]> git.saurik.com Git - apt.git/blob - apt-pkg/contrib/sha2_internal.cc
Merge remote-tracking branch 'ajt/better-pdiffs-dk' into debian/sid
[apt.git] / apt-pkg / contrib / sha2_internal.cc
1 /*
2 * FILE: sha2.c
3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
33 */
34 #include <config.h>
35
36 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
37 #include <assert.h> /* assert() */
38 #include "sha2_internal.h"
39
40 /*
41 * ASSERT NOTE:
42 * Some sanity checking code is included using assert(). On my FreeBSD
43 * system, this additional code can be removed by compiling with NDEBUG
44 * defined. Check your own systems manpage on assert() to see how to
45 * compile WITHOUT the sanity checking code on your system.
46 *
47 * UNROLLED TRANSFORM LOOP NOTE:
48 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
49 * loop version for the hash transform rounds (defined using macros
50 * later in this file). Either define on the command line, for example:
51 *
52 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
53 *
54 * or define below:
55 *
56 * #define SHA2_UNROLL_TRANSFORM
57 *
58 */
59
60
61 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
62 /*
63 * BYTE_ORDER NOTE:
64 *
65 * Please make sure that your system defines BYTE_ORDER. If your
66 * architecture is little-endian, make sure it also defines
67 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
68 * equivilent.
69 *
70 * If your system does not define the above, then you can do so by
71 * hand like this:
72 *
73 * #define LITTLE_ENDIAN 1234
74 * #define BIG_ENDIAN 4321
75 *
76 * And for little-endian machines, add:
77 *
78 * #define BYTE_ORDER LITTLE_ENDIAN
79 *
80 * Or for big-endian machines:
81 *
82 * #define BYTE_ORDER BIG_ENDIAN
83 *
84 * The FreeBSD machine this was written on defines BYTE_ORDER
85 * appropriately by including <sys/types.h> (which in turn includes
86 * <machine/endian.h> where the appropriate definitions are actually
87 * made).
88 */
89 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
90 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
91 #endif
92
93 /*
94 * Define the followingsha2_* types to types of the correct length on
95 * the native archtecture. Most BSD systems and Linux define u_intXX_t
96 * types. Machines with very recent ANSI C headers, can use the
97 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
98 * during compile or in the sha.h header file.
99 *
100 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
101 * will need to define these three typedefs below (and the appropriate
102 * ones in sha.h too) by hand according to their system architecture.
103 *
104 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
105 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
106 */
107 #ifdef SHA2_USE_INTTYPES_H
108
109 typedef uint8_t sha2_byte; /* Exactly 1 byte */
110 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
111 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
112
113 #else /* SHA2_USE_INTTYPES_H */
114
115 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
116 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
117 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
118
119 #endif /* SHA2_USE_INTTYPES_H */
120
121
122 /*** SHA-256/384/512 Various Length Definitions ***********************/
123 /* NOTE: Most of these are in sha2.h */
124 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
125 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
126 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
127
128
129 /*** ENDIAN REVERSAL MACROS *******************************************/
130 #if BYTE_ORDER == LITTLE_ENDIAN
131 #define REVERSE32(w,x) { \
132 sha2_word32 tmp = (w); \
133 tmp = (tmp >> 16) | (tmp << 16); \
134 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
135 }
136 #define REVERSE64(w,x) { \
137 sha2_word64 tmp = (w); \
138 tmp = (tmp >> 32) | (tmp << 32); \
139 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
140 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
141 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
142 ((tmp & 0x0000ffff0000ffffULL) << 16); \
143 }
144 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
145
146 /*
147 * Macro for incrementally adding the unsigned 64-bit integer n to the
148 * unsigned 128-bit integer (represented using a two-element array of
149 * 64-bit words):
150 */
151 #define ADDINC128(w,n) { \
152 (w)[0] += (sha2_word64)(n); \
153 if ((w)[0] < (n)) { \
154 (w)[1]++; \
155 } \
156 }
157
158 /*
159 * Macros for copying blocks of memory and for zeroing out ranges
160 * of memory. Using these macros makes it easy to switch from
161 * using memset()/memcpy() and using bzero()/bcopy().
