]> git.saurik.com Git - bison.git/blame - src/LR0.c
* src/LR0.c (new_itemsets): Use nshifts only, not shiftcount.
[bison.git] / src / LR0.c
CommitLineData
40675e7c 1/* Generate the nondeterministic finite state machine for bison,
97db7bd4 2 Copyright 1984, 1986, 1989, 2000, 2001 Free Software Foundation, Inc.
40675e7c 3
2fa6973e 4 This file is part of Bison, the GNU Compiler Compiler.
40675e7c 5
2fa6973e
AD
6 Bison is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
40675e7c 10
2fa6973e
AD
11 Bison is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
40675e7c 15
2fa6973e
AD
16 You should have received a copy of the GNU General Public License
17 along with Bison; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
40675e7c
DM
20
21
22/* See comments in state.h for the data structures that represent it.
23 The entry point is generate_states. */
24
40675e7c 25#include "system.h"
9bfe901c 26#include "getargs.h"
c87d4863 27#include "reader.h"
40675e7c
DM
28#include "gram.h"
29#include "state.h"
a0f6b076 30#include "complain.h"
2fa6973e 31#include "closure.h"
403b315b 32#include "LR0.h"
630e182b 33#include "reduce.h"
40675e7c 34
40675e7c
DM
35int nstates;
36int final_state;
342b8b6e
AD
37core *first_state = NULL;
38shifts *first_shift = NULL;
39reductions *first_reduction = NULL;
40675e7c 40
342b8b6e
AD
41static core *this_state = NULL;
42static core *last_state = NULL;
43static shifts *last_shift = NULL;
44static reductions *last_reduction = NULL;
40675e7c
DM
45
46static int nshifts;
342b8b6e 47static short *shift_symbol = NULL;
40675e7c 48
342b8b6e
AD
49static short *redset = NULL;
50static short *shiftset = NULL;
40675e7c 51
342b8b6e 52static short **kernel_base = NULL;
6255b435 53static int *kernel_size = NULL;
342b8b6e 54static short *kernel_items = NULL;
40675e7c
DM
55
56/* hash table for states, to recognize equivalent ones. */
57
58#define STATE_TABLE_SIZE 1009
342b8b6e 59static core **state_table = NULL;
40675e7c 60
2fa6973e 61\f
4a120d45 62static void
d2729d44 63allocate_itemsets (void)
40675e7c 64{
2fa6973e 65 int i;
40675e7c 66
630e182b
AD
67 /* Count the number of occurrences of all the symbols in RITEMS.
68 Note that useless productions (hence useless nonterminals) are
69 browsed too, hence we need to allocate room for _all_ the
70 symbols. */
71 int count = 0;
72 short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals);
40675e7c 73
c87d4863
AD
74 for (i = 0; ritem[i]; ++i)
75 if (ritem[i] > 0)
76 {
77 count++;
78 symbol_count[ritem[i]]++;
79 }
40675e7c 80
2fa6973e
AD
81 /* See comments before new_itemsets. All the vectors of items
82 live inside KERNEL_ITEMS. The number of active items after
40675e7c
DM
83 some symbol cannot be more than the number of times that symbol
84 appears as an item, which is symbol_count[symbol].
85 We allocate that much space for each symbol. */
86
d7913476 87 kernel_base = XCALLOC (short *, nsyms);
342b8b6e
AD
88 if (count)
89 kernel_items = XCALLOC (short, count);
40675e7c
DM
90
91 count = 0;
92 for (i = 0; i < nsyms; i++)
93 {
94 kernel_base[i] = kernel_items + count;
95 count += symbol_count[i];
96 }
97
630e182b 98 free (symbol_count);
0e41b407 99 kernel_size = XCALLOC (int, nsyms);
40675e7c
DM
100}
101
102
4a120d45 103static void
d2729d44 104allocate_storage (void)
40675e7c 105{
2fa6973e 106 allocate_itemsets ();
40675e7c 107
d7913476
AD
108 shiftset = XCALLOC (short, nsyms);
109 redset = XCALLOC (short, nrules + 1);
110 state_table = XCALLOC (core *, STATE_TABLE_SIZE);
40675e7c
DM
111}
112
113
4a120d45 114static void
d2729d44 115free_storage (void)
40675e7c 116{
630e182b
AD
117 free (shift_symbol);
118 free (redset);
119 free (shiftset);
120 free (kernel_base);
121 free (kernel_size);
d7913476 122 XFREE (kernel_items);
630e182b 123 free (state_table);
40675e7c
DM
124}
125
126
127
40675e7c 128
2fa6973e
AD
129/*----------------------------------------------------------------.
