]>
Commit | Line | Data |
---|---|---|
40675e7c | 1 | /* Generate the nondeterministic finite state machine for bison, |
602bbf31 | 2 | Copyright 1984, 1986, 1989, 2000, 2001, 2002 Free Software Foundation, Inc. |
40675e7c | 3 | |
2fa6973e | 4 | This file is part of Bison, the GNU Compiler Compiler. |
40675e7c | 5 | |
2fa6973e AD |
6 | Bison is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
40675e7c | 10 | |
2fa6973e AD |
11 | Bison is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
40675e7c | 15 | |
2fa6973e AD |
16 | You should have received a copy of the GNU General Public License |
17 | along with Bison; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
40675e7c DM |
20 | |
21 | ||
22 | /* See comments in state.h for the data structures that represent it. | |
23 | The entry point is generate_states. */ | |
24 | ||
40675e7c | 25 | #include "system.h" |
602bbf31 | 26 | #include "bitset.h" |
8b3df748 | 27 | #include "quotearg.h" |
0e78e603 | 28 | #include "symtab.h" |
5fbb0954 | 29 | #include "gram.h" |
9bfe901c | 30 | #include "getargs.h" |
c87d4863 | 31 | #include "reader.h" |
40675e7c DM |
32 | #include "gram.h" |
33 | #include "state.h" | |
a0f6b076 | 34 | #include "complain.h" |
2fa6973e | 35 | #include "closure.h" |
403b315b | 36 | #include "LR0.h" |
49701457 | 37 | #include "lalr.h" |
630e182b | 38 | #include "reduce.h" |
40675e7c | 39 | |
32e1e0a4 AD |
40 | typedef struct state_list_s |
41 | { | |
42 | struct state_list_s *next; | |
43 | state_t *state; | |
44 | } state_list_t; | |
45 | ||
46 | static state_list_t *first_state = NULL; | |
47 | static state_list_t *last_state = NULL; | |
48 | ||
49 | static void | |
50 | state_list_append (state_t *state) | |
51 | { | |
52 | state_list_t *node = XMALLOC (state_list_t, 1); | |
53 | node->next = NULL; | |
54 | node->state = state; | |
40675e7c | 55 | |
32e1e0a4 AD |
56 | if (!first_state) |
57 | first_state = node; | |
58 | if (last_state) | |
59 | last_state->next = node; | |
60 | last_state = node; | |
61 | } | |
40675e7c DM |
62 | |
63 | static int nshifts; | |
a49aecd5 | 64 | static symbol_number_t *shift_symbol = NULL; |
40675e7c | 65 | |
342b8b6e | 66 | static short *redset = NULL; |
d57650a5 | 67 | static state_number_t *shiftset = NULL; |
40675e7c | 68 | |
62a3e4f0 | 69 | static item_number_t **kernel_base = NULL; |
6255b435 | 70 | static int *kernel_size = NULL; |
62a3e4f0 | 71 | static item_number_t *kernel_items = NULL; |
40675e7c | 72 | |
2fa6973e | 73 | \f |
4a120d45 | 74 | static void |
d2729d44 | 75 | allocate_itemsets (void) |
40675e7c | 76 | { |
9222837b AD |
77 | symbol_number_t i; |
78 | rule_number_t r; | |
62a3e4f0 | 79 | item_number_t *rhsp; |
40675e7c | 80 | |
630e182b AD |
81 | /* Count the number of occurrences of all the symbols in RITEMS. |
82 | Note that useless productions (hence useless nonterminals) are | |
83 | browsed too, hence we need to allocate room for _all_ the | |
84 | symbols. */ | |
85 | int count = 0; | |
86 | short *symbol_count = XCALLOC (short, nsyms + nuseless_nonterminals); | |
40675e7c | 87 | |
b4c4ccc2 AD |
88 | for (r = 1; r < nrules + 1; ++r) |
89 | for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp) | |
c87d4863 AD |
90 | { |
91 | count++; | |
b4c4ccc2 | 92 | symbol_count[*rhsp]++; |
c87d4863 | 93 | } |
40675e7c | 94 | |
2fa6973e AD |
95 | /* See comments before new_itemsets. All the vectors of items |
96 | live inside KERNEL_ITEMS. The number of active items after | |
40675e7c | 97 | some symbol cannot be more than the number of times that symbol |
8a731ca8 | 98 | appears as an item, which is SYMBOL_COUNT[SYMBOL]. |
40675e7c DM |
99 | We allocate that much space for each symbol. */ |
100 | ||
62a3e4f0 | 101 | kernel_base = XCALLOC (item_number_t *, nsyms); |
342b8b6e | 102 | if (count) |
62a3e4f0 | 103 | kernel_items = XCALLOC (item_number_t, count); |
40675e7c DM |
104 | |
