]>
git.saurik.com Git - apt.git/blob - apt-pkg/contrib/sha256.cc
2 * Cryptographic API. {{{
4 * SHA-256, as specified in
5 * http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf
7 * SHA-256 code by Jean-Luc Cooke <jlcooke@certainkey.com>.
9 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
10 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
11 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
13 * Ported from the Linux kernel to Apt by Anthony Towns <ajt@debian.org>
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the Free
17 * Software Foundation; either version 2 of the License, or (at your option)
23 #pragma implementation "apt-pkg/sha256.h"
27 #define SHA256_DIGEST_SIZE 32
28 #define SHA256_HMAC_BLOCK_SIZE 64
30 #define ror32(value,bits) (((value) >> (bits)) | ((value) << (32 - (bits))))
32 #include <apt-pkg/sha256.h>
33 #include <apt-pkg/strutl.h>
39 #include <arpa/inet.h>
44 static inline u32
Ch(u32 x
, u32 y
, u32 z
)
46 return z
^ (x
& (y
^ z
));
49 static inline u32
Maj(u32 x
, u32 y
, u32 z
)
51 return (x
& y
) | (z
& (x
| y
));
54 #define e0(x) (ror32(x, 2) ^ ror32(x,13) ^ ror32(x,22))
55 #define e1(x) (ror32(x, 6) ^ ror32(x,11) ^ ror32(x,25))
56 #define s0(x) (ror32(x, 7) ^ ror32(x,18) ^ (x >> 3))
57 #define s1(x) (ror32(x,17) ^ ror32(x,19) ^ (x >> 10))
68 static inline void LOAD_OP(int I
, u32
*W
, const u8
*input
) /*{{{*/
70 W
[I
] = ( ((u32
) input
[I
* 4 + 0] << 24)
71 | ((u32
) input
[I
* 4 + 1] << 16)
72 | ((u32
) input
[I
* 4 + 2] << 8)
73 | ((u32
) input
[I
* 4 + 3]));
76 static inline void BLEND_OP(int I
, u32
*W
)
78 W
[I
] = s1(W
[I
-2]) + W
[I
-7] + s0(W
[I
-15]) + W
[I
-16];
81 static void sha256_transform(u32
*state
, const u8
*input
) /*{{{*/
83 u32 a
, b
, c
, d
, e
, f
, g
, h
, t1
, t2
;
88 for (i
= 0; i
< 16; i
++)
92 for (i
= 16; i
< 64; i
++)
95 /* load the state into our registers */
96 a
=state
[0]; b
=state
[1]; c
=state
[2]; d
=state
[3];
97 e
=state
[4]; f
=state
[5]; g
=state
[6]; h
=state
[7];
100 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0x428a2f98 + W
[ 0];
101 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
102 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0x71374491 + W
[ 1];
103 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
104 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0xb5c0fbcf + W
[ 2];
105 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
106 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0xe9b5dba5 + W
[ 3];
107 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
108 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0x3956c25b + W
[ 4];
109 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
110 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0x59f111f1 + W
[ 5];
111 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
112 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0x923f82a4 + W
[ 6];
113 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
114 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0xab1c5ed5 + W
[ 7];
115 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
117 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0xd807aa98 + W
[ 8];
118 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
119 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0x12835b01 + W
[ 9];
120 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
121 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0x243185be + W
[10];
122 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
123 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0x550c7dc3 + W
[11];
124 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
125 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0x72be5d74 + W
[12];
126 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
127 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0x80deb1fe + W
[13];
128 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
129 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0x9bdc06a7 + W
[14];
130 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
131 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0xc19bf174 + W
[15];
132 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
134 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0xe49b69c1 + W
[16];
135 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
136 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0xefbe4786 + W
[17];
137 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
138 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0x0fc19dc6 + W
[18];
139 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
140 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0x240ca1cc + W
[19];
141 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
142 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0x2de92c6f + W
[20];
143 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