162 *
163 * Please define either SHA2_USE_MEMSET_MEMCPY or define
164 * SHA2_USE_BZERO_BCOPY depending on which function set you
165 * choose to use:
166 */
167 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
168 /* Default to memset()/memcpy() if no option is specified */
169 #define SHA2_USE_MEMSET_MEMCPY 1
170 #endif
171 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
172 /* Abort with an error if BOTH options are defined */
173 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
174 #endif
175
176 #ifdef SHA2_USE_MEMSET_MEMCPY
177 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
178 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
179 #endif
180 #ifdef SHA2_USE_BZERO_BCOPY
181 #define MEMSET_BZERO(p,l) bzero((p), (l))
182 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
183 #endif
184
185
186 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
187 /*
188 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
189 *
190 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
191 * S is a ROTATION) because the SHA-256/384/512 description document
192 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
193 * same "backwards" definition.
194 */
195 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
196 #define R(b,x) ((x) >> (b))
197 /* 32-bit Rotate-right (used in SHA-256): */
198 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
199 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
200 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
201
202 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
203 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
204 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
205
206 /* Four of six logical functions used in SHA-256: */
207 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
208 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
209 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
210 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
211
212 /* Four of six logical functions used in SHA-384 and SHA-512: */
213 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
214 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
215 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
216 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
217
218 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
219 /* NOTE: These should not be accessed directly from outside this
220 * library -- they are intended for private internal visibility/use
221 * only.
222 */
223 static void SHA512_Last(SHA512_CTX*);
224 static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
225 static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
226
227
228 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
229 /* Hash constant words K for SHA-256: */
230 const static sha2_word32 K256[64] = {
231 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
232 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
233 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
234 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
235 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
236 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
237 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
238 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
239 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
240 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
241 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
242 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
243 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
244 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
245 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
246 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
247 };
248
249 /* Initial hash value H for SHA-256: */
250 const static sha2_word32 sha256_initial_hash_value[8] = {
251 0x6a09e667UL,
252 0xbb67ae85UL,
253 0x3c6ef372UL,
254 0xa54ff53aUL,
255 0x510e527fUL,
256 0x9b05688cUL,
257 0x1f83d9abUL,
258 0x5be0cd19UL
259 };
260
261 /* Hash constant words K for SHA-384 and SHA-512: */
262 const static sha2_word64 K512[80] = {
263 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
264 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
265 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
266 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
267 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
268 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
269 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
270 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
271 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
272 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
273 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
274 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
