]> git.saurik.com Git - redis.git/blob - dict.c
Merged zsetops branch from Pietern
[redis.git] / dict.c
1 /* Hash Tables Implementation.
2 *
3 * This file implements in memory hash tables with insert/del/replace/find/
4 * get-random-element operations. Hash tables will auto resize if needed
5 * tables of power of two in size are used, collisions are handled by
6 * chaining. See the source code for more information... :)
7 *
8 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 *
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * * Neither the name of Redis nor the names of its contributors may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include "fmacros.h"
37
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <stdarg.h>
42 #include <assert.h>
43 #include <limits.h>
44
45 #include "dict.h"
46 #include "zmalloc.h"
47
48 /* ---------------------------- Utility funcitons --------------------------- */
49
50 static void _dictPanic(const char *fmt, ...)
51 {
52 va_list ap;
53
54 va_start(ap, fmt);
55 fprintf(stderr, "\nDICT LIBRARY PANIC: ");
56 vfprintf(stderr, fmt, ap);
57 fprintf(stderr, "\n\n");
58 va_end(ap);
59 }
60
61 /* ------------------------- Heap Management Wrappers------------------------ */
62
63 static void *_dictAlloc(size_t size)
64 {
65 void *p = zmalloc(size);
66 if (p == NULL)
67 _dictPanic("Out of memory");
68 return p;
69 }
70
71 static void _dictFree(void *ptr) {
72 zfree(ptr);
73 }
74
75 /* -------------------------- private prototypes ---------------------------- */
76
77 static int _dictExpandIfNeeded(dict *ht);
78 static unsigned long _dictNextPower(unsigned long size);
79 static int _dictKeyIndex(dict *ht, const void *key);
80 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
81
82 /* -------------------------- hash functions -------------------------------- */
83
84 /* Thomas Wang's 32 bit Mix Function */
85 unsigned int dictIntHashFunction(unsigned int key)
86 {
87 key += ~(key << 15);
88 key ^= (key >> 10);
89 key += (key << 3);
90 key ^= (key >> 6);
91 key += ~(key << 11);
92 key ^= (key >> 16);
93 return key;
94 }
95
96 /* Identity hash function for integer keys */
97 unsigned int dictIdentityHashFunction(unsigned int key)
98 {
99 return key;
100 }
101
102 /* Generic hash function (a popular one from Bernstein).
103 * I tested a few and this was the best. */
104 unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
105 unsigned int hash = 5381;
106
107 while (len--)
108 hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
109 return hash;
110 }
111
112 /* ----------------------------- API implementation ------------------------- */
113
114 /* Reset an hashtable already initialized with ht_init().
115 * NOTE: This function should only called by ht_destroy(). */
116 static void _dictReset(dict *ht)
117 {
118 ht->table = NULL;
119 ht->size = 0;
120 ht->sizemask = 0;
121 ht->used = 0;
122 }
123
124 /* Create a new hash table */
125 dict *dictCreate(dictType *type,
126 void *privDataPtr)
127 {
128 dict *ht = _dictAlloc(sizeof(*ht));
129
130 _dictInit(ht,type,privDataPtr);
131 return ht;
132 }
133
134 /* Initialize the hash table */
135 int _dictInit(dict *ht, dictType *type,
136 void *privDataPtr)
137 {
138 _dictReset(ht);
139 ht->type = type;
140 ht->privdata = privDataPtr;
141 return DICT_OK;
142 }
143
144 /* Resize the table to the minimal size that contains all the elements,
145 * but with the invariant of a USER/BUCKETS ration near to <= 1 */
146 int dictResize(dict *ht)
147 {
148 int minimal = ht->used;
149
150 if (minimal < DICT_HT_INITIAL_SIZE)
151 minimal = DICT_HT_INITIAL_SIZE;