130| Find which symbols can be shifted in the current state, and for |
131| each one record which items would be active after that shift. |
132| Uses the contents of itemset. |
133| |
134| shift_symbol is set to a vector of the symbols that can be |
135| shifted. For each symbol in the grammar, kernel_base[symbol] |
136| points to a vector of item numbers activated if that symbol is |
125ecb56 137| shifted, and kernel_size[symbol] is their numbers. |
2fa6973e 138`----------------------------------------------------------------*/
40675e7c 139
4a120d45 140static void
d2729d44 141new_itemsets (void)
40675e7c 142{
2fa6973e 143 int i;
2fa6973e 144
9bfe901c 145 if (trace_flag)
c87d4863
AD
146 fprintf (stderr, "Entering new_itemsets, state = %d\n",
147 this_state->number);
40675e7c
DM
148
149 for (i = 0; i < nsyms; i++)
125ecb56 150 kernel_size[i] = 0;
40675e7c 151
630e182b 152 shift_symbol = XCALLOC (short, nsyms);
b2872512 153 nshifts = 0;
40675e7c 154
b2872512 155 for (i = 0; i < nitemset; ++i)
40675e7c 156 {
97db7bd4 157 int symbol = ritem[itemset[i]];
40675e7c
DM
158 if (symbol > 0)
159 {
125ecb56 160 if (!kernel_size[symbol])
40675e7c 161 {
b2872512
AD
162 shift_symbol[nshifts] = symbol;
163 nshifts++;
40675e7c
DM
164 }
165
125ecb56
AD
166 kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1;
167 kernel_size[symbol]++;
40675e7c
DM
168 }
169 }
40675e7c
DM
170}
171
172
173
2fa6973e
AD
174/*-----------------------------------------------------------------.
175| Subroutine of get_state. Create a new state for those items, if |
176| necessary. |
177`-----------------------------------------------------------------*/
40675e7c 178
2fa6973e
AD
179static core *
180new_state (int symbol)
40675e7c 181{
2fa6973e 182 core *p;
40675e7c 183
9bfe901c 184 if (trace_flag)
c87d4863
AD
185 fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n",
186 this_state->number, symbol, tags[symbol]);
40675e7c 187
2fa6973e
AD
188 if (nstates >= MAXSHORT)
189 fatal (_("too many states (max %d)"), MAXSHORT);
40675e7c 190
125ecb56 191 p = CORE_ALLOC (kernel_size[symbol]);
2fa6973e
AD
192 p->accessing_symbol = symbol;
193 p->number = nstates;
125ecb56 194 p->nitems = kernel_size[symbol];
2fa6973e 195
125ecb56 196 shortcpy (p->items, kernel_base[symbol], kernel_size[symbol]);
2fa6973e
AD
197
198 last_state->next = p;
199 last_state = p;
2fa6973e 200 nstates++;
40675e7c 201
2fa6973e
AD
202 return p;
203}
40675e7c 204
2fa6973e
AD
205
206/*--------------------------------------------------------------.
207| Find the state number for the state we would get to (from the |
208| current state) by shifting symbol. Create a new state if no |
97db7bd4 209| equivalent one exists already. Used by append_states. |
2fa6973e 210`--------------------------------------------------------------*/
40675e7c 211
4a120d45 212static int
d2729d44 213get_state (int symbol)
40675e7c 214{
2fa6973e 215 int key;
97db7bd4 216 int i;
2fa6973e 217 core *sp;
40675e7c 218
9bfe901c 219 if (trace_flag)
c87d4863
AD
220 fprintf (stderr, "Entering get_state, state = %d, symbol = %d (%s)\n",
221 this_state->number, symbol, tags[symbol]);
40675e7c 222
97db7bd4
AD
223 /* Add up the target state's active item numbers to get a hash key.
