoding for character tokens. For example, if you run Bison in an
c827f760 2793@acronym{ASCII} environment, but then compile and run the resulting program
e966383b 2794in an environment that uses an incompatible character set like
c827f760
PE
2795@acronym{EBCDIC}, the resulting program may not work because the
2796tables generated by Bison will assume @acronym{ASCII} numeric values for
72d2299c 2797character tokens. It is standard
e966383b 2798practice for software distributions to contain C source files that
c827f760
PE
2799were generated by Bison in an @acronym{ASCII} environment, so installers on
2800platforms that are incompatible with @acronym{ASCII} must rebuild those
e966383b
PE
2801files before compiling them.
2802
bfa74976
RS
2803The symbol @code{error} is a terminal symbol reserved for error recovery
2804(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
2805In particular, @code{yylex} should never return this value. The default
2806value of the error token is 256, unless you explicitly assigned 256 to
2807one of your tokens with a @code{%token} declaration.
bfa74976 2808
342b8b6e 2809@node Rules
bfa74976
RS
2810@section Syntax of Grammar Rules
2811@cindex rule syntax
2812@cindex grammar rule syntax
2813@cindex syntax of grammar rules
2814
2815A Bison grammar rule has the following general form:
2816
2817@example
e425e872 2818@group
bfa74976
RS
2819@var{result}: @var{components}@dots{}
2820 ;
e425e872 2821@end group
bfa74976
RS
2822@end example
2823
2824@noindent
9ecbd125 2825where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 2826and @var{components} are various terminal and nonterminal symbols that
13863333 2827are put together by this rule (@pxref{Symbols}).
bfa74976
RS
2828
2829For example,
2830
2831@example
2832@group
2833exp: exp '+' exp
2834 ;
2835@end group
2836@end example
2837
2838@noindent
2839says that two groupings of type @code{exp}, with a @samp{+} token in between,
2840can be combined into a larger grouping of type @code{exp}.
2841
72d2299c
PE
2842White space in rules is significant only to separate symbols. You can add
2843extra white space as you wish.
bfa74976
RS
2844
2845Scattered among the components can be @var{actions} that determine
2846the semantics of the rule. An action looks like this:
2847
2848@example
2849@{@var{C statements}@}
2850@end example
2851
2852@noindent
2853Usually there is only one action and it follows the components.
2854@xref{Actions}.
2855
2856@findex |
2857Multiple rules for the same @var{result} can be written separately or can
2858be joined with the vertical-bar character @samp{|} as follows:
2859
2860@ifinfo
2861@example
2862@var{result}: @var{rule1-components}@dots{}
2863 | @var{rule2-components}@dots{}
2864 @dots{}
2865 ;
2866@end example
2867@end ifinfo
2868@iftex
2869@example
2870@group
2871@var{result}: @var{rule1-components}@dots{}
2872 | @var{rule2-components}@dots{}
2873 @dots{}
2874 ;
2875@end group
2876@end example
2877@end iftex
2878
2879@noindent
2880They are still considered distinct rules even when joined in this way.
2881
2882If @var{components} in a rule is empty, it means that @var{result} can
2883match the empty string. For example, here is how to define a
2884comma-separated sequence of zero or more @code{exp} groupings:
2885
2886@example
2887@group
2888expseq: /* empty */
2889 | expseq1
2890 ;
2891@end group
2892
2893@group
2894expseq1: exp
2895 | expseq1 ',' exp
2896 ;
2897@end group
2898@end example
2899
2900@noindent
2901It is customary to write a comment @samp{/* empty */} in each rule
2902with no components.
2903
342b8b6e 2904@node Recursion
bfa74976
RS
2905@section Recursive Rules
2906@cindex recursive rule
2907
2908A rule is called @dfn{recursive} when its @var{result} nonterminal appears
2909also on its right hand side. Nearly all Bison grammars need to use
2910recursion, because that is the only way to define a sequence of any number
9ecbd125
JT
2911of a particular thing. Consider this recursive definition of a
2912comma-separated sequence of one or more expressions:
bfa74976
RS
2913
2914@example
2915@group
2916expseq1: exp
2917 | expseq1 ',' exp
2918 ;
2919@end group
2920@end example
2921
2922@cindex left recursion
2923@cindex right recursion
2924@noindent
2925Since the recursive use of @code{expseq1} is the leftmost symbol in the
2926right hand side, we call this @dfn{left recursion}. By contrast, here
2927the same construct is defined using @dfn{right recursion}:
2928
2929@example
2930@group
2931expseq1: exp
2932 | exp ',' expseq1
2933 ;
2934@end group
2935@end example
2936
2937@noindent
ec3bc396
AD
2938Any kind of sequence can be defined using either left recursion or right
2939recursion, but you should always use left recursion, because it can
2940parse a sequence of any number of elements with bounded stack space.
2941Right recursion uses up space on the Bison stack in proportion to the
2942number of elements in the sequence, because all the elements must be
2943shifted onto the stack before the rule can be applied even once.
2944@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
2945of this.
bfa74976
RS
2946
2947@cindex mutual recursion
2948@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
2949rule does not appear directly on its right hand side, but does appear
2950in rules for other nonterminals which do appear on its right hand
13863333 2951side.
bfa74976
RS
2952
2953For example:
2954
2955@example
2956@group
2957expr: primary
2958 | primary '+' primary
2959 ;
2960@end group
2961
2962@group
2963primary: constant
2964 | '(' expr ')'
2965 ;
2966@end group
2967@end example
2968
2969@noindent
2970defines two mutually-recursive nonterminals, since each refers to the
2971other.
2972
342b8b6e 2973@node Semantics
bfa74976
RS
2974@section Defining Language Semantics
2975@cindex defining language semantics
13863333 2976@cindex language semantics, defining
bfa74976
RS
2977
2978The grammar rules for a language determine only the syntax. The semantics
2979are determined by the semantic values associated with various tokens and
2980groupings, and by the actions taken when various groupings are recognized.
2981
2982For example, the calculator calculates properly because the value
2983associated with each expression is the proper number; it adds properly
2984because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
2985the numbers associated with @var{x} and @var{y}.
2986
2987@menu
2988* Value Type:: Specifying one data type for all semantic values.
2989* Multiple Types:: Specifying several alternative data types.
2990* Actions:: An action is the semantic definition of a grammar rule.
2991* Action Types:: Specifying data types for actions to operate on.
2992* Mid-Rule Actions:: Most actions go at the end of a rule.
2993 This says when, why and how to use the exceptional
2994 action in the middle of a rule.
2995@end menu
2996
342b8b6e 2997@node Value Type
bfa74976
RS
2998@subsection Data Types of Semantic Values
2999@cindex semantic value type
3000@cindex value type, semantic
3001@cindex data types of semantic values
3002@cindex default data type
3003
3004In a simple program it may be sufficient to use the same data type for
3005the semantic values of all language constructs. This was true in the
c827f760 3006@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3007Notation Calculator}).
bfa74976
RS
3008
3009Bison's default is to use type @code{int} for all semantic values. To
3010specify some other type, define @code{YYSTYPE} as a macro, like this:
3011
3012@example
3013#define YYSTYPE double
3014@end example
3015
3016@noindent
342b8b6e 3017This macro definition must go in the prologue of the grammar file
75f5aaea 3018(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3019
342b8b6e 3020@node Multiple Types
bfa74976
RS
3021@subsection More Than One Value Type
3022
3023In most programs, you will need different data types for different kinds
3024of tokens and groupings. For example, a numeric constant may need type
779e7ceb 3025@code{int} or @code{long int}, while a string constant needs type @code{char *},
bfa74976
RS
3026and an identifier might need a pointer to an entry in the symbol table.
3027
3028To use more than one data type for semantic values in one parser, Bison
3029requires you to do two things:
3030
3031@itemize @bullet
3032@item
3033Specify the entire collection of possible data types, with the
704a47c4
AD
3034@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
3035Value Types}).
bfa74976
RS
3036
3037@item
14ded682
AD
3038Choose one of those types for each symbol (terminal or nonterminal) for
3039which semantic values are used. This is done for tokens with the
3040@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3041and for groupings with the @code{%type} Bison declaration (@pxref{Type
3042Decl, ,Nonterminal Symbols}).
bfa74976
RS
3043@end itemize
3044
342b8b6e 3045@node Actions
bfa74976
RS
3046@subsection Actions
3047@cindex action
3048@vindex $$
3049@vindex $@var{n}
3050
3051An action accompanies a syntactic rule and contains C code to be executed
3052each time an instance of that rule is recognized. The task of most actions
3053is to compute a semantic value for the grouping built by the rule from the
3054semantic values associated with tokens or smaller groupings.
3055
3056An action consists of C statements surrounded by braces, much like a
2bfc2e2a
PE
3057compound statement in C@. An action can contain any sequence of C
3058statements. Bison does not look for trigraphs, though, so if your C
3059code uses trigraphs you should ensure that they do not affect the
3060nesting of braces or the boundaries of comments, strings, or character
3061literals.
3062
3063An action can be placed at any position in the rule;
704a47c4
AD
3064it is executed at that position. Most rules have just one action at the
3065end of the rule, following all the components. Actions in the middle of
3066a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3067Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3068
3069The C code in an action can refer to the semantic values of the components
3070matched by the rule with the construct @code{$@var{n}}, which stands for
3071the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3072being constructed is @code{$$}. Bison translates both of these
3073constructs into expressions of the appropriate type when it copies the
3074actions into the parser file. @code{$$} is translated to a modifiable
3075lvalue, so it can be assigned to.
bfa74976
RS
3076
3077Here is a typical example:
3078
3079@example
3080@group
3081exp: @dots{}
3082 | exp '+' exp
3083 @{ $$ = $1 + $3; @}
3084@end group
3085@end example
3086
3087@noindent
3088This rule constructs an @code{exp} from two smaller @code{exp} groupings
3089connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3090refer to the semantic values of the two component @code{exp} groupings,
3091which are the first and third symbols on the right hand side of the rule.
3092The sum is stored into @code{$$} so that it becomes the semantic value of
3093the addition-expression just recognized by the rule. If there were a
3094useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3095referred to as @code{$2}.
bfa74976 3096
3ded9a63
AD
3097Note that the vertical-bar character @samp{|} is really a rule
3098separator, and actions are attached to a single rule. This is a
3099difference with tools like Flex, for which @samp{|} stands for either
3100``or'', or ``the same action as that of the next rule''. In the
3101following example, the action is triggered only when @samp{b} is found:
3102
3103@example
3104@group
3105a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3106@end group
3107@end example
3108
bfa74976
RS
3109@cindex default action
3110If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3111@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3112becomes the value of the whole rule. Of course, the default action is
3113valid only if the two data types match. There is no meaningful default
3114action for an empty rule; every empty rule must have an explicit action
3115unless the rule's value does not matter.
bfa74976
RS
3116
3117@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3118to tokens and groupings on the stack @emph{before} those that match the
3119current rule. This is a very risky practice, and to use it reliably
3120you must be certain of the context in which the rule is applied. Here
3121is a case in which you can use this reliably:
3122
3123@example
3124@group
3125foo: expr bar '+' expr @{ @dots{} @}
3126 | expr bar '-' expr @{ @dots{} @}
3127 ;
3128@end group
3129
3130@group
3131bar: /* empty */
3132 @{ previous_expr = $0; @}
3133 ;
3134@end group
3135@end example
3136
3137As long as @code{bar} is used only in the fashion shown here, @code{$0}
3138always refers to the @code{expr} which precedes @code{bar} in the
3139definition of @code{foo}.
3140
342b8b6e 3141@node Action Types
bfa74976
RS
3142@subsection Data Types of Values in Actions
3143@cindex action data types
3144@cindex data types in actions
3145
3146If you have chosen a single data type for semantic values, the @code{$$}
3147and @code{$@var{n}} constructs always have that data type.
3148
3149If you have used @code{%union} to specify a variety of data types, then you
3150must declare a choice among these types for each terminal or nonterminal
3151symbol that can have a semantic value. Then each time you use @code{$$} or
3152@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3153in the rule. In this example,
bfa74976
RS
3154
3155@example
3156@group
3157exp: @dots{}
3158 | exp '+' exp
3159 @{ $$ = $1 + $3; @}
3160@end group
3161@end example
3162
3163@noindent
3164@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3165have the data type declared for the nonterminal symbol @code{exp}. If
3166@code{$2} were used, it would have the data type declared for the
e0c471a9 3167terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3168
3169Alternatively, you can specify the data type when you refer to the value,
3170by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3171reference. For example, if you have defined types as shown here:
3172
3173@example
3174@group
3175%union @{
3176 int itype;
3177 double dtype;
3178@}
3179@end group
3180@end example
3181
3182@noindent
3183then you can write @code{$<itype>1} to refer to the first subunit of the
3184rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3185
342b8b6e 3186@node Mid-Rule Actions
bfa74976
RS
3187@subsection Actions in Mid-Rule
3188@cindex actions in mid-rule
3189@cindex mid-rule actions
3190
3191Occasionally it is useful to put an action in the middle of a rule.
3192These actions are written just like usual end-of-rule actions, but they
3193are executed before the parser even recognizes the following components.
3194
3195A mid-rule action may refer to the components preceding it using
3196@code{$@var{n}}, but it may not refer to subsequent components because
3197it is run before they are parsed.
3198
3199The mid-rule action itself counts as one of the components of the rule.
3200This makes a difference when there is another action later in the same rule
3201(and usually there is another at the end): you have to count the actions
3202along with the symbols when working out which number @var{n} to use in
3203@code{$@var{n}}.
3204
3205The mid-rule action can also have a semantic value. The action can set
3206its value with an assignment to @code{$$}, and actions later in the rule
3207can refer to the value using @code{$@var{n}}. Since there is no symbol
3208to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3209in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3210specify a data type each time you refer to this value.
bfa74976
RS
3211
3212There is no way to set the value of the entire rule with a mid-rule
3213action, because assignments to @code{$$} do not have that effect. The
3214only way to set the value for the entire rule is with an ordinary action
3215at the end of the rule.
3216
3217Here is an example from a hypothetical compiler, handling a @code{let}
3218statement that looks like @samp{let (@var{variable}) @var{statement}} and
3219serves to create a variable named @var{variable} temporarily for the
3220duration of @var{statement}. To parse this construct, we must put
3221@var{variable} into the symbol table while @var{statement} is parsed, then
3222remove it afterward. Here is how it is done:
3223
3224@example
3225@group
3226stmt: LET '(' var ')'
3227 @{ $<context>$ = push_context ();
3228 declare_variable ($3); @}
3229 stmt @{ $$ = $6;
3230 pop_context ($<context>5); @}
3231@end group
3232@end example
3233
3234@noindent
3235As soon as @samp{let (@var{variable})} has been recognized, the first
3236action is run. It saves a copy of the current semantic context (the
3237list of accessible variables) as its semantic value, using alternative
3238@code{context} in the data-type union. Then it calls
3239@code{declare_variable} to add the new variable to that list. Once the
3240first action is finished, the embedded statement @code{stmt} can be
3241parsed. Note that the mid-rule action is component number 5, so the
3242@samp{stmt} is component number 6.
3243
3244After the embedded statement is parsed, its semantic value becomes the
3245value of the entire @code{let}-statement. Then the semantic value from the
3246earlier action is used to restore the prior list of variables. This
3247removes the temporary @code{let}-variable from the list so that it won't
3248appear to exist while the rest of the program is parsed.
3249
3250Taking action before a rule is completely recognized often leads to
3251conflicts since the parser must commit to a parse in order to execute the
3252action. For example, the following two rules, without mid-rule actions,
3253can coexist in a working parser because the parser can shift the open-brace
3254token and look at what follows before deciding whether there is a
3255declaration or not:
3256
3257@example
3258@group
3259compound: '@{' declarations statements '@}'
3260 | '@{' statements '@}'
3261 ;
3262@end group
3263@end example
3264
3265@noindent
3266But when we add a mid-rule action as follows, the rules become nonfunctional:
3267
3268@example
3269@group
3270compound: @{ prepare_for_local_variables (); @}
3271 '@{' declarations statements '@}'
3272@end group
3273@group
3274 | '@{' statements '@}'
3275 ;
3276@end group
3277@end example
3278
3279@noindent
3280Now the parser is forced to decide whether to run the mid-rule action
3281when it has read no farther than the open-brace. In other words, it
3282must commit to using one rule or the other, without sufficient
3283information to do it correctly. (The open-brace token is what is called
3284the @dfn{look-ahead} token at this time, since the parser is still
3285deciding what to do about it. @xref{Look-Ahead, ,Look-Ahead Tokens}.)
3286
3287You might think that you could correct the problem by putting identical
3288actions into the two rules, like this:
3289
3290@example
3291@group
3292compound: @{ prepare_for_local_variables (); @}
3293 '@{' declarations statements '@}'
3294 | @{ prepare_for_local_variables (); @}
3295 '@{' statements '@}'
3296 ;
3297@end group
3298@end example
3299
3300@noindent
3301But this does not help, because Bison does not realize that the two actions
3302are identical. (Bison never tries to understand the C code in an action.)
3303
3304If the grammar is such that a declaration can be distinguished from a
3305statement by the first token (which is true in C), then one solution which
3306does work is to put the action after the open-brace, like this:
3307
3308@example
3309@group
3310compound: '@{' @{ prepare_for_local_variables (); @}
3311 declarations statements '@}'
3312 | '@{' statements '@}'
3313 ;
3314@end group
3315@end example
3316
3317@noindent
3318Now the first token of the following declaration or statement,
3319which would in any case tell Bison which rule to use, can still do so.
3320
3321Another solution is to bury the action inside a nonterminal symbol which
3322serves as a subroutine:
3323
3324@example
3325@group
3326subroutine: /* empty */
3327 @{ prepare_for_local_variables (); @}
3328 ;
3329
3330@end group
3331
3332@group
3333compound: subroutine
3334 '@{' declarations statements '@}'
3335 | subroutine
3336 '@{' statements '@}'
3337 ;
3338@end group
3339@end example
3340
3341@noindent
3342Now Bison can execute the action in the rule for @code{subroutine} without
3343deciding which rule for @code{compound} it will eventually use. Note that
3344the action is now at the end of its rule. Any mid-rule action can be
3345converted to an end-of-rule action in this way, and this is what Bison
3346actually does to implement mid-rule actions.
3347
342b8b6e 3348@node Locations
847bf1f5
AD
3349@section Tracking Locations
3350@cindex location
95923bd6
AD
3351@cindex textual location
3352@cindex location, textual
847bf1f5
AD
3353
3354Though grammar rules and semantic actions are enough to write a fully
72d2299c 3355functional parser, it can be useful to process some additional information,
3e259915
MA
3356especially symbol locations.
3357
704a47c4
AD
3358The way locations are handled is defined by providing a data type, and
3359actions to take when rules are matched.
847bf1f5
AD
3360
3361@menu
3362* Location Type:: Specifying a data type for locations.
3363* Actions and Locations:: Using locations in actions.
3364* Location Default Action:: Defining a general way to compute locations.
3365@end menu
3366
342b8b6e 3367@node Location Type
847bf1f5
AD
3368@subsection Data Type of Locations
3369@cindex data type of locations
3370@cindex default location type
3371
3372Defining a data type for locations is much simpler than for semantic values,
3373since all tokens and groupings always use the same type.
3374
3375The type of locations is specified by defining a macro called @code{YYLTYPE}.
3376When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3377four members:
3378
3379@example
6273355b 3380typedef struct YYLTYPE
847bf1f5
AD
3381@{
3382 int first_line;
3383 int first_column;
3384 int last_line;
3385 int last_column;
6273355b 3386@} YYLTYPE;
847bf1f5
AD
3387@end example
3388
342b8b6e 3389@node Actions and Locations
847bf1f5
AD
3390@subsection Actions and Locations
3391@cindex location actions
3392@cindex actions, location
3393@vindex @@$
3394@vindex @@@var{n}
3395
3396Actions are not only useful for defining language semantics, but also for
3397describing the behavior of the output parser with locations.
3398
3399The most obvious way for building locations of syntactic groupings is very
72d2299c 3400similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3401constructs can be used to access the locations of the elements being matched.
3402The location of the @var{n}th component of the right hand side is
3403@code{@@@var{n}}, while the location of the left hand side grouping is
3404@code{@@$}.
3405
3e259915 3406Here is a basic example using the default data type for locations:
847bf1f5
AD
3407
3408@example
3409@group
3410exp: @dots{}
3e259915 3411 | exp '/' exp
847bf1f5 3412 @{
3e259915
MA
3413 @@$.first_column = @@1.first_column;
3414 @@$.first_line = @@1.first_line;
847bf1f5
AD
3415 @@$.last_column = @@3.last_column;
3416 @@$.last_line = @@3.last_line;
3e259915
MA
3417 if ($3)
3418 $$ = $1 / $3;
3419 else
3420 @{
3421 $$ = 1;
4e03e201
AD
3422 fprintf (stderr,
3423 "Division by zero, l%d,c%d-l%d,c%d",
3424 @@3.first_line, @@3.first_column,
3425 @@3.last_line, @@3.last_column);
3e259915 3426 @}
847bf1f5
AD
3427 @}
3428@end group
3429@end example
3430
3e259915 3431As for semantic values, there is a default action for locations that is
72d2299c 3432run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3433beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3434last symbol.
3e259915 3435
72d2299c 3436With this default action, the location tracking can be fully automatic. The
3e259915
MA
3437example above simply rewrites this way:
3438
3439@example
3440@group
3441exp: @dots{}
3442 | exp '/' exp
3443 @{
3444 if ($3)
3445 $$ = $1 / $3;
3446 else
3447 @{
3448 $$ = 1;
4e03e201
AD
3449 fprintf (stderr,
3450 "Division by zero, l%d,c%d-l%d,c%d",
3451 @@3.first_line, @@3.first_column,
3452 @@3.last_line, @@3.last_column);
3e259915
MA
3453 @}
3454 @}
3455@end group
3456@end example
847bf1f5 3457
342b8b6e 3458@node Location Default Action
847bf1f5
AD
3459@subsection Default Action for Locations
3460@vindex YYLLOC_DEFAULT
3461
72d2299c 3462Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3463locations are much more general than semantic values, there is room in
3464the output parser to redefine the default action to take for each
72d2299c 3465rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3466matched, before the associated action is run. It is also invoked
3467while processing a syntax error, to compute the error's location.
847bf1f5 3468
3e259915 3469Most of the time, this macro is general enough to suppress location
79282c6c 3470dedicated code from semantic actions.
847bf1f5 3471
72d2299c 3472The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3473the location of the grouping (the result of the computation). When a
766de5eb 3474rule is matched, the second parameter identifies locations of
96b93a3d
PE
3475all right hand side elements of the rule being matched, and the third
3476parameter is the size of the rule's right hand side. When processing
766de5eb 3477a syntax error, the second parameter identifies locations of
96b93a3d
PE
3478the symbols that were discarded during error processing, and the third
3479parameter is the number of discarded symbols.
847bf1f5 3480
766de5eb 3481By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3482
766de5eb 3483@smallexample
847bf1f5 3484@group
766de5eb
PE
3485# define YYLLOC_DEFAULT(Current, Rhs, N) \
3486 do \
3487 if (N) \
3488 @{ \
3489 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3490 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3491 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3492 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3493 @} \
3494 else \
3495 @{ \
3496 (Current).first_line = (Current).last_line = \
3497 YYRHSLOC(Rhs, 0).last_line; \
3498 (Current).first_column = (Current).last_column = \
3499 YYRHSLOC(Rhs, 0).last_column; \
3500 @} \
3501 while (0)
847bf1f5 3502@end group
766de5eb 3503@end smallexample
676385e2 3504
766de5eb
PE
3505where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3506in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3507just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3508
3e259915 3509When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3510
3e259915 3511@itemize @bullet
79282c6c 3512@item
72d2299c 3513All arguments are free of side-effects. However, only the first one (the
3e259915 3514result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3515
3e259915 3516@item
766de5eb
PE
3517For consistency with semantic actions, valid indexes within the
3518right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3519valid index, and it refers to the symbol just before the reduction.
3520During error processing @var{n} is always positive.
0ae99356
PE
3521
3522@item
3523Your macro should parenthesize its arguments, if need be, since the
3524actual arguments may not be surrounded by parentheses. Also, your
3525macro should expand to something that can be used as a single
3526statement when it is followed by a semicolon.
3e259915 3527@end itemize
847bf1f5 3528
342b8b6e 3529@node Declarations
bfa74976
RS
3530@section Bison Declarations
3531@cindex declarations, Bison
3532@cindex Bison declarations
3533
3534The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3535used in formulating the grammar and the data types of semantic values.
3536@xref{Symbols}.
3537
3538All token type names (but not single-character literal tokens such as
3539@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3540declared if you need to specify which data type to use for the semantic
3541value (@pxref{Multiple Types, ,More Than One Value Type}).
