]>
Commit | Line | Data |
---|---|---|
40675e7c | 1 | /* Generate the nondeterministic finite state machine for bison, |
aa7815f5 | 2 | Copyright 1984, 1986, 1989, 2000 Free Software Foundation, Inc. |
40675e7c | 3 | |
2fa6973e | 4 | This file is part of Bison, the GNU Compiler Compiler. |
40675e7c | 5 | |
2fa6973e AD |
6 | Bison is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
40675e7c | 10 | |
2fa6973e AD |
11 | Bison is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
40675e7c | 15 | |
2fa6973e AD |
16 | You should have received a copy of the GNU General Public License |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
40675e7c DM |
20 | |
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
40675e7c | 25 | #include "system.h" |
40675e7c DM |
26 | #include "gram.h" |
27 | #include "state.h" | |
a0f6b076 | 28 | #include "complain.h" |
2fa6973e | 29 | #include "closure.h" |
403b315b | 30 | #include "LR0.h" |
40675e7c | 31 | |
40675e7c | 32 | |
40675e7c DM |
33 | int nstates; |
34 | int final_state; | |
342b8b6e AD |
35 | core *first_state = NULL; |
36 | shifts *first_shift = NULL; | |
37 | reductions *first_reduction = NULL; | |
40675e7c | 38 | |
342b8b6e AD |
39 | static core *this_state = NULL; |
40 | static core *last_state = NULL; | |
41 | static shifts *last_shift = NULL; | |
42 | static reductions *last_reduction = NULL; | |
40675e7c DM |
43 | |
44 | static int nshifts; | |
342b8b6e | 45 | static short *shift_symbol = NULL; |
40675e7c | 46 | |
342b8b6e AD |
47 | static short *redset = NULL; |
48 | static short *shiftset = NULL; | |
40675e7c | 49 | |
342b8b6e AD |
50 | static short **kernel_base = NULL; |
51 | static short **kernel_end = NULL; | |
52 | static short *kernel_items = NULL; | |
40675e7c DM |
53 | |
54 | /* hash table for states, to recognize equivalent ones. */ | |
55 | ||
56 | #define STATE_TABLE_SIZE 1009 | |
342b8b6e | 57 | static core **state_table = NULL; |
40675e7c | 58 | |
2fa6973e | 59 | \f |
4a120d45 | 60 | static void |
d2729d44 | 61 | allocate_itemsets (void) |
40675e7c | 62 | { |
342b8b6e | 63 | short *itemp = NULL; |
2fa6973e AD |
64 | int symbol; |
65 | int i; | |
66 | int count; | |
342b8b6e | 67 | short *symbol_count = NULL; |
40675e7c DM |
68 | |
69 | count = 0; | |
d7913476 | 70 | symbol_count = XCALLOC (short, nsyms); |
40675e7c DM |
71 | |
72 | itemp = ritem; | |
73 | symbol = *itemp++; | |
74 | while (symbol) | |
75 | { | |
76 | if (symbol > 0) | |
77 | { | |
78 | count++; | |
79 | symbol_count[symbol]++; | |
80 | } | |
81 | symbol = *itemp++; | |
82 | } | |
83 | ||
2fa6973e AD |
84 | /* See comments before new_itemsets. All the vectors of items |
85 | live inside KERNEL_ITEMS. The number of active items after | |
40675e7c DM |
86 | some symbol cannot be more than the number of times that symbol |
87 | appears as an item, which is symbol_count[symbol]. | |
88 | We allocate that much space for each symbol. */ | |
89 | ||
d7913476 | 90 | kernel_base = XCALLOC (short *, nsyms); |
342b8b6e AD |
91 | if (count) |
92 | kernel_items = XCALLOC (short, count); | |
40675e7c DM |
93 | |
94 | count = 0; | |
95 | for (i = 0; i < nsyms; i++) | |
96 | { | |
97 | kernel_base[i] = kernel_items + count; | |
98 | count += symbol_count[i]; | |
99 | } | |
100 | ||
101 | shift_symbol = symbol_count; | |
