3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
5 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
36 #include <assert.h> /* assert() */
37 #include "sha2_internal.h"
41 * Some sanity checking code is included using assert(). On my FreeBSD
42 * system, this additional code can be removed by compiling with NDEBUG
43 * defined. Check your own systems manpage on assert() to see how to
44 * compile WITHOUT the sanity checking code on your system.
46 * UNROLLED TRANSFORM LOOP NOTE:
47 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
48 * loop version for the hash transform rounds (defined using macros
49 * later in this file). Either define on the command line, for example:
51 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
55 * #define SHA2_UNROLL_TRANSFORM
60 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
64 * Please make sure that your system defines BYTE_ORDER. If your
65 * architecture is little-endian, make sure it also defines
66 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
69 * If your system does not define the above, then you can do so by
72 * #define LITTLE_ENDIAN 1234
73 * #define BIG_ENDIAN 4321
75 * And for little-endian machines, add:
77 * #define BYTE_ORDER LITTLE_ENDIAN
79 * Or for big-endian machines:
81 * #define BYTE_ORDER BIG_ENDIAN
83 * The FreeBSD machine this was written on defines BYTE_ORDER
84 * appropriately by including <sys/types.h> (which in turn includes
85 * <machine/endian.h> where the appropriate definitions are actually
88 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
89 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
93 * Define the followingsha2_* types to types of the correct length on
94 * the native archtecture. Most BSD systems and Linux define u_intXX_t
95 * types. Machines with very recent ANSI C headers, can use the
96 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
97 * during compile or in the sha.h header file.
99 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
100 * will need to define these three typedefs below (and the appropriate
101 * ones in sha.h too) by hand according to their system architecture.
103 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
104 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
106 #ifdef SHA2_USE_INTTYPES_H
108 typedef uint8_t sha2_byte
; /* Exactly 1 byte */
109 typedef uint32_t sha2_word32
; /* Exactly 4 bytes */
110 typedef uint64_t sha2_word64
; /* Exactly 8 bytes */
112 #else /* SHA2_USE_INTTYPES_H */
114 typedef u_int8_t sha2_byte
; /* Exactly 1 byte */
115 typedef u_int32_t sha2_word32
; /* Exactly 4 bytes */
116 typedef u_int64_t sha2_word64
; /* Exactly 8 bytes */
118 #endif /* SHA2_USE_INTTYPES_H */
121 /*** SHA-256/384/512 Various Length Definitions ***********************/
122 /* NOTE: Most of these are in sha2.h */
123 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
124 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
125 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
128 /*** ENDIAN REVERSAL MACROS *******************************************/
129 #if BYTE_ORDER == LITTLE_ENDIAN
130 #define REVERSE32(w,x) { \
131 sha2_word32 tmp = (w); \
132 tmp = (tmp >> 16) | (tmp << 16); \
133 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
135 #define REVERSE64(w,x) { \
136 sha2_word64 tmp = (w); \
137 tmp = (tmp >> 32) | (tmp << 32); \
138 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
139 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
140 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
141 ((tmp & 0x0000ffff0000ffffULL) << 16); \
143 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
146 * Macro for incrementally adding the unsigned 64-bit integer n to the
147 * unsigned 128-bit integer (represented using a two-element array of
150 #define ADDINC128(w,n) { \
151 (w)[0] += (sha2_word64)(n); \
152 if ((w)[0] < (n)) { \
158 * Macros for copying blocks of memory and for zeroing out ranges
159 * of memory. Using these macros makes it easy to switch from
160 * using memset()/memcpy() and using bzero()/bcopy().
162 * Please define either SHA2_USE_MEMSET_MEMCPY or define
163 * SHA2_USE_BZERO_BCOPY depending on which function set you
166 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
167 /* Default to memset()/memcpy() if no option is specified */
168 #define SHA2_USE_MEMSET_MEMCPY 1
170 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
171 /* Abort with an error if BOTH options are defined */
172 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
175 #ifdef SHA2_USE_MEMSET_MEMCPY
176 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
177 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
179 #ifdef SHA2_USE_BZERO_BCOPY
180 #define MEMSET_BZERO(p,l) bzero((p), (l))
181 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
185 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
187 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
189 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
190 * S is a ROTATION) because the SHA-256/384/512 description document
191 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
192 * same "backwards" definition.