3542
3543The first rule in the file also specifies the start symbol, by default.
3544If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3545it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3546Grammars}).
bfa74976
RS
3547
3548@menu
3549* Token Decl:: Declaring terminal symbols.
3550* Precedence Decl:: Declaring terminals with precedence and associativity.
3551* Union Decl:: Declaring the set of all semantic value types.
3552* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3553* Initial Action Decl:: Code run before parsing starts.
72f889cc 3554* Destructor Decl:: Declaring how symbols are freed.
d6328241 3555* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3556* Start Decl:: Specifying the start symbol.
3557* Pure Decl:: Requesting a reentrant parser.
3558* Decl Summary:: Table of all Bison declarations.
3559@end menu
3560
342b8b6e 3561@node Token Decl
bfa74976
RS
3562@subsection Token Type Names
3563@cindex declaring token type names
3564@cindex token type names, declaring
931c7513 3565@cindex declaring literal string tokens
bfa74976
RS
3566@findex %token
3567
3568The basic way to declare a token type name (terminal symbol) is as follows:
3569
3570@example
3571%token @var{name}
3572@end example
3573
3574Bison will convert this into a @code{#define} directive in
3575the parser, so that the function @code{yylex} (if it is in this file)
3576can use the name @var{name} to stand for this token type's code.
3577
14ded682
AD
3578Alternatively, you can use @code{%left}, @code{%right}, or
3579@code{%nonassoc} instead of @code{%token}, if you wish to specify
3580associativity and precedence. @xref{Precedence Decl, ,Operator
3581Precedence}.
bfa74976
RS
3582
3583You can explicitly specify the numeric code for a token type by appending
1452af69
PE
3584a decimal or hexadecimal integer value in the field immediately
3585following the token name:
bfa74976
RS
3586
3587@example
3588%token NUM 300
1452af69 3589%token XNUM 0x12d // a GNU extension
bfa74976
RS
3590@end example
3591
3592@noindent
3593It is generally best, however, to let Bison choose the numeric codes for
3594all token types. Bison will automatically select codes that don't conflict
e966383b 3595with each other or with normal characters.
bfa74976
RS
3596
3597In the event that the stack type is a union, you must augment the
3598@code{%token} or other token declaration to include the data type
704a47c4
AD
3599alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
3600Than One Value Type}).
bfa74976
RS
3601
3602For example:
3603
3604@example
3605@group
3606%union @{ /* define stack type */
3607 double val;
3608 symrec *tptr;
3609@}
3610%token <val> NUM /* define token NUM and its type */
3611@end group
3612@end example
3613
931c7513
RS
3614You can associate a literal string token with a token type name by
3615writing the literal string at the end of a @code{%token}
3616declaration which declares the name. For example:
3617
3618@example
3619%token arrow "=>"
3620@end example
3621
3622@noindent
3623For example, a grammar for the C language might specify these names with
3624equivalent literal string tokens:
3625
3626@example
3627%token <operator> OR "||"
3628%token <operator> LE 134 "<="
3629%left OR "<="
3630@end example
3631
3632@noindent
3633Once you equate the literal string and the token name, you can use them
3634interchangeably in further declarations or the grammar rules. The
3635@code{yylex} function can use the token name or the literal string to
3636obtain the token type code number (@pxref{Calling Convention}).
3637
342b8b6e 3638@node Precedence Decl
bfa74976
RS
3639@subsection Operator Precedence
3640@cindex precedence declarations
3641@cindex declaring operator precedence
3642@cindex operator precedence, declaring
3643
3644Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
3645declare a token and specify its precedence and associativity, all at
3646once. These are called @dfn{precedence declarations}.
704a47c4
AD
3647@xref{Precedence, ,Operator Precedence}, for general information on
3648operator precedence.
bfa74976
RS
3649
3650The syntax of a precedence declaration is the same as that of
3651@code{%token}: either
3652
3653@example
3654%left @var{symbols}@dots{}
3655@end example
3656
3657@noindent
3658or
3659
3660@example
3661%left <@var{type}> @var{symbols}@dots{}
3662@end example
3663
3664And indeed any of these declarations serves the purposes of @code{%token}.
3665But in addition, they specify the associativity and relative precedence for
3666all the @var{symbols}:
3667
3668@itemize @bullet
3669@item
3670The associativity of an operator @var{op} determines how repeated uses
3671of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
3672@var{z}} is parsed by grouping @var{x} with @var{y} first or by
3673grouping @var{y} with @var{z} first. @code{%left} specifies
3674left-associativity (grouping @var{x} with @var{y} first) and
3675@code{%right} specifies right-associativity (grouping @var{y} with
3676@var{z} first). @code{%nonassoc} specifies no associativity, which
3677means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
3678considered a syntax error.
3679
3680@item
3681The precedence of an operator determines how it nests with other operators.
3682All the tokens declared in a single precedence declaration have equal
3683precedence and nest together according to their associativity.
3684When two tokens declared in different precedence declarations associate,
3685the one declared later has the higher precedence and is grouped first.
3686@end itemize
3687
342b8b6e 3688@node Union Decl
bfa74976
RS
3689@subsection The Collection of Value Types
3690@cindex declaring value types
3691@cindex value types, declaring
3692@findex %union
3693
3694The @code{%union} declaration specifies the entire collection of possible
3695data types for semantic values. The keyword @code{%union} is followed by a
3696pair of braces containing the same thing that goes inside a @code{union} in
13863333 3697C.
bfa74976
RS
3698
3699For example:
3700
3701@example
3702@group
3703%union @{
3704 double val;
3705 symrec *tptr;
3706@}
3707@end group
3708@end example
3709
3710@noindent
3711This says that the two alternative types are @code{double} and @code{symrec
3712*}. They are given names @code{val} and @code{tptr}; these names are used
3713in the @code{%token} and @code{%type} declarations to pick one of the types
3714for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
3715
6273355b
PE
3716As an extension to @acronym{POSIX}, a tag is allowed after the
3717@code{union}. For example:
3718
3719@example
3720@group
3721%union value @{
3722 double val;
3723 symrec *tptr;
3724@}
3725@end group
3726@end example
3727
3728specifies the union tag @code{value}, so the corresponding C type is
3729@code{union value}. If you do not specify a tag, it defaults to
3730@code{YYSTYPE}.
3731
3732Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
3733a semicolon after the closing brace.
3734
342b8b6e 3735@node Type Decl
bfa74976
RS
3736@subsection Nonterminal Symbols
3737@cindex declaring value types, nonterminals
3738@cindex value types, nonterminals, declaring
3739@findex %type
3740
3741@noindent
3742When you use @code{%union} to specify multiple value types, you must
3743declare the value type of each nonterminal symbol for which values are
3744used. This is done with a @code{%type} declaration, like this:
3745
3746@example
3747%type <@var{type}> @var{nonterminal}@dots{}
3748@end example
3749
3750@noindent
704a47c4
AD
3751Here @var{nonterminal} is the name of a nonterminal symbol, and
3752@var{type} is the name given in the @code{%union} to the alternative
3753that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
3754can give any number of nonterminal symbols in the same @code{%type}
3755declaration, if they have the same value type. Use spaces to separate
3756the symbol names.
bfa74976 3757
931c7513
RS
3758You can also declare the value type of a terminal symbol. To do this,
3759use the same @code{<@var{type}>} construction in a declaration for the
3760terminal symbol. All kinds of token declarations allow
3761@code{<@var{type}>}.
3762
18d192f0
AD
3763@node Initial Action Decl
3764@subsection Performing Actions before Parsing
3765@findex %initial-action
3766
3767Sometimes your parser needs to perform some initializations before
3768parsing. The @code{%initial-action} directive allows for such arbitrary
3769code.
3770
3771@deffn {Directive} %initial-action @{ @var{code} @}
3772@findex %initial-action
3773Declare that the @var{code} must be invoked before parsing each time
451364ed
AD
3774@code{yyparse} is called. The @var{code} may use @code{$$} and
3775@code{@@$} --- initial value and location of the look-ahead --- and the
3776@code{%parse-param}.
18d192f0
AD
3777@end deffn
3778
451364ed
AD
3779For instance, if your locations use a file name, you may use
3780
3781@example
3782%parse-param @{ const char *filename @};
3783%initial-action
3784@{
3785 @@$.begin.filename = @@$.end.filename = filename;
3786@};
3787@end example
3788
18d192f0 3789
72f889cc
AD
3790@node Destructor Decl
3791@subsection Freeing Discarded Symbols
3792@cindex freeing discarded symbols
3793@findex %destructor
3794
e757bb10
AD
3795Some symbols can be discarded by the parser. For instance, during error
3796recovery (@pxref{Error Recovery}), embarrassing symbols already pushed
3797on the stack, and embarrassing tokens coming from the rest of the file
3798are thrown away until the parser falls on its feet. If these symbols
3799convey heap based information, this memory is lost. While this behavior
3800can be tolerable for batch parsers, such as in compilers, it is not for
3801possibly ``never ending'' parsers such as shells, or implementations of
72f889cc
AD
3802communication protocols.
3803
3804The @code{%destructor} directive allows for the definition of code that
3805is called when a symbol is thrown away.
3806
3807@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
3808@findex %destructor
3809Declare that the @var{code} must be invoked for each of the
3810@var{symbols} that will be discarded by the parser. The @var{code}
3811should use @code{$$} to designate the semantic value associated to the
a06ea4aa 3812@var{symbols}. The additional parser parameters are also available
72f889cc
AD
3813(@pxref{Parser Function, , The Parser Function @code{yyparse}}).
3814
3815@strong{Warning:} as of Bison 1.875, this feature is still considered as
96b93a3d 3816experimental, as there was not enough user feedback. In particular,
3df37415 3817the syntax might still change.
72f889cc
AD
3818@end deffn
3819
3820For instance:
3821
3822@smallexample
3823%union
3824@{
3825 char *string;
3826@}
3827%token <string> STRING
3828%type <string> string
3829%destructor @{ free ($$); @} STRING string
3830@end smallexample
3831
3832@noindent
3833guarantees that when a @code{STRING} or a @code{string} will be discarded,
3834its associated memory will be freed.
3835
3836Note that in the future, Bison might also consider that right hand side
3837members that are not mentioned in the action can be destroyed. For
3838instance, in:
3839
3840@smallexample
3841comment: "/*" STRING "*/";
3842@end smallexample
3843
3844@noindent
3845the parser is entitled to destroy the semantic value of the
3846@code{string}. Of course, this will not apply to the default action;
3847compare:
3848
3849@smallexample
3850typeless: string; // $$ = $1 does not apply; $1 is destroyed.
3851typefull: string; // $$ = $1 applies, $1 is not destroyed.
3852@end smallexample
3853
e757bb10
AD
3854@sp 1
3855
3856@cindex discarded symbols
3857@dfn{Discarded symbols} are the following:
3858
3859@itemize
3860@item
3861stacked symbols popped during the first phase of error recovery,
3862@item
3863incoming terminals during the second phase of error recovery,
3864@item
451364ed 3865the current look-ahead when the parser aborts (either via an explicit
e757bb10
AD
3866call to @code{YYABORT}, or as a consequence of a failed error recovery).
3867@end itemize
3868
3869
342b8b6e 3870@node Expect Decl
bfa74976
RS
3871@subsection Suppressing Conflict Warnings
3872@cindex suppressing conflict warnings
3873@cindex preventing warnings about conflicts
3874@cindex warnings, preventing
3875@cindex conflicts, suppressing warnings of
3876@findex %expect
d6328241 3877@findex %expect-rr
bfa74976
RS
3878
3879Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
3880(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
3881have harmless shift/reduce conflicts which are resolved in a predictable
3882way and would be difficult to eliminate. It is desirable to suppress
3883the warning about these conflicts unless the number of conflicts
3884changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
3885
3886The declaration looks like this:
3887
3888@example
3889%expect @var{n}
3890@end example
3891
7da99ede
AD
3892Here @var{n} is a decimal integer. The declaration says there should be
3893no warning if there are @var{n} shift/reduce conflicts and no
69363a9e 3894reduce/reduce conflicts. The usual warning is
7da99ede
AD
3895given if there are either more or fewer conflicts, or if there are any
3896reduce/reduce conflicts.
bfa74976 3897
fa7e68c3 3898For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more serious,
d6328241 3899and should be eliminated entirely. Bison will always report
fa7e68c3 3900reduce/reduce conflicts for these parsers. With @acronym{GLR} parsers, however,
d6328241 3901both shift/reduce and reduce/reduce are routine (otherwise, there
fa7e68c3
PE
3902would be no need to use @acronym{GLR} parsing). Therefore, it is also possible
3903to specify an expected number of reduce/reduce conflicts in @acronym{GLR}
d6328241
PH
3904parsers, using the declaration:
3905
3906@example
3907%expect-rr @var{n}
3908@end example
3909
bfa74976
RS
3910In general, using @code{%expect} involves these steps:
3911
3912@itemize @bullet
3913@item
3914Compile your grammar without @code{%expect}. Use the @samp{-v} option
3915to get a verbose list of where the conflicts occur. Bison will also
3916print the number of conflicts.
3917
3918@item
3919Check each of the conflicts to make sure that Bison's default
3920resolution is what you really want. If not, rewrite the grammar and
3921go back to the beginning.
3922
3923@item
3924Add an @code{%expect} declaration, copying the number @var{n} from the
3925number which Bison printed.
3926@end itemize
3927
69363a9e
PE
3928Now Bison will stop annoying you if you do not change the number of
3929conflicts, but it will warn you again if changes in the grammar result
3930in more or fewer conflicts.
bfa74976 3931
342b8b6e 3932@node Start Decl
bfa74976
RS
3933@subsection The Start-Symbol
3934@cindex declaring the start symbol
3935@cindex start symbol, declaring
3936@cindex default start symbol
3937@findex %start
3938
3939Bison assumes by default that the start symbol for the grammar is the first
3940nonterminal specified in the grammar specification section. The programmer
3941may override this restriction with the @code{%start} declaration as follows:
3942
3943@example
3944%start @var{symbol}
3945@end example
3946
342b8b6e 3947@node Pure Decl
bfa74976
RS
3948@subsection A Pure (Reentrant) Parser
3949@cindex reentrant parser
3950@cindex pure parser
8c9a50be 3951@findex %pure-parser
bfa74976
RS
3952
3953A @dfn{reentrant} program is one which does not alter in the course of
3954execution; in other words, it consists entirely of @dfn{pure} (read-only)
3955code. Reentrancy is important whenever asynchronous execution is possible;
14ded682
AD
3956for example, a non-reentrant program may not be safe to call from a signal
3957handler. In systems with multiple threads of control, a non-reentrant
bfa74976
RS
3958program must be called only within interlocks.
3959
70811b85 3960Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
3961suitable for most uses, and it permits compatibility with Yacc. (The
3962standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
3963statically allocated variables for communication with @code{yylex},
3964including @code{yylval} and @code{yylloc}.)
bfa74976 3965
70811b85 3966Alternatively, you can generate a pure, reentrant parser. The Bison
8c9a50be 3967declaration @code{%pure-parser} says that you want the parser to be
70811b85 3968reentrant. It looks like this:
bfa74976
RS
3969
3970@example
8c9a50be 3971%pure-parser
bfa74976
RS
3972@end example
3973
70811b85
RS
3974The result is that the communication variables @code{yylval} and
3975@code{yylloc} become local variables in @code{yyparse}, and a different
3976calling convention is used for the lexical analyzer function
3977@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
3978Parsers}, for the details of this. The variable @code{yynerrs} also
3979becomes local in @code{yyparse} (@pxref{Error Reporting, ,The Error
3980Reporting Function @code{yyerror}}). The convention for calling
3981@code{yyparse} itself is unchanged.
3982
3983Whether the parser is pure has nothing to do with the grammar rules.
3984You can generate either a pure parser or a nonreentrant parser from any
3985valid grammar.
bfa74976 3986
342b8b6e 3987@node Decl Summary
bfa74976
RS
3988@subsection Bison Declaration Summary
3989@cindex Bison declaration summary
3990@cindex declaration summary
3991@cindex summary, Bison declaration
3992
d8988b2f 3993Here is a summary of the declarations used to define a grammar:
bfa74976 3994
18b519c0 3995@deffn {Directive} %union
bfa74976
RS
3996Declare the collection of data types that semantic values may have
3997(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 3998@end deffn
bfa74976 3999
18b519c0 4000@deffn {Directive} %token
bfa74976
RS
4001Declare a terminal symbol (token type name) with no precedence
4002or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4003@end deffn
bfa74976 4004
18b519c0 4005@deffn {Directive} %right
bfa74976
RS
4006Declare a terminal symbol (token type name) that is right-associative
4007(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4008@end deffn
bfa74976 4009
18b519c0 4010@deffn {Directive} %left
bfa74976
RS
4011Declare a terminal symbol (token type name) that is left-associative
4012(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4013@end deffn
bfa74976 4014
18b519c0 4015@deffn {Directive} %nonassoc
bfa74976 4016Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4017(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4018Using it in a way that would be associative is a syntax error.
4019@end deffn
4020
91d2c560 4021@ifset defaultprec
39a06c25 4022@deffn {Directive} %default-prec
22fccf95 4023Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4024(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4025@end deffn
91d2c560 4026@end ifset
bfa74976 4027
18b519c0 4028@deffn {Directive} %type
bfa74976
RS
4029Declare the type of semantic values for a nonterminal symbol
4030(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4031@end deffn
bfa74976 4032
18b519c0 4033@deffn {Directive} %start
89cab50d
AD
4034Specify the grammar's start symbol (@pxref{Start Decl, ,The
4035Start-Symbol}).
18b519c0 4036@end deffn
bfa74976 4037
18b519c0 4038@deffn {Directive} %expect
bfa74976
RS
4039Declare the expected number of shift-reduce conflicts
4040(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4041@end deffn
4042
bfa74976 4043
d8988b2f
AD
4044@sp 1
4045@noindent
4046In order to change the behavior of @command{bison}, use the following
4047directives:
4048
18b519c0 4049@deffn {Directive} %debug
4947ebdb
PE
4050In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4051already defined, so that the debugging facilities are compiled.
18b519c0 4052@end deffn
ec3bc396 4053@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4054
18b519c0 4055@deffn {Directive} %defines
4bfd5e4e
PE
4056Write a header file containing macro definitions for the token type
4057names defined in the grammar as well as a few other declarations.
d8988b2f 4058If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 4059is named @file{@var{name}.h}.
d8988b2f 4060
4bfd5e4e 4061Unless @code{YYSTYPE} is already defined as a macro, the output header
5c9be03d
PE
4062declares @code{YYSTYPE}. Therefore, if you are using a @code{%union}
4063(@pxref{Multiple Types, ,More Than One Value Type}) with components
4064that require other definitions, or if you have defined a
4bfd5e4e 4065@code{YYSTYPE} macro (@pxref{Value Type, ,Data Types of Semantic
5c9be03d
PE
4066Values}), you need to arrange for these definitions to be propagated to
4067all modules, e.g., by putting them in a
4bfd5e4e
PE
4068prerequisite header that is included both by your parser and by any
4069other module that needs @code{YYSTYPE}.
4070
4071Unless your parser is pure, the output header declares @code{yylval}
4072as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
4073Parser}.
4074
4075If you have also used locations, the output header declares
4076@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4077@code{YYSTYPE} and @code{yylval}. @xref{Locations, ,Tracking
4078Locations}.
4079
4080This output file is normally essential if you wish to put the
4081definition of @code{yylex} in a separate source file, because
4082@code{yylex} typically needs to be able to refer to the
4083above-mentioned declarations and to the token type codes.
4084@xref{Token Values, ,Semantic Values of Tokens}.
18b519c0 4085@end deffn
d8988b2f 4086
18b519c0 4087@deffn {Directive} %destructor
72f889cc 4088Specifying how the parser should reclaim the memory associated to
fa7e68c3 4089discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 4090@end deffn
72f889cc 4091
18b519c0 4092@deffn {Directive} %file-prefix="@var{prefix}"
d8988b2f
AD
4093Specify a prefix to use for all Bison output file names. The names are
4094chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 4095@end deffn
d8988b2f 4096
18b519c0 4097@deffn {Directive} %locations
89cab50d
AD
4098Generate the code processing the locations (@pxref{Action Features,
4099,Special Features for Use in Actions}). This mode is enabled as soon as
4100the grammar uses the special @samp{@@@var{n}} tokens, but if your
4101grammar does not use it, using @samp{%locations} allows for more
6e649e65 4102accurate syntax error messages.
18b519c0 4103@end deffn
89cab50d 4104
18b519c0 4105@deffn {Directive} %name-prefix="@var{prefix}"
d8988b2f
AD
4106Rename the external symbols used in the parser so that they start with
4107@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4108is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
2a8d363a
AD
4109@code{yylval}, @code{yylloc}, @code{yychar}, @code{yydebug}, and
4110possible @code{yylloc}. For example, if you use
4111@samp{%name-prefix="c_"}, the names become @code{c_parse}, @code{c_lex},
4112and so on. @xref{Multiple Parsers, ,Multiple Parsers in the Same
4113Program}.
18b519c0 4114@end deffn
931c7513 4115
91d2c560 4116@ifset defaultprec
22fccf95
PE
4117@deffn {Directive} %no-default-prec
4118Do not assign a precedence to rules lacking an explicit @code{%prec}
4119modifier (@pxref{Contextual Precedence, ,Context-Dependent
4120Precedence}).
4121@end deffn
91d2c560 4122@end ifset
22fccf95 4123
18b519c0 4124@deffn {Directive} %no-parser
6deb4447
AD
4125Do not include any C code in the parser file; generate tables only. The
4126parser file contains just @code{#define} directives and static variable
4127declarations.
4128
4129This option also tells Bison to write the C code for the grammar actions
4130into a file named @file{@var{filename}.act}, in the form of a
4131brace-surrounded body fit for a @code{switch} statement.
18b519c0 4132@end deffn
6deb4447 4133
18b519c0 4134@deffn {Directive} %no-lines
931c7513
RS
4135Don't generate any @code{#line} preprocessor commands in the parser
4136file. Ordinarily Bison writes these commands in the parser file so that
4137the C compiler and debuggers will associate errors and object code with
4138your source file (the grammar file). This directive causes them to
4139associate errors with the parser file, treating it an independent source
4140file in its own right.
18b519c0 4141@end deffn
931c7513 4142
18b519c0 4143@deffn {Directive} %output="@var{filename}"
d8988b2f 4144Specify the @var{filename} for the parser file.
18b519c0 4145@end deffn
6deb4447 4146
18b519c0 4147@deffn {Directive} %pure-parser
d8988b2f
AD
4148Request a pure (reentrant) parser program (@pxref{Pure Decl, ,A Pure
4149(Reentrant) Parser}).
18b519c0 4150@end deffn
6deb4447 4151
18b519c0 4152@deffn {Directive} %token-table
931c7513
RS
4153Generate an array of token names in the parser file. The name of the
4154array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 4155token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
4156three elements of @code{yytname} correspond to the predefined tokens
4157@code{"$end"},
88bce5a2
AD
4158@code{"error"}, and @code{"$undefined"}; after these come the symbols
4159defined in the grammar file.
931c7513
RS
4160
4161For single-character literal tokens and literal string tokens, the name
4162in the table includes the single-quote or double-quote characters: for
4163example, @code{"'+'"} is a single-character literal and @code{"\"<=\""}
4164is a literal string token. All the characters of the literal string
4165token appear verbatim in the string found in the table; even
4166double-quote characters are not escaped. For example, if the token
4167consists of three characters @samp{*"*}, its string in @code{yytname}
4168contains @samp{"*"*"}. (In C, that would be written as
4169@code{"\"*\"*\""}).
4170
8c9a50be 4171When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
4172definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
4173@code{YYNRULES}, and @code{YYNSTATES}:
4174
4175@table @code
4176@item YYNTOKENS
4177The highest token number, plus one.
4178@item YYNNTS
9ecbd125 4179The number of nonterminal symbols.
931c7513
RS
4180@item YYNRULES
4181The number of grammar rules,
4182@item YYNSTATES
4183The number of parser states (@pxref{Parser States}).
4184@end table
18b519c0 4185@end deffn
d8988b2f 4186
18b519c0 4187@deffn {Directive} %verbose
d8988b2f
AD
4188Write an extra output file containing verbose descriptions of the
4189parser states and what is done for each type of look-ahead token in
72d2299c 4190that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 4191information.
18b519c0 4192@end deffn
d8988b2f 4193
18b519c0 4194@deffn {Directive} %yacc
d8988b2f
AD
4195Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
4196including its naming conventions. @xref{Bison Options}, for more.