105 | count = 0; | |
106 | for (i = 0; i < nsyms; i++) | |
107 | { | |
108 | kernel_base[i] = kernel_items + count; | |
109 | count += symbol_count[i]; | |
110 | } | |
111 | ||
630e182b | 112 | free (symbol_count); |
0e41b407 | 113 | kernel_size = XCALLOC (int, nsyms); |
40675e7c DM |
114 | } |
115 | ||
116 | ||
4a120d45 | 117 | static void |
d2729d44 | 118 | allocate_storage (void) |
40675e7c | 119 | { |
2fa6973e | 120 | allocate_itemsets (); |
40675e7c | 121 | |
d57650a5 | 122 | shiftset = XCALLOC (state_number_t, nsyms); |
d7913476 | 123 | redset = XCALLOC (short, nrules + 1); |
c7ca99d4 | 124 | state_hash_new (); |
a49aecd5 | 125 | shift_symbol = XCALLOC (symbol_number_t, nsyms); |
40675e7c DM |
126 | } |
127 | ||
128 | ||
4a120d45 | 129 | static void |
d2729d44 | 130 | free_storage (void) |
40675e7c | 131 | { |
630e182b AD |
132 | free (shift_symbol); |
133 | free (redset); | |
134 | free (shiftset); | |
135 | free (kernel_base); | |
136 | free (kernel_size); | |
d7913476 | 137 | XFREE (kernel_items); |
c7ca99d4 | 138 | state_hash_free (); |
40675e7c DM |
139 | } |
140 | ||
141 | ||
142 | ||
40675e7c | 143 | |
32e1e0a4 AD |
144 | /*---------------------------------------------------------------. |
145 | | Find which symbols can be shifted in STATE, and for each one | | |
146 | | record which items would be active after that shift. Uses the | | |
147 | | contents of itemset. | | |
148 | | | | |
149 | | shift_symbol is set to a vector of the symbols that can be | | |
150 | | shifted. For each symbol in the grammar, kernel_base[symbol] | | |
151 | | points to a vector of item numbers activated if that symbol is | | |
152 | | shifted, and kernel_size[symbol] is their numbers. | | |
153 | `---------------------------------------------------------------*/ | |
40675e7c | 154 | |
4a120d45 | 155 | static void |
32e1e0a4 | 156 | new_itemsets (state_t *state) |
40675e7c | 157 | { |
2fa6973e | 158 | int i; |
2fa6973e | 159 | |
9bfe901c | 160 | if (trace_flag) |
c87d4863 | 161 | fprintf (stderr, "Entering new_itemsets, state = %d\n", |
32e1e0a4 | 162 | state->number); |
40675e7c DM |
163 | |
164 | for (i = 0; i < nsyms; i++) | |
125ecb56 | 165 | kernel_size[i] = 0; |
40675e7c | 166 | |
b2872512 | 167 | nshifts = 0; |
40675e7c | 168 | |
5123689b | 169 | for (i = 0; i < nritemset; ++i) |
5fbb0954 AD |
170 | if (ritem[itemset[i]] >= 0) |
171 | { | |
a49aecd5 AD |
172 | symbol_number_t symbol |
173 | = item_number_as_symbol_number (ritem[itemset[i]]); | |
5fbb0954 AD |
174 | if (!kernel_size[symbol]) |
175 | { | |
176 | shift_symbol[nshifts] = symbol; | |
177 | nshifts++; | |
178 | } | |
179 | ||
180 | kernel_base[symbol][kernel_size[symbol]] = itemset[i] + 1; | |
181 | kernel_size[symbol]++; | |
182 | } | |
40675e7c DM |
183 | } |
184 | ||
185 | ||
186 | ||
2fa6973e AD |
187 | /*-----------------------------------------------------------------. |
188 | | Subroutine of get_state. Create a new state for those items, if | | |
189 | | necessary. | | |
190 | `-----------------------------------------------------------------*/ | |
40675e7c | 191 | |
f693ad14 | 192 | static state_t * |
a49aecd5 | 193 | new_state (symbol_number_t symbol, size_t core_size, item_number_t *core) |
40675e7c | 194 | { |
df0e7316 | 195 | state_t *res; |
40675e7c | 196 | |
9bfe901c | 197 | if (trace_flag) |
c87d4863 | 198 | fprintf (stderr, "Entering new_state, state = %d, symbol = %d (%s)\n", |
97650f4e | 199 | nstates, symbol, symbols[symbol]->tag); |
40675e7c | 200 | |
df0e7316 | 201 | res = state_new (symbol, core_size, core); |
c7ca99d4 | 202 | state_hash_insert (res); |
2fa6973e | 203 | |
643a5994 AD |
204 | /* If this is the eoftoken, and this is not the initial state, then |
205 | this is the final state. */ | |
206 | if (symbol == 0 && first_state) | |
df0e7316 | 207 | final_state = res; |
643a5994 | 208 | |
32e1e0a4 | 209 | state_list_append (res); |