194 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
195 #define R(b,x) ((x) >> (b))
196 /* 32-bit Rotate-right (used in SHA-256): */
197 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
198 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
199 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
201 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
202 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
203 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
205 /* Four of six logical functions used in SHA-256: */
206 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
207 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
208 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
209 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
211 /* Four of six logical functions used in SHA-384 and SHA-512: */
212 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
213 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
214 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
215 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
217 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
218 /* NOTE: These should not be accessed directly from outside this
219 * library -- they are intended for private internal visibility/use
222 static void SHA512_Last(SHA512_CTX
*);
223 static void SHA256_Transform(SHA256_CTX
*, const sha2_word32
*);
224 static void SHA512_Transform(SHA512_CTX
*, const sha2_word64
*);
227 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
228 /* Hash constant words K for SHA-256: */
229 const static sha2_word32 K256
[64] = {
230 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
231 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
232 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
233 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
234 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
235 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
236 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
237 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
238 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
239 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
240 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
241 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
242 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
243 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
244 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
245 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
248 /* Initial hash value H for SHA-256: */
249 const static sha2_word32 sha256_initial_hash_value
[8] = {
260 /* Hash constant words K for SHA-384 and SHA-512: */
261 const static sha2_word64 K512
[80] = {
262 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
263 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
264 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
265 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
266 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
267 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
268 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
269 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
270 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
271 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
272 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
273 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
274 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
275 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
276 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
277 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
278 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
279 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
280 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
281 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
282 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
283 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
284 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
285 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
286 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
287 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
288 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
289 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
290 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
291 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
292 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
293 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
294 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
295 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
296 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
297 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
298 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
299 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
300 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
301 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
304 /* Initial hash value H for SHA-384 */
305 const static sha2_word64 sha384_initial_hash_value