18b519c0 4197@end deffn
d8988b2f
AD
4198
4199
342b8b6e 4200@node Multiple Parsers
bfa74976
RS
4201@section Multiple Parsers in the Same Program
4202
4203Most programs that use Bison parse only one language and therefore contain
4204only one Bison parser. But what if you want to parse more than one
4205language with the same program? Then you need to avoid a name conflict
4206between different definitions of @code{yyparse}, @code{yylval}, and so on.
4207
4208The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
4209(@pxref{Invocation, ,Invoking Bison}). This renames the interface
4210functions and variables of the Bison parser to start with @var{prefix}
4211instead of @samp{yy}. You can use this to give each parser distinct
4212names that do not conflict.
bfa74976
RS
4213
4214The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a
AD
4215@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
4216@code{yychar} and @code{yydebug}. For example, if you use @samp{-p c},
4217the names become @code{cparse}, @code{clex}, and so on.
bfa74976
RS
4218
4219@strong{All the other variables and macros associated with Bison are not
4220renamed.} These others are not global; there is no conflict if the same
4221name is used in different parsers. For example, @code{YYSTYPE} is not
4222renamed, but defining this in different ways in different parsers causes
4223no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
4224
4225The @samp{-p} option works by adding macro definitions to the beginning
4226of the parser source file, defining @code{yyparse} as
4227@code{@var{prefix}parse}, and so on. This effectively substitutes one
4228name for the other in the entire parser file.
4229
342b8b6e 4230@node Interface
bfa74976
RS
4231@chapter Parser C-Language Interface
4232@cindex C-language interface
4233@cindex interface
4234
4235The Bison parser is actually a C function named @code{yyparse}. Here we
4236describe the interface conventions of @code{yyparse} and the other
4237functions that it needs to use.
4238
4239Keep in mind that the parser uses many C identifiers starting with
4240@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
4241identifier (aside from those in this manual) in an action or in epilogue
4242in the grammar file, you are likely to run into trouble.
bfa74976
RS
4243
4244@menu
4245* Parser Function:: How to call @code{yyparse} and what it returns.
13863333 4246* Lexical:: You must supply a function @code{yylex}
bfa74976
RS
4247 which reads tokens.
4248* Error Reporting:: You must supply a function @code{yyerror}.
4249* Action Features:: Special features for use in actions.
f7ab6a50
PE
4250* Internationalization:: How to let the parser speak in the user's
4251 native language.
bfa74976
RS
4252@end menu
4253
342b8b6e 4254@node Parser Function
bfa74976
RS
4255@section The Parser Function @code{yyparse}
4256@findex yyparse
4257
4258You call the function @code{yyparse} to cause parsing to occur. This
4259function reads tokens, executes actions, and ultimately returns when it
4260encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
4261write an action which directs @code{yyparse} to return immediately
4262without reading further.
bfa74976 4263
2a8d363a
AD
4264
4265@deftypefun int yyparse (void)
bfa74976
RS
4266The value returned by @code{yyparse} is 0 if parsing was successful (return
4267is due to end-of-input).
4268
4269The value is 1 if parsing failed (return is due to a syntax error).
2a8d363a 4270@end deftypefun
bfa74976
RS
4271
4272In an action, you can cause immediate return from @code{yyparse} by using
4273these macros:
4274
2a8d363a 4275@defmac YYACCEPT
bfa74976
RS
4276@findex YYACCEPT
4277Return immediately with value 0 (to report success).
2a8d363a 4278@end defmac
bfa74976 4279
2a8d363a 4280@defmac YYABORT
bfa74976
RS
4281@findex YYABORT
4282Return immediately with value 1 (to report failure).
2a8d363a
AD
4283@end defmac
4284
4285If you use a reentrant parser, you can optionally pass additional
4286parameter information to it in a reentrant way. To do so, use the
4287declaration @code{%parse-param}:
4288
feeb0eda 4289@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 4290@findex %parse-param
feeb0eda 4291Declare that an argument declared by @code{argument-declaration} is an
94175978
PE
4292additional @code{yyparse} argument.
4293The @var{argument-declaration} is used when declaring
feeb0eda
PE
4294functions or prototypes. The last identifier in
4295@var{argument-declaration} must be the argument name.
2a8d363a
AD
4296@end deffn
4297
4298Here's an example. Write this in the parser:
4299
4300@example
feeb0eda
PE
4301%parse-param @{int *nastiness@}
4302%parse-param @{int *randomness@}
2a8d363a
AD
4303@end example
4304
4305@noindent
4306Then call the parser like this:
4307
4308@example
4309@{
4310 int nastiness, randomness;
4311 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
4312 value = yyparse (&nastiness, &randomness);
4313 @dots{}
4314@}
4315@end example
4316
4317@noindent
4318In the grammar actions, use expressions like this to refer to the data:
4319
4320@example
4321exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
4322@end example
4323
bfa74976 4324
342b8b6e 4325@node Lexical
bfa74976
RS
4326@section The Lexical Analyzer Function @code{yylex}
4327@findex yylex
4328@cindex lexical analyzer
4329
4330The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
4331the input stream and returns them to the parser. Bison does not create
4332this function automatically; you must write it so that @code{yyparse} can
4333call it. The function is sometimes referred to as a lexical scanner.
4334
4335In simple programs, @code{yylex} is often defined at the end of the Bison
4336grammar file. If @code{yylex} is defined in a separate source file, you
4337need to arrange for the token-type macro definitions to be available there.
4338To do this, use the @samp{-d} option when you run Bison, so that it will
4339write these macro definitions into a separate header file
4340@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 4341that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
4342
4343@menu
4344* Calling Convention:: How @code{yyparse} calls @code{yylex}.
4345* Token Values:: How @code{yylex} must return the semantic value
4346 of the token it has read.
95923bd6 4347* Token Locations:: How @code{yylex} must return the text location
bfa74976
RS
4348 (line number, etc.) of the token, if the
4349 actions want that.
4350* Pure Calling:: How the calling convention differs
4351 in a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
4352@end menu
4353
342b8b6e 4354@node Calling Convention
bfa74976
RS
4355@subsection Calling Convention for @code{yylex}
4356
72d2299c
PE
4357The value that @code{yylex} returns must be the positive numeric code
4358for the type of token it has just found; a zero or negative value
4359signifies end-of-input.
bfa74976
RS
4360
4361When a token is referred to in the grammar rules by a name, that name
4362in the parser file becomes a C macro whose definition is the proper
4363numeric code for that token type. So @code{yylex} can use the name
4364to indicate that type. @xref{Symbols}.
4365
4366When a token is referred to in the grammar rules by a character literal,
4367the numeric code for that character is also the code for the token type.
72d2299c
PE
4368So @code{yylex} can simply return that character code, possibly converted
4369to @code{unsigned char} to avoid sign-extension. The null character
4370must not be used this way, because its code is zero and that
bfa74976
RS
4371signifies end-of-input.
4372
4373Here is an example showing these things:
4374
4375@example
13863333
AD
4376int
4377yylex (void)
bfa74976
RS
4378@{
4379 @dots{}
72d2299c 4380 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
4381 return 0;
4382 @dots{}
4383 if (c == '+' || c == '-')
72d2299c 4384 return c; /* Assume token type for `+' is '+'. */
bfa74976 4385 @dots{}
72d2299c 4386 return INT; /* Return the type of the token. */
bfa74976
RS
4387 @dots{}
4388@}
4389@end example
4390
4391@noindent
4392This interface has been designed so that the output from the @code{lex}
4393utility can be used without change as the definition of @code{yylex}.
4394
931c7513
RS
4395If the grammar uses literal string tokens, there are two ways that
4396@code{yylex} can determine the token type codes for them:
4397
4398@itemize @bullet
4399@item
4400If the grammar defines symbolic token names as aliases for the
4401literal string tokens, @code{yylex} can use these symbolic names like
4402all others. In this case, the use of the literal string tokens in
4403the grammar file has no effect on @code{yylex}.
4404
4405@item
9ecbd125 4406@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 4407table. The index of the token in the table is the token type's code.
9ecbd125 4408The name of a multicharacter token is recorded in @code{yytname} with a
931c7513
RS
4409double-quote, the token's characters, and another double-quote. The
4410token's characters are not escaped in any way; they appear verbatim in
4411the contents of the string in the table.
4412
4413Here's code for looking up a token in @code{yytname}, assuming that the
4414characters of the token are stored in @code{token_buffer}.
4415
4416@smallexample
4417for (i = 0; i < YYNTOKENS; i++)
4418 @{
4419 if (yytname[i] != 0
4420 && yytname[i][0] == '"'
68449b3a
PE
4421 && ! strncmp (yytname[i] + 1, token_buffer,
4422 strlen (token_buffer))
931c7513
RS
4423 && yytname[i][strlen (token_buffer) + 1] == '"'
4424 && yytname[i][strlen (token_buffer) + 2] == 0)
4425 break;
4426 @}
4427@end smallexample
4428
4429The @code{yytname} table is generated only if you use the
8c9a50be 4430@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
4431@end itemize
4432
342b8b6e 4433@node Token Values
bfa74976
RS
4434@subsection Semantic Values of Tokens
4435
4436@vindex yylval
14ded682 4437In an ordinary (non-reentrant) parser, the semantic value of the token must
bfa74976
RS
4438be stored into the global variable @code{yylval}. When you are using
4439just one data type for semantic values, @code{yylval} has that type.
4440Thus, if the type is @code{int} (the default), you might write this in
4441@code{yylex}:
4442
4443@example
4444@group
4445 @dots{}
72d2299c
PE
4446 yylval = value; /* Put value onto Bison stack. */
4447 return INT; /* Return the type of the token. */
bfa74976
RS
4448 @dots{}
4449@end group
4450@end example
4451
4452When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
4453made from the @code{%union} declaration (@pxref{Union Decl, ,The
4454Collection of Value Types}). So when you store a token's value, you
4455must use the proper member of the union. If the @code{%union}
4456declaration looks like this:
bfa74976
RS
4457
4458@example
4459@group
4460%union @{
4461 int intval;
4462 double val;
4463 symrec *tptr;
4464@}
4465@end group
4466@end example
4467
4468@noindent
4469then the code in @code{yylex} might look like this:
4470
4471@example
4472@group
4473 @dots{}
72d2299c
PE
4474 yylval.intval = value; /* Put value onto Bison stack. */
4475 return INT; /* Return the type of the token. */
bfa74976
RS
4476 @dots{}
4477@end group
4478@end example
4479
95923bd6
AD
4480@node Token Locations
4481@subsection Textual Locations of Tokens
bfa74976
RS
4482
4483@vindex yylloc
847bf1f5
AD
4484If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
4485Tracking Locations}) in actions to keep track of the
89cab50d
AD
4486textual locations of tokens and groupings, then you must provide this
4487information in @code{yylex}. The function @code{yyparse} expects to
4488find the textual location of a token just parsed in the global variable
4489@code{yylloc}. So @code{yylex} must store the proper data in that
847bf1f5
AD
4490variable.
4491
4492By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
4493initialize the members that are going to be used by the actions. The
4494four members are called @code{first_line}, @code{first_column},
4495@code{last_line} and @code{last_column}. Note that the use of this
4496feature makes the parser noticeably slower.
bfa74976
RS
4497
4498@tindex YYLTYPE
4499The data type of @code{yylloc} has the name @code{YYLTYPE}.
4500
342b8b6e 4501@node Pure Calling
c656404a 4502@subsection Calling Conventions for Pure Parsers
bfa74976 4503
8c9a50be 4504When you use the Bison declaration @code{%pure-parser} to request a
e425e872
RS
4505pure, reentrant parser, the global communication variables @code{yylval}
4506and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
4507Parser}.) In such parsers the two global variables are replaced by
4508pointers passed as arguments to @code{yylex}. You must declare them as
4509shown here, and pass the information back by storing it through those
4510pointers.
bfa74976
RS
4511
4512@example
13863333
AD
4513int
4514yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
4515@{
4516 @dots{}
4517 *lvalp = value; /* Put value onto Bison stack. */
4518 return INT; /* Return the type of the token. */
4519 @dots{}
4520@}
4521@end example
4522
4523If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 4524textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
4525this case, omit the second argument; @code{yylex} will be called with
4526only one argument.
4527
e425e872 4528
2a8d363a
AD
4529If you wish to pass the additional parameter data to @code{yylex}, use
4530@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
4531Function}).
e425e872 4532
feeb0eda 4533@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 4534@findex %lex-param
feeb0eda
PE
4535Declare that @code{argument-declaration} is an additional @code{yylex}
4536argument declaration.
2a8d363a 4537@end deffn
e425e872 4538
2a8d363a 4539For instance:
e425e872
RS
4540
4541@example
feeb0eda
PE
4542%parse-param @{int *nastiness@}
4543%lex-param @{int *nastiness@}
4544%parse-param @{int *randomness@}
e425e872
RS
4545@end example
4546
4547@noindent
2a8d363a 4548results in the following signature:
e425e872
RS
4549
4550@example
2a8d363a
AD
4551int yylex (int *nastiness);
4552int yyparse (int *nastiness, int *randomness);
e425e872
RS
4553@end example
4554
2a8d363a 4555If @code{%pure-parser} is added:
c656404a
RS
4556
4557@example
2a8d363a
AD
4558int yylex (YYSTYPE *lvalp, int *nastiness);
4559int yyparse (int *nastiness, int *randomness);
c656404a
RS
4560@end example
4561
2a8d363a
AD
4562@noindent
4563and finally, if both @code{%pure-parser} and @code{%locations} are used:
c656404a 4564
2a8d363a
AD
4565@example
4566int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4567int yyparse (int *nastiness, int *randomness);
4568@end example
931c7513 4569
342b8b6e 4570@node Error Reporting
bfa74976
RS
4571@section The Error Reporting Function @code{yyerror}
4572@cindex error reporting function
4573@findex yyerror
4574@cindex parse error
4575@cindex syntax error
4576
6e649e65 4577The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 4578whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 4579action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
4580macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
4581in Actions}).
bfa74976
RS
4582
4583The Bison parser expects to report the error by calling an error
4584reporting function named @code{yyerror}, which you must supply. It is
4585called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
4586receives one argument. For a syntax error, the string is normally
4587@w{@code{"syntax error"}}.
bfa74976 4588
2a8d363a
AD
4589@findex %error-verbose
4590If you invoke the directive @code{%error-verbose} in the Bison
4591declarations section (@pxref{Bison Declarations, ,The Bison Declarations
4592Section}), then Bison provides a more verbose and specific error message
6e649e65 4593string instead of just plain @w{@code{"syntax error"}}.
bfa74976 4594
1a059451
PE
4595The parser can detect one other kind of error: memory exhaustion. This
4596can happen when the input contains constructions that are very deeply
bfa74976 4597nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
4598parser normally extends its stack automatically up to a very large limit. But
4599if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
4600fashion, except that the argument string is @w{@code{"memory exhausted"}}.
4601
4602In some cases diagnostics like @w{@code{"syntax error"}} are
4603translated automatically from English to some other language before
4604they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
4605
4606The following definition suffices in simple programs:
4607
4608@example
4609@group
13863333 4610void
38a92d50 4611yyerror (char const *s)
bfa74976
RS
4612@{
4613@end group
4614@group
4615 fprintf (stderr, "%s\n", s);
4616@}
4617@end group
4618@end example
4619
4620After @code{yyerror} returns to @code{yyparse}, the latter will attempt
4621error recovery if you have written suitable error recovery grammar rules
4622(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
4623immediately return 1.
4624
93724f13 4625Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
4626an access to the current location.
4627This is indeed the case for the @acronym{GLR}
2a8d363a
AD
4628parsers, but not for the Yacc parser, for historical reasons. I.e., if
4629@samp{%locations %pure-parser} is passed then the prototypes for
4630@code{yyerror} are:
4631
4632@example
38a92d50
PE
4633void yyerror (char const *msg); /* Yacc parsers. */
4634void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
4635@end example
4636
feeb0eda 4637If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
4638
4639@example
b317297e
PE
4640void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
4641void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
4642@end example
4643
fa7e68c3 4644Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
4645convention for absolutely pure parsers, i.e., when the calling
4646convention of @code{yylex} @emph{and} the calling convention of
4647@code{%pure-parser} are pure. I.e.:
4648
4649@example
4650/* Location tracking. */
4651%locations
4652/* Pure yylex. */
4653%pure-parser
feeb0eda 4654%lex-param @{int *nastiness@}
2a8d363a 4655/* Pure yyparse. */
feeb0eda
PE
4656%parse-param @{int *nastiness@}
4657%parse-param @{int *randomness@}
2a8d363a
AD
4658@end example
4659
4660@noindent
4661results in the following signatures for all the parser kinds:
4662
4663@example
4664int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
4665int yyparse (int *nastiness, int *randomness);
93724f13
AD
4666void yyerror (YYLTYPE *locp,
4667 int *nastiness, int *randomness,
38a92d50 4668 char const *msg);
2a8d363a
AD
4669@end example
4670
1c0c3e95 4671@noindent
38a92d50
PE
4672The prototypes are only indications of how the code produced by Bison
4673uses @code{yyerror}. Bison-generated code always ignores the returned
4674value, so @code{yyerror} can return any type, including @code{void}.
4675Also, @code{yyerror} can be a variadic function; that is why the
4676message is always passed last.
4677
4678Traditionally @code{yyerror} returns an @code{int} that is always
4679ignored, but this is purely for historical reasons, and @code{void} is
4680preferable since it more accurately describes the return type for
4681@code{yyerror}.
93724f13 4682
bfa74976
RS
4683@vindex yynerrs
4684The variable @code{yynerrs} contains the number of syntax errors
4685encountered so far. Normally this variable is global; but if you
704a47c4
AD
4686request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
4687then it is a local variable which only the actions can access.
bfa74976 4688
342b8b6e 4689@node Action Features
bfa74976
RS
4690@section Special Features for Use in Actions
4691@cindex summary, action features
4692@cindex action features summary
4693
4694Here is a table of Bison constructs, variables and macros that
4695are useful in actions.
4696
18b519c0 4697@deffn {Variable} $$
bfa74976
RS
4698Acts like a variable that contains the semantic value for the
4699grouping made by the current rule. @xref{Actions}.
18b519c0 4700@end deffn
bfa74976 4701
18b519c0 4702@deffn {Variable} $@var{n}
bfa74976
RS
4703Acts like a variable that contains the semantic value for the
4704@var{n}th component of the current rule. @xref{Actions}.
18b519c0 4705@end deffn
bfa74976 4706
18b519c0 4707@deffn {Variable} $<@var{typealt}>$
bfa74976 4708Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
4709specified by the @code{%union} declaration. @xref{Action Types, ,Data
4710Types of Values in Actions}.
18b519c0 4711@end deffn
bfa74976 4712
18b519c0 4713@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 4714Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 4715union specified by the @code{%union} declaration.
e0c471a9 4716@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 4717@end deffn
bfa74976 4718
18b519c0 4719@deffn {Macro} YYABORT;
bfa74976
RS
4720Return immediately from @code{yyparse}, indicating failure.
4721@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4722@end deffn
bfa74976 4723
18b519c0 4724@deffn {Macro} YYACCEPT;
bfa74976
RS
4725Return immediately from @code{yyparse}, indicating success.
4726@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 4727@end deffn
bfa74976 4728
18b519c0 4729@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
4730@findex YYBACKUP
4731Unshift a token. This macro is allowed only for rules that reduce
4732a single value, and only when there is no look-ahead token.
c827f760 4733It is also disallowed in @acronym{GLR} parsers.
bfa74976
RS
4734It installs a look-ahead token with token type @var{token} and
4735semantic value @var{value}; then it discards the value that was
4736going to be reduced by this rule.
4737
4738If the macro is used when it is not valid, such as when there is
4739a look-ahead token already, then it reports a syntax error with
4740a message @samp{cannot back up} and performs ordinary error
4741recovery.
4742
4743In either case, the rest of the action is not executed.
18b519c0 4744@end deffn
bfa74976 4745
18b519c0 4746@deffn {Macro} YYEMPTY
bfa74976
RS
4747@vindex YYEMPTY
4748Value stored in @code{yychar} when there is no look-ahead token.
18b519c0 4749@end deffn
bfa74976 4750
18b519c0 4751@deffn {Macro} YYERROR;
bfa74976
RS
4752@findex YYERROR
4753Cause an immediate syntax error. This statement initiates error
4754recovery just as if the parser itself had detected an error; however, it
4755does not call @code{yyerror}, and does not print any message. If you
4756want to print an error message, call @code{yyerror} explicitly before
4757the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 4758@end deffn
bfa74976 4759
18b519c0 4760@deffn {Macro} YYRECOVERING
bfa74976
RS
4761This macro stands for an expression that has the value 1 when the parser
4762is recovering from a syntax error, and 0 the rest of the time.
4763@xref{Error Recovery}.
18b519c0 4764@end deffn
bfa74976 4765
18b519c0 4766@deffn {Variable} yychar
bfa74976
RS
4767Variable containing the current look-ahead token. (In a pure parser,
4768this is actually a local variable within @code{yyparse}.) When there is
4769no look-ahead token, the value @code{YYEMPTY} is stored in the variable.
4770@xref{Look-Ahead, ,Look-Ahead Tokens}.
18b519c0 4771@end deffn
bfa74976 4772
18b519c0 4773@deffn {Macro} yyclearin;
bfa74976
RS
4774Discard the current look-ahead token. This is useful primarily in
4775error rules. @xref{Error Recovery}.
18b519c0 4776@end deffn
bfa74976 4777
18b519c0 4778@deffn {Macro} yyerrok;
bfa74976 4779Resume generating error messages immediately for subsequent syntax
13863333 4780errors. This is useful primarily in error rules.
bfa74976 4781@xref{Error Recovery}.
18b519c0 4782@end deffn
bfa74976 4783
18b519c0 4784@deffn {Value} @@$
847bf1f5 4785@findex @@$
95923bd6 4786Acts like a structure variable containing information on the textual location
847bf1f5
AD
4787of the grouping made by the current rule. @xref{Locations, ,
4788Tracking Locations}.
bfa74976 4789
847bf1f5
AD
4790@c Check if those paragraphs are still useful or not.
4791
4792@c @example
4793@c struct @{
4794@c int first_line, last_line;
4795@c int first_column, last_column;
4796@c @};
4797@c @end example
4798
4799@c Thus, to get the starting line number of the third component, you would
4800@c use @samp{@@3.first_line}.
bfa74976 4801
847bf1f5
AD
4802@c In order for the members of this structure to contain valid information,
4803@c you must make @code{yylex} supply this information about each token.
4804@c If you need only certain members, then @code{yylex} need only fill in
4805@c those members.
bfa74976 4806
847bf1f5 4807@c The use of this feature makes the parser noticeably slower.
18b519c0 4808@end deffn
847bf1f5 4809
18b519c0 4810@deffn {Value} @@@var{n}
847bf1f5 4811@findex @@@var{n}
95923bd6 4812Acts like a structure variable containing information on the textual location
847bf1f5
AD
4813of the @var{n}th component of the current rule. @xref{Locations, ,
4814Tracking Locations}.
18b519c0 4815@end deffn
bfa74976 4816
f7ab6a50
PE
4817@node Internationalization
4818@section Parser Internationalization
4819@cindex internationalization
4820@cindex i18n
4821@cindex NLS
4822@cindex gettext
4823@cindex bison-po
4824
4825A Bison-generated parser can print diagnostics, including error and
4826tracing messages. By default, they appear in English. However, Bison
4827also supports outputting diagnostics in the user's native language.
4828To make this work, the user should set the usual environment
30757c8c
PE
4829variables. @xref{Users, , The User's View, gettext, GNU
4830@code{gettext} utilities}. For
f7ab6a50
PE
4831example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might set
4832the user's locale to French Canadian using the @acronym{UTF}-8
4833encoding. The exact set of available locales depends on the user's
4834installation.
4835
4836The maintainer of a package that uses a Bison-generated parser enables
4837the internationalization of the parser's output through the following
4838steps. Here we assume a package that uses @acronym{GNU} Autoconf and
4839@acronym{GNU} Automake.
4840
4841@enumerate
4842@item
30757c8c 4843@cindex bison-i18n.m4
f7ab6a50
PE
4844Into the directory containing the @acronym{GNU} Autoconf macros used
4845by the package---often called @file{m4}---copy the
4846@file{bison-i18n.m4} file installed by Bison under
4847@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
4848For example:
4849
4850@example
4851cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
4852@end example
4853
4854@item
30757c8c
PE
4855@findex BISON_I18N
4856@vindex BISON_LOCALEDIR
4857@vindex YYENABLE_NLS
f7ab6a50
PE
4858In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
4859invocation, add an invocation of @code{BISON_I18N}. This macro is
4860defined in the file @file{bison-i18n.m4} that you copied earlier. It
4861causes @samp{configure} to find the value of the
30757c8c
PE
4862@code{BISON_LOCALEDIR} variable, and it defines the source-language
4863symbol @code{YYENABLE_NLS} to enable translations in the
4864Bison-generated parser.
f7ab6a50
PE
4865
4866@item
4867In the @code{main} function of your program, designate the directory
4868containing Bison's runtime message catalog, through a call to
4869@samp{bindtextdomain} with domain name @samp{bison-runtime}.