d7913476 | 102 | kernel_end = XCALLOC (short *, nsyms); |
40675e7c DM |
103 | } |
104 | ||
105 | ||
4a120d45 | 106 | static void |
d2729d44 | 107 | allocate_storage (void) |
40675e7c | 108 | { |
2fa6973e | 109 | allocate_itemsets (); |
40675e7c | 110 | |
d7913476 AD |
111 | shiftset = XCALLOC (short, nsyms); |
112 | redset = XCALLOC (short, nrules + 1); | |
113 | state_table = XCALLOC (core *, STATE_TABLE_SIZE); | |
40675e7c DM |
114 | } |
115 | ||
116 | ||
4a120d45 | 117 | static void |
d2729d44 | 118 | free_storage (void) |
40675e7c | 119 | { |
d7913476 AD |
120 | XFREE (shift_symbol); |
121 | XFREE (redset); | |
122 | XFREE (shiftset); | |
123 | XFREE (kernel_base); | |
124 | XFREE (kernel_end); | |
125 | XFREE (kernel_items); | |
126 | XFREE (state_table); | |
40675e7c DM |
127 | } |
128 | ||
129 | ||
130 | ||
40675e7c | 131 | |
2fa6973e AD |
132 | /*----------------------------------------------------------------. |
133 | | Find which symbols can be shifted in the current state, and for | | |
134 | | each one record which items would be active after that shift. | | |
135 | | Uses the contents of itemset. | | |
136 | | | | |
137 | | shift_symbol is set to a vector of the symbols that can be | | |
138 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
139 | | points to a vector of item numbers activated if that symbol is | | |
140 | | shifted, and kernel_end[symbol] points after the end of that | | |
141 | | vector. | | |
142 | `----------------------------------------------------------------*/ | |
40675e7c | 143 | |
4a120d45 | 144 | static void |
d2729d44 | 145 | new_itemsets (void) |
40675e7c | 146 | { |
2fa6973e AD |
147 | int i; |
148 | int shiftcount; | |
149 | short *isp; | |
150 | short *ksp; | |
151 | int symbol; | |
152 | ||
153 | #if TRACE | |
154 | fprintf (stderr, "Entering new_itemsets\n"); | |
40675e7c DM |
155 | #endif |
156 | ||
157 | for (i = 0; i < nsyms; i++) | |
158 | kernel_end[i] = NULL; | |
159 | ||
160 | shiftcount = 0; | |
161 | ||
162 | isp = itemset; | |
163 | ||
164 | while (isp < itemsetend) | |
165 | { | |
166 | i = *isp++; | |
167 | symbol = ritem[i]; | |
168 | if (symbol > 0) | |
169 | { | |
2fa6973e | 170 | ksp = kernel_end[symbol]; |
40675e7c | 171 | |
2fa6973e | 172 | if (!ksp) |
40675e7c DM |
173 | { |
174 | shift_symbol[shiftcount++] = symbol; | |
175 | ksp = kernel_base[symbol]; | |
176 | } | |
177 | ||
2fa6973e AD |
178 | *ksp++ = i + 1; |
179 | kernel_end[symbol] = ksp; | |
40675e7c DM |
180 | } |
181 | } | |
182 | ||
183 | nshifts = shiftcount; | |
184 | } | |
185 | ||
186 | ||
187 | ||
2fa6973e AD |
188 | /*-----------------------------------------------------------------. |
189 | | Subroutine of get_state. Create a new state for those items, if | | |
190 | | necessary. | | |
191 | `-----------------------------------------------------------------*/ | |
40675e7c | 192 | |
2fa6973e AD |
193 | static core * |
194 | new_state (int symbol) | |
40675e7c | 195 | { |
2fa6973e AD |
196 | int n; |
197 | core *p; | |
198 | short *isp1; | |
199 | short *isp2; | |
200 | short *iend; | |
40675e7c | 201 | |
2fa6973e | 202 | #if TRACE |
6986fd9e AD |
203 | fprintf (stderr, "Entering new_state, symbol = %d, state = %d\n", |
204 | symbol, nstates); | |
40675e7c DM |
205 | #endif |
206 | ||