144 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0x4a7484aa + W
[21];
145 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
146 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0x5cb0a9dc + W
[22];
147 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
148 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0x76f988da + W
[23];
149 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
151 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0x983e5152 + W
[24];
152 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
153 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0xa831c66d + W
[25];
154 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
155 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0xb00327c8 + W
[26];
156 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
157 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0xbf597fc7 + W
[27];
158 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
159 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0xc6e00bf3 + W
[28];
160 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
161 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0xd5a79147 + W
[29];
162 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
163 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0x06ca6351 + W
[30];
164 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
165 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0x14292967 + W
[31];
166 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
168 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0x27b70a85 + W
[32];
169 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
170 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0x2e1b2138 + W
[33];
171 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
172 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0x4d2c6dfc + W
[34];
173 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
174 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0x53380d13 + W
[35];
175 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
176 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0x650a7354 + W
[36];
177 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
178 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0x766a0abb + W
[37];
179 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
180 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0x81c2c92e + W
[38];
181 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
182 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0x92722c85 + W
[39];
183 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
185 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0xa2bfe8a1 + W
[40];
186 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
187 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0xa81a664b + W
[41];
188 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
189 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0xc24b8b70 + W
[42];
190 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
191 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0xc76c51a3 + W
[43];
192 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
193 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0xd192e819 + W
[44];
194 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
195 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0xd6990624 + W
[45];
196 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
197 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0xf40e3585 + W
[46];
198 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
199 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0x106aa070 + W
[47];
200 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
202 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0x19a4c116 + W
[48];
203 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
204 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0x1e376c08 + W
[49];
205 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
206 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0x2748774c + W
[50];
207 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
208 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0x34b0bcb5 + W
[51];
209 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
210 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0x391c0cb3 + W
[52];
211 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
212 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0x4ed8aa4a + W
[53];
213 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
214 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0x5b9cca4f + W
[54];
215 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
216 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0x682e6ff3 + W
[55];
217 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
219 t1
= h
+ e1(e
) + Ch(e
,f
,g
) + 0x748f82ee + W
[56];
220 t2
= e0(a
) + Maj(a
,b
,c
); d
+=t1
; h
=t1
+t2
;
221 t1
= g
+ e1(d