4870For example:
4871
4872@example
4873bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
4874@end example
4875
4876Typically this appears after any other call @code{bindtextdomain
4877(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
4878@samp{BISON_LOCALEDIR} to be defined as a string through the
4879@file{Makefile}.
4880
4881@item
4882In the @file{Makefile.am} that controls the compilation of the @code{main}
4883function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
4884either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
4885
4886@example
4887DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4888@end example
4889
4890or:
4891
4892@example
4893AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
4894@end example
4895
4896@item
4897Finally, invoke the command @command{autoreconf} to generate the build
4898infrastructure.
4899@end enumerate
4900
bfa74976 4901
342b8b6e 4902@node Algorithm
13863333
AD
4903@chapter The Bison Parser Algorithm
4904@cindex Bison parser algorithm
bfa74976
RS
4905@cindex algorithm of parser
4906@cindex shifting
4907@cindex reduction
4908@cindex parser stack
4909@cindex stack, parser
4910
4911As Bison reads tokens, it pushes them onto a stack along with their
4912semantic values. The stack is called the @dfn{parser stack}. Pushing a
4913token is traditionally called @dfn{shifting}.
4914
4915For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
4916@samp{3} to come. The stack will have four elements, one for each token
4917that was shifted.
4918
4919But the stack does not always have an element for each token read. When
4920the last @var{n} tokens and groupings shifted match the components of a
4921grammar rule, they can be combined according to that rule. This is called
4922@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
4923single grouping whose symbol is the result (left hand side) of that rule.
4924Running the rule's action is part of the process of reduction, because this
4925is what computes the semantic value of the resulting grouping.
4926
4927For example, if the infix calculator's parser stack contains this:
4928
4929@example
49301 + 5 * 3
4931@end example
4932
4933@noindent
4934and the next input token is a newline character, then the last three
4935elements can be reduced to 15 via the rule:
4936
4937@example
4938expr: expr '*' expr;
4939@end example
4940
4941@noindent
4942Then the stack contains just these three elements:
4943
4944@example
49451 + 15
4946@end example
4947
4948@noindent
4949At this point, another reduction can be made, resulting in the single value
495016. Then the newline token can be shifted.
4951
4952The parser tries, by shifts and reductions, to reduce the entire input down
4953to a single grouping whose symbol is the grammar's start-symbol
4954(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
4955
4956This kind of parser is known in the literature as a bottom-up parser.
4957
4958@menu
4959* Look-Ahead:: Parser looks one token ahead when deciding what to do.
4960* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
4961* Precedence:: Operator precedence works by resolving conflicts.
4962* Contextual Precedence:: When an operator's precedence depends on context.
4963* Parser States:: The parser is a finite-state-machine with stack.
4964* Reduce/Reduce:: When two rules are applicable in the same situation.
4965* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 4966* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 4967* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
4968@end menu
4969
342b8b6e 4970@node Look-Ahead
bfa74976
RS
4971@section Look-Ahead Tokens
4972@cindex look-ahead token
4973
4974The Bison parser does @emph{not} always reduce immediately as soon as the
4975last @var{n} tokens and groupings match a rule. This is because such a
4976simple strategy is inadequate to handle most languages. Instead, when a
4977reduction is possible, the parser sometimes ``looks ahead'' at the next
4978token in order to decide what to do.
4979
4980When a token is read, it is not immediately shifted; first it becomes the
4981@dfn{look-ahead token}, which is not on the stack. Now the parser can
4982perform one or more reductions of tokens and groupings on the stack, while
4983the look-ahead token remains off to the side. When no more reductions
4984should take place, the look-ahead token is shifted onto the stack. This
4985does not mean that all possible reductions have been done; depending on the
4986token type of the look-ahead token, some rules may choose to delay their
4987application.
4988
4989Here is a simple case where look-ahead is needed. These three rules define
4990expressions which contain binary addition operators and postfix unary
4991factorial operators (@samp{!}), and allow parentheses for grouping.
4992
4993@example
4994@group
4995expr: term '+' expr
4996 | term
4997 ;
4998@end group
4999
5000@group
5001term: '(' expr ')'
5002 | term '!'
5003 | NUMBER
5004 ;
5005@end group
5006@end example
5007
5008Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
5009should be done? If the following token is @samp{)}, then the first three
5010tokens must be reduced to form an @code{expr}. This is the only valid
5011course, because shifting the @samp{)} would produce a sequence of symbols
5012@w{@code{term ')'}}, and no rule allows this.
5013
5014If the following token is @samp{!}, then it must be shifted immediately so
5015that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
5016parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
5017@code{expr}. It would then be impossible to shift the @samp{!} because
5018doing so would produce on the stack the sequence of symbols @code{expr
5019'!'}. No rule allows that sequence.
5020
5021@vindex yychar
5022The current look-ahead token is stored in the variable @code{yychar}.
5023@xref{Action Features, ,Special Features for Use in Actions}.
5024
342b8b6e 5025@node Shift/Reduce
bfa74976
RS
5026@section Shift/Reduce Conflicts
5027@cindex conflicts
5028@cindex shift/reduce conflicts
5029@cindex dangling @code{else}
5030@cindex @code{else}, dangling
5031
5032Suppose we are parsing a language which has if-then and if-then-else
5033statements, with a pair of rules like this:
5034
5035@example
5036@group
5037if_stmt:
5038 IF expr THEN stmt
5039 | IF expr THEN stmt ELSE stmt
5040 ;
5041@end group
5042@end example
5043
5044@noindent
5045Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
5046terminal symbols for specific keyword tokens.
5047
5048When the @code{ELSE} token is read and becomes the look-ahead token, the
5049contents of the stack (assuming the input is valid) are just right for
5050reduction by the first rule. But it is also legitimate to shift the
5051@code{ELSE}, because that would lead to eventual reduction by the second
5052rule.
5053
5054This situation, where either a shift or a reduction would be valid, is
5055called a @dfn{shift/reduce conflict}. Bison is designed to resolve
5056these conflicts by choosing to shift, unless otherwise directed by
5057operator precedence declarations. To see the reason for this, let's
5058contrast it with the other alternative.
5059
5060Since the parser prefers to shift the @code{ELSE}, the result is to attach
5061the else-clause to the innermost if-statement, making these two inputs
5062equivalent:
5063
5064@example
5065if x then if y then win (); else lose;
5066
5067if x then do; if y then win (); else lose; end;
5068@end example
5069
5070But if the parser chose to reduce when possible rather than shift, the
5071result would be to attach the else-clause to the outermost if-statement,
5072making these two inputs equivalent:
5073
5074@example
5075if x then if y then win (); else lose;
5076
5077if x then do; if y then win (); end; else lose;
5078@end example
5079
5080The conflict exists because the grammar as written is ambiguous: either
5081parsing of the simple nested if-statement is legitimate. The established
5082convention is that these ambiguities are resolved by attaching the
5083else-clause to the innermost if-statement; this is what Bison accomplishes
5084by choosing to shift rather than reduce. (It would ideally be cleaner to
5085write an unambiguous grammar, but that is very hard to do in this case.)
5086This particular ambiguity was first encountered in the specifications of
5087Algol 60 and is called the ``dangling @code{else}'' ambiguity.
5088
5089To avoid warnings from Bison about predictable, legitimate shift/reduce
5090conflicts, use the @code{%expect @var{n}} declaration. There will be no
5091warning as long as the number of shift/reduce conflicts is exactly @var{n}.
5092@xref{Expect Decl, ,Suppressing Conflict Warnings}.
5093
5094The definition of @code{if_stmt} above is solely to blame for the
5095conflict, but the conflict does not actually appear without additional
5096rules. Here is a complete Bison input file that actually manifests the
5097conflict:
5098
5099@example
5100@group
5101%token IF THEN ELSE variable
5102%%
5103@end group
5104@group
5105stmt: expr
5106 | if_stmt
5107 ;
5108@end group
5109
5110@group
5111if_stmt:
5112 IF expr THEN stmt
5113 | IF expr THEN stmt ELSE stmt
5114 ;
5115@end group
5116
5117expr: variable
5118 ;
5119@end example
5120
342b8b6e 5121@node Precedence
bfa74976
RS
5122@section Operator Precedence
5123@cindex operator precedence
5124@cindex precedence of operators
5125
5126Another situation where shift/reduce conflicts appear is in arithmetic
5127expressions. Here shifting is not always the preferred resolution; the
5128Bison declarations for operator precedence allow you to specify when to
5129shift and when to reduce.
5130
5131@menu
5132* Why Precedence:: An example showing why precedence is needed.
5133* Using Precedence:: How to specify precedence in Bison grammars.
5134* Precedence Examples:: How these features are used in the previous example.
5135* How Precedence:: How they work.
5136@end menu
5137
342b8b6e 5138@node Why Precedence
bfa74976
RS
5139@subsection When Precedence is Needed
5140
5141Consider the following ambiguous grammar fragment (ambiguous because the
5142input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
5143
5144@example
5145@group
5146expr: expr '-' expr
5147 | expr '*' expr
5148 | expr '<' expr
5149 | '(' expr ')'
5150 @dots{}
5151 ;
5152@end group
5153@end example
5154
5155@noindent
5156Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
5157should it reduce them via the rule for the subtraction operator? It
5158depends on the next token. Of course, if the next token is @samp{)}, we
5159must reduce; shifting is invalid because no single rule can reduce the
5160token sequence @w{@samp{- 2 )}} or anything starting with that. But if
5161the next token is @samp{*} or @samp{<}, we have a choice: either
5162shifting or reduction would allow the parse to complete, but with
5163different results.
5164
5165To decide which one Bison should do, we must consider the results. If
5166the next operator token @var{op} is shifted, then it must be reduced
5167first in order to permit another opportunity to reduce the difference.
5168The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
5169hand, if the subtraction is reduced before shifting @var{op}, the result
5170is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
5171reduce should depend on the relative precedence of the operators
5172@samp{-} and @var{op}: @samp{*} should be shifted first, but not
5173@samp{<}.
bfa74976
RS
5174
5175@cindex associativity
5176What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
5177@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
5178operators we prefer the former, which is called @dfn{left association}.
5179The latter alternative, @dfn{right association}, is desirable for
5180assignment operators. The choice of left or right association is a
5181matter of whether the parser chooses to shift or reduce when the stack
5182contains @w{@samp{1 - 2}} and the look-ahead token is @samp{-}: shifting
5183makes right-associativity.
bfa74976 5184
342b8b6e 5185@node Using Precedence
bfa74976
RS
5186@subsection Specifying Operator Precedence
5187@findex %left
5188@findex %right
5189@findex %nonassoc
5190
5191Bison allows you to specify these choices with the operator precedence
5192declarations @code{%left} and @code{%right}. Each such declaration
5193contains a list of tokens, which are operators whose precedence and
5194associativity is being declared. The @code{%left} declaration makes all
5195those operators left-associative and the @code{%right} declaration makes
5196them right-associative. A third alternative is @code{%nonassoc}, which
5197declares that it is a syntax error to find the same operator twice ``in a
5198row''.
5199
5200The relative precedence of different operators is controlled by the
5201order in which they are declared. The first @code{%left} or
5202@code{%right} declaration in the file declares the operators whose
5203precedence is lowest, the next such declaration declares the operators
5204whose precedence is a little higher, and so on.
5205
342b8b6e 5206@node Precedence Examples
bfa74976
RS
5207@subsection Precedence Examples
5208
5209In our example, we would want the following declarations:
5210
5211@example
5212%left '<'
5213%left '-'
5214%left '*'
5215@end example
5216
5217In a more complete example, which supports other operators as well, we
5218would declare them in groups of equal precedence. For example, @code{'+'} is
5219declared with @code{'-'}:
5220
5221@example
5222%left '<' '>' '=' NE LE GE
5223%left '+' '-'
5224%left '*' '/'
5225@end example
5226
5227@noindent
5228(Here @code{NE} and so on stand for the operators for ``not equal''
5229and so on. We assume that these tokens are more than one character long
5230and therefore are represented by names, not character literals.)
5231
342b8b6e 5232@node How Precedence
bfa74976
RS
5233@subsection How Precedence Works
5234
5235The first effect of the precedence declarations is to assign precedence
5236levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
5237precedence levels to certain rules: each rule gets its precedence from
5238the last terminal symbol mentioned in the components. (You can also
5239specify explicitly the precedence of a rule. @xref{Contextual
5240Precedence, ,Context-Dependent Precedence}.)
5241
5242Finally, the resolution of conflicts works by comparing the precedence
5243of the rule being considered with that of the look-ahead token. If the
5244token's precedence is higher, the choice is to shift. If the rule's
5245precedence is higher, the choice is to reduce. If they have equal
5246precedence, the choice is made based on the associativity of that
5247precedence level. The verbose output file made by @samp{-v}
5248(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
5249resolved.
bfa74976
RS
5250
5251Not all rules and not all tokens have precedence. If either the rule or
5252the look-ahead token has no precedence, then the default is to shift.
5253
342b8b6e 5254@node Contextual Precedence
bfa74976
RS
5255@section Context-Dependent Precedence
5256@cindex context-dependent precedence
5257@cindex unary operator precedence
5258@cindex precedence, context-dependent
5259@cindex precedence, unary operator
5260@findex %prec
5261
5262Often the precedence of an operator depends on the context. This sounds
5263outlandish at first, but it is really very common. For example, a minus
5264sign typically has a very high precedence as a unary operator, and a
5265somewhat lower precedence (lower than multiplication) as a binary operator.
5266
5267The Bison precedence declarations, @code{%left}, @code{%right} and
5268@code{%nonassoc}, can only be used once for a given token; so a token has
5269only one precedence declared in this way. For context-dependent
5270precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 5271modifier for rules.
bfa74976
RS
5272
5273The @code{%prec} modifier declares the precedence of a particular rule by
5274specifying a terminal symbol whose precedence should be used for that rule.
5275It's not necessary for that symbol to appear otherwise in the rule. The
5276modifier's syntax is:
5277
5278@example
5279%prec @var{terminal-symbol}
5280@end example
5281
5282@noindent
5283and it is written after the components of the rule. Its effect is to
5284assign the rule the precedence of @var{terminal-symbol}, overriding
5285the precedence that would be deduced for it in the ordinary way. The
5286altered rule precedence then affects how conflicts involving that rule
5287are resolved (@pxref{Precedence, ,Operator Precedence}).
5288
5289Here is how @code{%prec} solves the problem of unary minus. First, declare
5290a precedence for a fictitious terminal symbol named @code{UMINUS}. There
5291are no tokens of this type, but the symbol serves to stand for its
5292precedence:
5293
5294@example
5295@dots{}
5296%left '+' '-'
5297%left '*'
5298%left UMINUS
5299@end example
5300
5301Now the precedence of @code{UMINUS} can be used in specific rules:
5302
5303@example
5304@group
5305exp: @dots{}
5306 | exp '-' exp
5307 @dots{}
5308 | '-' exp %prec UMINUS
5309@end group
5310@end example
5311
91d2c560 5312@ifset defaultprec
39a06c25
PE
5313If you forget to append @code{%prec UMINUS} to the rule for unary
5314minus, Bison silently assumes that minus has its usual precedence.
5315This kind of problem can be tricky to debug, since one typically
5316discovers the mistake only by testing the code.
5317
22fccf95 5318The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
5319this kind of problem systematically. It causes rules that lack a
5320@code{%prec} modifier to have no precedence, even if the last terminal
5321symbol mentioned in their components has a declared precedence.
5322
22fccf95 5323If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
5324for all rules that participate in precedence conflict resolution.
5325Then you will see any shift/reduce conflict until you tell Bison how
5326to resolve it, either by changing your grammar or by adding an
5327explicit precedence. This will probably add declarations to the
5328grammar, but it helps to protect against incorrect rule precedences.
5329
22fccf95
PE
5330The effect of @code{%no-default-prec;} can be reversed by giving
5331@code{%default-prec;}, which is the default.
91d2c560 5332@end ifset
39a06c25 5333
342b8b6e 5334@node Parser States
bfa74976
RS
5335@section Parser States
5336@cindex finite-state machine
5337@cindex parser state
5338@cindex state (of parser)
5339
5340The function @code{yyparse} is implemented using a finite-state machine.
5341The values pushed on the parser stack are not simply token type codes; they
5342represent the entire sequence of terminal and nonterminal symbols at or
5343near the top of the stack. The current state collects all the information
5344about previous input which is relevant to deciding what to do next.
5345
5346Each time a look-ahead token is read, the current parser state together
5347with the type of look-ahead token are looked up in a table. This table
5348entry can say, ``Shift the look-ahead token.'' In this case, it also
5349specifies the new parser state, which is pushed onto the top of the
5350parser stack. Or it can say, ``Reduce using rule number @var{n}.''
5351This means that a certain number of tokens or groupings are taken off
5352the top of the stack, and replaced by one grouping. In other words,
5353that number of states are popped from the stack, and one new state is
5354pushed.
5355
5356There is one other alternative: the table can say that the look-ahead token
5357is erroneous in the current state. This causes error processing to begin
5358(@pxref{Error Recovery}).
5359
342b8b6e 5360@node Reduce/Reduce
bfa74976
RS
5361@section Reduce/Reduce Conflicts
5362@cindex reduce/reduce conflict
5363@cindex conflicts, reduce/reduce
5364
5365A reduce/reduce conflict occurs if there are two or more rules that apply
5366to the same sequence of input. This usually indicates a serious error
5367in the grammar.
5368
5369For example, here is an erroneous attempt to define a sequence
5370of zero or more @code{word} groupings.
5371
5372@example
5373sequence: /* empty */
5374 @{ printf ("empty sequence\n"); @}
5375 | maybeword
5376 | sequence word
5377 @{ printf ("added word %s\n", $2); @}
5378 ;
5379
5380maybeword: /* empty */
5381 @{ printf ("empty maybeword\n"); @}
5382 | word
5383 @{ printf ("single word %s\n", $1); @}
5384 ;
5385@end example
5386
5387@noindent
5388The error is an ambiguity: there is more than one way to parse a single
5389@code{word} into a @code{sequence}. It could be reduced to a
5390@code{maybeword} and then into a @code{sequence} via the second rule.
5391Alternatively, nothing-at-all could be reduced into a @code{sequence}
5392via the first rule, and this could be combined with the @code{word}
5393using the third rule for @code{sequence}.
5394
5395There is also more than one way to reduce nothing-at-all into a
5396@code{sequence}. This can be done directly via the first rule,
5397or indirectly via @code{maybeword} and then the second rule.
5398
5399You might think that this is a distinction without a difference, because it
5400does not change whether any particular input is valid or not. But it does
5401affect which actions are run. One parsing order runs the second rule's
5402action; the other runs the first rule's action and the third rule's action.
5403In this example, the output of the program changes.
5404
5405Bison resolves a reduce/reduce conflict by choosing to use the rule that
5406appears first in the grammar, but it is very risky to rely on this. Every
5407reduce/reduce conflict must be studied and usually eliminated. Here is the
5408proper way to define @code{sequence}:
5409
5410@example
5411sequence: /* empty */
5412 @{ printf ("empty sequence\n"); @}
5413 | sequence word
5414 @{ printf ("added word %s\n", $2); @}
5415 ;
5416@end example
5417
5418Here is another common error that yields a reduce/reduce conflict:
5419
5420@example
5421sequence: /* empty */
5422 | sequence words
5423 | sequence redirects
5424 ;
5425
5426words: /* empty */
5427 | words word
5428 ;
5429
5430redirects:/* empty */
5431 | redirects redirect
5432 ;
5433@end example
5434
5435@noindent
5436The intention here is to define a sequence which can contain either
5437@code{word} or @code{redirect} groupings. The individual definitions of
5438@code{sequence}, @code{words} and @code{redirects} are error-free, but the
5439three together make a subtle ambiguity: even an empty input can be parsed
5440in infinitely many ways!
5441
5442Consider: nothing-at-all could be a @code{words}. Or it could be two
5443@code{words} in a row, or three, or any number. It could equally well be a
5444@code{redirects}, or two, or any number. Or it could be a @code{words}
5445followed by three @code{redirects} and another @code{words}. And so on.
5446
5447Here are two ways to correct these rules. First, to make it a single level
5448of sequence:
5449
5450@example
5451sequence: /* empty */
5452 | sequence word
5453 | sequence redirect
5454 ;
5455@end example
5456
5457Second, to prevent either a @code{words} or a @code{redirects}
5458from being empty:
5459
5460@example
5461sequence: /* empty */
5462 | sequence words
5463 | sequence redirects
5464 ;
5465
5466words: word
5467 | words word
5468 ;
5469
5470redirects:redirect
5471 | redirects redirect
5472 ;
5473@end example
5474
342b8b6e 5475@node Mystery Conflicts
bfa74976
RS
5476@section Mysterious Reduce/Reduce Conflicts
5477
5478Sometimes reduce/reduce conflicts can occur that don't look warranted.
5479Here is an example:
5480
5481@example
5482@group
5483%token ID
5484
5485%%
5486def: param_spec return_spec ','
5487 ;
5488param_spec:
5489 type
5490 | name_list ':' type
5491 ;
5492@end group
5493@group
5494return_spec:
5495 type
5496 | name ':' type
5497 ;
5498@end group
5499@group
5500type: ID
5501 ;
5502@end group
5503@group
5504name: ID
5505 ;
5506name_list:
5507 name
5508 | name ',' name_list
5509 ;
5510@end group
5511@end example
5512
5513It would seem that this grammar can be parsed with only a single token
13863333 5514of look-ahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 5515a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 5516@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 5517
c827f760
PE
5518@cindex @acronym{LR}(1)
5519@cindex @acronym{LALR}(1)
bfa74976 5520However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
5521@acronym{LR}(1) grammars. In this grammar, two contexts, that after
5522an @code{ID}
bfa74976
RS
5523at the beginning of a @code{param_spec} and likewise at the beginning of
5524a @code{return_spec}, are similar enough that Bison assumes they are the
5525same. They appear similar because the same set of rules would be
5526active---the rule for reducing to a @code{name} and that for reducing to
5527a @code{type}. Bison is unable to determine at that stage of processing
5528that the rules would require different look-ahead tokens in the two
5529contexts, so it makes a single parser state for them both. Combining
5530the two contexts causes a conflict later. In parser terminology, this
c827f760 5531occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
5532
5533In general, it is better to fix deficiencies than to document them. But
5534this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
5535generators that can handle @acronym{LR}(1) grammars are hard to write
5536and tend to
bfa74976
RS
5537produce parsers that are very large. In practice, Bison is more useful
5538as it is now.
5539
5540When the problem arises, you can often fix it by identifying the two
a220f555
MA
5541parser states that are being confused, and adding something to make them
5542look distinct. In the above example, adding one rule to
bfa74976
RS
5543@code{return_spec} as follows makes the problem go away:
5544
5545@example
5546@group
5547%token BOGUS
5548@dots{}
5549%%
5550@dots{}
5551return_spec:
5552 type
5553 | name ':' type
5554 /* This rule is never used. */
5555 | ID BOGUS
5556 ;
5557@end group
5558@end example
5559
5560This corrects the problem because it introduces the possibility of an
5561additional active rule in the context after the @code{ID} at the beginning of
5562@code{return_spec}. This rule is not active in the corresponding context
5563in a @code{param_spec}, so the two contexts receive distinct parser states.
5564As long as the token @code{BOGUS} is never generated by @code{yylex},
5565the added rule cannot alter the way actual input is parsed.
5566
5567In this particular example, there is another way to solve the problem:
5568rewrite the rule for @code{return_spec} to use @code{ID} directly
5569instead of via @code{name}. This also causes the two confusing
5570contexts to have different sets of active rules, because the one for
5571@code{return_spec} activates the altered rule for @code{return_spec}
5572rather than the one for @code{name}.
5573
5574@example
5575param_spec:
5576 type
5577 | name_list ':' type
5578 ;
5579return_spec:
5580 type
5581 | ID ':' type
5582 ;
5583@end example
5584
e054b190
PE
5585For a more detailed exposition of @acronym{LALR}(1) parsers and parser
5586generators, please see:
5587Frank DeRemer and Thomas Pennello, Efficient Computation of
5588@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
5589Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
5590pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
5591
fae437e8 5592@node Generalized LR Parsing
c827f760
PE
5593@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
5594@cindex @acronym{GLR} parsing
5595@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
5596@cindex ambiguous grammars
5597@cindex non-deterministic parsing
5598
fae437e8
AD
5599Bison produces @emph{deterministic} parsers that choose uniquely
5600when to reduce and which reduction to apply
8dd162d3 5601based on a summary of the preceding input and on one extra token of look-ahead.