[8] = {
306 0xcbbb9d5dc1059ed8ULL
,
307 0x629a292a367cd507ULL
,
308 0x9159015a3070dd17ULL
,
309 0x152fecd8f70e5939ULL
,
310 0x67332667ffc00b31ULL
,
311 0x8eb44a8768581511ULL
,
312 0xdb0c2e0d64f98fa7ULL
,
313 0x47b5481dbefa4fa4ULL
316 /* Initial hash value H for SHA-512 */
317 const static sha2_word64 sha512_initial_hash_value
[8] = {
318 0x6a09e667f3bcc908ULL
,
319 0xbb67ae8584caa73bULL
,
320 0x3c6ef372fe94f82bULL
,
321 0xa54ff53a5f1d36f1ULL
,
322 0x510e527fade682d1ULL
,
323 0x9b05688c2b3e6c1fULL
,
324 0x1f83d9abfb41bd6bULL
,
325 0x5be0cd19137e2179ULL
329 * Constant used by SHA256/384/512_End() functions for converting the
330 * digest to a readable hexadecimal character string:
332 static const char *sha2_hex_digits
= "0123456789abcdef";
335 /*** SHA-256: *********************************************************/
336 void SHA256_Init(SHA256_CTX
* context
) {
337 if (context
== (SHA256_CTX
*)0) {
340 MEMCPY_BCOPY(context
->state
, sha256_initial_hash_value
, SHA256_DIGEST_LENGTH
);
341 MEMSET_BZERO(context
->buffer
, SHA256_BLOCK_LENGTH
);
342 context
->bitcount
= 0;
345 #ifdef SHA2_UNROLL_TRANSFORM
347 /* Unrolled SHA-256 round macros: */
349 #if BYTE_ORDER == LITTLE_ENDIAN
351 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
352 REVERSE32(*data++, W256[j]); \
353 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
356 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
360 #else /* BYTE_ORDER == LITTLE_ENDIAN */
362 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
363 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
364 K256[j] + (W256[j] = *data++); \
366 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
369 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
371 #define ROUND256(a,b,c,d,e,f,g,h) \
372 s0 = W256[(j+1)&0x0f]; \
373 s0 = sigma0_256(s0); \
374 s1 = W256[(j+14)&0x0f]; \
375 s1 = sigma1_256(s1); \
376 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
377 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
379 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
382 static void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
383 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
384 sha2_word32 T1
, *W256
;
387 W256
= (sha2_word32
*)context
->buffer
;
389 /* Initialize registers with the prev. intermediate value */
390 a
= context
->state
[0];
391 b
= context
->state
[1];
392 c
= context
->state
[2];
393 d
= context
->state
[3];
394 e
= context
->state
[4];
395 f
= context
->state
[5];
396 g
= context
->state
[6];
397 h
= context
->state
[7];
401 /* Rounds 0 to 15 (unrolled): */
402 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
403 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
404 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
405 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
406 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
407 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
408 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
409 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
412 /* Now for the remaining rounds to 64: */
414 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
415 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
416 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
417 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
418 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
419 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
420 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
421 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
424 /* Compute the current intermediate hash value */
425 context
->state
[0] += a
;
426 context
->state
[1] += b
;
427 context
->state
[2] += c
;
428 context
->state
[3] += d
;
429 context
->state
[4] += e
;
430 context
->state
[5] += f
;
431 context
->state
[6] += g
;
432 context
->state
[7] += h
;
435 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
438 #else /* SHA2_UNROLL_TRANSFORM */
440 static void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
441 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
442 sha2_word32 T1
, T2
, *W256
;
445 W256
= (sha2_word32
*)context
->buffer
;
447 /* Initialize registers with the prev. intermediate value */
448 a
= context
->state
[0];
449 b
= context
->state
[1];
450 c
= context
->state
[2];
451 d
= context
->state
[3];
452 e
= context
->state
[4];
453 f
= context
->state
[5];
454 g
= context
->state
[6];
455 h
= context
->state
[7];
459 #if BYTE_ORDER == LITTLE_ENDIAN
460 /* Copy data while converting to host byte order */
461 REVERSE32(*data
++,W256
[j
]);
462 /* Apply the SHA-256 compression function to update a..h */
463 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
464 #else /* BYTE_ORDER == LITTLE_ENDIAN */
465 /* Apply the SHA-256 compression function to update a..h with copy */
466 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + (W256
[j
] = *data
++);
467 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
468 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
482 /* Part of the message block expansion: */
483 s0
= W256
[(j
+1)&0x0f];
485 s1
= W256
[(j
+14)&0x0f];