2fa6973e AD |
207 | if (nstates >= MAXSHORT) |
208 | fatal (_("too many states (max %d)"), MAXSHORT); | |
40675e7c | 209 | |
2fa6973e AD |
210 | isp1 = kernel_base[symbol]; |
211 | iend = kernel_end[symbol]; | |
212 | n = iend - isp1; | |
40675e7c | 213 | |
2fa6973e | 214 | p = |
d7913476 | 215 | (core *) xcalloc ((unsigned) (sizeof (core) + (n - 1) * sizeof (short)), 1); |
2fa6973e AD |
216 | p->accessing_symbol = symbol; |
217 | p->number = nstates; | |
218 | p->nitems = n; | |
219 | ||
220 | isp2 = p->items; | |
221 | while (isp1 < iend) | |
222 | *isp2++ = *isp1++; | |
223 | ||
224 | last_state->next = p; | |
225 | last_state = p; | |
40675e7c | 226 | |
2fa6973e | 227 | nstates++; |
40675e7c | 228 | |
2fa6973e AD |
229 | return p; |
230 | } | |
40675e7c | 231 | |
2fa6973e AD |
232 | |
233 | /*--------------------------------------------------------------. | |
234 | | Find the state number for the state we would get to (from the | | |
235 | | current state) by shifting symbol. Create a new state if no | | |
236 | | equivalent one exists already. Used by append_states. | | |
237 | `--------------------------------------------------------------*/ | |
40675e7c | 238 | |
4a120d45 | 239 | static int |
d2729d44 | 240 | get_state (int symbol) |
40675e7c | 241 | { |
2fa6973e AD |
242 | int key; |
243 | short *isp1; | |
244 | short *isp2; | |
245 | short *iend; | |
246 | core *sp; | |
247 | int found; | |
40675e7c DM |
248 | |
249 | int n; | |
250 | ||
2fa6973e AD |
251 | #if TRACE |
252 | fprintf (stderr, "Entering get_state, symbol = %d\n", symbol); | |
40675e7c DM |
253 | #endif |
254 | ||
255 | isp1 = kernel_base[symbol]; | |
256 | iend = kernel_end[symbol]; | |
257 | n = iend - isp1; | |
258 | ||
259 | /* add up the target state's active item numbers to get a hash key */ | |
260 | key = 0; | |
261 | while (isp1 < iend) | |
262 | key += *isp1++; | |
263 | ||
264 | key = key % STATE_TABLE_SIZE; | |
265 | ||
266 | sp = state_table[key]; | |
267 | ||
268 | if (sp) | |
269 | { | |
270 | found = 0; | |
271 | while (!found) | |
272 | { | |
273 | if (sp->nitems == n) | |
274 | { | |
275 | found = 1; | |
276 | isp1 = kernel_base[symbol]; | |
277 | isp2 = sp->items; | |
278 | ||
279 | while (found && isp1 < iend) | |
280 | { | |
281 | if (*isp1++ != *isp2++) | |
282 | found = 0; | |
283 | } | |
284 | } | |
285 | ||
286 | if (!found) | |
287 | { | |
288 | if (sp->link) | |
289 | { | |
290 | sp = sp->link; | |
291 | } | |
2fa6973e | 292 | else /* bucket exhausted and no match */ |
40675e7c | 293 | { |
2fa6973e | 294 | sp = sp->link = new_state (symbol); |
40675e7c DM |
295 | found = 1; |
296 | } | |
297 | } | |
298 | } | |
299 | } | |
2fa6973e | 300 | else /* bucket is empty */ |
40675e7c | 301 | { |
2fa6973e | 302 | state_table[key] = sp = new_state (symbol); |
40675e7c DM |
303 | } |
304 | ||
36281465 | 305 | return sp->number; |
40675e7c DM |
306 | } |
307 | ||
2fa6973e AD |
308 | /*------------------------------------------------------------------. |
309 | | Use the information computed by new_itemsets to find the state | | |
310 | | numbers reached by each shift transition from the current state. | | |
311 | | | | |
312 | | shiftset is set up as a vector of state numbers of those states. | | |