676385e2
PH
5602As a result, normal Bison handles a proper subset of the family of
5603context-free languages.
fae437e8 5604Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
5605sequence of reductions cannot have deterministic parsers in this sense.
5606The same is true of languages that require more than one symbol of
8dd162d3 5607look-ahead, since the parser lacks the information necessary to make a
676385e2 5608decision at the point it must be made in a shift-reduce parser.
fae437e8 5609Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
5610there are languages where Bison's particular choice of how to
5611summarize the input seen so far loses necessary information.
5612
5613When you use the @samp{%glr-parser} declaration in your grammar file,
5614Bison generates a parser that uses a different algorithm, called
c827f760
PE
5615Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
5616parser uses the same basic
676385e2
PH
5617algorithm for parsing as an ordinary Bison parser, but behaves
5618differently in cases where there is a shift-reduce conflict that has not
fae437e8 5619been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
5620reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
5621situation, it
fae437e8 5622effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
5623shift or reduction. These parsers then proceed as usual, consuming
5624tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 5625and split further, with the result that instead of a sequence of states,
c827f760 5626a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
5627
5628In effect, each stack represents a guess as to what the proper parse
5629is. Additional input may indicate that a guess was wrong, in which case
5630the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 5631actions generated in each stack are saved, rather than being executed
676385e2 5632immediately. When a stack disappears, its saved semantic actions never
fae437e8 5633get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
5634their sets of semantic actions are both saved with the state that
5635results from the reduction. We say that two stacks are equivalent
fae437e8 5636when they both represent the same sequence of states,
676385e2
PH
5637and each pair of corresponding states represents a
5638grammar symbol that produces the same segment of the input token
5639stream.
5640
5641Whenever the parser makes a transition from having multiple
c827f760 5642states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
5643algorithm, after resolving and executing the saved-up actions.
5644At this transition, some of the states on the stack will have semantic
5645values that are sets (actually multisets) of possible actions. The
5646parser tries to pick one of the actions by first finding one whose rule
5647has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 5648declaration. Otherwise, if the alternative actions are not ordered by
676385e2 5649precedence, but there the same merging function is declared for both
fae437e8 5650rules by the @samp{%merge} declaration,
676385e2
PH
5651Bison resolves and evaluates both and then calls the merge function on
5652the result. Otherwise, it reports an ambiguity.
5653
c827f760
PE
5654It is possible to use a data structure for the @acronym{GLR} parsing tree that
5655permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
5656size of the input), any unambiguous (not necessarily
5657@acronym{LALR}(1)) grammar in
fae437e8 5658quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
5659context-free grammar in cubic worst-case time. However, Bison currently
5660uses a simpler data structure that requires time proportional to the
5661length of the input times the maximum number of stacks required for any
5662prefix of the input. Thus, really ambiguous or non-deterministic
5663grammars can require exponential time and space to process. Such badly
5664behaving examples, however, are not generally of practical interest.
5665Usually, non-determinism in a grammar is local---the parser is ``in
5666doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 5667structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
5668grammar, in particular, it is only slightly slower than with the default
5669Bison parser.
5670
fa7e68c3 5671For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
5672Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
5673Generalised @acronym{LR} Parsers, Royal Holloway, University of
5674London, Department of Computer Science, TR-00-12,
5675@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
5676(2000-12-24).
5677
1a059451
PE
5678@node Memory Management
5679@section Memory Management, and How to Avoid Memory Exhaustion
5680@cindex memory exhaustion
5681@cindex memory management
bfa74976
RS
5682@cindex stack overflow
5683@cindex parser stack overflow
5684@cindex overflow of parser stack
5685
1a059451 5686The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 5687not reduced. When this happens, the parser function @code{yyparse}
1a059451 5688calls @code{yyerror} and then returns 2.
bfa74976 5689
c827f760 5690Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
5691usually results from using a right recursion instead of a left
5692recursion, @xref{Recursion, ,Recursive Rules}.
5693
bfa74976
RS
5694@vindex YYMAXDEPTH
5695By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 5696parser stack can become before memory is exhausted. Define the
bfa74976
RS
5697macro with a value that is an integer. This value is the maximum number
5698of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
5699
5700The stack space allowed is not necessarily allocated. If you specify a
1a059451 5701large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
5702stack at first, and then makes it bigger by stages as needed. This
5703increasing allocation happens automatically and silently. Therefore,
5704you do not need to make @code{YYMAXDEPTH} painfully small merely to save
5705space for ordinary inputs that do not need much stack.
5706
d7e14fc0
PE
5707However, do not allow @code{YYMAXDEPTH} to be a value so large that
5708arithmetic overflow could occur when calculating the size of the stack
5709space. Also, do not allow @code{YYMAXDEPTH} to be less than
5710@code{YYINITDEPTH}.
5711
bfa74976
RS
5712@cindex default stack limit
5713The default value of @code{YYMAXDEPTH}, if you do not define it, is
571410000.
5715
5716@vindex YYINITDEPTH
5717You can control how much stack is allocated initially by defining the
d7e14fc0
PE
5718macro @code{YYINITDEPTH} to a positive integer. For the C
5719@acronym{LALR}(1) parser, this value must be a compile-time constant
5720unless you are assuming C99 or some other target language or compiler
5721that allows variable-length arrays. The default is 200.
5722
1a059451 5723Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 5724
d1a1114f 5725@c FIXME: C++ output.
c827f760 5726Because of semantical differences between C and C++, the
1a059451
PE
5727@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
5728by C++ compilers. In this precise case (compiling a C parser as C++) you are
5729suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
5730this deficiency in a future release.
d1a1114f 5731
342b8b6e 5732@node Error Recovery
bfa74976
RS
5733@chapter Error Recovery
5734@cindex error recovery
5735@cindex recovery from errors
5736
6e649e65 5737It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
5738error. For example, a compiler should recover sufficiently to parse the
5739rest of the input file and check it for errors; a calculator should accept
5740another expression.
5741
5742In a simple interactive command parser where each input is one line, it may
5743be sufficient to allow @code{yyparse} to return 1 on error and have the
5744caller ignore the rest of the input line when that happens (and then call
5745@code{yyparse} again). But this is inadequate for a compiler, because it
5746forgets all the syntactic context leading up to the error. A syntax error
5747deep within a function in the compiler input should not cause the compiler
5748to treat the following line like the beginning of a source file.
5749
5750@findex error
5751You can define how to recover from a syntax error by writing rules to
5752recognize the special token @code{error}. This is a terminal symbol that
5753is always defined (you need not declare it) and reserved for error
5754handling. The Bison parser generates an @code{error} token whenever a
5755syntax error happens; if you have provided a rule to recognize this token
13863333 5756in the current context, the parse can continue.
bfa74976
RS
5757
5758For example:
5759
5760@example
5761stmnts: /* empty string */
5762 | stmnts '\n'
5763 | stmnts exp '\n'
5764 | stmnts error '\n'
5765@end example
5766
5767The fourth rule in this example says that an error followed by a newline
5768makes a valid addition to any @code{stmnts}.
5769
5770What happens if a syntax error occurs in the middle of an @code{exp}? The
5771error recovery rule, interpreted strictly, applies to the precise sequence
5772of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
5773the middle of an @code{exp}, there will probably be some additional tokens
5774and subexpressions on the stack after the last @code{stmnts}, and there
5775will be tokens to read before the next newline. So the rule is not
5776applicable in the ordinary way.
5777
5778But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
5779the semantic context and part of the input. First it discards states
5780and objects from the stack until it gets back to a state in which the
bfa74976 5781@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
5782already parsed are discarded, back to the last complete @code{stmnts}.)
5783At this point the @code{error} token can be shifted. Then, if the old
bfa74976
RS
5784look-ahead token is not acceptable to be shifted next, the parser reads
5785tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
5786this example, Bison reads and discards input until the next newline so
5787that the fourth rule can apply. Note that discarded symbols are
5788possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
5789Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
5790
5791The choice of error rules in the grammar is a choice of strategies for
5792error recovery. A simple and useful strategy is simply to skip the rest of
5793the current input line or current statement if an error is detected:
5794
5795@example
72d2299c 5796stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
5797@end example
5798
5799It is also useful to recover to the matching close-delimiter of an
5800opening-delimiter that has already been parsed. Otherwise the
5801close-delimiter will probably appear to be unmatched, and generate another,
5802spurious error message:
5803
5804@example
5805primary: '(' expr ')'
5806 | '(' error ')'
5807 @dots{}
5808 ;
5809@end example
5810
5811Error recovery strategies are necessarily guesses. When they guess wrong,
5812one syntax error often leads to another. In the above example, the error
5813recovery rule guesses that an error is due to bad input within one
5814@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
5815middle of a valid @code{stmnt}. After the error recovery rule recovers
5816from the first error, another syntax error will be found straightaway,
5817since the text following the spurious semicolon is also an invalid
5818@code{stmnt}.
5819
5820To prevent an outpouring of error messages, the parser will output no error
5821message for another syntax error that happens shortly after the first; only
5822after three consecutive input tokens have been successfully shifted will
5823error messages resume.
5824
5825Note that rules which accept the @code{error} token may have actions, just
5826as any other rules can.
5827
5828@findex yyerrok
5829You can make error messages resume immediately by using the macro
5830@code{yyerrok} in an action. If you do this in the error rule's action, no
5831error messages will be suppressed. This macro requires no arguments;
5832@samp{yyerrok;} is a valid C statement.
5833
5834@findex yyclearin
5835The previous look-ahead token is reanalyzed immediately after an error. If
5836this is unacceptable, then the macro @code{yyclearin} may be used to clear
5837this token. Write the statement @samp{yyclearin;} in the error rule's
5838action.
5839
6e649e65 5840For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
5841called that advances the input stream to some point where parsing should
5842once again commence. The next symbol returned by the lexical scanner is
5843probably correct. The previous look-ahead token ought to be discarded
5844with @samp{yyclearin;}.
5845
5846@vindex YYRECOVERING
5847The macro @code{YYRECOVERING} stands for an expression that has the
5848value 1 when the parser is recovering from a syntax error, and 0 the
5849rest of the time. A value of 1 indicates that error messages are
5850currently suppressed for new syntax errors.
5851
342b8b6e 5852@node Context Dependency
bfa74976
RS
5853@chapter Handling Context Dependencies
5854
5855The Bison paradigm is to parse tokens first, then group them into larger
5856syntactic units. In many languages, the meaning of a token is affected by
5857its context. Although this violates the Bison paradigm, certain techniques
5858(known as @dfn{kludges}) may enable you to write Bison parsers for such
5859languages.
5860
5861@menu
5862* Semantic Tokens:: Token parsing can depend on the semantic context.
5863* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
5864* Tie-in Recovery:: Lexical tie-ins have implications for how
5865 error recovery rules must be written.
5866@end menu
5867
5868(Actually, ``kludge'' means any technique that gets its job done but is
5869neither clean nor robust.)
5870
342b8b6e 5871@node Semantic Tokens
bfa74976
RS
5872@section Semantic Info in Token Types
5873
5874The C language has a context dependency: the way an identifier is used
5875depends on what its current meaning is. For example, consider this:
5876
5877@example
5878foo (x);
5879@end example
5880
5881This looks like a function call statement, but if @code{foo} is a typedef
5882name, then this is actually a declaration of @code{x}. How can a Bison
5883parser for C decide how to parse this input?
5884
c827f760 5885The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
5886@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
5887identifier, it looks up the current declaration of the identifier in order
5888to decide which token type to return: @code{TYPENAME} if the identifier is
5889declared as a typedef, @code{IDENTIFIER} otherwise.
5890
5891The grammar rules can then express the context dependency by the choice of
5892token type to recognize. @code{IDENTIFIER} is accepted as an expression,
5893but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
5894@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
5895is @emph{not} significant, such as in declarations that can shadow a
5896typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
5897accepted---there is one rule for each of the two token types.
5898
5899This technique is simple to use if the decision of which kinds of
5900identifiers to allow is made at a place close to where the identifier is
5901parsed. But in C this is not always so: C allows a declaration to
5902redeclare a typedef name provided an explicit type has been specified
5903earlier:
5904
5905@example
3a4f411f
PE
5906typedef int foo, bar;
5907int baz (void)
5908@{
5909 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
5910 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
5911 return foo (bar);
5912@}
bfa74976
RS
5913@end example
5914
5915Unfortunately, the name being declared is separated from the declaration
5916construct itself by a complicated syntactic structure---the ``declarator''.
5917
9ecbd125 5918As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
5919all the nonterminal names changed: once for parsing a declaration in
5920which a typedef name can be redefined, and once for parsing a
5921declaration in which that can't be done. Here is a part of the
5922duplication, with actions omitted for brevity:
bfa74976
RS
5923
5924@example
5925initdcl:
5926 declarator maybeasm '='
5927 init
5928 | declarator maybeasm
5929 ;
5930
5931notype_initdcl:
5932 notype_declarator maybeasm '='
5933 init
5934 | notype_declarator maybeasm
5935 ;
5936@end example
5937
5938@noindent
5939Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
5940cannot. The distinction between @code{declarator} and
5941@code{notype_declarator} is the same sort of thing.
5942
5943There is some similarity between this technique and a lexical tie-in
5944(described next), in that information which alters the lexical analysis is
5945changed during parsing by other parts of the program. The difference is
5946here the information is global, and is used for other purposes in the
5947program. A true lexical tie-in has a special-purpose flag controlled by
5948the syntactic context.
5949
342b8b6e 5950@node Lexical Tie-ins
bfa74976
RS
5951@section Lexical Tie-ins
5952@cindex lexical tie-in
5953
5954One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
5955which is set by Bison actions, whose purpose is to alter the way tokens are
5956parsed.
5957
5958For example, suppose we have a language vaguely like C, but with a special
5959construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
5960an expression in parentheses in which all integers are hexadecimal. In
5961particular, the token @samp{a1b} must be treated as an integer rather than
5962as an identifier if it appears in that context. Here is how you can do it:
5963
5964@example
5965@group
5966%@{
38a92d50
PE
5967 int hexflag;
5968 int yylex (void);
5969 void yyerror (char const *);
bfa74976
RS
5970%@}
5971%%
5972@dots{}
5973@end group
5974@group
5975expr: IDENTIFIER
5976 | constant
5977 | HEX '('
5978 @{ hexflag = 1; @}
5979 expr ')'
5980 @{ hexflag = 0;
5981 $$ = $4; @}
5982 | expr '+' expr
5983 @{ $$ = make_sum ($1, $3); @}
5984 @dots{}
5985 ;
5986@end group
5987
5988@group
5989constant:
5990 INTEGER
5991 | STRING
5992 ;
5993@end group
5994@end example
5995
5996@noindent
5997Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
5998it is nonzero, all integers are parsed in hexadecimal, and tokens starting
5999with letters are parsed as integers if possible.
6000
342b8b6e
AD
6001The declaration of @code{hexflag} shown in the prologue of the parser file
6002is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 6003You must also write the code in @code{yylex} to obey the flag.
bfa74976 6004
342b8b6e 6005@node Tie-in Recovery
bfa74976
RS
6006@section Lexical Tie-ins and Error Recovery
6007
6008Lexical tie-ins make strict demands on any error recovery rules you have.
6009@xref{Error Recovery}.
6010
6011The reason for this is that the purpose of an error recovery rule is to
6012abort the parsing of one construct and resume in some larger construct.
6013For example, in C-like languages, a typical error recovery rule is to skip
6014tokens until the next semicolon, and then start a new statement, like this:
6015
6016@example
6017stmt: expr ';'
6018 | IF '(' expr ')' stmt @{ @dots{} @}
6019 @dots{}
6020 error ';'
6021 @{ hexflag = 0; @}
6022 ;
6023@end example
6024
6025If there is a syntax error in the middle of a @samp{hex (@var{expr})}
6026construct, this error rule will apply, and then the action for the
6027completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
6028remain set for the entire rest of the input, or until the next @code{hex}
6029keyword, causing identifiers to be misinterpreted as integers.
6030
6031To avoid this problem the error recovery rule itself clears @code{hexflag}.
6032
6033There may also be an error recovery rule that works within expressions.
6034For example, there could be a rule which applies within parentheses
6035and skips to the close-parenthesis:
6036
6037@example
6038@group
6039expr: @dots{}
6040 | '(' expr ')'
6041 @{ $$ = $2; @}
6042 | '(' error ')'
6043 @dots{}
6044@end group
6045@end example
6046
6047If this rule acts within the @code{hex} construct, it is not going to abort
6048that construct (since it applies to an inner level of parentheses within
6049the construct). Therefore, it should not clear the flag: the rest of
6050the @code{hex} construct should be parsed with the flag still in effect.
6051
6052What if there is an error recovery rule which might abort out of the
6053@code{hex} construct or might not, depending on circumstances? There is no
6054way you can write the action to determine whether a @code{hex} construct is
6055being aborted or not. So if you are using a lexical tie-in, you had better
6056make sure your error recovery rules are not of this kind. Each rule must
6057be such that you can be sure that it always will, or always won't, have to
6058clear the flag.
6059
ec3bc396
AD
6060@c ================================================== Debugging Your Parser
6061
342b8b6e 6062@node Debugging
bfa74976 6063@chapter Debugging Your Parser
ec3bc396
AD
6064
6065Developing a parser can be a challenge, especially if you don't
6066understand the algorithm (@pxref{Algorithm, ,The Bison Parser
6067Algorithm}). Even so, sometimes a detailed description of the automaton
6068can help (@pxref{Understanding, , Understanding Your Parser}), or
6069tracing the execution of the parser can give some insight on why it
6070behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
6071
6072@menu
6073* Understanding:: Understanding the structure of your parser.
6074* Tracing:: Tracing the execution of your parser.
6075@end menu
6076
6077@node Understanding
6078@section Understanding Your Parser
6079
6080As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
6081Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
6082frequent than one would hope), looking at this automaton is required to
6083tune or simply fix a parser. Bison provides two different
c827f760 6084representation of it, either textually or graphically (as a @acronym{VCG}
ec3bc396
AD
6085file).
6086
6087The textual file is generated when the options @option{--report} or
6088@option{--verbose} are specified, see @xref{Invocation, , Invoking
6089Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
6090the parser output file name, and adding @samp{.output} instead.
6091Therefore, if the input file is @file{foo.y}, then the parser file is
6092called @file{foo.tab.c} by default. As a consequence, the verbose
6093output file is called @file{foo.output}.
6094
6095The following grammar file, @file{calc.y}, will be used in the sequel:
6096
6097@example
6098%token NUM STR
6099%left '+' '-'
6100%left '*'
6101%%
6102exp: exp '+' exp
6103 | exp '-' exp
6104 | exp '*' exp
6105 | exp '/' exp
6106 | NUM
6107 ;
6108useless: STR;
6109%%
6110@end example
6111
88bce5a2
AD
6112@command{bison} reports:
6113
6114@example
6115calc.y: warning: 1 useless nonterminal and 1 useless rule
6116calc.y:11.1-7: warning: useless nonterminal: useless
5a99098d
PE
6117calc.y:11.10-12: warning: useless rule: useless: STR
6118calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
6119@end example
6120
6121When given @option{--report=state}, in addition to @file{calc.tab.c}, it
6122creates a file @file{calc.output} with contents detailed below. The
6123order of the output and the exact presentation might vary, but the
6124interpretation is the same.
ec3bc396
AD
6125
6126The first section includes details on conflicts that were solved thanks
6127to precedence and/or associativity:
6128
6129@example
6130Conflict in state 8 between rule 2 and token '+' resolved as reduce.
6131Conflict in state 8 between rule 2 and token '-' resolved as reduce.
6132Conflict in state 8 between rule 2 and token '*' resolved as shift.
6133@exdent @dots{}
6134@end example
6135
6136@noindent
6137The next section lists states that still have conflicts.
6138
6139@example
5a99098d
PE
6140State 8 conflicts: 1 shift/reduce
6141State 9 conflicts: 1 shift/reduce
6142State 10 conflicts: 1 shift/reduce
6143State 11 conflicts: 4 shift/reduce
ec3bc396
AD
6144@end example
6145
6146@noindent
6147@cindex token, useless
6148@cindex useless token
6149@cindex nonterminal, useless
6150@cindex useless nonterminal
6151@cindex rule, useless
6152@cindex useless rule
6153The next section reports useless tokens, nonterminal and rules. Useless
6154nonterminals and rules are removed in order to produce a smaller parser,
6155but useless tokens are preserved, since they might be used by the
6156scanner (note the difference between ``useless'' and ``not used''
6157below):
6158
6159@example
6160Useless nonterminals:
6161 useless
6162
6163Terminals which are not used:
6164 STR
6165
6166Useless rules:
6167#6 useless: STR;
6168@end example
6169
6170@noindent
6171The next section reproduces the exact grammar that Bison used:
6172
6173@example
6174Grammar
6175
6176 Number, Line, Rule
88bce5a2 6177 0 5 $accept -> exp $end
ec3bc396
AD
6178 1 5 exp -> exp '+' exp
6179 2 6 exp -> exp '-' exp
6180 3 7 exp -> exp '*' exp
6181 4 8 exp -> exp '/' exp
6182 5 9 exp -> NUM
6183@end example
6184
6185@noindent
6186and reports the uses of the symbols:
6187
6188@example
6189Terminals, with rules where they appear
6190
88bce5a2 6191$end (0) 0
ec3bc396
AD
6192'*' (42) 3
6193'+' (43) 1
6194'-' (45) 2
6195'/' (47) 4
6196error (256)
6197NUM (258) 5
6198
6199Nonterminals, with rules where they appear
6200
88bce5a2 6201$accept (8)
ec3bc396
AD
6202 on left: 0
6203exp (9)
6204 on left: 1 2 3 4 5, on right: 0 1 2 3 4
6205@end example
6206
6207@noindent
6208@cindex item
6209@cindex pointed rule
6210@cindex rule, pointed
6211Bison then proceeds onto the automaton itself, describing each state
6212with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
6213item is a production rule together with a point (marked by @samp{.})
6214that the input cursor.
6215
6216@example
6217state 0
6218
88bce5a2 6219 $accept -> . exp $ (rule 0)
ec3bc396 6220
2a8d363a 6221 NUM shift, and go to state 1
ec3bc396 6222
2a8d363a 6223 exp go to state 2
ec3bc396
AD
6224@end example
6225
6226This reads as follows: ``state 0 corresponds to being at the very
6227beginning of the parsing, in the initial rule, right before the start
6228symbol (here, @code{exp}). When the parser returns to this state right
6229after having reduced a rule that produced an @code{exp}, the control
6230flow jumps to state 2. If there is no such transition on a nonterminal
8dd162d3 6231symbol, and the look-ahead is a @code{NUM}, then this token is shifted on
ec3bc396 6232the parse stack, and the control flow jumps to state 1. Any other
8dd162d3 6233look-ahead triggers a syntax error.''
ec3bc396
AD
6234
6235@cindex core, item set
6236@cindex item set core
6237@cindex kernel, item set
6238@cindex item set core
6239Even though the only active rule in state 0 seems to be rule 0, the
8dd162d3 6240report lists @code{NUM} as a look-ahead token because @code{NUM} can be
ec3bc396
AD
6241at the beginning of any rule deriving an @code{exp}. By default Bison
6242reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
6243you want to see more detail you can invoke @command{bison} with
6244@option{--report=itemset} to list all the items, include those that can
6245be derived:
6246
6247@example
6248state 0
6249
88bce5a2 6250 $accept -> . exp $ (rule 0)
ec3bc396
AD
6251 exp -> . exp '+' exp (rule 1)
6252 exp -> . exp '-' exp (rule 2)
6253 exp -> . exp '*' exp (rule 3)
6254 exp -> . exp '/' exp (rule 4)
6255 exp -> . NUM (rule 5)
6256
6257 NUM shift, and go to state 1
6258
6259 exp go to state 2
6260@end example
6261
6262@noindent
6263In the state 1...
6264
6265@example
6266state 1
6267
6268 exp -> NUM . (rule 5)
6269
2a8d363a 6270 $default reduce using rule 5 (exp)
ec3bc396
AD
6271@end example
6272
6273@noindent
8dd162d3 6274the rule 5, @samp{exp: NUM;}, is completed. Whatever the look-ahead token
ec3bc396
AD
6275(@samp{$default}), the parser will reduce it. If it was coming from
6276state 0, then, after this reduction it will return to state 0, and will
6277jump to state 2 (@samp{exp: go to state 2}).