224 */
40675e7c 225 key = 0;
125ecb56 226 for (i = 0; i < kernel_size[symbol]; ++i)
97db7bd4 227 key += kernel_base[symbol][i];
40675e7c 228 key = key % STATE_TABLE_SIZE;
40675e7c
DM
229 sp = state_table[key];
230
231 if (sp)
232 {
97db7bd4 233 int found = 0;
40675e7c
DM
234 while (!found)
235 {
125ecb56 236 if (sp->nitems == kernel_size[symbol])
40675e7c
DM
237 {
238 found = 1;
125ecb56 239 for (i = 0; i < kernel_size[symbol]; ++i)
97db7bd4
AD
240 if (kernel_base[symbol][i] != sp->items[i])
241 found = 0;
40675e7c
DM
242 }
243
244 if (!found)
245 {
246 if (sp->link)
247 {
248 sp = sp->link;
249 }
2fa6973e 250 else /* bucket exhausted and no match */
40675e7c 251 {
2fa6973e 252 sp = sp->link = new_state (symbol);
40675e7c
DM
253 found = 1;
254 }
255 }
256 }
257 }
2fa6973e 258 else /* bucket is empty */
40675e7c 259 {
2fa6973e 260 state_table[key] = sp = new_state (symbol);
40675e7c
DM
261 }
262
c87d4863
AD
263 if (trace_flag)
264 fprintf (stderr, "Exiting get_state => %d\n", sp->number);
265
36281465 266 return sp->number;
40675e7c
DM
267}
268
2fa6973e
AD
269/*------------------------------------------------------------------.
270| Use the information computed by new_itemsets to find the state |
271| numbers reached by each shift transition from the current state. |
272| |
273| shiftset is set up as a vector of state numbers of those states. |
274`------------------------------------------------------------------*/
40675e7c 275
2fa6973e
AD
276static void
277append_states (void)
40675e7c 278{
2fa6973e
AD
279 int i;
280 int j;
281 int symbol;
40675e7c 282
9bfe901c 283 if (trace_flag)
c87d4863
AD
284 fprintf (stderr, "Entering append_states, state = %d\n",
285 this_state->number);
40675e7c 286
2fa6973e 287 /* first sort shift_symbol into increasing order */
40675e7c 288
2fa6973e
AD
289 for (i = 1; i < nshifts; i++)
290 {
291 symbol = shift_symbol[i];
292 j = i;
293 while (j > 0 && shift_symbol[j - 1] > symbol)
294 {
295 shift_symbol[j] = shift_symbol[j - 1];
296 j--;
297 }
298 shift_symbol[j] = symbol;
299 }
40675e7c 300
2fa6973e 301 for (i = 0; i < nshifts; i++)
97db7bd4 302 shiftset[i] = get_state (shift_symbol[i]);
40675e7c
DM
303}
304
305
4a120d45 306static void
2fa6973e 307new_states (void)
40675e7c 308{
97db7bd4 309 first_state = last_state = this_state = CORE_ALLOC (0);
40675e7c
DM
310 nstates = 1;
311}
312
313
4a38e613
AD
314/*------------------------------------------------------------.
315| Save the NSHIFTS of SHIFTSET into the current linked list. |
316`------------------------------------------------------------*/
317
4a120d45 318static void
d2729d44 319save_shifts (void)
40675e7c 320{
4a38e613 321 shifts *p = shifts_new (nshifts);
40675e7c
DM
322
323 p->number = this_state->number;
40675e7c 324
300f275f 325 shortcpy (p->shifts, shiftset, nshifts);
40675e7c
DM
326
327 if (last_shift)
97db7bd4 328 last_shift->next = p;
40675e7c 329 else
97db7bd4
AD
330 first_shift = p;
331 last_shift = p;
40675e7c
DM
332}
333
334
2fa6973e
AD
335/*------------------------------------------------------------------.
336| Subroutine of augment_automaton. Create the next-to-final state, |
337| to which a shift has already been made in the initial state. |
338`------------------------------------------------------------------*/
40675e7c 339
4a120d45 340static void
2fa6973e 341insert_start_shift (void)
40675e7c 342{
2fa6973e
AD
343 core *statep;
344 shifts *sp;
40675e7c 345
f59c437a 346 statep = CORE_ALLOC (0);
2fa6973e
AD
347 statep->number = nstates;
348 statep->accessing_symbol = start_symbol;
40675e7c 349
2fa6973e
AD
350 last_state->next = statep;
351 last_state = statep;
40675e7c 352
2fa6973e 353 /* Make a shift from this state to (what will be) the final state. */
4a38e613 354 sp = shifts_new (1);
2fa6973e 355 sp->number = nstates++;
2fa6973e 356 sp->shifts[0] = nstates;
40675e7c 357
2fa6973e
AD
358 last_shift->next = sp;
359 last_shift = sp;
40675e7c
DM
360}
361
362
2fa6973e
AD
363/*------------------------------------------------------------------.