df0e7316 | 210 | return res; |
2fa6973e | 211 | } |
40675e7c | 212 | |
2fa6973e AD |
213 | |
214 | /*--------------------------------------------------------------. | |
215 | | Find the state number for the state we would get to (from the | | |
216 | | current state) by shifting symbol. Create a new state if no | | |
97db7bd4 | 217 | | equivalent one exists already. Used by append_states. | |
2fa6973e | 218 | `--------------------------------------------------------------*/ |
40675e7c | 219 | |
d57650a5 | 220 | static state_number_t |
a49aecd5 | 221 | get_state (symbol_number_t symbol, size_t core_size, item_number_t *core) |
40675e7c | 222 | { |
f693ad14 | 223 | state_t *sp; |
40675e7c | 224 | |
9bfe901c | 225 | if (trace_flag) |
32e1e0a4 | 226 | fprintf (stderr, "Entering get_state, symbol = %d (%s)\n", |
97650f4e | 227 | symbol, symbols[symbol]->tag); |
40675e7c | 228 | |
c7ca99d4 AD |
229 | sp = state_hash_lookup (core_size, core); |
230 | if (!sp) | |
231 | sp = new_state (symbol, core_size, core); | |
40675e7c | 232 | |
c87d4863 AD |
233 | if (trace_flag) |
234 | fprintf (stderr, "Exiting get_state => %d\n", sp->number); | |
235 | ||
36281465 | 236 | return sp->number; |
40675e7c DM |
237 | } |
238 | ||
2fa6973e AD |
239 | /*------------------------------------------------------------------. |
240 | | Use the information computed by new_itemsets to find the state | | |
32e1e0a4 | 241 | | numbers reached by each shift transition from STATE. | |
2fa6973e | 242 | | | |
ccaf65bc | 243 | | TRANSITIONSET is set up as a vector of state numbers of those states. | |
2fa6973e | 244 | `------------------------------------------------------------------*/ |
40675e7c | 245 | |
2fa6973e | 246 | static void |
32e1e0a4 | 247 | append_states (state_t *state) |
40675e7c | 248 | { |
2fa6973e AD |
249 | int i; |
250 | int j; | |
a49aecd5 | 251 | symbol_number_t symbol; |
40675e7c | 252 | |
9bfe901c | 253 | if (trace_flag) |
c87d4863 | 254 | fprintf (stderr, "Entering append_states, state = %d\n", |
32e1e0a4 | 255 | state->number); |
40675e7c | 256 | |
2fa6973e | 257 | /* first sort shift_symbol into increasing order */ |
40675e7c | 258 | |
2fa6973e AD |
259 | for (i = 1; i < nshifts; i++) |
260 | { | |
261 | symbol = shift_symbol[i]; | |
262 | j = i; | |
263 | while (j > 0 && shift_symbol[j - 1] > symbol) | |
264 | { | |
265 | shift_symbol[j] = shift_symbol[j - 1]; | |
266 | j--; | |
267 | } | |
268 | shift_symbol[j] = symbol; | |
269 | } | |
40675e7c | 270 | |
2fa6973e | 271 | for (i = 0; i < nshifts; i++) |
458be8e0 AD |
272 | { |
273 | symbol = shift_symbol[i]; | |
274 | shiftset[i] = get_state (symbol, | |
275 | kernel_size[symbol], kernel_base[symbol]); | |
276 | } | |
40675e7c DM |
277 | } |
278 | ||
279 | ||
4a120d45 | 280 | static void |
2fa6973e | 281 | new_states (void) |
40675e7c | 282 | { |
643a5994 AD |
283 | /* The 0 at the lhs is the index of the item of this initial rule. */ |
284 | kernel_base[0][0] = 0; | |
285 | kernel_size[0] = 1; | |
32e1e0a4 | 286 | state_list_append (new_state (0, kernel_size[0], kernel_base[0])); |
40675e7c DM |
287 | } |
288 | ||
289 | ||
40675e7c | 290 | |
2fa6973e AD |
291 | /*----------------------------------------------------------------. |
292 | | Find which rules can be used for reduction transitions from the | | |
293 | | current state and make a reductions structure for the state to | | |
294 | | record their rule numbers. | | |
295 | `----------------------------------------------------------------*/ | |
296 | ||
4a120d45 | 297 | static void |
32e1e0a4 | 298 | save_reductions (state_t *state) |
40675e7c | 299 | { |
30171f79 | 300 | int count = 0; |
fb908786 | 301 | int i; |
40675e7c | 302 | |
30171f79 AD |
303 | /* If this is the final state, we want it to have no reductions at |
304 | all, although it has one for `START_SYMBOL EOF .'. */ | |