275 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
276 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
277 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
278 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
279 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
280 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
281 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
282 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
283 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
284 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
285 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
286 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
287 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
288 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
289 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
290 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
291 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
292 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
293 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
294 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
295 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
296 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
297 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
298 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
299 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
300 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
301 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
302 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
303 };
304
305 /* Initial hash value H for SHA-384 */
306 const static sha2_word64 sha384_initial_hash_value[8] = {
307 0xcbbb9d5dc1059ed8ULL,
308 0x629a292a367cd507ULL,
309 0x9159015a3070dd17ULL,
310 0x152fecd8f70e5939ULL,
311 0x67332667ffc00b31ULL,
312 0x8eb44a8768581511ULL,
313 0xdb0c2e0d64f98fa7ULL,
314 0x47b5481dbefa4fa4ULL
315 };
316
317 /* Initial hash value H for SHA-512 */
318 const static sha2_word64 sha512_initial_hash_value[8] = {
319 0x6a09e667f3bcc908ULL,
320 0xbb67ae8584caa73bULL,
321 0x3c6ef372fe94f82bULL,
322 0xa54ff53a5f1d36f1ULL,
323 0x510e527fade682d1ULL,
324 0x9b05688c2b3e6c1fULL,
325 0x1f83d9abfb41bd6bULL,
326 0x5be0cd19137e2179ULL
327 };
328
329 /*
330 * Constant used by SHA256/384/512_End() functions for converting the
331 * digest to a readable hexadecimal character string:
332 */
333 static const char *sha2_hex_digits = "0123456789abcdef";
334
335
336 /*** SHA-256: *********************************************************/
337 void SHA256_Init(SHA256_CTX* context) {
338 if (context == (SHA256_CTX*)0) {
339 return;
340 }
341 MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
342 MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
343 context->bitcount = 0;
344 }
345
346 #ifdef SHA2_UNROLL_TRANSFORM
347
348 /* Unrolled SHA-256 round macros: */
349
350 #if BYTE_ORDER == LITTLE_ENDIAN
351
352 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
353 REVERSE32(*data++, W256[j]); \
354 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
355 K256[j] + W256[j]; \
356 (d) += T1; \
357 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
358 j++
359
360
361 #else /* BYTE_ORDER == LITTLE_ENDIAN */
362
363 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
364 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
365 K256[j] + (W256[j] = *data++); \
366 (d) += T1; \
367 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
368 j++
369
370 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
371
372 #define ROUND256(a,b,c,d,e,f,g,h) \
373 s0 = W256[(j+1)&0x0f]; \
374 s0 = sigma0_256(s0); \
375 s1 = W256[(j+14)&0x0f]; \
376 s1 = sigma1_256(s1); \
377 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
378 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
379 (d) += T1; \
380 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
381 j++
382
383 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
384 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
385 sha2_word32 T1, *W256;
386 int j;
387
388 W256 = (sha2_word32*)context->buffer;
389
390 /* Initialize registers with the prev. intermediate value */
391 a = context->state[0];
392 b = context->state[1];
393 c = context->state[2];
394 d = context->state[3];
395 e = context->state[4];
396 f = context->state[5];
397 g = context->state[6];
398 h = context->state[7];
399
400 j = 0;
401 do {
402 /* Rounds 0 to 15 (unrolled): */
403 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
404 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
405 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
406 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
407 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
408 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