488 /* Apply the SHA-256 compression function to update a..h */
489 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
490 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
491 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
504 /* Compute the current intermediate hash value */
505 context
->state
[0] += a
;
506 context
->state
[1] += b
;
507 context
->state
[2] += c
;
508 context
->state
[3] += d
;
509 context
->state
[4] += e
;
510 context
->state
[5] += f
;
511 context
->state
[6] += g
;
512 context
->state
[7] += h
;
515 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
518 #endif /* SHA2_UNROLL_TRANSFORM */
520 void SHA256_Update(SHA256_CTX
* context
, const sha2_byte
*data
, size_t len
) {
521 unsigned int freespace
, usedspace
;
524 /* Calling with no data is valid - we do nothing */
529 assert(context
!= (SHA256_CTX
*)0 && data
!= (sha2_byte
*)0);
531 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
533 /* Calculate how much free space is available in the buffer */
534 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
536 if (len
>= freespace
) {
537 /* Fill the buffer completely and process it */
538 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, freespace
);
539 context
->bitcount
+= freespace
<< 3;
542 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
544 /* The buffer is not yet full */
545 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, len
);
546 context
->bitcount
+= len
<< 3;
548 usedspace
= freespace
= 0;
552 while (len
>= SHA256_BLOCK_LENGTH
) {
553 /* Process as many complete blocks as we can */
554 SHA256_Transform(context
, (sha2_word32
*)data
);
555 context
->bitcount
+= SHA256_BLOCK_LENGTH
<< 3;
556 len
-= SHA256_BLOCK_LENGTH
;
557 data
+= SHA256_BLOCK_LENGTH
;
560 /* There's left-overs, so save 'em */
561 MEMCPY_BCOPY(context
->buffer
, data
, len
);
562 context
->bitcount
+= len
<< 3;
565 usedspace
= freespace
= 0;
568 void SHA256_Final(sha2_byte digest
[], SHA256_CTX
* context
) {
569 sha2_word32
*d
= (sha2_word32
*)digest
;
570 unsigned int usedspace
;
573 assert(context
!= (SHA256_CTX
*)0);
575 /* If no digest buffer is passed, we don't bother doing this: */
576 if (digest
!= (sha2_byte
*)0) {
577 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
578 #if BYTE_ORDER == LITTLE_ENDIAN
579 /* Convert FROM host byte order */
580 REVERSE64(context
->bitcount
,context
->bitcount
);
583 /* Begin padding with a 1 bit: */
584 context
->buffer
[usedspace
++] = 0x80;
586 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
587 /* Set-up for the last transform: */
588 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
590 if (usedspace
< SHA256_BLOCK_LENGTH
) {
591 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA256_BLOCK_LENGTH
- usedspace
);
593 /* Do second-to-last transform: */
594 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
596 /* And set-up for the last transform: */
597 MEMSET_BZERO(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
600 /* Set-up for the last transform: */
601 MEMSET_BZERO(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
603 /* Begin padding with a 1 bit: */
604 *context
->buffer
= 0x80;
606 /* Set the bit count: */
607 *(sha2_word64
*)&context
->buffer
[SHA256_SHORT_BLOCK_LENGTH
] = context
->bitcount
;
609 /* Final transform: */
610 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
612 #if BYTE_ORDER == LITTLE_ENDIAN
614 /* Convert TO host byte order */
616 for (j
= 0; j
< 8; j
++) {
617 REVERSE32(context
->state
[j
],context
->state
[j
]);
618 *d
++ = context
->state
[j
];
622 MEMCPY_BCOPY(d
, context
->state
, SHA256_DIGEST_LENGTH
);
626 /* Clean up state data: */
627 MEMSET_BZERO(context
, sizeof(context
));
631 char *SHA256_End(SHA256_CTX
* context
, char buffer
[]) {
632 sha2_byte digest
[SHA256_DIGEST_LENGTH
], *d
= digest
;
636 assert(context
!= (SHA256_CTX
*)0);
638 if (buffer
!= (char*)0) {
639 SHA256_Final(digest
, context
);
641 for (i
= 0; i
< SHA256_DIGEST_LENGTH
; i
++) {
642 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
643 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
648 MEMSET_BZERO(context
, sizeof(context
));
650 MEMSET_BZERO(digest
, SHA256_DIGEST_LENGTH
);
654 char* SHA256_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA256_DIGEST_STRING_LENGTH
]) {
657 SHA256_Init(&context
);
658 SHA256_Update(&context
, data
, len
);
659 return SHA256_End(&context
, digest
);
663 /*** SHA-512: *********************************************************/
664 void SHA512_Init(SHA512_CTX
* context
) {
665 if (context
== (SHA512_CTX
*)0) {
668 MEMCPY_BCOPY(context
->state
, sha512_initial_hash_value
, SHA512_DIGEST_LENGTH
);
669 MEMSET_BZERO(context
->buffer
, SHA512_BLOCK_LENGTH
);
670 context
->bitcount
[0] = context
->bitcount
[1] = 0;
673 #ifdef SHA2_UNROLL_TRANSFORM
675 /* Unrolled SHA-512 round macros: */
676 #if BYTE_ORDER == LITTLE_ENDIAN
678 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
679 REVERSE64(*data++, W512[j]); \
680 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
683 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
687 #else /* BYTE_ORDER == LITTLE_ENDIAN */