152 return dictExpand(ht, minimal);
153 }
154
155 /* Expand or create the hashtable */
156 int dictExpand(dict *ht, unsigned long size)
157 {
158 dict n; /* the new hashtable */
159 unsigned long realsize = _dictNextPower(size), i;
160
161 /* the size is invalid if it is smaller than the number of
162 * elements already inside the hashtable */
163 if (ht->used > size)
164 return DICT_ERR;
165
166 _dictInit(&n, ht->type, ht->privdata);
167 n.size = realsize;
168 n.sizemask = realsize-1;
169 n.table = _dictAlloc(realsize*sizeof(dictEntry*));
170
171 /* Initialize all the pointers to NULL */
172 memset(n.table, 0, realsize*sizeof(dictEntry*));
173
174 /* Copy all the elements from the old to the new table:
175 * note that if the old hash table is empty ht->size is zero,
176 * so dictExpand just creates an hash table. */
177 n.used = ht->used;
178 for (i = 0; i < ht->size && ht->used > 0; i++) {
179 dictEntry *he, *nextHe;
180
181 if (ht->table[i] == NULL) continue;
182
183 /* For each hash entry on this slot... */
184 he = ht->table[i];
185 while(he) {
186 unsigned int h;
187
188 nextHe = he->next;
189 /* Get the new element index */
190 h = dictHashKey(ht, he->key) & n.sizemask;
191 he->next = n.table[h];
192 n.table[h] = he;
193 ht->used--;
194 /* Pass to the next element */
195 he = nextHe;
196 }
197 }
198 assert(ht->used == 0);
199 _dictFree(ht->table);
200
201 /* Remap the new hashtable in the old */
202 *ht = n;
203 return DICT_OK;
204 }
205
206 /* Add an element to the target hash table */
207 int dictAdd(dict *ht, void *key, void *val)
208 {
209 int index;
210 dictEntry *entry;
211
212 /* Get the index of the new element, or -1 if
213 * the element already exists. */
214 if ((index = _dictKeyIndex(ht, key)) == -1)
215 return DICT_ERR;
216
217 /* Allocates the memory and stores key */
218 entry = _dictAlloc(sizeof(*entry));
219 entry->next = ht->table[index];
220 ht->table[index] = entry;
221
222 /* Set the hash entry fields. */
223 dictSetHashKey(ht, entry, key);
224 dictSetHashVal(ht, entry, val);
225 ht->used++;
226 return DICT_OK;
227 }
228
229 /* Add an element, discarding the old if the key already exists.
230 * Return 1 if the key was added from scratch, 0 if there was already an
231 * element with such key and dictReplace() just performed a value update
232 * operation. */
233 int dictReplace(dict *ht, void *key, void *val)
234 {
235 dictEntry *entry;
236
237 /* Try to add the element. If the key
238 * does not exists dictAdd will suceed. */
239 if (dictAdd(ht, key, val) == DICT_OK)
240 return 1;
241 /* It already exists, get the entry */
242 entry = dictFind(ht, key);
243 /* Free the old value and set the new one */
244 dictFreeEntryVal(ht, entry);
245 dictSetHashVal(ht, entry, val);
246 return 0;
247 }
248
249 /* Search and remove an element */
250 static int dictGenericDelete(dict *ht, const void *key, int nofree)
251 {
252 unsigned int h;
253 dictEntry *he, *prevHe;
254
255 if (ht->size == 0)
256 return DICT_ERR;
257 h = dictHashKey(ht, key) & ht->sizemask;
258 he = ht->table[h];
259
260 prevHe = NULL;
261 while(he) {
262 if (dictCompareHashKeys(ht, key, he->key)) {
263 /* Unlink the element from the list */
264 if (prevHe)
265 prevHe->next = he->next;
266 else
267 ht->table[h] = he->next;
268 if (!nofree) {
269 dictFreeEntryKey(ht, he);
270 dictFreeEntryVal(ht, he);
271 }
272 _dictFree(he);
273 ht->used--;
274 return DICT_OK;
275 }
276 prevHe = he;
277 he = he->next;
278 }
279 return DICT_ERR; /* not found */
280 }
281
282 int dictDelete(dict *ht, const void *key) {
283 return dictGenericDelete(ht,key,0);
284 }
285