409 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
410 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
411 } while (j < 16);
412
413 /* Now for the remaining rounds to 64: */
414 do {
415 ROUND256(a,b,c,d,e,f,g,h);
416 ROUND256(h,a,b,c,d,e,f,g);
417 ROUND256(g,h,a,b,c,d,e,f);
418 ROUND256(f,g,h,a,b,c,d,e);
419 ROUND256(e,f,g,h,a,b,c,d);
420 ROUND256(d,e,f,g,h,a,b,c);
421 ROUND256(c,d,e,f,g,h,a,b);
422 ROUND256(b,c,d,e,f,g,h,a);
423 } while (j < 64);
424
425 /* Compute the current intermediate hash value */
426 context->state[0] += a;
427 context->state[1] += b;
428 context->state[2] += c;
429 context->state[3] += d;
430 context->state[4] += e;
431 context->state[5] += f;
432 context->state[6] += g;
433 context->state[7] += h;
434
435 /* Clean up */
436 a = b = c = d = e = f = g = h = T1 = 0;
437 }
438
439 #else /* SHA2_UNROLL_TRANSFORM */
440
441 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
442 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
443 sha2_word32 T1, T2, *W256;
444 int j;
445
446 W256 = (sha2_word32*)context->buffer;
447
448 /* Initialize registers with the prev. intermediate value */
449 a = context->state[0];
450 b = context->state[1];
451 c = context->state[2];
452 d = context->state[3];
453 e = context->state[4];
454 f = context->state[5];
455 g = context->state[6];
456 h = context->state[7];
457
458 j = 0;
459 do {
460 #if BYTE_ORDER == LITTLE_ENDIAN
461 /* Copy data while converting to host byte order */
462 REVERSE32(*data++,W256[j]);
463 /* Apply the SHA-256 compression function to update a..h */
464 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
465 #else /* BYTE_ORDER == LITTLE_ENDIAN */
466 /* Apply the SHA-256 compression function to update a..h with copy */
467 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
468 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
469 T2 = Sigma0_256(a) + Maj(a, b, c);
470 h = g;
471 g = f;
472 f = e;
473 e = d + T1;
474 d = c;
475 c = b;
476 b = a;
477 a = T1 + T2;
478
479 j++;
480 } while (j < 16);
481
482 do {
483 /* Part of the message block expansion: */
484 s0 = W256[(j+1)&0x0f];
485 s0 = sigma0_256(s0);
486 s1 = W256[(j+14)&0x0f];
487 s1 = sigma1_256(s1);
488
489 /* Apply the SHA-256 compression function to update a..h */
490 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
491 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
492 T2 = Sigma0_256(a) + Maj(a, b, c);
493 h = g;
494 g = f;
495 f = e;
496 e = d + T1;
497 d = c;
498 c = b;
499 b = a;
500 a = T1 + T2;
501
502 j++;
503 } while (j < 64);
504
505 /* Compute the current intermediate hash value */
506 context->state[0] += a;
507 context->state[1] += b;
508 context->state[2] += c;
509 context->state[3] += d;
510 context->state[4] += e;
511 context->state[5] += f;
512 context->state[6] += g;
513 context->state[7] += h;
514
515 /* Clean up */
516 a = b = c = d = e = f = g = h = T1 = T2 = 0;
517 }
518
519 #endif /* SHA2_UNROLL_TRANSFORM */
520
521 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
522 unsigned int freespace, usedspace;
523
524 if (len == 0) {
525 /* Calling with no data is valid - we do nothing */
526 return;
527 }
528
529 /* Sanity check: */
530 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
531
532 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
533 if (usedspace > 0) {
534 /* Calculate how much free space is available in the buffer */
535 freespace = SHA256_BLOCK_LENGTH - usedspace;
536
537 if (len >= freespace) {
538 /* Fill the buffer completely and process it */
539 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
540 context->bitcount += freespace << 3;
541 len -= freespace;
542 data += freespace;
543 SHA256_Transform(context, (sha2_word32*)context->buffer);
544 } else {
545 /* The buffer is not yet full */
546 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
547 context->bitcount += len << 3;
548 /* Clean up: */
549 usedspace = freespace = 0;
550 return;
551 }
552 }
553 while (len >= SHA256_BLOCK_LENGTH) {
554 /* Process as many complete blocks as we can */
555 sha2_byte buffer[SHA256_BLOCK_LENGTH];
556 MEMCPY_BCOPY(buffer, data, SHA256_BLOCK_LENGTH);
557 SHA256_Transform(context, (sha2_word32*)buffer);
558 context->bitcount += SHA256_BLOCK_LENGTH << 3;
559 len -= SHA256_BLOCK_LENGTH;
560 data += SHA256_BLOCK_LENGTH;
561 }
562 if (len > 0) {
563 /* There's left-overs, so save 'em */
564 MEMCPY_BCOPY(context->buffer, data, len);
565 context->bitcount += len << 3;
566 }
567 /* Clean up: */
568 usedspace = freespace = 0;
569 }
570
571 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
572 sha2_word32 *d = (sha2_word32*)digest;
573 unsigned int usedspace;
574
575 /* Sanity check: */
576 assert(context != (SHA256_CTX*)0);
577
578 /* If no digest buffer is passed, we don't bother doing this: */
579 if (digest != (sha2_byte*)0) {