689 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
690 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
691 K512[j] + (W512[j] = *data++); \
693 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
696 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
698 #define ROUND512(a,b,c,d,e,f,g,h) \
699 s0 = W512[(j+1)&0x0f]; \
700 s0 = sigma0_512(s0); \
701 s1 = W512[(j+14)&0x0f]; \
702 s1 = sigma1_512(s1); \
703 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
704 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
706 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
709 static void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
710 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
711 sha2_word64 T1
, *W512
= (sha2_word64
*)context
->buffer
;
714 /* Initialize registers with the prev. intermediate value */
715 a
= context
->state
[0];
716 b
= context
->state
[1];
717 c
= context
->state
[2];
718 d
= context
->state
[3];
719 e
= context
->state
[4];
720 f
= context
->state
[5];
721 g
= context
->state
[6];
722 h
= context
->state
[7];
726 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
727 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
728 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
729 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
730 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
731 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
732 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
733 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
736 /* Now for the remaining rounds up to 79: */
738 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
739 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
740 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
741 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
742 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
743 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
744 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
745 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
748 /* Compute the current intermediate hash value */
749 context
->state
[0] += a
;
750 context
->state
[1] += b
;
751 context
->state
[2] += c
;
752 context
->state
[3] += d
;
753 context
->state
[4] += e
;
754 context
->state
[5] += f
;
755 context
->state
[6] += g
;
756 context
->state
[7] += h
;
759 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
762 #else /* SHA2_UNROLL_TRANSFORM */
764 static void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
765 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
766 sha2_word64 T1
, T2
, *W512
= (sha2_word64
*)context
->buffer
;
769 /* Initialize registers with the prev. intermediate value */
770 a
= context
->state
[0];
771 b
= context
->state
[1];
772 c
= context
->state
[2];
773 d
= context
->state
[3];
774 e
= context
->state
[4];
775 f
= context
->state
[5];
776 g
= context
->state
[6];
777 h
= context
->state
[7];
781 #if BYTE_ORDER == LITTLE_ENDIAN
782 /* Convert TO host byte order */
783 REVERSE64(*data
++, W512
[j
]);
784 /* Apply the SHA-512 compression function to update a..h */
785 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
786 #else /* BYTE_ORDER == LITTLE_ENDIAN */
787 /* Apply the SHA-512 compression function to update a..h with copy */
788 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + (W512
[j
] = *data
++);
789 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
790 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
804 /* Part of the message block expansion: */
805 s0
= W512
[(j
+1)&0x0f];
807 s1
= W512
[(j
+14)&0x0f];
810 /* Apply the SHA-512 compression function to update a..h */
811 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
812 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
813 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
826 /* Compute the current intermediate hash value */
827 context
->state
[0] += a
;
828 context
->state
[1] += b
;
829 context
->state
[2] += c
;
830 context
->state
[3] += d
;
831 context
->state
[4] += e
;
832 context
->state
[5] += f
;
833 context
->state
[6] += g
;
834 context
->state
[7] += h
;
837 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
840 #endif /* SHA2_UNROLL_TRANSFORM */
842 void SHA512_Update(SHA512_CTX
* context
, const sha2_byte
*data
, size_t len
) {
843 unsigned int freespace
, usedspace
;
846 /* Calling with no data is valid - we do nothing */
851 assert(context
!= (SHA512_CTX
*)0 && data
!= (sha2_byte
*)0);
853 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
855 /* Calculate how much free space is available in the buffer */
856 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
858 if (len
>= freespace
) {
859 /* Fill the buffer completely and process it */
860 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, freespace
);
861 ADDINC128(context
->bitcount
, freespace
<< 3);
864 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
866 /* The buffer is not yet full */
867 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, len
);
868 ADDINC128(context
->bitcount
, len
<< 3);
870 usedspace
= freespace
= 0;
874 while (len
>= SHA512_BLOCK_LENGTH