286 int dictDeleteNoFree(dict *ht, const void *key) {
287 return dictGenericDelete(ht,key,1);
288 }
289
290 /* Destroy an entire hash table */
291 int _dictClear(dict *ht)
292 {
293 unsigned long i;
294
295 /* Free all the elements */
296 for (i = 0; i < ht->size && ht->used > 0; i++) {
297 dictEntry *he, *nextHe;
298
299 if ((he = ht->table[i]) == NULL) continue;
300 while(he) {
301 nextHe = he->next;
302 dictFreeEntryKey(ht, he);
303 dictFreeEntryVal(ht, he);
304 _dictFree(he);
305 ht->used--;
306 he = nextHe;
307 }
308 }
309 /* Free the table and the allocated cache structure */
310 _dictFree(ht->table);
311 /* Re-initialize the table */
312 _dictReset(ht);
313 return DICT_OK; /* never fails */
314 }
315
316 /* Clear & Release the hash table */
317 void dictRelease(dict *ht)
318 {
319 _dictClear(ht);
320 _dictFree(ht);
321 }
322
323 dictEntry *dictFind(dict *ht, const void *key)
324 {
325 dictEntry *he;
326 unsigned int h;
327
328 if (ht->size == 0) return NULL;
329 h = dictHashKey(ht, key) & ht->sizemask;
330 he = ht->table[h];
331 while(he) {
332 if (dictCompareHashKeys(ht, key, he->key))
333 return he;
334 he = he->next;
335 }
336 return NULL;
337 }
338
339 dictIterator *dictGetIterator(dict *ht)
340 {
341 dictIterator *iter = _dictAlloc(sizeof(*iter));
342
343 iter->ht = ht;
344 iter->index = -1;
345 iter->entry = NULL;
346 iter->nextEntry = NULL;
347 return iter;
348 }
349
350 dictEntry *dictNext(dictIterator *iter)
351 {
352 while (1) {
353 if (iter->entry == NULL) {
354 iter->index++;
355 if (iter->index >=
356 (signed)iter->ht->size) break;
357 iter->entry = iter->ht->table[iter->index];
358 } else {
359 iter->entry = iter->nextEntry;
360 }
361 if (iter->entry) {
362 /* We need to save the 'next' here, the iterator user
363 * may delete the entry we are returning. */
364 iter->nextEntry = iter->entry->next;
365 return iter->entry;
366 }
367 }
368 return NULL;
369 }
370
371 void dictReleaseIterator(dictIterator *iter)
372 {
373 _dictFree(iter);
374 }
375
376 /* Return a random entry from the hash table. Useful to
377 * implement randomized algorithms */
378 dictEntry *dictGetRandomKey(dict *ht)
379 {
380 dictEntry *he;
381 unsigned int h;
382 int listlen, listele;
383
384 if (ht->used == 0) return NULL;
385 do {
386 h = random() & ht->sizemask;
387 he = ht->table[h];
388 } while(he == NULL);
389
390 /* Now we found a non empty bucket, but it is a linked
391 * list and we need to get a random element from the list.
392 * The only sane way to do so is to count the element and
393 * select a random index. */
394 listlen = 0;
395 while(he) {
396 he = he->next;
397 listlen++;
398 }
399 listele = random() % listlen;
400 he = ht->table[h];
401 while(listele--) he = he->next;
402 return he;
403 }
404
405 /* ------------------------- private functions ------------------------------ */
406
407 /* Expand the hash table if needed */
408 static int _dictExpandIfNeeded(dict *ht)
409 {
410 /* If the hash table is empty expand it to the intial size,
411 * if the table is "full" dobule its size. */
412 if (ht->size == 0)
413 return dictExpand(ht, DICT_HT_INITIAL_SIZE);
414 if (ht->used == ht->size)
415 return dictExpand(ht, ht->size*2);
416 return DICT_OK;
417 }
418
419 /* Our hash table capability is a power of two */
420 static unsigned long _dictNextPower(unsigned long size)
421 {
422 unsigned long i = DICT_HT_INITIAL_SIZE;
423
424 if (size >= LONG_MAX) return LONG_MAX;
425 while(1) {
426 if (i >= size)
427 return i;
428 i *= 2;
429 }
430 }
431
432 /* Returns the index of a free slot that can be populated with
433 * an hash entry for the given 'key'.