32e1e0a4 | 305 | if (final_state && state->number == final_state->number) |
30171f79 | 306 | return; |
40675e7c | 307 | |
30171f79 | 308 | /* Find and count the active items that represent ends of rules. */ |
5123689b | 309 | for (i = 0; i < nritemset; ++i) |
2fa6973e | 310 | { |
fb908786 | 311 | int item = ritem[itemset[i]]; |
2fa6973e AD |
312 | if (item < 0) |
313 | redset[count++] = -item; | |
314 | } | |
40675e7c | 315 | |
2fa6973e | 316 | /* Make a reductions structure and copy the data into it. */ |
8a731ca8 | 317 | state_reductions_set (state, count, redset); |
2fa6973e AD |
318 | } |
319 | ||
320 | \f | |
82841af7 | 321 | /*---------------. |
29e88316 | 322 | | Build STATES. | |
82841af7 | 323 | `---------------*/ |
6a164e0c AD |
324 | |
325 | static void | |
29e88316 | 326 | set_states (void) |
6a164e0c | 327 | { |
29e88316 | 328 | states = XCALLOC (state_t *, nstates); |
6a164e0c | 329 | |
32e1e0a4 | 330 | while (first_state) |
2cec70b9 | 331 | { |
32e1e0a4 AD |
332 | state_list_t *this = first_state; |
333 | ||
2cec70b9 | 334 | /* Pessimization, but simplification of the code: make sure all |
80dac38c AD |
335 | the states have a shifts, errs, and reductions, even if |
336 | reduced to 0. */ | |
32e1e0a4 AD |
337 | state_t *state = this->state; |
338 | if (!state->shifts) | |
ccaf65bc | 339 | state_transitions_set (state, 0, 0); |
32e1e0a4 AD |
340 | if (!state->errs) |
341 | state->errs = errs_new (0); | |
342 | if (!state->reductions) | |
8a731ca8 | 343 | state_reductions_set (state, 0, 0); |
32e1e0a4 AD |
344 | |
345 | states[state->number] = state; | |
346 | ||
347 | first_state = this->next; | |
348 | free (this); | |
2cec70b9 | 349 | } |
32e1e0a4 AD |
350 | first_state = NULL; |
351 | last_state = NULL; | |
6a164e0c AD |
352 | } |
353 | ||
c7ca99d4 | 354 | |
2fa6973e AD |
355 | /*-------------------------------------------------------------------. |
356 | | Compute the nondeterministic finite state machine (see state.h for | | |
357 | | details) from the grammar. | | |
358 | `-------------------------------------------------------------------*/ | |
359 | ||
360 | void | |
361 | generate_states (void) | |
362 | { | |
32e1e0a4 | 363 | state_list_t *list = NULL; |
2fa6973e | 364 | allocate_storage (); |
9e7f6bbd | 365 | new_closure (nritems); |
2fa6973e | 366 | new_states (); |
32e1e0a4 | 367 | list = first_state; |
2fa6973e | 368 | |
32e1e0a4 | 369 | while (list) |
2fa6973e | 370 | { |
32e1e0a4 | 371 | state_t *state = list->state; |
23cbcc6c AD |
372 | if (trace_flag) |
373 | fprintf (stderr, "Processing state %d (reached by %s)\n", | |
32e1e0a4 | 374 | state->number, |
97650f4e | 375 | symbols[state->accessing_symbol]->tag); |
2fa6973e AD |
376 | /* Set up ruleset and itemset for the transitions out of this |
377 | state. ruleset gets a 1 bit for each rule that could reduce | |
378 | now. itemset gets a vector of all the items that could be | |
379 | accepted next. */ | |
32e1e0a4 AD |
380 | closure (state->items, state->nitems); |
381 | /* Record the reductions allowed out of this state. */ | |
382 | save_reductions (state); | |
383 | /* Find the itemsets of the states that shifts can reach. */ | |
384 | new_itemsets (state); | |
385 | /* Find or create the core structures for those states. */ | |
386 | append_states (state); | |
387 | ||
388 | /* Create the shifts structures for the shifts to those states, | |
389 | now that the state numbers transitioning to are known. */ | |
ccaf65bc | 390 | state_transitions_set (state, nshifts, shiftset); |
32e1e0a4 AD |
391 | |
392 | /* States are queued when they are created; process them all. | |
393 | */ | |
394 | list = list->next; | |
2fa6973e AD |
395 | } |
396 | ||
397 | /* discard various storage */ | |
398 | free_closure (); | |
399 | free_storage (); | |
400 | ||
29e88316 AD |
401 | /* Set up STATES. */ |
402 | set_states (); | |
40675e7c | 403 | } |