6278
6279@example
6280state 2
6281
88bce5a2 6282 $accept -> exp . $ (rule 0)
ec3bc396
AD
6283 exp -> exp . '+' exp (rule 1)
6284 exp -> exp . '-' exp (rule 2)
6285 exp -> exp . '*' exp (rule 3)
6286 exp -> exp . '/' exp (rule 4)
6287
2a8d363a
AD
6288 $ shift, and go to state 3
6289 '+' shift, and go to state 4
6290 '-' shift, and go to state 5
6291 '*' shift, and go to state 6
6292 '/' shift, and go to state 7
ec3bc396
AD
6293@end example
6294
6295@noindent
6296In state 2, the automaton can only shift a symbol. For instance,
8dd162d3 6297because of the item @samp{exp -> exp . '+' exp}, if the look-ahead if
ec3bc396
AD
6298@samp{+}, it will be shifted on the parse stack, and the automaton
6299control will jump to state 4, corresponding to the item @samp{exp -> exp
6300'+' . exp}. Since there is no default action, any other token than
6e649e65 6301those listed above will trigger a syntax error.
ec3bc396
AD
6302
6303The state 3 is named the @dfn{final state}, or the @dfn{accepting
6304state}:
6305
6306@example
6307state 3
6308
88bce5a2 6309 $accept -> exp $ . (rule 0)
ec3bc396 6310
2a8d363a 6311 $default accept
ec3bc396
AD
6312@end example
6313
6314@noindent
6315the initial rule is completed (the start symbol and the end
6316of input were read), the parsing exits successfully.
6317
6318The interpretation of states 4 to 7 is straightforward, and is left to
6319the reader.
6320
6321@example
6322state 4
6323
6324 exp -> exp '+' . exp (rule 1)
6325
2a8d363a 6326 NUM shift, and go to state 1
ec3bc396 6327
2a8d363a 6328 exp go to state 8
ec3bc396
AD
6329
6330state 5
6331
6332 exp -> exp '-' . exp (rule 2)
6333
2a8d363a 6334 NUM shift, and go to state 1
ec3bc396 6335
2a8d363a 6336 exp go to state 9
ec3bc396
AD
6337
6338state 6
6339
6340 exp -> exp '*' . exp (rule 3)
6341
2a8d363a 6342 NUM shift, and go to state 1
ec3bc396 6343
2a8d363a 6344 exp go to state 10
ec3bc396
AD
6345
6346state 7
6347
6348 exp -> exp '/' . exp (rule 4)
6349
2a8d363a 6350 NUM shift, and go to state 1
ec3bc396 6351
2a8d363a 6352 exp go to state 11
ec3bc396
AD
6353@end example
6354
5a99098d
PE
6355As was announced in beginning of the report, @samp{State 8 conflicts:
63561 shift/reduce}:
ec3bc396
AD
6357
6358@example
6359state 8
6360
6361 exp -> exp . '+' exp (rule 1)
6362 exp -> exp '+' exp . (rule 1)
6363 exp -> exp . '-' exp (rule 2)
6364 exp -> exp . '*' exp (rule 3)
6365 exp -> exp . '/' exp (rule 4)
6366
2a8d363a
AD
6367 '*' shift, and go to state 6
6368 '/' shift, and go to state 7
ec3bc396 6369
2a8d363a
AD
6370 '/' [reduce using rule 1 (exp)]
6371 $default reduce using rule 1 (exp)
ec3bc396
AD
6372@end example
6373
8dd162d3 6374Indeed, there are two actions associated to the look-ahead @samp{/}:
ec3bc396
AD
6375either shifting (and going to state 7), or reducing rule 1. The
6376conflict means that either the grammar is ambiguous, or the parser lacks
6377information to make the right decision. Indeed the grammar is
6378ambiguous, as, since we did not specify the precedence of @samp{/}, the
6379sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
6380NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
6381NUM}, which corresponds to reducing rule 1.
6382
c827f760 6383Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
6384arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
6385Shift/Reduce Conflicts}. Discarded actions are reported in between
6386square brackets.
6387
6388Note that all the previous states had a single possible action: either
6389shifting the next token and going to the corresponding state, or
6390reducing a single rule. In the other cases, i.e., when shifting
6391@emph{and} reducing is possible or when @emph{several} reductions are
8dd162d3
PE
6392possible, the look-ahead is required to select the action. State 8 is
6393one such state: if the look-ahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
6394is shifting, otherwise the action is reducing rule 1. In other words,
6395the first two items, corresponding to rule 1, are not eligible when the
8dd162d3
PE
6396look-ahead token is @samp{*}, since we specified that @samp{*} has higher
6397precedence than @samp{+}. More generally, some items are eligible only
6398with some set of possible look-ahead tokens. When run with
6399@option{--report=look-ahead}, Bison specifies these look-ahead tokens:
ec3bc396
AD
6400
6401@example
6402state 8
6403
6404 exp -> exp . '+' exp [$, '+', '-', '/'] (rule 1)
6405 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
6406 exp -> exp . '-' exp (rule 2)
6407 exp -> exp . '*' exp (rule 3)
6408 exp -> exp . '/' exp (rule 4)
6409
6410 '*' shift, and go to state 6
6411 '/' shift, and go to state 7
6412
6413 '/' [reduce using rule 1 (exp)]
6414 $default reduce using rule 1 (exp)
6415@end example
6416
6417The remaining states are similar:
6418
6419@example
6420state 9
6421
6422 exp -> exp . '+' exp (rule 1)
6423 exp -> exp . '-' exp (rule 2)
6424 exp -> exp '-' exp . (rule 2)
6425 exp -> exp . '*' exp (rule 3)
6426 exp -> exp . '/' exp (rule 4)
6427
2a8d363a
AD
6428 '*' shift, and go to state 6
6429 '/' shift, and go to state 7
ec3bc396 6430
2a8d363a
AD
6431 '/' [reduce using rule 2 (exp)]
6432 $default reduce using rule 2 (exp)
ec3bc396
AD
6433
6434state 10
6435
6436 exp -> exp . '+' exp (rule 1)
6437 exp -> exp . '-' exp (rule 2)
6438 exp -> exp . '*' exp (rule 3)
6439 exp -> exp '*' exp . (rule 3)
6440 exp -> exp . '/' exp (rule 4)
6441
2a8d363a 6442 '/' shift, and go to state 7
ec3bc396 6443
2a8d363a
AD
6444 '/' [reduce using rule 3 (exp)]
6445 $default reduce using rule 3 (exp)
ec3bc396
AD
6446
6447state 11
6448
6449 exp -> exp . '+' exp (rule 1)
6450 exp -> exp . '-' exp (rule 2)
6451 exp -> exp . '*' exp (rule 3)
6452 exp -> exp . '/' exp (rule 4)
6453 exp -> exp '/' exp . (rule 4)
6454
2a8d363a
AD
6455 '+' shift, and go to state 4
6456 '-' shift, and go to state 5
6457 '*' shift, and go to state 6
6458 '/' shift, and go to state 7
ec3bc396 6459
2a8d363a
AD
6460 '+' [reduce using rule 4 (exp)]
6461 '-' [reduce using rule 4 (exp)]
6462 '*' [reduce using rule 4 (exp)]
6463 '/' [reduce using rule 4 (exp)]
6464 $default reduce using rule 4 (exp)
ec3bc396
AD
6465@end example
6466
6467@noindent
fa7e68c3
PE
6468Observe that state 11 contains conflicts not only due to the lack of
6469precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
6470@samp{*}, but also because the
ec3bc396
AD
6471associativity of @samp{/} is not specified.
6472
6473
6474@node Tracing
6475@section Tracing Your Parser
bfa74976
RS
6476@findex yydebug
6477@cindex debugging
6478@cindex tracing the parser
6479
6480If a Bison grammar compiles properly but doesn't do what you want when it
6481runs, the @code{yydebug} parser-trace feature can help you figure out why.
6482
3ded9a63
AD
6483There are several means to enable compilation of trace facilities:
6484
6485@table @asis
6486@item the macro @code{YYDEBUG}
6487@findex YYDEBUG
6488Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 6489parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
6490@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
6491YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
6492Prologue}).
6493
6494@item the option @option{-t}, @option{--debug}
6495Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 6496,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
6497
6498@item the directive @samp{%debug}
6499@findex %debug
6500Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
6501Declaration Summary}). This is a Bison extension, which will prove
6502useful when Bison will output parsers for languages that don't use a
c827f760
PE
6503preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
6504you, this is
3ded9a63
AD
6505the preferred solution.
6506@end table
6507
6508We suggest that you always enable the debug option so that debugging is
6509always possible.
bfa74976 6510
02a81e05 6511The trace facility outputs messages with macro calls of the form
e2742e46 6512@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
02a81e05 6513@var{format} and @var{args} are the usual @code{printf} format and
4947ebdb
PE
6514arguments. If you define @code{YYDEBUG} to a nonzero value but do not
6515define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
e4e1a4dc 6516and @code{YYPRINTF} is defined to @code{fprintf}.
bfa74976
RS
6517
6518Once you have compiled the program with trace facilities, the way to
6519request a trace is to store a nonzero value in the variable @code{yydebug}.
6520You can do this by making the C code do it (in @code{main}, perhaps), or
6521you can alter the value with a C debugger.
6522
6523Each step taken by the parser when @code{yydebug} is nonzero produces a
6524line or two of trace information, written on @code{stderr}. The trace
6525messages tell you these things:
6526
6527@itemize @bullet
6528@item
6529Each time the parser calls @code{yylex}, what kind of token was read.
6530
6531@item
6532Each time a token is shifted, the depth and complete contents of the
6533state stack (@pxref{Parser States}).
6534
6535@item
6536Each time a rule is reduced, which rule it is, and the complete contents
6537of the state stack afterward.
6538@end itemize
6539
6540To make sense of this information, it helps to refer to the listing file
704a47c4
AD
6541produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
6542Bison}). This file shows the meaning of each state in terms of
6543positions in various rules, and also what each state will do with each
6544possible input token. As you read the successive trace messages, you
6545can see that the parser is functioning according to its specification in
6546the listing file. Eventually you will arrive at the place where
6547something undesirable happens, and you will see which parts of the
6548grammar are to blame.
bfa74976
RS
6549
6550The parser file is a C program and you can use C debuggers on it, but it's
6551not easy to interpret what it is doing. The parser function is a
6552finite-state machine interpreter, and aside from the actions it executes
6553the same code over and over. Only the values of variables show where in
6554the grammar it is working.
6555
6556@findex YYPRINT
6557The debugging information normally gives the token type of each token
6558read, but not its semantic value. You can optionally define a macro
6559named @code{YYPRINT} to provide a way to print the value. If you define
6560@code{YYPRINT}, it should take three arguments. The parser will pass a
6561standard I/O stream, the numeric code for the token type, and the token
6562value (from @code{yylval}).
6563
6564Here is an example of @code{YYPRINT} suitable for the multi-function
6565calculator (@pxref{Mfcalc Decl, ,Declarations for @code{mfcalc}}):
6566
6567@smallexample
38a92d50
PE
6568%@{
6569 static void print_token_value (FILE *, int, YYSTYPE);
6570 #define YYPRINT(file, type, value) print_token_value (file, type, value)
6571%@}
6572
6573@dots{} %% @dots{} %% @dots{}
bfa74976
RS
6574
6575static void
831d3c99 6576print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
6577@{
6578 if (type == VAR)
d3c4e709 6579 fprintf (file, "%s", value.tptr->name);
bfa74976 6580 else if (type == NUM)
d3c4e709 6581 fprintf (file, "%d", value.val);
bfa74976
RS
6582@}
6583@end smallexample
6584
ec3bc396
AD
6585@c ================================================= Invoking Bison
6586
342b8b6e 6587@node Invocation
bfa74976
RS
6588@chapter Invoking Bison
6589@cindex invoking Bison
6590@cindex Bison invocation
6591@cindex options for invoking Bison
6592
6593The usual way to invoke Bison is as follows:
6594
6595@example
6596bison @var{infile}
6597@end example
6598
6599Here @var{infile} is the grammar file name, which usually ends in
6600@samp{.y}. The parser file's name is made by replacing the @samp{.y}
6601with @samp{.tab.c}. Thus, the @samp{bison foo.y} filename yields
6602@file{foo.tab.c}, and the @samp{bison hack/foo.y} filename yields
72d2299c 6603@file{hack/foo.tab.c}. It's also possible, in case you are writing
79282c6c 6604C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
6605or @file{foo.y++}. Then, the output files will take an extension like
6606the given one as input (respectively @file{foo.tab.cpp} and
6607@file{foo.tab.c++}).
234a3be3
AD
6608This feature takes effect with all options that manipulate filenames like
6609@samp{-o} or @samp{-d}.
6610
6611For example :
6612
6613@example
6614bison -d @var{infile.yxx}
6615@end example
84163231 6616@noindent
72d2299c 6617will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
6618
6619@example
b56471a6 6620bison -d -o @var{output.c++} @var{infile.y}
234a3be3 6621@end example
84163231 6622@noindent
234a3be3
AD
6623will produce @file{output.c++} and @file{outfile.h++}.
6624
397ec073
PE
6625For compatibility with @acronym{POSIX}, the standard Bison
6626distribution also contains a shell script called @command{yacc} that
6627invokes Bison with the @option{-y} option.
6628
bfa74976 6629@menu
13863333 6630* Bison Options:: All the options described in detail,
c827f760 6631 in alphabetical order by short options.
bfa74976 6632* Option Cross Key:: Alphabetical list of long options.
93dd49ab 6633* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
6634@end menu
6635
342b8b6e 6636@node Bison Options
bfa74976
RS
6637@section Bison Options
6638
6639Bison supports both traditional single-letter options and mnemonic long
6640option names. Long option names are indicated with @samp{--} instead of
6641@samp{-}. Abbreviations for option names are allowed as long as they
6642are unique. When a long option takes an argument, like
6643@samp{--file-prefix}, connect the option name and the argument with
6644@samp{=}.
6645
6646Here is a list of options that can be used with Bison, alphabetized by
6647short option. It is followed by a cross key alphabetized by long
6648option.
6649
89cab50d
AD
6650@c Please, keep this ordered as in `bison --help'.
6651@noindent
6652Operations modes:
6653@table @option
6654@item -h
6655@itemx --help
6656Print a summary of the command-line options to Bison and exit.
bfa74976 6657
89cab50d
AD
6658@item -V
6659@itemx --version
6660Print the version number of Bison and exit.
bfa74976 6661
f7ab6a50
PE
6662@item --print-localedir
6663Print the name of the directory containing locale-dependent data.
6664
89cab50d
AD
6665@need 1750
6666@item -y
6667@itemx --yacc
89cab50d
AD
6668Equivalent to @samp{-o y.tab.c}; the parser output file is called
6669@file{y.tab.c}, and the other outputs are called @file{y.output} and
6670@file{y.tab.h}. The purpose of this option is to imitate Yacc's output
6671file name conventions. Thus, the following shell script can substitute
397ec073
PE
6672for Yacc, and the Bison distribution contains such a script for
6673compatibility with @acronym{POSIX}:
bfa74976 6674
89cab50d 6675@example
397ec073 6676#! /bin/sh
26e06a21 6677bison -y "$@@"
89cab50d
AD
6678@end example
6679@end table
6680
6681@noindent
6682Tuning the parser:
6683
6684@table @option
cd5bd6ac
AD
6685@item -S @var{file}
6686@itemx --skeleton=@var{file}
6687Specify the skeleton to use. You probably don't need this option unless
6688you are developing Bison.
6689
89cab50d
AD
6690@item -t
6691@itemx --debug
4947ebdb
PE
6692In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
6693already defined, so that the debugging facilities are compiled.
ec3bc396 6694@xref{Tracing, ,Tracing Your Parser}.
89cab50d
AD
6695
6696@item --locations
d8988b2f 6697Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
6698
6699@item -p @var{prefix}
6700@itemx --name-prefix=@var{prefix}
d8988b2f
AD
6701Pretend that @code{%name-prefix="@var{prefix}"} was specified.
6702@xref{Decl Summary}.
bfa74976
RS
6703
6704@item -l
6705@itemx --no-lines
6706Don't put any @code{#line} preprocessor commands in the parser file.
6707Ordinarily Bison puts them in the parser file so that the C compiler
6708and debuggers will associate errors with your source file, the
6709grammar file. This option causes them to associate errors with the
95e742f7 6710parser file, treating it as an independent source file in its own right.
bfa74976 6711
931c7513
RS
6712@item -n
6713@itemx --no-parser
d8988b2f 6714Pretend that @code{%no-parser} was specified. @xref{Decl Summary}.
931c7513 6715
89cab50d
AD
6716@item -k
6717@itemx --token-table
d8988b2f 6718Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 6719@end table
bfa74976 6720
89cab50d
AD
6721@noindent
6722Adjust the output:
bfa74976 6723
89cab50d
AD
6724@table @option
6725@item -d
d8988b2f
AD
6726@itemx --defines
6727Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 6728file containing macro definitions for the token type names defined in
4bfd5e4e 6729the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 6730
342b8b6e 6731@item --defines=@var{defines-file}
d8988b2f 6732Same as above, but save in the file @var{defines-file}.
342b8b6e 6733
89cab50d
AD
6734@item -b @var{file-prefix}
6735@itemx --file-prefix=@var{prefix}
d8988b2f 6736Pretend that @code{%verbose} was specified, i.e, specify prefix to use
72d2299c 6737for all Bison output file names. @xref{Decl Summary}.
bfa74976 6738
ec3bc396
AD
6739@item -r @var{things}
6740@itemx --report=@var{things}
6741Write an extra output file containing verbose description of the comma
6742separated list of @var{things} among:
6743
6744@table @code
6745@item state
6746Description of the grammar, conflicts (resolved and unresolved), and
c827f760 6747@acronym{LALR} automaton.
ec3bc396 6748
8dd162d3 6749@item look-ahead
ec3bc396 6750Implies @code{state} and augments the description of the automaton with
8dd162d3 6751each rule's look-ahead set.
ec3bc396
AD
6752
6753@item itemset
6754Implies @code{state} and augments the description of the automaton with
6755the full set of items for each state, instead of its core only.
6756@end table
6757
6758For instance, on the following grammar
6759
bfa74976
RS
6760@item -v
6761@itemx --verbose
6deb4447
AD
6762Pretend that @code{%verbose} was specified, i.e, write an extra output
6763file containing verbose descriptions of the grammar and
72d2299c 6764parser. @xref{Decl Summary}.
bfa74976 6765
d8988b2f
AD
6766@item -o @var{filename}
6767@itemx --output=@var{filename}
6768Specify the @var{filename} for the parser file.
bfa74976 6769
d8988b2f
AD
6770The other output files' names are constructed from @var{filename} as
6771described under the @samp{-v} and @samp{-d} options.
342b8b6e
AD
6772
6773@item -g
c827f760
PE
6774Output a @acronym{VCG} definition of the @acronym{LALR}(1) grammar
6775automaton computed by Bison. If the grammar file is @file{foo.y}, the
6776@acronym{VCG} output file will
342b8b6e
AD
6777be @file{foo.vcg}.
6778
6779@item --graph=@var{graph-file}
72d2299c
PE
6780The behavior of @var{--graph} is the same than @samp{-g}. The only
6781difference is that it has an optional argument which is the name of
342b8b6e 6782the output graph filename.
bfa74976
RS
6783@end table
6784
342b8b6e 6785@node Option Cross Key
bfa74976
RS
6786@section Option Cross Key
6787
6788Here is a list of options, alphabetized by long option, to help you find
6789the corresponding short option.
6790
6791@tex
6792\def\leaderfill{\leaders\hbox to 1em{\hss.\hss}\hfill}
6793
6794{\tt
6795\line{ --debug \leaderfill -t}
6796\line{ --defines \leaderfill -d}
6797\line{ --file-prefix \leaderfill -b}
342b8b6e 6798\line{ --graph \leaderfill -g}
ff51d159 6799\line{ --help \leaderfill -h}
bfa74976
RS
6800\line{ --name-prefix \leaderfill -p}
6801\line{ --no-lines \leaderfill -l}
931c7513 6802\line{ --no-parser \leaderfill -n}
d8988b2f 6803\line{ --output \leaderfill -o}
f7ab6a50 6804\line{ --print-localedir}
931c7513 6805\line{ --token-table \leaderfill -k}
bfa74976
RS
6806\line{ --verbose \leaderfill -v}
6807\line{ --version \leaderfill -V}
6808\line{ --yacc \leaderfill -y}
6809}
6810@end tex
6811
6812@ifinfo
6813@example
6814--debug -t
342b8b6e 6815--defines=@var{defines-file} -d
bfa74976 6816--file-prefix=@var{prefix} -b @var{file-prefix}
342b8b6e 6817--graph=@var{graph-file} -d
ff51d159 6818--help -h
931c7513 6819--name-prefix=@var{prefix} -p @var{name-prefix}
bfa74976 6820--no-lines -l
931c7513 6821--no-parser -n
d8988b2f 6822--output=@var{outfile} -o @var{outfile}
f7ab6a50 6823--print-localedir
931c7513 6824--token-table -k
bfa74976
RS
6825--verbose -v
6826--version -V
8c9a50be 6827--yacc -y
bfa74976
RS
6828@end example
6829@end ifinfo
6830
93dd49ab
PE
6831@node Yacc Library
6832@section Yacc Library
6833
6834The Yacc library contains default implementations of the
6835@code{yyerror} and @code{main} functions. These default
6836implementations are normally not useful, but @acronym{POSIX} requires
6837them. To use the Yacc library, link your program with the
6838@option{-ly} option. Note that Bison's implementation of the Yacc
6839library is distributed under the terms of the @acronym{GNU} General
6840Public License (@pxref{Copying}).
6841
6842If you use the Yacc library's @code{yyerror} function, you should
6843declare @code{yyerror} as follows:
6844
6845@example
6846int yyerror (char const *);
6847@end example
6848
6849Bison ignores the @code{int} value returned by this @code{yyerror}.
6850If you use the Yacc library's @code{main} function, your
6851@code{yyparse} function should have the following type signature:
6852
6853@example
6854int yyparse (void);
6855@end example
6856
12545799
AD
6857@c ================================================= C++ Bison
6858
6859@node C++ Language Interface
6860@chapter C++ Language Interface
6861
6862@menu
6863* C++ Parsers:: The interface to generate C++ parser classes
6864* A Complete C++ Example:: Demonstrating their use
6865@end menu
6866
6867@node C++ Parsers
6868@section C++ Parsers
6869
6870@menu
6871* C++ Bison Interface:: Asking for C++ parser generation
6872* C++ Semantic Values:: %union vs. C++
6873* C++ Location Values:: The position and location classes
6874* C++ Parser Interface:: Instantiating and running the parser
6875* C++ Scanner Interface:: Exchanges between yylex and parse
6876@end menu
6877
6878@node C++ Bison Interface
6879@subsection C++ Bison Interface
6880@c - %skeleton "lalr1.cc"
6881@c - Always pure
6882@c - initial action
6883
e054b190 6884The C++ parser @acronym{LALR}(1) skeleton is named @file{lalr1.cc}. To select
12545799
AD
6885it, you may either pass the option @option{--skeleton=lalr1.cc} to
6886Bison, or include the directive @samp{%skeleton "lalr1.cc"} in the
6887grammar preamble. When run, @command{bison} will create several
6888files:
6889@table @file
6890@item position.hh
6891@itemx location.hh
6892The definition of the classes @code{position} and @code{location},
6893used for location tracking. @xref{C++ Location Values}.
6894
6895@item stack.hh
6896An auxiliary class @code{stack} used by the parser.
6897
6898@item @var{filename}.hh
6899@itemx @var{filename}.cc
6900The declaration and implementation of the C++ parser class.
6901@var{filename} is the name of the output file. It follows the same
6902rules as with regular C parsers.
6903
6904Note that @file{@var{filename}.hh} is @emph{mandatory}, the C++ cannot
6905work without the parser class declaration. Therefore, you must either
6906pass @option{-d}/@option{--defines} to @command{bison}, or use the
6907@samp{%defines} directive.
6908@end table
6909
6910All these files are documented using Doxygen; run @command{doxygen}
6911for a complete and accurate documentation.
6912
6913@node C++ Semantic Values
6914@subsection C++ Semantic Values
6915@c - No objects in unions
6916@c - YSTYPE
6917@c - Printer and destructor
6918
6919The @code{%union} directive works as for C, see @ref{Union Decl, ,The
6920Collection of Value Types}. In particular it produces a genuine
6921@code{union}@footnote{In the future techniques to allow complex types
6922within pseudo-unions (variants) might be implemented to alleviate
6923these issues.}, which have a few specific features in C++.
6924@itemize @minus
6925@item
6926The name @code{YYSTYPE} also denotes @samp{union YYSTYPE}. You may
6927forward declare it just with @samp{union YYSTYPE;}.
6928@item
6929Non POD (Plain Old Data) types cannot be used. C++ forbids any
6930instance of classes with constructors in unions: only @emph{pointers}
6931to such objects are allowed.
6932@end itemize
6933
6934Because objects have to be stored via pointers, memory is not
6935reclaimed automatically: using the @code{%destructor} directive is the
6936only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
6937Symbols}.