580 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
581 #if BYTE_ORDER == LITTLE_ENDIAN
582 /* Convert FROM host byte order */
583 REVERSE64(context->bitcount,context->bitcount);
584 #endif
585 if (usedspace > 0) {
586 /* Begin padding with a 1 bit: */
587 context->buffer[usedspace++] = 0x80;
588
589 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
590 /* Set-up for the last transform: */
591 MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
592 } else {
593 if (usedspace < SHA256_BLOCK_LENGTH) {
594 MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
595 }
596 /* Do second-to-last transform: */
597 SHA256_Transform(context, (sha2_word32*)context->buffer);
598
599 /* And set-up for the last transform: */
600 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
601 }
602 } else {
603 /* Set-up for the last transform: */
604 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
605
606 /* Begin padding with a 1 bit: */
607 *context->buffer = 0x80;
608 }
609 /* Set the bit count: */
610 union {
611 sha2_byte* c;
612 sha2_word64* l;
613 } bitcount;
614 bitcount.c = &context->buffer[SHA256_SHORT_BLOCK_LENGTH];
615 *(bitcount.l) = context->bitcount;
616
617 /* Final transform: */
618 SHA256_Transform(context, (sha2_word32*)context->buffer);
619
620 #if BYTE_ORDER == LITTLE_ENDIAN
621 {
622 /* Convert TO host byte order */
623 int j;
624 for (j = 0; j < 8; j++) {
625 REVERSE32(context->state[j],context->state[j]);
626 *d++ = context->state[j];
627 }
628 }
629 #else
630 MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
631 #endif
632 }
633
634 /* Clean up state data: */
635 MEMSET_BZERO(context, sizeof(*context));
636 usedspace = 0;
637 }
638
639 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
640 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
641 int i;
642
643 /* Sanity check: */
644 assert(context != (SHA256_CTX*)0);
645
646 if (buffer != (char*)0) {
647 SHA256_Final(digest, context);
648
649 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
650 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
651 *buffer++ = sha2_hex_digits[*d & 0x0f];
652 d++;
653 }
654 *buffer = (char)0;
655 } else {
656 MEMSET_BZERO(context, sizeof(*context));
657 }
658 MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
659 return buffer;
660 }
661
662 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
663 SHA256_CTX context;
664
665 SHA256_Init(&context);
666 SHA256_Update(&context, data, len);
667 return SHA256_End(&context, digest);
668 }
669
670
671 /*** SHA-512: *********************************************************/
672 void SHA512_Init(SHA512_CTX* context) {
673 if (context == (SHA512_CTX*)0) {
674 return;
675 }
676 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
677 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
678 context->bitcount[0] = context->bitcount[1] = 0;
679 }
680
681 #ifdef SHA2_UNROLL_TRANSFORM
682
683 /* Unrolled SHA-512 round macros: */
684 #if BYTE_ORDER == LITTLE_ENDIAN
685
686 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
687 REVERSE64(*data++, W512[j]); \
688 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
689 K512[j] + W512[j]; \
690 (d) += T1, \
691 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
692 j++
693
694
695 #else /* BYTE_ORDER == LITTLE_ENDIAN */
696
697 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
698 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
699 K512[j] + (W512[j] = *data++); \
700 (d) += T1; \
701 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
702 j++
703
704 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
705
706 #define ROUND512(a,b,c,d,e,f,g,h) \
707 s0 = W512[(j+1)&0x0f]; \
708 s0 = sigma0_512(s0); \
709 s1 = W512[(j+14)&0x0f]; \
710 s1 = sigma1_512(s1); \
711 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
712 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
713 (d) += T1; \
714 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
715 j++
716
717 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
718 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
719 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
720 int j;
721
722 /* Initialize registers with the prev. intermediate value */
723 a = context->state[0];
724 b = context->state[1];
725 c = context->state[2];
726 d = context->state[3];
727 e = context->state[4];
728 f = context->state[5];
729 g = context->state[6];
730 h = context->state[7];
731
732 j = 0;
733 do {
734 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
735 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
736 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
737 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
738 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
739 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
740 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