) + Ch(d
,e
,f
) + 0x78a5636f + W
[57];
222 t2
= e0(h
) + Maj(h
,a
,b
); c
+=t1
; g
=t1
+t2
;
223 t1
= f
+ e1(c
) + Ch(c
,d
,e
) + 0x84c87814 + W
[58];
224 t2
= e0(g
) + Maj(g
,h
,a
); b
+=t1
; f
=t1
+t2
;
225 t1
= e
+ e1(b
) + Ch(b
,c
,d
) + 0x8cc70208 + W
[59];
226 t2
= e0(f
) + Maj(f
,g
,h
); a
+=t1
; e
=t1
+t2
;
227 t1
= d
+ e1(a
) + Ch(a
,b
,c
) + 0x90befffa + W
[60];
228 t2
= e0(e
) + Maj(e
,f
,g
); h
+=t1
; d
=t1
+t2
;
229 t1
= c
+ e1(h
) + Ch(h
,a
,b
) + 0xa4506ceb + W
[61];
230 t2
= e0(d
) + Maj(d
,e
,f
); g
+=t1
; c
=t1
+t2
;
231 t1
= b
+ e1(g
) + Ch(g
,h
,a
) + 0xbef9a3f7 + W
[62];
232 t2
= e0(c
) + Maj(c
,d
,e
); f
+=t1
; b
=t1
+t2
;
233 t1
= a
+ e1(f
) + Ch(f
,g
,h
) + 0xc67178f2 + W
[63];
234 t2
= e0(b
) + Maj(b
,c
,d
); e
+=t1
; a
=t1
+t2
;
236 state
[0] += a
; state
[1] += b
; state
[2] += c
; state
[3] += d
;
237 state
[4] += e
; state
[5] += f
; state
[6] += g
; state
[7] += h
;
239 /* clear any sensitive info... */
240 a
= b
= c
= d
= e
= f
= g
= h
= t1
= t2
= 0;
241 memset(W
, 0, 64 * sizeof(u32
));
244 SHA256Summation::SHA256Summation() /*{{{*/
254 Sum
.count
[0] = Sum
.count
[1] = 0;
255 memset(Sum
.buf
, 0, sizeof(Sum
.buf
));
259 bool SHA256Summation::Add(const u8
*data
, unsigned long len
) /*{{{*/
261 struct sha256_ctx
*sctx
= &Sum
;
262 unsigned int i
, index
, part_len
;
264 if (Done
) return false;
266 /* Compute number of bytes mod 128 */
267 index
= (unsigned int)((sctx
->count
[0] >> 3) & 0x3f);
269 /* Update number of bits */
270 if ((sctx
->count
[0] += (len
<< 3)) < (len
<< 3)) {
272 sctx
->count
[1] += (len
>> 29);
275 part_len
= 64 - index
;
277 /* Transform as many times as possible. */
278 if (len
>= part_len
) {
279 memcpy(&sctx
->buf
[index
], data
, part_len
);
280 sha256_transform(sctx
->state
, sctx
->buf
);
282 for (i
= part_len
; i
+ 63 < len
; i
+= 64)
283 sha256_transform(sctx
->state
, &data
[i
]);
289 /* Buffer remaining input */
290 memcpy(&sctx
->buf
[index
], &data
[i
], len
-i
);
295 SHA256SumValue
SHA256Summation::Result() /*{{{*/
297 struct sha256_ctx
*sctx
= &Sum
;
300 unsigned int index
, pad_len
, t
;
301 static const u8 padding
[64] = { 0x80, };
303 /* Save number of bits */
305 bits
[7] = t
; t
>>= 8;
306 bits
[6] = t
; t
>>= 8;
307 bits
[5] = t
; t
>>= 8;
310 bits
[3] = t
; t
>>= 8;
311 bits
[2] = t
; t
>>= 8;
312 bits
[1] = t
; t
>>= 8;
315 /* Pad out to 56 mod 64. */
316 index
= (sctx
->count
[0] >> 3) & 0x3f;
317 pad_len
= (index
< 56) ? (56 - index
) : ((64+56) - index
);
318 Add(padding
, pad_len
);
320 /* Append length (before padding) */
326 /* Store state in digest */
333 for (i
= j
= 0; i
< 8; i
++, j
+= 4) {
335 out
[j
+3] = t
; t
>>= 8;
336 out
[j
+2] = t
; t
>>= 8;
337 out
[j
+1] = t
; t
>>= 8;
344 // SHA256SumValue::SHA256SumValue - Constructs the sum from a string /*{{{*/
345 // ---------------------------------------------------------------------
346 /* The string form of a SHA256 is a 64 character hex number */
347 SHA256SumValue::SHA256SumValue(string Str
)
349 memset(Sum
,0,sizeof(Sum
));
353 // SHA256SumValue::SHA256SumValue - Default constructor /*{{{*/
354 // ---------------------------------------------------------------------
355 /* Sets the value to 0 */
356 SHA256SumValue::SHA256SumValue()
358 memset(Sum
,0,sizeof(Sum
));
361 // SHA256SumValue::Set - Set the sum from a string /*{{{*/
362 // ---------------------------------------------------------------------
363 /* Converts the hex string into a set of chars */
364 bool SHA256SumValue::Set(string Str
)
366 return Hex2Num(Str
,Sum
,sizeof(Sum
));
369 // SHA256SumValue::Value - Convert the number into a string /*{{{*/
370 // ---------------------------------------------------------------------
371 /* Converts the set of chars into a hex string in lower case */
372 string
SHA256SumValue::Value() const
375 { '0','1','2','3','4','5','6','7','8','9','a','b',
381 // Convert each char into two letters
384 for (; I
!= 64; J
++,I
+= 2)
386 Result
[I
] = Conv
[Sum
[J
] >> 4];
387 Result
[I
+ 1] = Conv
[Sum
[J
] & 0xF];
390 return string(Result
);
393 // SHA256SumValue::operator == - Comparator /*{{{*/
394 // ---------------------------------------------------------------------
395 /* Call memcmp on the buffer */
396 bool SHA256SumValue::operator == (const SHA256SumValue
& rhs
) const
398 return memcmp(Sum
,rhs
.Sum
,sizeof(Sum
)) == 0;
401 // SHA256Summation::AddFD - Add content of file into the checksum /*{{{*/
402 // ---------------------------------------------------------------------
404 bool SHA256Summation::AddFD(int Fd
,unsigned long Size
)
406 unsigned char Buf
[64 * 64];
408 int ToEOF
= (Size
== 0);
409 while (Size
!= 0 || ToEOF
)
411 unsigned n
= sizeof(Buf
);
412 if (!ToEOF
) n
= min(Size
,(unsigned long)n
);
413 Res
= read(Fd
,Buf
,n
);
414 if (Res
< 0 || (!ToEOF
&& (unsigned) Res
!= n
)) // error, or short read
416 if (ToEOF
&& Res
== 0) // EOF