313 | `------------------------------------------------------------------*/ | |
40675e7c | 314 | |
2fa6973e AD |
315 | static void |
316 | append_states (void) | |
40675e7c | 317 | { |
2fa6973e AD |
318 | int i; |
319 | int j; | |
320 | int symbol; | |
40675e7c | 321 | |
2fa6973e AD |
322 | #if TRACE |
323 | fprintf (stderr, "Entering append_states\n"); | |
324 | #endif | |
40675e7c | 325 | |
2fa6973e | 326 | /* first sort shift_symbol into increasing order */ |
40675e7c | 327 | |
2fa6973e AD |
328 | for (i = 1; i < nshifts; i++) |
329 | { | |
330 | symbol = shift_symbol[i]; | |
331 | j = i; | |
332 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
333 | { | |
334 | shift_symbol[j] = shift_symbol[j - 1]; | |
335 | j--; | |
336 | } | |
337 | shift_symbol[j] = symbol; | |
338 | } | |
40675e7c | 339 | |
2fa6973e AD |
340 | for (i = 0; i < nshifts; i++) |
341 | { | |
342 | symbol = shift_symbol[i]; | |
343 | shiftset[i] = get_state (symbol); | |
344 | } | |
40675e7c DM |
345 | } |
346 | ||
347 | ||
4a120d45 | 348 | static void |
2fa6973e | 349 | new_states (void) |
40675e7c | 350 | { |
2fa6973e | 351 | core *p; |
40675e7c | 352 | |
d7913476 | 353 | p = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
40675e7c DM |
354 | first_state = last_state = this_state = p; |
355 | nstates = 1; | |
356 | } | |
357 | ||
358 | ||
4a120d45 | 359 | static void |
d2729d44 | 360 | save_shifts (void) |
40675e7c | 361 | { |
2fa6973e AD |
362 | shifts *p; |
363 | short *sp1; | |
364 | short *sp2; | |
365 | short *send; | |
40675e7c | 366 | |
d7913476 AD |
367 | p = (shifts *) xcalloc ((unsigned) (sizeof (shifts) + |
368 | (nshifts - 1) * sizeof (short)), 1); | |
40675e7c DM |
369 | |
370 | p->number = this_state->number; | |
371 | p->nshifts = nshifts; | |
372 | ||
373 | sp1 = shiftset; | |
374 | sp2 = p->shifts; | |
375 | send = shiftset + nshifts; | |
376 | ||
377 | while (sp1 < send) | |
378 | *sp2++ = *sp1++; | |
379 | ||
380 | if (last_shift) | |
381 | { | |
382 | last_shift->next = p; | |
383 | last_shift = p; | |
384 | } | |
385 | else | |
386 | { | |
387 | first_shift = p; | |
388 | last_shift = p; | |
389 | } | |
390 | } | |
391 | ||
392 | ||
2fa6973e AD |
393 | /*------------------------------------------------------------------. |
394 | | Subroutine of augment_automaton. Create the next-to-final state, | | |
395 | | to which a shift has already been made in the initial state. | | |
396 | `------------------------------------------------------------------*/ | |
40675e7c | 397 | |
4a120d45 | 398 | static void |
2fa6973e | 399 | insert_start_shift (void) |
40675e7c | 400 | { |
2fa6973e AD |
401 | core *statep; |
402 | shifts *sp; | |
40675e7c | 403 | |
d7913476 | 404 | statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
2fa6973e AD |
405 | statep->number = nstates; |
406 | statep->accessing_symbol = start_symbol; | |
40675e7c | 407 | |
2fa6973e AD |
408 | last_state->next = statep; |
409 | last_state = statep; | |
40675e7c | 410 | |
2fa6973e | 411 | /* Make a shift from this state to (what will be) the final state. */ |
d7913476 | 412 | sp = XCALLOC (shifts, 1); |
2fa6973e AD |
413 | sp->number = nstates++; |
414 | sp->nshifts = 1; | |
415 | sp->shifts[0] = nstates; | |
40675e7c | 416 | |
2fa6973e AD |
417 | last_shift->next = sp; |
418 | last_shift = sp; | |
40675e7c DM |