364| Make sure that the initial state has a shift that accepts the |
365| grammar's start symbol and goes to the next-to-final state, which |
366| has a shift going to the final state, which has a shift to the |
367| termination state. Create such states and shifts if they don't |
368| happen to exist already. |
369`------------------------------------------------------------------*/
40675e7c 370
4a120d45 371static void
d2729d44 372augment_automaton (void)
40675e7c 373{
2fa6973e
AD
374 core *statep;
375 shifts *sp;
2fa6973e 376 shifts *sp1 = NULL;
40675e7c
DM
377
378 sp = first_shift;
379
d954473d 380 if (!sp->nshifts)
40675e7c 381 {
b178c8cc
AD
382 /* There are no shifts for any state. Make one shift, from the
383 initial state to the next-to-final state. */
40675e7c 384
b178c8cc
AD
385 sp = shifts_new (1);
386 sp->shifts[0] = nstates;
40675e7c 387
b178c8cc
AD
388 /* Initialize the chain of shifts with sp. */
389 first_shift = sp;
390 last_shift = sp;
40675e7c 391
b178c8cc
AD
392 /* Create the next-to-final state, with shift to
393 what will be the final state. */
394 insert_start_shift ();
395 }
396 else if (sp->number == 0)
397 {
398 statep = first_state->next;
40675e7c 399
b178c8cc
AD
400 /* The states reached by shifts from FIRST_STATE are numbered
401 1..(SP->NSHIFTS). Look for one reached by START_SYMBOL. */
402 while (statep->accessing_symbol < start_symbol
403 && statep->number < sp->nshifts)
404 statep = statep->next;
40675e7c 405
b178c8cc
AD
406 if (statep->accessing_symbol == start_symbol)
407 {
408 /* We already have a next-to-final state.
409 Make sure it has a shift to what will be the final state. */
410 while (sp && sp->number < statep->number)
411 {
412 sp1 = sp;
413 sp = sp->next;
414 }
40675e7c 415
b178c8cc
AD
416 if (sp && sp->number == statep->number)
417 {
418 int i;
419 shifts *sp2 = shifts_new (sp->nshifts + 1);
420 sp2->number = statep->number;
421 sp2->shifts[0] = nstates;
422 for (i = sp->nshifts; i > 0; i--)
423 sp2->shifts[i] = sp->shifts[i - 1];
424
425 /* Patch sp2 into the chain of shifts in place of sp,
426 following sp1. */
40675e7c 427 sp2->next = sp->next;
b178c8cc
AD
428 sp1->next = sp2;
429 if (sp == last_shift)
40675e7c 430 last_shift = sp2;
d7913476 431 XFREE (sp);
b178c8cc
AD
432 }
433 else
434 {
435 shifts *sp2 = shifts_new (1);
436 sp2->number = statep->number;
437 sp2->shifts[0] = nstates;
438
439 /* Patch sp2 into the chain of shifts between sp1 and sp. */
440 sp2->next = sp;
441 sp1->next = sp2;
442 if (sp == 0)
443 last_shift = sp2;
40675e7c
DM
444 }
445 }
446 else
447 {
b178c8cc
AD
448 int i, k;
449 shifts *sp2;
40675e7c 450
b178c8cc
AD
451 /* There is no next-to-final state as yet. */
452 /* Add one more shift in first_shift,
453 going to the next-to-final state (yet to be made). */
454 sp = first_shift;
455
456 sp2 = shifts_new (sp->nshifts + 1);
457
458 /* Stick this shift into the vector at the proper place. */
459 statep = first_state->next;
460 for (k = 0, i = 0; i < sp->nshifts; k++, i++)
461 {
462 if (statep->accessing_symbol > start_symbol && i == k)
463 sp2->shifts[k++] = nstates;
464 sp2->shifts[k] = sp->shifts[i];
465 statep = statep->next;
466 }
467 if (i == k)
468 sp2->shifts[k++] = nstates;
469
470 /* Patch sp2 into the chain of shifts
471 in place of sp, at the beginning. */
472 sp2->next = sp->next;
473 first_shift = sp2;
474 if (last_shift == sp)
475 last_shift = sp2;
476
477 XFREE (sp);
40675e7c
DM
478
479 /* Create the next-to-final state, with shift to
480 what will be the final state. */
2fa6973e 481 insert_start_shift ();
40675e7c
DM
482 }
483 }
484 else
485 {
b178c8cc
AD
486 /* The initial state didn't even have any shifts.