6938
6939
6940@node C++ Location Values
6941@subsection C++ Location Values
6942@c - %locations
6943@c - class Position
6944@c - class Location
6945@c - %define "filename_type" "const symbol::Symbol"
6946
6947When the directive @code{%locations} is used, the C++ parser supports
6948location tracking, see @ref{Locations, , Locations Overview}. Two
6949auxiliary classes define a @code{position}, a single point in a file,
6950and a @code{location}, a range composed of a pair of
6951@code{position}s (possibly spanning several files).
6952
6953@deftypemethod {position} {std::string*} filename
6954The name of the file. It will always be handled as a pointer, the
6955parser will never duplicate nor deallocate it. As an experimental
6956feature you may change it to @samp{@var{type}*} using @samp{%define
6957"filename_type" "@var{type}"}.
6958@end deftypemethod
6959
6960@deftypemethod {position} {unsigned int} line
6961The line, starting at 1.
6962@end deftypemethod
6963
6964@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
6965Advance by @var{height} lines, resetting the column number.
6966@end deftypemethod
6967
6968@deftypemethod {position} {unsigned int} column
6969The column, starting at 0.
6970@end deftypemethod
6971
6972@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
6973Advance by @var{width} columns, without changing the line number.
6974@end deftypemethod
6975
6976@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
6977@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
6978@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
6979@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
6980Various forms of syntactic sugar for @code{columns}.
6981@end deftypemethod
6982
6983@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
6984Report @var{p} on @var{o} like this:
6985@samp{@var{filename}:@var{line}.@var{column}}, or
6986@samp{@var{line}.@var{column}} if @var{filename} is null.
6987@end deftypemethod
6988
6989@deftypemethod {location} {position} begin
6990@deftypemethodx {location} {position} end
6991The first, inclusive, position of the range, and the first beyond.
6992@end deftypemethod
6993
6994@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
6995@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
6996Advance the @code{end} position.
6997@end deftypemethod
6998
6999@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
7000@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
7001@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
7002Various forms of syntactic sugar.
7003@end deftypemethod
7004
7005@deftypemethod {location} {void} step ()
7006Move @code{begin} onto @code{end}.
7007@end deftypemethod
7008
7009
7010@node C++ Parser Interface
7011@subsection C++ Parser Interface
7012@c - define parser_class_name
7013@c - Ctor
7014@c - parse, error, set_debug_level, debug_level, set_debug_stream,
7015@c debug_stream.
7016@c - Reporting errors
7017
7018The output files @file{@var{output}.hh} and @file{@var{output}.cc}
7019declare and define the parser class in the namespace @code{yy}. The
7020class name defaults to @code{parser}, but may be changed using
7021@samp{%define "parser_class_name" "@var{name}"}. The interface of
7022this class is detailled below. It can be extended using the
7023@code{%parse-param} feature: its semantics is slightly changed since
7024it describes an additional member of the parser class, and an
7025additional argument for its constructor.
7026
8a0adb01
AD
7027@defcv {Type} {parser} {semantic_value_type}
7028@defcvx {Type} {parser} {location_value_type}
12545799 7029The types for semantics value and locations.
8a0adb01 7030@end defcv
12545799
AD
7031
7032@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
7033Build a new parser object. There are no arguments by default, unless
7034@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
7035@end deftypemethod
7036
7037@deftypemethod {parser} {int} parse ()
7038Run the syntactic analysis, and return 0 on success, 1 otherwise.
7039@end deftypemethod
7040
7041@deftypemethod {parser} {std::ostream&} debug_stream ()
7042@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
7043Get or set the stream used for tracing the parsing. It defaults to
7044@code{std::cerr}.
7045@end deftypemethod
7046
7047@deftypemethod {parser} {debug_level_type} debug_level ()
7048@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
7049Get or set the tracing level. Currently its value is either 0, no trace,
7050or non-zero, full tracing.
7051@end deftypemethod
7052
7053@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
7054The definition for this member function must be supplied by the user:
7055the parser uses it to report a parser error occurring at @var{l},
7056described by @var{m}.
7057@end deftypemethod
7058
7059
7060@node C++ Scanner Interface
7061@subsection C++ Scanner Interface
7062@c - prefix for yylex.
7063@c - Pure interface to yylex
7064@c - %lex-param
7065
7066The parser invokes the scanner by calling @code{yylex}. Contrary to C
7067parsers, C++ parsers are always pure: there is no point in using the
7068@code{%pure-parser} directive. Therefore the interface is as follows.
7069
7070@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
7071Return the next token. Its type is the return value, its semantic
7072value and location being @var{yylval} and @var{yylloc}. Invocations of
7073@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
7074@end deftypemethod
7075
7076
7077@node A Complete C++ Example
7078@section A Complete C++ Example
7079
7080This section demonstrates the use of a C++ parser with a simple but
7081complete example. This example should be available on your system,
7082ready to compile, in the directory @dfn{../bison/examples/calc++}. It
7083focuses on the use of Bison, therefore the design of the various C++
7084classes is very naive: no accessors, no encapsulation of members etc.
7085We will use a Lex scanner, and more precisely, a Flex scanner, to
7086demonstrate the various interaction. A hand written scanner is
7087actually easier to interface with.
7088
7089@menu
7090* Calc++ --- C++ Calculator:: The specifications
7091* Calc++ Parsing Driver:: An active parsing context
7092* Calc++ Parser:: A parser class
7093* Calc++ Scanner:: A pure C++ Flex scanner
7094* Calc++ Top Level:: Conducting the band
7095@end menu
7096
7097@node Calc++ --- C++ Calculator
7098@subsection Calc++ --- C++ Calculator
7099
7100Of course the grammar is dedicated to arithmetics, a single
7101expression, possibily preceded by variable assignments. An
7102environment containing possibly predefined variables such as
7103@code{one} and @code{two}, is exchanged with the parser. An example
7104of valid input follows.
7105
7106@example
7107three := 3
7108seven := one + two * three
7109seven * seven
7110@end example
7111
7112@node Calc++ Parsing Driver
7113@subsection Calc++ Parsing Driver
7114@c - An env
7115@c - A place to store error messages
7116@c - A place for the result
7117
7118To support a pure interface with the parser (and the scanner) the
7119technique of the ``parsing context'' is convenient: a structure
7120containing all the data to exchange. Since, in addition to simply
7121launch the parsing, there are several auxiliary tasks to execute (open
7122the file for parsing, instantiate the parser etc.), we recommend
7123transforming the simple parsing context structure into a fully blown
7124@dfn{parsing driver} class.
7125
7126The declaration of this driver class, @file{calc++-driver.hh}, is as
7127follows. The first part includes the CPP guard and imports the
7128required standard library components.
7129
1c59e0a1 7130@comment file: calc++-driver.hh
12545799
AD
7131@example
7132#ifndef CALCXX_DRIVER_HH
7133# define CALCXX_DRIVER_HH
7134# include <string>
7135# include <map>
7136@end example
7137
7138@noindent
7139Then come forward declarations. Because the parser uses the parsing
7140driver and reciprocally, simple inclusions of header files will not
7141do. Because the driver's declaration is the one that will be imported
7142by the rest of the project, it is saner to forward declare the
7143parser's information here.
7144
1c59e0a1 7145@comment file: calc++-driver.hh
12545799
AD
7146@example
7147// Forward declarations.
7148union YYSTYPE;
1c59e0a1
AD
7149namespace yy
7150@{
7151 class location;
7152 class calcxx_parser;
7153@}
12545799
AD
7154class calcxx_driver;
7155@end example
7156
7157@noindent
7158Then comes the declaration of the scanning function. Flex expects
7159the signature of @code{yylex} to be defined in the macro
7160@code{YY_DECL}, and the C++ parser expects it to be declared. We can
7161factor both as follows.
1c59e0a1
AD
7162
7163@comment file: calc++-driver.hh
12545799
AD
7164@example
7165// Announce to Flex the prototype we want for lexing function, ...
1c59e0a1 7166# define YY_DECL \
12545799
AD
7167 int yylex (YYSTYPE* yylval, yy::location* yylloc, calcxx_driver& driver)
7168// ... and declare it for the parser's sake.
7169YY_DECL;
7170@end example
7171
7172@noindent
7173The @code{calcxx_driver} class is then declared with its most obvious
7174members.
7175
1c59e0a1 7176@comment file: calc++-driver.hh
12545799
AD
7177@example
7178// Conducting the whole scanning and parsing of Calc++.
7179class calcxx_driver
7180@{
7181public:
7182 calcxx_driver ();
7183 virtual ~calcxx_driver ();
7184
7185 std::map<std::string, int> variables;
7186
7187 int result;
7188@end example
7189
7190@noindent
7191To encapsulate the coordination with the Flex scanner, it is useful to
7192have two members function to open and close the scanning phase.
7193members.
7194
1c59e0a1 7195@comment file: calc++-driver.hh
12545799
AD
7196@example
7197 // Handling the scanner.
7198 void scan_begin ();
7199 void scan_end ();
7200 bool trace_scanning;
7201@end example
7202
7203@noindent
7204Similarly for the parser itself.
7205
1c59e0a1 7206@comment file: calc++-driver.hh
12545799
AD
7207@example
7208 // Handling the parser.
7209 void parse (const std::string& f);
7210 std::string file;
7211 bool trace_parsing;
7212@end example
7213
7214@noindent
7215To demonstrate pure handling of parse errors, instead of simply
7216dumping them on the standard error output, we will pass them to the
7217compiler driver using the following two member functions. Finally, we
7218close the class declaration and CPP guard.
7219
1c59e0a1 7220@comment file: calc++-driver.hh
12545799
AD
7221@example
7222 // Error handling.
7223 void error (const yy::location& l, const std::string& m);
7224 void error (const std::string& m);
7225@};
7226#endif // ! CALCXX_DRIVER_HH
7227@end example
7228
7229The implementation of the driver is straightforward. The @code{parse}
7230member function deserves some attention. The @code{error} functions
7231are simple stubs, they should actually register the located error
7232messages and set error state.
7233
1c59e0a1 7234@comment file: calc++-driver.cc
12545799
AD
7235@example
7236#include "calc++-driver.hh"
7237#include "calc++-parser.hh"
7238
7239calcxx_driver::calcxx_driver ()
7240 : trace_scanning (false), trace_parsing (false)
7241@{
7242 variables["one"] = 1;
7243 variables["two"] = 2;
7244@}
7245
7246calcxx_driver::~calcxx_driver ()
7247@{
7248@}
7249
7250void
7251calcxx_driver::parse (const std::string &f)
7252@{
7253 file = f;
7254 scan_begin ();
7255 yy::calcxx_parser parser (*this);
7256 parser.set_debug_level (trace_parsing);
7257 parser.parse ();
7258 scan_end ();
7259@}
7260
7261void
7262calcxx_driver::error (const yy::location& l, const std::string& m)
7263@{
7264 std::cerr << l << ": " << m << std::endl;
7265@}
7266
7267void
7268calcxx_driver::error (const std::string& m)
7269@{
7270 std::cerr << m << std::endl;
7271@}
7272@end example
7273
7274@node Calc++ Parser
7275@subsection Calc++ Parser
7276
7277The parser definition file @file{calc++-parser.yy} starts by asking
7278for the C++ skeleton, the creation of the parser header file, and
7279specifies the name of the parser class. It then includes the required
7280headers.
1c59e0a1
AD
7281
7282@comment file: calc++-parser.yy
12545799
AD
7283@example
7284%skeleton "lalr1.cc" /* -*- C++ -*- */
7285%define "parser_class_name" "calcxx_parser"
7286%defines
7287%@{
7288# include <string>
7289# include "calc++-driver.hh"
7290%@}
7291@end example
7292
7293@noindent
7294The driver is passed by reference to the parser and to the scanner.
7295This provides a simple but effective pure interface, not relying on
7296global variables.
7297
1c59e0a1 7298@comment file: calc++-parser.yy
12545799
AD
7299@example
7300// The parsing context.
7301%parse-param @{ calcxx_driver& driver @}
7302%lex-param @{ calcxx_driver& driver @}
7303@end example
7304
7305@noindent
7306Then we request the location tracking feature, and initialize the
7307first location's file name. Afterwards new locations are computed
7308relatively to the previous locations: the file name will be
7309automatically propagated.
7310
1c59e0a1 7311@comment file: calc++-parser.yy
12545799
AD
7312@example
7313%locations
7314%initial-action
7315@{
7316 // Initialize the initial location.
7317 @@$.begin.filename = @@$.end.filename = &driver.file;
7318@};
7319@end example
7320
7321@noindent
7322Use the two following directives to enable parser tracing and verbose
7323error messages.
7324
1c59e0a1 7325@comment file: calc++-parser.yy
12545799
AD
7326@example
7327%debug
7328%error-verbose
7329@end example
7330
7331@noindent
7332Semantic values cannot use ``real'' objects, but only pointers to
7333them.
7334
1c59e0a1 7335@comment file: calc++-parser.yy
12545799
AD
7336@example
7337// Symbols.
7338%union
7339@{
7340 int ival;
7341 std::string *sval;
7342@};
7343@end example
7344
7345@noindent
7346The token numbered as 0 corresponds to end of file; the following line
7347allows for nicer error messages referring to ``end of file'' instead
7348of ``$end''. Similarly user friendly named are provided for each
7349symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
7350avoid name clashes.
7351
1c59e0a1 7352@comment file: calc++-parser.yy
12545799
AD
7353@example
7354%token YYEOF 0 "end of file"
7355%token TOKEN_ASSIGN ":="
7356%token <sval> TOKEN_IDENTIFIER "identifier"
7357%token <ival> TOKEN_NUMBER "number"
7358%type <ival> exp "expression"
7359@end example
7360
7361@noindent
7362To enable memory deallocation during error recovery, use
7363@code{%destructor}.
7364
1c59e0a1 7365@comment file: calc++-parser.yy
12545799
AD
7366@example
7367%printer @{ debug_stream () << *$$; @} "identifier"
7368%destructor @{ delete $$; @} "identifier"
7369
7370%printer @{ debug_stream () << $$; @} "number" "expression"
7371@end example
7372
7373@noindent
7374The grammar itself is straightforward.
7375
1c59e0a1 7376@comment file: calc++-parser.yy
12545799
AD
7377@example
7378%%
7379%start unit;
7380unit: assignments exp @{ driver.result = $2; @};
7381
7382assignments: assignments assignment @{@}
7383 | /* Nothing. */ @{@};
7384
7385assignment: TOKEN_IDENTIFIER ":=" exp @{ driver.variables[*$1] = $3; @};
7386
7387%left '+' '-';
7388%left '*' '/';
7389exp: exp '+' exp @{ $$ = $1 + $3; @}
7390 | exp '-' exp @{ $$ = $1 - $3; @}
7391 | exp '*' exp @{ $$ = $1 * $3; @}
7392 | exp '/' exp @{ $$ = $1 / $3; @}
7393 | TOKEN_IDENTIFIER @{ $$ = driver.variables[*$1]; @}
7394 | TOKEN_NUMBER @{ $$ = $1; @};
7395%%
7396@end example
7397
7398@noindent
7399Finally the @code{error} member function registers the errors to the
7400driver.
7401
1c59e0a1 7402@comment file: calc++-parser.yy
12545799
AD
7403@example
7404void
1c59e0a1
AD
7405yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
7406 const std::string& m)
12545799
AD
7407@{
7408 driver.error (l, m);
7409@}
7410@end example
7411
7412@node Calc++ Scanner
7413@subsection Calc++ Scanner
7414
7415The Flex scanner first includes the driver declaration, then the
7416parser's to get the set of defined tokens.
7417
1c59e0a1 7418@comment file: calc++-scanner.ll
12545799
AD
7419@example
7420%@{ /* -*- C++ -*- */
7421# include <string>
7422# include "calc++-driver.hh"
7423# include "calc++-parser.hh"
7424%@}
7425@end example
7426
7427@noindent
7428Because there is no @code{#include}-like feature we don't need
7429@code{yywrap}, we don't need @code{unput} either, and we parse an
7430actual file, this is not an interactive session with the user.
7431Finally we enable the scanner tracing features.
7432
1c59e0a1 7433@comment file: calc++-scanner.ll
12545799
AD
7434@example
7435%option noyywrap nounput batch debug
7436@end example
7437
7438@noindent
7439Abbreviations allow for more readable rules.
7440
1c59e0a1 7441@comment file: calc++-scanner.ll
12545799
AD
7442@example
7443id [a-zA-Z][a-zA-Z_0-9]*
7444int [0-9]+
7445blank [ \t]
7446@end example
7447
7448@noindent
7449The following paragraph suffices to track locations acurately. Each
7450time @code{yylex} is invoked, the begin position is moved onto the end
7451position. Then when a pattern is matched, the end position is
7452advanced of its width. In case it matched ends of lines, the end
7453cursor is adjusted, and each time blanks are matched, the begin cursor
7454is moved onto the end cursor to effectively ignore the blanks
7455preceding tokens. Comments would be treated equally.
7456
1c59e0a1 7457@comment file: calc++-scanner.ll
12545799 7458@example
828c373b
AD
7459%@{
7460# define YY_USER_ACTION yylloc->columns (yyleng);
7461%@}
12545799
AD
7462%%
7463%@{
7464 yylloc->step ();
12545799
AD
7465%@}
7466@{blank@}+ yylloc->step ();
7467[\n]+ yylloc->lines (yyleng); yylloc->step ();
7468@end example
7469
7470@noindent
7471The rules are simple, just note the use of the driver to report
7472errors.
7473
1c59e0a1 7474@comment file: calc++-scanner.ll
12545799
AD
7475@example
7476[-+*/] return yytext[0];
7477":=" return TOKEN_ASSIGN;
7478@{int@} yylval->ival = atoi (yytext); return TOKEN_NUMBER;
7479@{id@} yylval->sval = new std::string (yytext); return TOKEN_IDENTIFIER;
7480. driver.error (*yylloc, "invalid character");
7481%%
7482@end example
7483
7484@noindent
7485Finally, because the scanner related driver's member function depend
7486on the scanner's data, it is simpler to implement them in this file.
7487
1c59e0a1 7488@comment file: calc++-scanner.ll
12545799
AD
7489@example
7490void
7491calcxx_driver::scan_begin ()
7492@{
7493 yy_flex_debug = trace_scanning;
7494 if (!(yyin = fopen (file.c_str (), "r")))
7495 error (std::string ("cannot open ") + file);
7496@}
7497
7498void
7499calcxx_driver::scan_end ()
7500@{
7501 fclose (yyin);
7502@}
7503@end example
7504
7505@node Calc++ Top Level
7506@subsection Calc++ Top Level
7507
7508The top level file, @file{calc++.cc}, poses no problem.
7509
1c59e0a1 7510@comment file: calc++.cc
12545799
AD
7511@example
7512#include <iostream>
7513#include "calc++-driver.hh"
7514
7515int
7516main (int argc, const char* argv[])
7517@{
7518 calcxx_driver driver;
7519 for (++argv; argv[0]; ++argv)
7520 if (*argv == std::string ("-p"))
7521 driver.trace_parsing = true;
7522 else if (*argv == std::string ("-s"))
7523 driver.trace_scanning = true;
7524 else
7525 @{
7526 driver.parse (*argv);
7527 std::cout << driver.result << std::endl;
7528 @}
7529@}
7530@end example
7531
7532@c ================================================= FAQ
d1a1114f
AD
7533
7534@node FAQ
7535@chapter Frequently Asked Questions
7536@cindex frequently asked questions
7537@cindex questions
7538
7539Several questions about Bison come up occasionally. Here some of them
7540are addressed.
7541
7542@menu
1a059451 7543* Memory Exhausted:: Breaking the Stack Limits
e64fec0a 7544* How Can I Reset the Parser:: @code{yyparse} Keeps some State
fef4cb51 7545* Strings are Destroyed:: @code{yylval} Loses Track of Strings
2fa09258 7546* Implementing Gotos/Loops:: Control Flow in the Calculator
d1a1114f
AD
7547@end menu
7548
1a059451
PE
7549@node Memory Exhausted
7550@section Memory Exhausted
d1a1114f
AD
7551
7552@display
1a059451 7553My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
7554message. What can I do?
7555@end display
7556
7557This question is already addressed elsewhere, @xref{Recursion,
7558,Recursive Rules}.
7559
e64fec0a
PE
7560@node How Can I Reset the Parser
7561@section How Can I Reset the Parser
5b066063 7562
0e14ad77
PE
7563The following phenomenon has several symptoms, resulting in the
7564following typical questions:
5b066063
AD
7565
7566@display
7567I invoke @code{yyparse} several times, and on correct input it works
7568properly; but when a parse error is found, all the other calls fail
0e14ad77 7569too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
7570@end display
7571
7572@noindent
7573or
7574
7575@display
0e14ad77 7576My parser includes support for an @samp{#include}-like feature, in
5b066063
AD
7577which case I run @code{yyparse} from @code{yyparse}. This fails
7578although I did specify I needed a @code{%pure-parser}.
7579@end display
7580
0e14ad77
PE
7581These problems typically come not from Bison itself, but from
7582Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
7583speed, they might not notice a change of input file. As a
7584demonstration, consider the following source file,
7585@file{first-line.l}:
7586
7587@verbatim
7588%{
7589#include <stdio.h>
7590#include <stdlib.h>
7591%}
7592%%
7593.*\n ECHO; return 1;
7594%%
7595int
0e14ad77 7596yyparse (char const *file)
5b066063
AD
7597{
7598 yyin = fopen (file, "r");
7599 if (!yyin)
7600 exit (2);
fa7e68c3 7601 /* One token only. */
5b066063 7602 yylex ();
0e14ad77 7603 if (fclose (yyin) != 0)
5b066063
AD
7604 exit (3);
7605 return 0;
7606}
7607
7608int
0e14ad77 7609main (void)
5b066063
AD
7610{
7611 yyparse ("input");
7612 yyparse ("input");
7613 return 0;
7614}
7615@end verbatim
7616
7617@noindent
7618If the file @file{input} contains
7619
7620@verbatim
7621input:1: Hello,
7622input:2: World!
7623@end verbatim
7624
7625@noindent
0e14ad77 7626then instead of getting the first line twice, you get:
5b066063
AD
7627
7628@example
7629$ @kbd{flex -ofirst-line.c first-line.l}
7630$ @kbd{gcc -ofirst-line first-line.c -ll}
7631$ @kbd{./first-line}
7632input:1: Hello,
7633input:2: World!
7634@end example
7635
0e14ad77
PE
7636Therefore, whenever you change @code{yyin}, you must tell the
7637Lex-generated scanner to discard its current buffer and switch to the
7638new one. This depends upon your implementation of Lex; see its
7639documentation for more. For Flex, it suffices to call
7640@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
7641Flex-generated scanner needs to read from several input streams to
7642handle features like include files, you might consider using Flex
7643functions like @samp{yy_switch_to_buffer} that manipulate multiple
7644input buffers.
5b066063 7645
b165c324
AD
7646If your Flex-generated scanner uses start conditions (@pxref{Start
7647conditions, , Start conditions, flex, The Flex Manual}), you might
7648also want to reset the scanner's state, i.e., go back to the initial
7649start condition, through a call to @samp{BEGIN (0)}.
7650
fef4cb51
AD
7651@node Strings are Destroyed
7652@section Strings are Destroyed
7653
7654@display
c7e441b4 7655My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
7656them. Instead of reporting @samp{"foo", "bar"}, it reports
7657@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
7658@end display
7659
7660This error is probably the single most frequent ``bug report'' sent to
7661Bison lists, but is only concerned with a misunderstanding of the role
7662of scanner. Consider the following Lex code:
7663
7664@verbatim
7665%{
7666#include <stdio.h>
7667char *yylval = NULL;
7668%}
7669%%
7670.* yylval = yytext; return 1;
7671\n /* IGNORE */
7672%%
7673int
7674main ()
7675{
fa7e68c3 7676 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
7677 char *fst = (yylex (), yylval);
7678 char *snd = (yylex (), yylval);
7679 printf ("\"%s\", \"%s\"\n", fst, snd);
7680 return 0;
7681}
7682@end verbatim
7683
7684If you compile and run this code, you get:
7685
7686@example
7687$ @kbd{flex -osplit-lines.c split-lines.l}
7688$ @kbd{gcc -osplit-lines split-lines.c -ll}
7689$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7690"one
7691two", "two"
7692@end example
7693
7694@noindent
7695this is because @code{yytext} is a buffer provided for @emph{reading}
7696in the action, but if you want to keep it, you have to duplicate it
7697(e.g., using @code{strdup}). Note that the output may depend on how
7698your implementation of Lex handles @code{yytext}. For instance, when
7699given the Lex compatibility option @option{-l} (which triggers the
7700option @samp{%array}) Flex generates a different behavior:
7701
7702@example
7703$ @kbd{flex -l -osplit-lines.c split-lines.l}
7704$ @kbd{gcc -osplit-lines split-lines.c -ll}
7705$ @kbd{printf 'one\ntwo\n' | ./split-lines}
7706"two", "two"
7707@end example
7708
7709
2fa09258
AD
7710@node Implementing Gotos/Loops
7711@section Implementing Gotos/Loops
a06ea4aa
AD
7712
7713@display
7714My simple calculator supports variables, assignments, and functions,
2fa09258 7715but how can I implement gotos, or loops?
a06ea4aa
AD
7716@end display
7717
7718Although very pedagogical, the examples included in the document blur
a1c84f45 7719the distinction to make between the parser---whose job is to recover
a06ea4aa 7720the structure of a text and to transmit it to subsequent modules of
a1c84f45 7721the program---and the processing (such as the execution) of this
a06ea4aa
AD
7722structure. This works well with so called straight line programs,
7723i.e., precisely those that have a straightforward execution model:
7724execute simple instructions one after the others.