419 | } |
420 | ||
421 | ||
2fa6973e AD |
422 | /*------------------------------------------------------------------. |
423 | | Make sure that the initial state has a shift that accepts the | | |
424 | | grammar's start symbol and goes to the next-to-final state, which | | |
425 | | has a shift going to the final state, which has a shift to the | | |
426 | | termination state. Create such states and shifts if they don't | | |
427 | | happen to exist already. | | |
428 | `------------------------------------------------------------------*/ | |
40675e7c | 429 | |
4a120d45 | 430 | static void |
d2729d44 | 431 | augment_automaton (void) |
40675e7c | 432 | { |
2fa6973e AD |
433 | int i; |
434 | int k; | |
435 | core *statep; | |
436 | shifts *sp; | |
437 | shifts *sp2; | |
438 | shifts *sp1 = NULL; | |
40675e7c DM |
439 | |
440 | sp = first_shift; | |
441 | ||
442 | if (sp) | |
443 | { | |
444 | if (sp->number == 0) | |
445 | { | |
446 | k = sp->nshifts; | |
447 | statep = first_state->next; | |
448 | ||
449 | /* The states reached by shifts from first_state are numbered 1...K. | |
450 | Look for one reached by start_symbol. */ | |
451 | while (statep->accessing_symbol < start_symbol | |
2fa6973e | 452 | && statep->number < k) |
40675e7c DM |
453 | statep = statep->next; |
454 | ||
455 | if (statep->accessing_symbol == start_symbol) | |
456 | { | |
457 | /* We already have a next-to-final state. | |
2fa6973e | 458 | Make sure it has a shift to what will be the final state. */ |
40675e7c DM |
459 | k = statep->number; |
460 | ||
461 | while (sp && sp->number < k) | |
462 | { | |
463 | sp1 = sp; | |
464 | sp = sp->next; | |
465 | } | |
466 | ||
467 | if (sp && sp->number == k) | |
468 | { | |
d7913476 | 469 | sp2 = (shifts *) xcalloc ((unsigned) (sizeof (shifts) |
2fa6973e AD |
470 | + |
471 | sp->nshifts * | |
d7913476 | 472 | sizeof (short)), 1); |
40675e7c DM |
473 | sp2->number = k; |
474 | sp2->nshifts = sp->nshifts + 1; | |
475 | sp2->shifts[0] = nstates; | |
476 | for (i = sp->nshifts; i > 0; i--) | |
477 | sp2->shifts[i] = sp->shifts[i - 1]; | |
478 | ||
479 | /* Patch sp2 into the chain of shifts in place of sp, | |
480 | following sp1. */ | |
481 | sp2->next = sp->next; | |
482 | sp1->next = sp2; | |
483 | if (sp == last_shift) | |
484 | last_shift = sp2; | |
d7913476 | 485 | XFREE (sp); |
40675e7c DM |
486 | } |
487 | else | |
488 | { | |
d7913476 | 489 | sp2 = XCALLOC (shifts, 1); |
40675e7c DM |
490 | sp2->number = k; |
491 | sp2->nshifts = 1; | |
492 | sp2->shifts[0] = nstates; | |
493 | ||
494 | /* Patch sp2 into the chain of shifts between sp1 and sp. */ | |
495 | sp2->next = sp; | |
496 | sp1->next = sp2; | |
497 | if (sp == 0) | |
498 | last_shift = sp2; | |
499 | } | |
500 | } | |
501 | else | |
502 | { | |
503 | /* There is no next-to-final state as yet. */ | |
504 | /* Add one more shift in first_shift, | |
2fa6973e | 505 | going to the next-to-final state (yet to be made). */ |
40675e7c DM |
506 | sp = first_shift; |
507 | ||
d7913476 AD |
508 | sp2 = (shifts *) xcalloc (sizeof (shifts) |
509 | + sp->nshifts * sizeof (short), 1); | |
40675e7c DM |
510 | sp2->nshifts = sp->nshifts + 1; |
511 | ||
512 | /* Stick this shift into the vector at the proper place. */ | |
513 | statep = first_state->next; | |