487 Give it one shift, to the next-to-final state. */
4a38e613 488 sp = shifts_new (1);
40675e7c
DM
489 sp->shifts[0] = nstates;
490
b178c8cc
AD
491 /* Patch sp into the chain of shifts at the beginning. */
492 sp->next = first_shift;
40675e7c 493 first_shift = sp;
40675e7c
DM
494
495 /* Create the next-to-final state, with shift to
b178c8cc 496 what will be the final state. */
2fa6973e 497 insert_start_shift ();
40675e7c
DM
498 }
499
500 /* Make the final state--the one that follows a shift from the
501 next-to-final state.
502 The symbol for that shift is 0 (end-of-file). */
f59c437a 503 statep = CORE_ALLOC (0);
40675e7c
DM
504 statep->number = nstates;
505 last_state->next = statep;
506 last_state = statep;
507
508 /* Make the shift from the final state to the termination state. */
4a38e613 509 sp = shifts_new (1);
40675e7c 510 sp->number = nstates++;
40675e7c
DM
511 sp->shifts[0] = nstates;
512 last_shift->next = sp;
513 last_shift = sp;
514
515 /* Note that the variable `final_state' refers to what we sometimes call
516 the termination state. */
517 final_state = nstates;
518
519 /* Make the termination state. */
f59c437a 520 statep = CORE_ALLOC (0);
40675e7c
DM
521 statep->number = nstates++;
522 last_state->next = statep;
523 last_state = statep;
524}
525
526
2fa6973e
AD
527/*----------------------------------------------------------------.
528| Find which rules can be used for reduction transitions from the |
529| current state and make a reductions structure for the state to |
530| record their rule numbers. |
531`----------------------------------------------------------------*/
532
4a120d45 533static void
2fa6973e 534save_reductions (void)
40675e7c 535{
2fa6973e 536 int count;
fb908786 537 int i;
40675e7c 538
2fa6973e 539 /* Find and count the active items that represent ends of rules. */
40675e7c 540
2fa6973e 541 count = 0;
b2872512 542 for (i = 0; i < nitemset; ++i)
2fa6973e 543 {
fb908786 544 int item = ritem[itemset[i]];
2fa6973e
AD
545 if (item < 0)
546 redset[count++] = -item;
547 }
40675e7c 548
2fa6973e
AD
549 /* Make a reductions structure and copy the data into it. */
550
551 if (count)
552 {
fb908786 553 reductions *p = REDUCTIONS_ALLOC (count);
2fa6973e
AD
554
555 p->number = this_state->number;
556 p->nreds = count;
557
300f275f 558 shortcpy (p->rules, redset, count);
2fa6973e
AD
559
560 if (last_reduction)
97db7bd4 561 last_reduction->next = p;
2fa6973e 562 else
97db7bd4
AD
563 first_reduction = p;
564 last_reduction = p;
2fa6973e
AD
565 }
566}
567
568\f
569/*-------------------------------------------------------------------.
570| Compute the nondeterministic finite state machine (see state.h for |
571| details) from the grammar. |
572`-------------------------------------------------------------------*/
573
574void
575generate_states (void)
576{
577 allocate_storage ();
578 new_closure (nitems);
579 new_states ();
580
581 while (this_state)
582 {
23cbcc6c
AD
583 if (trace_flag)
584 fprintf (stderr, "Processing state %d (reached by %s)\n",
585 this_state->number, tags[this_state->accessing_symbol]);
2fa6973e
AD
586 /* Set up ruleset and itemset for the transitions out of this
587 state. ruleset gets a 1 bit for each rule that could reduce
588 now. itemset gets a vector of all the items that could be
589 accepted next. */
590 closure (this_state->items, this_state->nitems);
591 /* record the reductions allowed out of this state */
592 save_reductions ();
593 /* find the itemsets of the states that shifts can reach */
594 new_itemsets ();
595 /* find or create the core structures for those states */
596 append_states ();
597
598 /* create the shifts structures for the shifts to those states,
599 now that the state numbers transitioning to are known */
d954473d 600 save_shifts ();
2fa6973e
AD
601
602 /* states are queued when they are created; process them all */
603 this_state = this_state->next;
604 }
605
606 /* discard various storage */
607 free_closure ();
608 free_storage ();
609
610 /* set up initial and final states as parser wants them */
611 augment_automaton ();
40675e7c 612}