741 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
742 } while (j < 16);
743
744 /* Now for the remaining rounds up to 79: */
745 do {
746 ROUND512(a,b,c,d,e,f,g,h);
747 ROUND512(h,a,b,c,d,e,f,g);
748 ROUND512(g,h,a,b,c,d,e,f);
749 ROUND512(f,g,h,a,b,c,d,e);
750 ROUND512(e,f,g,h,a,b,c,d);
751 ROUND512(d,e,f,g,h,a,b,c);
752 ROUND512(c,d,e,f,g,h,a,b);
753 ROUND512(b,c,d,e,f,g,h,a);
754 } while (j < 80);
755
756 /* Compute the current intermediate hash value */
757 context->state[0] += a;
758 context->state[1] += b;
759 context->state[2] += c;
760 context->state[3] += d;
761 context->state[4] += e;
762 context->state[5] += f;
763 context->state[6] += g;
764 context->state[7] += h;
765
766 /* Clean up */
767 a = b = c = d = e = f = g = h = T1 = 0;
768 }
769
770 #else /* SHA2_UNROLL_TRANSFORM */
771
772 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
773 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
774 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
775 int j;
776
777 /* Initialize registers with the prev. intermediate value */
778 a = context->state[0];
779 b = context->state[1];
780 c = context->state[2];
781 d = context->state[3];
782 e = context->state[4];
783 f = context->state[5];
784 g = context->state[6];
785 h = context->state[7];
786
787 j = 0;
788 do {
789 #if BYTE_ORDER == LITTLE_ENDIAN
790 /* Convert TO host byte order */
791 REVERSE64(*data++, W512[j]);
792 /* Apply the SHA-512 compression function to update a..h */
793 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
794 #else /* BYTE_ORDER == LITTLE_ENDIAN */
795 /* Apply the SHA-512 compression function to update a..h with copy */
796 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
797 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
798 T2 = Sigma0_512(a) + Maj(a, b, c);
799 h = g;
800 g = f;
801 f = e;
802 e = d + T1;
803 d = c;
804 c = b;
805 b = a;
806 a = T1 + T2;
807
808 j++;
809 } while (j < 16);
810
811 do {
812 /* Part of the message block expansion: */
813 s0 = W512[(j+1)&0x0f];
814 s0 = sigma0_512(s0);
815 s1 = W512[(j+14)&0x0f];
816 s1 = sigma1_512(s1);
817
818 /* Apply the SHA-512 compression function to update a..h */
819 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
820 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
821 T2 = Sigma0_512(a) + Maj(a, b, c);
822 h = g;
823 g = f;
824 f = e;
825 e = d + T1;
826 d = c;
827 c = b;
828 b = a;
829 a = T1 + T2;
830
831 j++;
832 } while (j < 80);
833
834 /* Compute the current intermediate hash value */
835 context->state[0] += a;
836 context->state[1] += b;
837 context->state[2] += c;
838 context->state[3] += d;
839 context->state[4] += e;
840 context->state[5] += f;
841 context->state[6] += g;
842 context->state[7] += h;
843
844 /* Clean up */
845 a = b = c = d = e = f = g = h = T1 = T2 = 0;
846 }
847
848 #endif /* SHA2_UNROLL_TRANSFORM */
849
850 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
851 unsigned int freespace, usedspace;
852
853 if (len == 0) {
854 /* Calling with no data is valid - we do nothing */
855 return;
856 }
857
858 /* Sanity check: */
859 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
860
861 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
862 if (usedspace > 0) {
863 /* Calculate how much free space is available in the buffer */
864 freespace = SHA512_BLOCK_LENGTH - usedspace;
865
866 if (len >= freespace) {
867 /* Fill the buffer completely and process it */
868 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
869 ADDINC128(context->bitcount, freespace << 3);
870 len -= freespace;
871 data += freespace;
872 SHA512_Transform(context, (sha2_word64*)context->buffer);
873 } else {
874 /* The buffer is not yet full */
875 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
876 ADDINC128(context->bitcount, len << 3);
877 /* Clean up: */
878 usedspace = freespace = 0;
879 return;
880 }
881 }
882 while (len >= SHA512_BLOCK_LENGTH) {
883 /* Process as many complete blocks as we can */
884 sha2_byte buffer[SHA512_BLOCK_LENGTH];
885 MEMCPY_BCOPY(buffer, data, SHA512_BLOCK_LENGTH);
886 SHA512_Transform(context, (sha2_word64*)buffer);
887 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
888 len -= SHA512_BLOCK_LENGTH;
889 data += SHA512_BLOCK_LENGTH;
890 }
891 if (len > 0) {
892 /* There's left-overs, so save 'em */
893 MEMCPY_BCOPY(context->buffer, data, len);
894 ADDINC128(context->bitcount, len << 3);
895 }
896 /* Clean up: */
897 usedspace = freespace = 0;
898 }
899
900 static void SHA512_Last(SHA512_CTX* context) {
901 unsigned int usedspace;
902
903 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
904 #if BYTE_ORDER == LITTLE_ENDIAN
905 /* Convert FROM host byte order */
906 REVERSE64(context->bitcount[0],context->bitcount[0]);
907 REVERSE64(context->bitcount[1],context->bitcount[1]);
908 #endif