514 | for (k = 0, i = 0; i < sp->nshifts; k++, i++) | |
515 | { | |
516 | if (statep->accessing_symbol > start_symbol && i == k) | |
517 | sp2->shifts[k++] = nstates; | |
518 | sp2->shifts[k] = sp->shifts[i]; | |
519 | statep = statep->next; | |
520 | } | |
521 | if (i == k) | |
522 | sp2->shifts[k++] = nstates; | |
523 | ||
524 | /* Patch sp2 into the chain of shifts | |
2fa6973e | 525 | in place of sp, at the beginning. */ |
40675e7c DM |
526 | sp2->next = sp->next; |
527 | first_shift = sp2; | |
528 | if (last_shift == sp) | |
529 | last_shift = sp2; | |
530 | ||
d7913476 | 531 | XFREE (sp); |
40675e7c DM |
532 | |
533 | /* Create the next-to-final state, with shift to | |
2fa6973e AD |
534 | what will be the final state. */ |
535 | insert_start_shift (); | |
40675e7c DM |
536 | } |
537 | } | |
538 | else | |
539 | { | |
540 | /* The initial state didn't even have any shifts. | |
541 | Give it one shift, to the next-to-final state. */ | |
d7913476 | 542 | sp = XCALLOC (shifts, 1); |
40675e7c DM |
543 | sp->nshifts = 1; |
544 | sp->shifts[0] = nstates; | |
545 | ||
546 | /* Patch sp into the chain of shifts at the beginning. */ | |
547 | sp->next = first_shift; | |
548 | first_shift = sp; | |
549 | ||
550 | /* Create the next-to-final state, with shift to | |
551 | what will be the final state. */ | |
2fa6973e | 552 | insert_start_shift (); |
40675e7c DM |
553 | } |
554 | } | |
555 | else | |
556 | { | |
557 | /* There are no shifts for any state. | |
2fa6973e | 558 | Make one shift, from the initial state to the next-to-final state. */ |
40675e7c | 559 | |
d7913476 | 560 | sp = XCALLOC (shifts, 1); |
40675e7c DM |
561 | sp->nshifts = 1; |
562 | sp->shifts[0] = nstates; | |
563 | ||
564 | /* Initialize the chain of shifts with sp. */ | |
565 | first_shift = sp; | |
566 | last_shift = sp; | |
567 | ||
568 | /* Create the next-to-final state, with shift to | |
2fa6973e AD |
569 | what will be the final state. */ |
570 | insert_start_shift (); | |
40675e7c DM |
571 | } |
572 | ||
573 | /* Make the final state--the one that follows a shift from the | |
574 | next-to-final state. | |
575 | The symbol for that shift is 0 (end-of-file). */ | |
d7913476 | 576 | statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
40675e7c DM |
577 | statep->number = nstates; |
578 | last_state->next = statep; | |
579 | last_state = statep; | |
580 | ||
581 | /* Make the shift from the final state to the termination state. */ | |
d7913476 | 582 | sp = XCALLOC (shifts, 1); |
40675e7c DM |
583 | sp->number = nstates++; |
584 | sp->nshifts = 1; | |
585 | sp->shifts[0] = nstates; | |
586 | last_shift->next = sp; | |
587 | last_shift = sp; | |
588 | ||
589 | /* Note that the variable `final_state' refers to what we sometimes call | |
590 | the termination state. */ | |
591 | final_state = nstates; | |
592 | ||
593 | /* Make the termination state. */ | |
d7913476 | 594 | statep = (core *) xcalloc ((unsigned) (sizeof (core) - sizeof (short)), 1); |
40675e7c DM |
595 | statep->number = nstates++; |
596 | last_state->next = statep; | |
597 | last_state = statep; | |
598 | } | |
599 | ||
600 | ||
2fa6973e AD |
601 | /*----------------------------------------------------------------. |
602 | | Find which rules can be used for reduction transitions from the | | |