7725
7726@cindex abstract syntax tree
7727@cindex @acronym{AST}
7728If you want a richer model, you will probably need to use the parser
7729to construct a tree that does represent the structure it has
7730recovered; this tree is usually called the @dfn{abstract syntax tree},
7731or @dfn{@acronym{AST}} for short. Then, walking through this tree,
7732traversing it in various ways, will enable treatments such as its
7733execution or its translation, which will result in an interpreter or a
7734compiler.
7735
7736This topic is way beyond the scope of this manual, and the reader is
7737invited to consult the dedicated literature.
7738
7739
7740
d1a1114f
AD
7741@c ================================================= Table of Symbols
7742
342b8b6e 7743@node Table of Symbols
bfa74976
RS
7744@appendix Bison Symbols
7745@cindex Bison symbols, table of
7746@cindex symbols in Bison, table of
7747
18b519c0 7748@deffn {Variable} @@$
3ded9a63 7749In an action, the location of the left-hand side of the rule.
88bce5a2 7750@xref{Locations, , Locations Overview}.
18b519c0 7751@end deffn
3ded9a63 7752
18b519c0 7753@deffn {Variable} @@@var{n}
3ded9a63
AD
7754In an action, the location of the @var{n}-th symbol of the right-hand
7755side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 7756@end deffn
3ded9a63 7757
18b519c0 7758@deffn {Variable} $$
3ded9a63
AD
7759In an action, the semantic value of the left-hand side of the rule.
7760@xref{Actions}.
18b519c0 7761@end deffn
3ded9a63 7762
18b519c0 7763@deffn {Variable} $@var{n}
3ded9a63
AD
7764In an action, the semantic value of the @var{n}-th symbol of the
7765right-hand side of the rule. @xref{Actions}.
18b519c0 7766@end deffn
3ded9a63 7767
dd8d9022
AD
7768@deffn {Delimiter} %%
7769Delimiter used to separate the grammar rule section from the
7770Bison declarations section or the epilogue.
7771@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 7772@end deffn
bfa74976 7773
dd8d9022
AD
7774@c Don't insert spaces, or check the DVI output.
7775@deffn {Delimiter} %@{@var{code}%@}
7776All code listed between @samp{%@{} and @samp{%@}} is copied directly to
7777the output file uninterpreted. Such code forms the prologue of the input
7778file. @xref{Grammar Outline, ,Outline of a Bison
7779Grammar}.
18b519c0 7780@end deffn
bfa74976 7781
dd8d9022
AD
7782@deffn {Construct} /*@dots{}*/
7783Comment delimiters, as in C.
18b519c0 7784@end deffn
bfa74976 7785
dd8d9022
AD
7786@deffn {Delimiter} :
7787Separates a rule's result from its components. @xref{Rules, ,Syntax of
7788Grammar Rules}.
18b519c0 7789@end deffn
bfa74976 7790
dd8d9022
AD
7791@deffn {Delimiter} ;
7792Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7793@end deffn
bfa74976 7794
dd8d9022
AD
7795@deffn {Delimiter} |
7796Separates alternate rules for the same result nonterminal.
7797@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 7798@end deffn
bfa74976 7799
dd8d9022
AD
7800@deffn {Symbol} $accept
7801The predefined nonterminal whose only rule is @samp{$accept: @var{start}
7802$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
7803Start-Symbol}. It cannot be used in the grammar.
18b519c0 7804@end deffn
bfa74976 7805
18b519c0 7806@deffn {Directive} %debug
6deb4447 7807Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 7808@end deffn
6deb4447 7809
91d2c560 7810@ifset defaultprec
22fccf95
PE
7811@deffn {Directive} %default-prec
7812Assign a precedence to rules that lack an explicit @samp{%prec}
7813modifier. @xref{Contextual Precedence, ,Context-Dependent
7814Precedence}.
39a06c25 7815@end deffn
91d2c560 7816@end ifset
39a06c25 7817
18b519c0 7818@deffn {Directive} %defines
6deb4447
AD
7819Bison declaration to create a header file meant for the scanner.
7820@xref{Decl Summary}.
18b519c0 7821@end deffn
6deb4447 7822
18b519c0 7823@deffn {Directive} %destructor
72f889cc 7824Specifying how the parser should reclaim the memory associated to
fa7e68c3 7825discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 7826@end deffn
72f889cc 7827
18b519c0 7828@deffn {Directive} %dprec
676385e2 7829Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
7830time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
7831@acronym{GLR} Parsers}.
18b519c0 7832@end deffn
676385e2 7833
dd8d9022
AD
7834@deffn {Symbol} $end
7835The predefined token marking the end of the token stream. It cannot be
7836used in the grammar.
7837@end deffn
7838
7839@deffn {Symbol} error
7840A token name reserved for error recovery. This token may be used in
7841grammar rules so as to allow the Bison parser to recognize an error in
7842the grammar without halting the process. In effect, a sentence
7843containing an error may be recognized as valid. On a syntax error, the
7844token @code{error} becomes the current look-ahead token. Actions
7845corresponding to @code{error} are then executed, and the look-ahead
7846token is reset to the token that originally caused the violation.
7847@xref{Error Recovery}.
18d192f0
AD
7848@end deffn
7849
18b519c0 7850@deffn {Directive} %error-verbose
2a8d363a
AD
7851Bison declaration to request verbose, specific error message strings
7852when @code{yyerror} is called.
18b519c0 7853@end deffn
2a8d363a 7854
18b519c0 7855@deffn {Directive} %file-prefix="@var{prefix}"
72d2299c 7856Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 7857Summary}.
18b519c0 7858@end deffn
d8988b2f 7859
18b519c0 7860@deffn {Directive} %glr-parser
c827f760
PE
7861Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
7862Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7863@end deffn
676385e2 7864
dd8d9022
AD
7865@deffn {Directive} %initial-action
7866Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
7867@end deffn
7868
18b519c0 7869@deffn {Directive} %left
bfa74976
RS
7870Bison declaration to assign left associativity to token(s).
7871@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7872@end deffn
bfa74976 7873
feeb0eda 7874@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
7875Bison declaration to specifying an additional parameter that
7876@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
7877for Pure Parsers}.
18b519c0 7878@end deffn
2a8d363a 7879
18b519c0 7880@deffn {Directive} %merge
676385e2 7881Bison declaration to assign a merging function to a rule. If there is a
fae437e8 7882reduce/reduce conflict with a rule having the same merging function, the
676385e2 7883function is applied to the two semantic values to get a single result.
c827f760 7884@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 7885@end deffn
676385e2 7886
18b519c0 7887@deffn {Directive} %name-prefix="@var{prefix}"
72d2299c 7888Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 7889@end deffn
d8988b2f 7890
91d2c560 7891@ifset defaultprec
22fccf95
PE
7892@deffn {Directive} %no-default-prec
7893Do not assign a precedence to rules that lack an explicit @samp{%prec}
7894modifier. @xref{Contextual Precedence, ,Context-Dependent
7895Precedence}.
7896@end deffn
91d2c560 7897@end ifset
22fccf95 7898
18b519c0 7899@deffn {Directive} %no-lines
931c7513
RS
7900Bison declaration to avoid generating @code{#line} directives in the
7901parser file. @xref{Decl Summary}.
18b519c0 7902@end deffn
931c7513 7903
18b519c0 7904@deffn {Directive} %nonassoc
14ded682 7905Bison declaration to assign non-associativity to token(s).
bfa74976 7906@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7907@end deffn
bfa74976 7908
18b519c0 7909@deffn {Directive} %output="@var{filename}"
72d2299c 7910Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 7911Summary}.
18b519c0 7912@end deffn
d8988b2f 7913
feeb0eda 7914@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
7915Bison declaration to specifying an additional parameter that
7916@code{yyparse} should accept. @xref{Parser Function,, The Parser
7917Function @code{yyparse}}.
18b519c0 7918@end deffn
2a8d363a 7919
18b519c0 7920@deffn {Directive} %prec
bfa74976
RS
7921Bison declaration to assign a precedence to a specific rule.
7922@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 7923@end deffn
bfa74976 7924
18b519c0 7925@deffn {Directive} %pure-parser
bfa74976
RS
7926Bison declaration to request a pure (reentrant) parser.
7927@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
18b519c0 7928@end deffn
bfa74976 7929
18b519c0 7930@deffn {Directive} %right
bfa74976
RS
7931Bison declaration to assign right associativity to token(s).
7932@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 7933@end deffn
bfa74976 7934
18b519c0 7935@deffn {Directive} %start
704a47c4
AD
7936Bison declaration to specify the start symbol. @xref{Start Decl, ,The
7937Start-Symbol}.
18b519c0 7938@end deffn
bfa74976 7939
18b519c0 7940@deffn {Directive} %token
bfa74976
RS
7941Bison declaration to declare token(s) without specifying precedence.
7942@xref{Token Decl, ,Token Type Names}.
18b519c0 7943@end deffn
bfa74976 7944
18b519c0 7945@deffn {Directive} %token-table
931c7513
RS
7946Bison declaration to include a token name table in the parser file.
7947@xref{Decl Summary}.
18b519c0 7948@end deffn
931c7513 7949
18b519c0 7950@deffn {Directive} %type
704a47c4
AD
7951Bison declaration to declare nonterminals. @xref{Type Decl,
7952,Nonterminal Symbols}.
18b519c0 7953@end deffn
bfa74976 7954
dd8d9022
AD
7955@deffn {Symbol} $undefined
7956The predefined token onto which all undefined values returned by
7957@code{yylex} are mapped. It cannot be used in the grammar, rather, use
7958@code{error}.
7959@end deffn
7960
18b519c0 7961@deffn {Directive} %union
bfa74976
RS
7962Bison declaration to specify several possible data types for semantic
7963values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 7964@end deffn
bfa74976 7965
dd8d9022
AD
7966@deffn {Macro} YYABORT
7967Macro to pretend that an unrecoverable syntax error has occurred, by
7968making @code{yyparse} return 1 immediately. The error reporting
7969function @code{yyerror} is not called. @xref{Parser Function, ,The
7970Parser Function @code{yyparse}}.
7971@end deffn
3ded9a63 7972
dd8d9022
AD
7973@deffn {Macro} YYACCEPT
7974Macro to pretend that a complete utterance of the language has been
7975read, by making @code{yyparse} return 0 immediately.
7976@xref{Parser Function, ,The Parser Function @code{yyparse}}.
7977@end deffn
bfa74976 7978
dd8d9022
AD
7979@deffn {Macro} YYBACKUP
7980Macro to discard a value from the parser stack and fake a look-ahead
7981token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7982@end deffn
bfa74976 7983
dd8d9022
AD
7984@deffn {Variable} yychar
7985External integer variable that contains the integer value of the current
7986look-ahead token. (In a pure parser, it is a local variable within
7987@code{yyparse}.) Error-recovery rule actions may examine this variable.
7988@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 7989@end deffn
bfa74976 7990
dd8d9022
AD
7991@deffn {Variable} yyclearin
7992Macro used in error-recovery rule actions. It clears the previous
7993look-ahead token. @xref{Error Recovery}.
18b519c0 7994@end deffn
bfa74976 7995
dd8d9022
AD
7996@deffn {Macro} YYDEBUG
7997Macro to define to equip the parser with tracing code. @xref{Tracing,
7998,Tracing Your Parser}.
18b519c0 7999@end deffn
bfa74976 8000
dd8d9022
AD
8001@deffn {Variable} yydebug
8002External integer variable set to zero by default. If @code{yydebug}
8003is given a nonzero value, the parser will output information on input
8004symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 8005@end deffn
bfa74976 8006
dd8d9022
AD
8007@deffn {Macro} yyerrok
8008Macro to cause parser to recover immediately to its normal mode
8009after a syntax error. @xref{Error Recovery}.
8010@end deffn
8011
8012@deffn {Macro} YYERROR
8013Macro to pretend that a syntax error has just been detected: call
8014@code{yyerror} and then perform normal error recovery if possible
8015(@pxref{Error Recovery}), or (if recovery is impossible) make
8016@code{yyparse} return 1. @xref{Error Recovery}.
8017@end deffn
8018
8019@deffn {Function} yyerror
8020User-supplied function to be called by @code{yyparse} on error.
8021@xref{Error Reporting, ,The Error
8022Reporting Function @code{yyerror}}.
8023@end deffn
8024
8025@deffn {Macro} YYERROR_VERBOSE
8026An obsolete macro that you define with @code{#define} in the prologue
8027to request verbose, specific error message strings
8028when @code{yyerror} is called. It doesn't matter what definition you
8029use for @code{YYERROR_VERBOSE}, just whether you define it. Using
8030@code{%error-verbose} is preferred.
8031@end deffn
8032
8033@deffn {Macro} YYINITDEPTH
8034Macro for specifying the initial size of the parser stack.
1a059451 8035@xref{Memory Management}.
dd8d9022
AD
8036@end deffn
8037
8038@deffn {Function} yylex
8039User-supplied lexical analyzer function, called with no arguments to get
8040the next token. @xref{Lexical, ,The Lexical Analyzer Function
8041@code{yylex}}.
8042@end deffn
8043
8044@deffn {Macro} YYLEX_PARAM
8045An obsolete macro for specifying an extra argument (or list of extra
8046arguments) for @code{yyparse} to pass to @code{yylex}. he use of this
8047macro is deprecated, and is supported only for Yacc like parsers.
8048@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
8049@end deffn
8050
8051@deffn {Variable} yylloc
8052External variable in which @code{yylex} should place the line and column
8053numbers associated with a token. (In a pure parser, it is a local
8054variable within @code{yyparse}, and its address is passed to
8055@code{yylex}.) You can ignore this variable if you don't use the
8056@samp{@@} feature in the grammar actions. @xref{Token Locations,
8057,Textual Locations of Tokens}.
8058@end deffn
8059
8060@deffn {Type} YYLTYPE
8061Data type of @code{yylloc}; by default, a structure with four
8062members. @xref{Location Type, , Data Types of Locations}.
8063@end deffn
8064
8065@deffn {Variable} yylval
8066External variable in which @code{yylex} should place the semantic
8067value associated with a token. (In a pure parser, it is a local
8068variable within @code{yyparse}, and its address is passed to
8069@code{yylex}.) @xref{Token Values, ,Semantic Values of Tokens}.
8070@end deffn
8071
8072@deffn {Macro} YYMAXDEPTH
1a059451
PE
8073Macro for specifying the maximum size of the parser stack. @xref{Memory
8074Management}.
dd8d9022
AD
8075@end deffn
8076
8077@deffn {Variable} yynerrs
8078Global variable which Bison increments each time there is a syntax error.
8079(In a pure parser, it is a local variable within @code{yyparse}.)
8080@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
8081@end deffn
8082
8083@deffn {Function} yyparse
8084The parser function produced by Bison; call this function to start
8085parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
8086@end deffn
8087
8088@deffn {Macro} YYPARSE_PARAM
8089An obsolete macro for specifying the name of a parameter that
8090@code{yyparse} should accept. The use of this macro is deprecated, and
8091is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
8092Conventions for Pure Parsers}.
8093@end deffn
8094
8095@deffn {Macro} YYRECOVERING
8096Macro whose value indicates whether the parser is recovering from a
8097syntax error. @xref{Action Features, ,Special Features for Use in Actions}.
8098@end deffn
8099
8100@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
8101Macro used to control the use of @code{alloca} when the C
8102@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
8103the parser will use @code{malloc} to extend its stacks. If defined to
81041, the parser will use @code{alloca}. Values other than 0 and 1 are
8105reserved for future Bison extensions. If not defined,
8106@code{YYSTACK_USE_ALLOCA} defaults to 0.
8107
8108If you define @code{YYSTACK_USE_ALLOCA} to 1, it is your
8109responsibility to make sure that @code{alloca} is visible, e.g., by
8110using @acronym{GCC} or by including @code{<stdlib.h>}. Furthermore,
8111in the all-too-common case where your code may run on a host with a
8112limited stack and with unreliable stack-overflow checking, you should
8113set @code{YYMAXDEPTH} to a value that cannot possibly result in
8114unchecked stack overflow on any of your target hosts when
8115@code{alloca} is called. You can inspect the code that Bison
8116generates in order to determine the proper numeric values. This will
8117require some expertise in low-level implementation details.
dd8d9022
AD
8118@end deffn
8119
8120@deffn {Type} YYSTYPE
8121Data type of semantic values; @code{int} by default.
8122@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 8123@end deffn
bfa74976 8124
342b8b6e 8125@node Glossary
bfa74976
RS
8126@appendix Glossary
8127@cindex glossary
8128
8129@table @asis
c827f760
PE
8130@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
8131Formal method of specifying context-free grammars originally proposed
8132by John Backus, and slightly improved by Peter Naur in his 1960-01-02
8133committee document contributing to what became the Algol 60 report.
8134@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8135
8136@item Context-free grammars
8137Grammars specified as rules that can be applied regardless of context.
8138Thus, if there is a rule which says that an integer can be used as an
8139expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
8140permitted. @xref{Language and Grammar, ,Languages and Context-Free
8141Grammars}.
bfa74976
RS
8142
8143@item Dynamic allocation
8144Allocation of memory that occurs during execution, rather than at
8145compile time or on entry to a function.
8146
8147@item Empty string
8148Analogous to the empty set in set theory, the empty string is a
8149character string of length zero.
8150
8151@item Finite-state stack machine
8152A ``machine'' that has discrete states in which it is said to exist at
8153each instant in time. As input to the machine is processed, the
8154machine moves from state to state as specified by the logic of the
8155machine. In the case of the parser, the input is the language being
8156parsed, and the states correspond to various stages in the grammar
c827f760 8157rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 8158
c827f760 8159@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 8160A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
8161that are not @acronym{LALR}(1). It resolves situations that Bison's
8162usual @acronym{LALR}(1)
676385e2
PH
8163algorithm cannot by effectively splitting off multiple parsers, trying all
8164possible parsers, and discarding those that fail in the light of additional
c827f760
PE
8165right context. @xref{Generalized LR Parsing, ,Generalized
8166@acronym{LR} Parsing}.
676385e2 8167
bfa74976
RS
8168@item Grouping
8169A language construct that is (in general) grammatically divisible;
c827f760 8170for example, `expression' or `declaration' in C@.
bfa74976
RS
8171@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8172
8173@item Infix operator
8174An arithmetic operator that is placed between the operands on which it
8175performs some operation.
8176
8177@item Input stream
8178A continuous flow of data between devices or programs.
8179
8180@item Language construct
8181One of the typical usage schemas of the language. For example, one of
8182the constructs of the C language is the @code{if} statement.
8183@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
8184
8185@item Left associativity
8186Operators having left associativity are analyzed from left to right:
8187@samp{a+b+c} first computes @samp{a+b} and then combines with
8188@samp{c}. @xref{Precedence, ,Operator Precedence}.
8189
8190@item Left recursion
89cab50d
AD
8191A rule whose result symbol is also its first component symbol; for
8192example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
8193Rules}.
bfa74976
RS
8194
8195@item Left-to-right parsing
8196Parsing a sentence of a language by analyzing it token by token from
c827f760 8197left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8198
8199@item Lexical analyzer (scanner)
8200A function that reads an input stream and returns tokens one by one.
8201@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
8202
8203@item Lexical tie-in
8204A flag, set by actions in the grammar rules, which alters the way
8205tokens are parsed. @xref{Lexical Tie-ins}.
8206
931c7513 8207@item Literal string token
14ded682 8208A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 8209
bfa74976 8210@item Look-ahead token
89cab50d
AD
8211A token already read but not yet shifted. @xref{Look-Ahead, ,Look-Ahead
8212Tokens}.
bfa74976 8213
c827f760 8214@item @acronym{LALR}(1)
bfa74976 8215The class of context-free grammars that Bison (like most other parser
c827f760
PE
8216generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
8217Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 8218
c827f760 8219@item @acronym{LR}(1)
bfa74976
RS
8220The class of context-free grammars in which at most one token of
8221look-ahead is needed to disambiguate the parsing of any piece of input.
8222
8223@item Nonterminal symbol
8224A grammar symbol standing for a grammatical construct that can
8225be expressed through rules in terms of smaller constructs; in other
8226words, a construct that is not a token. @xref{Symbols}.
8227
bfa74976
RS
8228@item Parser
8229A function that recognizes valid sentences of a language by analyzing
8230the syntax structure of a set of tokens passed to it from a lexical
8231analyzer.
8232
8233@item Postfix operator
8234An arithmetic operator that is placed after the operands upon which it
8235performs some operation.
8236
8237@item Reduction
8238Replacing a string of nonterminals and/or terminals with a single
89cab50d 8239nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 8240Parser Algorithm}.
bfa74976
RS
8241
8242@item Reentrant
8243A reentrant subprogram is a subprogram which can be in invoked any
8244number of times in parallel, without interference between the various
8245invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
8246
8247@item Reverse polish notation
8248A language in which all operators are postfix operators.
8249
8250@item Right recursion
89cab50d
AD
8251A rule whose result symbol is also its last component symbol; for
8252example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
8253Rules}.
bfa74976
RS
8254
8255@item Semantics
8256In computer languages, the semantics are specified by the actions
8257taken for each instance of the language, i.e., the meaning of
8258each statement. @xref{Semantics, ,Defining Language Semantics}.
8259
8260@item Shift
8261A parser is said to shift when it makes the choice of analyzing
8262further input from the stream rather than reducing immediately some
c827f760 8263already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
8264
8265@item Single-character literal
8266A single character that is recognized and interpreted as is.
8267@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
8268
8269@item Start symbol
8270The nonterminal symbol that stands for a complete valid utterance in
8271the language being parsed. The start symbol is usually listed as the
13863333 8272first nonterminal symbol in a language specification.
bfa74976
RS
8273@xref{Start Decl, ,The Start-Symbol}.
8274
8275@item Symbol table
8276A data structure where symbol names and associated data are stored
8277during parsing to allow for recognition and use of existing
8278information in repeated uses of a symbol. @xref{Multi-function Calc}.
8279
6e649e65
PE
8280@item Syntax error
8281An error encountered during parsing of an input stream due to invalid
8282syntax. @xref{Error Recovery}.
8283
bfa74976
RS
8284@item Token
8285A basic, grammatically indivisible unit of a language. The symbol
8286that describes a token in the grammar is a terminal symbol.
8287The input of the Bison parser is a stream of tokens which comes from
8288the lexical analyzer. @xref{Symbols}.
8289
8290@item Terminal symbol
89cab50d
AD
8291A grammar symbol that has no rules in the grammar and therefore is
8292grammatically indivisible. The piece of text it represents is a token.
8293@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
8294@end table
8295
342b8b6e 8296@node Copying This Manual
f2b5126e 8297@appendix Copying This Manual
f9a8293a 8298
f2b5126e
PB
8299@menu
8300* GNU Free Documentation License:: License for copying this manual.
8301@end menu
f9a8293a 8302
f2b5126e
PB
8303@include fdl.texi
8304
342b8b6e 8305@node Index
bfa74976
RS
8306@unnumbered Index
8307
8308@printindex cp
8309
bfa74976 8310@bye
a06ea4aa
AD
8311
8312@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
8313@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
8314@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
8315@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
8316@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
8317@c LocalWords: rpcalc Lexer Gen Comp Expr ltcalc mfcalc Decl Symtab yylex
8318@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
8319@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
8320@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
8321@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
8322@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
8323@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
8324@c LocalWords: longjmp fprintf stderr preg yylloc YYLTYPE cos ln
8325@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
8326@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
8327@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
8328@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
8329@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless typefull yynerrs
8330@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
8331@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
8332@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
8333@c LocalWords: YYEMPTY YYRECOVERING yyclearin GE def UMINUS maybeword
8334@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
8335@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm VCG notype
8336@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
8337@c LocalWords: YYPRINTF infile ypp yxx outfile itemx vcg tex leaderfill
8338@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
8339@c LocalWords: yyrestart nbar yytext fst snd osplit ntwo strdup AST
8340@c LocalWords: YYSTACK DVI fdl printindex