) {
875 /* Process as many complete blocks as we can */
876 SHA512_Transform(context
, (sha2_word64
*)data
);
877 ADDINC128(context
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
878 len
-= SHA512_BLOCK_LENGTH
;
879 data
+= SHA512_BLOCK_LENGTH
;
882 /* There's left-overs, so save 'em */
883 MEMCPY_BCOPY(context
->buffer
, data
, len
);
884 ADDINC128(context
->bitcount
, len
<< 3);
887 usedspace
= freespace
= 0;
890 static void SHA512_Last(SHA512_CTX
* context
) {
891 unsigned int usedspace
;
893 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
894 #if BYTE_ORDER == LITTLE_ENDIAN
895 /* Convert FROM host byte order */
896 REVERSE64(context
->bitcount
[0],context
->bitcount
[0]);
897 REVERSE64(context
->bitcount
[1],context
->bitcount
[1]);
900 /* Begin padding with a 1 bit: */
901 context
->buffer
[usedspace
++] = 0x80;
903 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
904 /* Set-up for the last transform: */
905 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
907 if (usedspace
< SHA512_BLOCK_LENGTH
) {
908 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA512_BLOCK_LENGTH
- usedspace
);
910 /* Do second-to-last transform: */
911 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
913 /* And set-up for the last transform: */
914 MEMSET_BZERO(context
->buffer
, SHA512_BLOCK_LENGTH
- 2);
917 /* Prepare for final transform: */
918 MEMSET_BZERO(context
->buffer
, SHA512_SHORT_BLOCK_LENGTH
);
920 /* Begin padding with a 1 bit: */
921 *context
->buffer
= 0x80;
923 /* Store the length of input data (in bits): */
924 *(sha2_word64
*)&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
] = context
->bitcount
[1];
925 *(sha2_word64
*)&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
+8] = context
->bitcount
[0];
927 /* Final transform: */
928 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
931 void SHA512_Final(sha2_byte digest
[], SHA512_CTX
* context
) {
932 sha2_word64
*d
= (sha2_word64
*)digest
;
935 assert(context
!= (SHA512_CTX
*)0);
937 /* If no digest buffer is passed, we don't bother doing this: */
938 if (digest
!= (sha2_byte
*)0) {
939 SHA512_Last(context
);
941 /* Save the hash data for output: */
942 #if BYTE_ORDER == LITTLE_ENDIAN
944 /* Convert TO host byte order */
946 for (j
= 0; j
< 8; j
++) {
947 REVERSE64(context
->state
[j
],context
->state
[j
]);
948 *d
++ = context
->state
[j
];
952 MEMCPY_BCOPY(d
, context
->state
, SHA512_DIGEST_LENGTH
);
956 /* Zero out state data */
957 MEMSET_BZERO(context
, sizeof(context
));
960 char *SHA512_End(SHA512_CTX
* context
, char buffer
[]) {
961 sha2_byte digest
[SHA512_DIGEST_LENGTH
], *d
= digest
;
965 assert(context
!= (SHA512_CTX
*)0);
967 if (buffer
!= (char*)0) {
968 SHA512_Final(digest
, context
);
970 for (i
= 0; i
< SHA512_DIGEST_LENGTH
; i
++) {
971 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
972 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
977 MEMSET_BZERO(context
, sizeof(context
));
979 MEMSET_BZERO(digest
, SHA512_DIGEST_LENGTH
);
983 char* SHA512_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA512_DIGEST_STRING_LENGTH
]) {
986 SHA512_Init(&context
);
987 SHA512_Update(&context
, data
, len
);
988 return SHA512_End(&context
, digest
);
992 /*** SHA-384: *********************************************************/
993 void SHA384_Init(SHA384_CTX
* context
) {
994 if (context
== (SHA384_CTX
*)0) {
997 MEMCPY_BCOPY(context
->state
, sha384_initial_hash_value
, SHA512_DIGEST_LENGTH
);
998 MEMSET_BZERO(context
->buffer
, SHA384_BLOCK_LENGTH
);
999 context
->bitcount
[0] = context
->bitcount
[1] = 0;
1002 void SHA384_Update(SHA384_CTX
* context
, const sha2_byte
* data
, size_t len
) {
1003 SHA512_Update((SHA512_CTX
*)context
, data
, len
);
1006 void SHA384_Final(sha2_byte digest
[], SHA384_CTX
* context
) {
1007 sha2_word64
*d
= (sha2_word64
*)digest
;
1010 assert(context
!= (SHA384_CTX
*)0);
1012 /* If no digest buffer is passed, we don't bother doing this: */
1013 if (digest
!= (sha2_byte
*)0) {
1014 SHA512_Last((SHA512_CTX
*)context
);
1016 /* Save the hash data for output: */
1017 #if BYTE_ORDER == LITTLE_ENDIAN
1019 /* Convert TO host byte order */
1021 for (j
= 0; j
< 6; j
++) {
1022 REVERSE64(context
->state
[j
],context
->state
[j
]);
1023 *d
++ = context
->state
[j
];
1027 MEMCPY_BCOPY(d
, context
->state
, SHA384_DIGEST_LENGTH
);
1031 /* Zero out state data */
1032 MEMSET_BZERO(context
, sizeof(context
));
1035 char *SHA384_End(SHA384_CTX
* context
, char buffer
[]) {
1036 sha2_byte digest
[SHA384_DIGEST_LENGTH
], *d
= digest
;
1040 assert(context
!= (SHA384_CTX
*)0);
1042 if (buffer
!= (char*)0) {
1043 SHA384_Final(digest
, context
);
1045 for (i
= 0; i
< SHA384_DIGEST_LENGTH
; i
++) {
1046 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1047 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1052 MEMSET_BZERO(context
, sizeof(context
));
1054 MEMSET_BZERO(digest
, SHA384_DIGEST_LENGTH
);
1058 char* SHA384_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA384_DIGEST_STRING_LENGTH
]) {
1061 SHA384_Init(&context
);
1062 SHA384_Update(&context
, data
, len
);
1063 return SHA384_End(&context
, digest
);