603 | | current state and make a reductions structure for the state to | | |
604 | | record their rule numbers. | | |
605 | `----------------------------------------------------------------*/ | |
606 | ||
4a120d45 | 607 | static void |
2fa6973e | 608 | save_reductions (void) |
40675e7c | 609 | { |
2fa6973e AD |
610 | short *isp; |
611 | short *rp1; | |
612 | short *rp2; | |
613 | int item; | |
614 | int count; | |
615 | reductions *p; | |
40675e7c | 616 | |
2fa6973e | 617 | short *rend; |
40675e7c | 618 | |
2fa6973e | 619 | /* Find and count the active items that represent ends of rules. */ |
40675e7c | 620 | |
2fa6973e AD |
621 | count = 0; |
622 | for (isp = itemset; isp < itemsetend; isp++) | |
623 | { | |
624 | item = ritem[*isp]; | |
625 | if (item < 0) | |
626 | redset[count++] = -item; | |
627 | } | |
40675e7c | 628 | |
2fa6973e AD |
629 | /* Make a reductions structure and copy the data into it. */ |
630 | ||
631 | if (count) | |
632 | { | |
d7913476 AD |
633 | p = (reductions *) xcalloc ((unsigned) (sizeof (reductions) + |
634 | (count - 1) * sizeof (short)), 1); | |
2fa6973e AD |
635 | |
636 | p->number = this_state->number; | |
637 | p->nreds = count; | |
638 | ||
639 | rp1 = redset; | |
640 | rp2 = p->rules; | |
641 | rend = rp1 + count; | |
642 | ||
643 | for (/* nothing */; rp1 < rend; ++rp1, ++rp2) | |
644 | *rp2 = *rp1; | |
645 | ||
646 | if (last_reduction) | |
647 | { | |
648 | last_reduction->next = p; | |
649 | last_reduction = p; | |
650 | } | |
651 | else | |
652 | { | |
653 | first_reduction = p; | |
654 | last_reduction = p; | |
655 | } | |
656 | } | |
657 | } | |
658 | ||
659 | \f | |
660 | /*-------------------------------------------------------------------. | |
661 | | Compute the nondeterministic finite state machine (see state.h for | | |
662 | | details) from the grammar. | | |
663 | `-------------------------------------------------------------------*/ | |
664 | ||
665 | void | |
666 | generate_states (void) | |
667 | { | |
668 | allocate_storage (); | |
669 | new_closure (nitems); | |
670 | new_states (); | |
671 | ||
672 | while (this_state) | |
673 | { | |
674 | /* Set up ruleset and itemset for the transitions out of this | |
675 | state. ruleset gets a 1 bit for each rule that could reduce | |
676 | now. itemset gets a vector of all the items that could be | |
677 | accepted next. */ | |
678 | closure (this_state->items, this_state->nitems); | |
679 | /* record the reductions allowed out of this state */ | |
680 | save_reductions (); | |
681 | /* find the itemsets of the states that shifts can reach */ | |
682 | new_itemsets (); | |
683 | /* find or create the core structures for those states */ | |
684 | append_states (); | |
685 | ||
686 | /* create the shifts structures for the shifts to those states, | |
687 | now that the state numbers transitioning to are known */ | |
688 | if (nshifts > 0) | |
689 | save_shifts (); | |
690 | ||
691 | /* states are queued when they are created; process them all */ | |
692 | this_state = this_state->next; | |
693 | } | |
694 | ||
695 | /* discard various storage */ | |
696 | free_closure (); | |
697 | free_storage (); | |
698 | ||
699 | /* set up initial and final states as parser wants them */ | |
700 | augment_automaton (); | |
40675e7c | 701 | } |