434 * If the key already exists, -1 is returned. */
435 static int _dictKeyIndex(dict *ht, const void *key)
436 {
437 unsigned int h;
438 dictEntry *he;
439
440 /* Expand the hashtable if needed */
441 if (_dictExpandIfNeeded(ht) == DICT_ERR)
442 return -1;
443 /* Compute the key hash value */
444 h = dictHashKey(ht, key) & ht->sizemask;
445 /* Search if this slot does not already contain the given key */
446 he = ht->table[h];
447 while(he) {
448 if (dictCompareHashKeys(ht, key, he->key))
449 return -1;
450 he = he->next;
451 }
452 return h;
453 }
454
455 void dictEmpty(dict *ht) {
456 _dictClear(ht);
457 }
458
459 #define DICT_STATS_VECTLEN 50
460 void dictPrintStats(dict *ht) {
461 unsigned long i, slots = 0, chainlen, maxchainlen = 0;
462 unsigned long totchainlen = 0;
463 unsigned long clvector[DICT_STATS_VECTLEN];
464
465 if (ht->used == 0) {
466 printf("No stats available for empty dictionaries\n");
467 return;
468 }
469
470 for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
471 for (i = 0; i < ht->size; i++) {
472 dictEntry *he;
473
474 if (ht->table[i] == NULL) {
475 clvector[0]++;
476 continue;
477 }
478 slots++;
479 /* For each hash entry on this slot... */
480 chainlen = 0;
481 he = ht->table[i];
482 while(he) {
483 chainlen++;
484 he = he->next;
485 }
486 clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
487 if (chainlen > maxchainlen) maxchainlen = chainlen;
488 totchainlen += chainlen;
489 }
490 printf("Hash table stats:\n");
491 printf(" table size: %ld\n", ht->size);
492 printf(" number of elements: %ld\n", ht->used);
493 printf(" different slots: %ld\n", slots);
494 printf(" max chain length: %ld\n", maxchainlen);
495 printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
496 printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
497 printf(" Chain length distribution:\n");
498 for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
499 if (clvector[i] == 0) continue;
500 printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
501 }
502 }
503
504 /* ----------------------- StringCopy Hash Table Type ------------------------*/
505
506 static unsigned int _dictStringCopyHTHashFunction(const void *key)
507 {
508 return dictGenHashFunction(key, strlen(key));
509 }
510
511 static void *_dictStringCopyHTKeyDup(void *privdata, const void *key)
512 {
513 int len = strlen(key);
514 char *copy = _dictAlloc(len+1);
515 DICT_NOTUSED(privdata);
516
517 memcpy(copy, key, len);
518 copy[len] = '\0';
519 return copy;
520 }
521
522 static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val)
523 {
524 int len = strlen(val);
525 char *copy = _dictAlloc(len+1);
526 DICT_NOTUSED(privdata);
527
528 memcpy(copy, val, len);
529 copy[len] = '\0';
530 return copy;
531 }
532
533 static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
534 const void *key2)
535 {
536 DICT_NOTUSED(privdata);
537
538 return strcmp(key1, key2) == 0;
539 }
540
541 static void _dictStringCopyHTKeyDestructor(void *privdata, void *key)
542 {
543 DICT_NOTUSED(privdata);
544
545 _dictFree((void*)key); /* ATTENTION: const cast */
546 }
547
548 static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val)
549 {
550 DICT_NOTUSED(privdata);
551
552 _dictFree((void*)val); /* ATTENTION: const cast */
553 }
554
555 dictType dictTypeHeapStringCopyKey = {
556 _dictStringCopyHTHashFunction, /* hash function */
557 _dictStringCopyHTKeyDup, /* key dup */
558 NULL, /* val dup */
559 _dictStringCopyHTKeyCompare, /* key compare */
560 _dictStringCopyHTKeyDestructor, /* key destructor */
561 NULL /* val destructor */
562 };
563
564 /* This is like StringCopy but does not auto-duplicate the key.
565 * It's used for intepreter's shared strings. */
566 dictType dictTypeHeapStrings = {
567 _dictStringCopyHTHashFunction, /* hash function */
568 NULL, /* key dup */
569 NULL, /* val dup */
570 _dictStringCopyHTKeyCompare, /* key compare */
571 _dictStringCopyHTKeyDestructor, /* key destructor */
572 NULL /* val destructor */
573 };
574
575 /* This is like StringCopy but also automatically handle dynamic
576 * allocated C strings as values. */
577 dictType dictTypeHeapStringCopyKeyValue = {
578 _dictStringCopyHTHashFunction, /* hash function */
579 _dictStringCopyHTKeyDup, /* key dup */
580 _dictStringKeyValCopyHTValDup, /* val dup */
581 _dictStringCopyHTKeyCompare, /* key compare */
582 _dictStringCopyHTKeyDestructor, /* key destructor */
583 _dictStringKeyValCopyHTValDestructor, /* val destructor */
584 };