909 if (usedspace > 0) {
910 /* Begin padding with a 1 bit: */
911 context->buffer[usedspace++] = 0x80;
912
913 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
914 /* Set-up for the last transform: */
915 MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
916 } else {
917 if (usedspace < SHA512_BLOCK_LENGTH) {
918 MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
919 }
920 /* Do second-to-last transform: */
921 SHA512_Transform(context, (sha2_word64*)context->buffer);
922
923 /* And set-up for the last transform: */
924 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
925 }
926 } else {
927 /* Prepare for final transform: */
928 MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
929
930 /* Begin padding with a 1 bit: */
931 *context->buffer = 0x80;
932 }
933 /* Store the length of input data (in bits): */
934 union {
935 sha2_byte* c;
936 sha2_word64* l;
937 } bitcount;
938 bitcount.c = &context->buffer[SHA512_SHORT_BLOCK_LENGTH];
939 bitcount.l[0] = context->bitcount[1];
940 bitcount.l[1] = context->bitcount[0];
941
942 /* Final transform: */
943 SHA512_Transform(context, (sha2_word64*)context->buffer);
944 }
945
946 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
947 sha2_word64 *d = (sha2_word64*)digest;
948
949 /* Sanity check: */
950 assert(context != (SHA512_CTX*)0);
951
952 /* If no digest buffer is passed, we don't bother doing this: */
953 if (digest != (sha2_byte*)0) {
954 SHA512_Last(context);
955
956 /* Save the hash data for output: */
957 #if BYTE_ORDER == LITTLE_ENDIAN
958 {
959 /* Convert TO host byte order */
960 int j;
961 for (j = 0; j < 8; j++) {
962 REVERSE64(context->state[j],context->state[j]);
963 *d++ = context->state[j];
964 }
965 }
966 #else
967 MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
968 #endif
969 }
970
971 /* Zero out state data */
972 MEMSET_BZERO(context, sizeof(*context));
973 }
974
975 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
976 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
977 int i;
978
979 /* Sanity check: */
980 assert(context != (SHA512_CTX*)0);
981
982 if (buffer != (char*)0) {
983 SHA512_Final(digest, context);
984
985 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
986 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
987 *buffer++ = sha2_hex_digits[*d & 0x0f];
988 d++;
989 }
990 *buffer = (char)0;
991 } else {
992 MEMSET_BZERO(context, sizeof(*context));
993 }
994 MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
995 return buffer;
996 }
997
998 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
999 SHA512_CTX context;
1000
1001 SHA512_Init(&context);
1002 SHA512_Update(&context, data, len);
1003 return SHA512_End(&context, digest);
1004 }
1005
1006
1007 /*** SHA-384: *********************************************************/
1008 void SHA384_Init(SHA384_CTX* context) {
1009 if (context == (SHA384_CTX*)0) {
1010 return;
1011 }
1012 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
1013 MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
1014 context->bitcount[0] = context->bitcount[1] = 0;
1015 }
1016
1017 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1018 SHA512_Update((SHA512_CTX*)context, data, len);
1019 }
1020
1021 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1022 sha2_word64 *d = (sha2_word64*)digest;
1023
1024 /* Sanity check: */
1025 assert(context != (SHA384_CTX*)0);
1026
1027 /* If no digest buffer is passed, we don't bother doing this: */
1028 if (digest != (sha2_byte*)0) {
1029 SHA512_Last((SHA512_CTX*)context);
1030
1031 /* Save the hash data for output: */
1032 #if BYTE_ORDER == LITTLE_ENDIAN
1033 {
1034 /* Convert TO host byte order */
1035 int j;
1036 for (j = 0; j < 6; j++) {
1037 REVERSE64(context->state[j],context->state[j]);
1038 *d++ = context->state[j];
1039 }
1040 }
1041 #else
1042 MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
1043 #endif
1044 }
1045
1046 /* Zero out state data */
1047 MEMSET_BZERO(context, sizeof(*context));
1048 }
1049
1050 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1051 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1052 int i;
1053
1054 /* Sanity check: */
1055 assert(context != (SHA384_CTX*)0);
1056
1057 if (buffer != (char*)0) {
1058 SHA384_Final(digest, context);
1059
1060 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1061 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1062 *buffer++ = sha2_hex_digits[*d & 0x0f];
1063 d++;
1064 }
1065 *buffer = (char)0;
1066 } else {
1067 MEMSET_BZERO(context, sizeof(*context));
1068 }
1069 MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
1070 return buffer;
1071 }
1072
1073 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1074 SHA384_CTX context;
1075
1076 SHA384_Init(&context);
1077 SHA384_Update(&context, data, len);
1078 return SHA384_End(&context, digest);
1079 }
1080