3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
5 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
37 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
38 #include <assert.h> /* assert() */
39 #include "sha2_internal.h"
43 * Some sanity checking code is included using assert(). On my FreeBSD
44 * system, this additional code can be removed by compiling with NDEBUG
45 * defined. Check your own systems manpage on assert() to see how to
46 * compile WITHOUT the sanity checking code on your system.
48 * UNROLLED TRANSFORM LOOP NOTE:
49 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
50 * loop version for the hash transform rounds (defined using macros
51 * later in this file). Either define on the command line, for example:
53 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
57 * #define SHA2_UNROLL_TRANSFORM
62 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
66 * Please make sure that your system defines BYTE_ORDER. If your
67 * architecture is little-endian, make sure it also defines
68 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
71 * If your system does not define the above, then you can do so by
74 * #define LITTLE_ENDIAN 1234
75 * #define BIG_ENDIAN 4321
77 * And for little-endian machines, add:
79 * #define BYTE_ORDER LITTLE_ENDIAN
81 * Or for big-endian machines:
83 * #define BYTE_ORDER BIG_ENDIAN
85 * The FreeBSD machine this was written on defines BYTE_ORDER
86 * appropriately by including <sys/types.h> (which in turn includes
87 * <machine/endian.h> where the appropriate definitions are actually
90 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
91 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
95 * Define the followingsha2_* types to types of the correct length on
96 * the native archtecture. Most BSD systems and Linux define u_intXX_t
97 * types. Machines with very recent ANSI C headers, can use the
98 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
99 * during compile or in the sha.h header file.
101 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
102 * will need to define these three typedefs below (and the appropriate
103 * ones in sha.h too) by hand according to their system architecture.
105 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
106 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
108 #ifdef SHA2_USE_INTTYPES_H
110 typedef uint8_t sha2_byte
; /* Exactly 1 byte */
111 typedef uint32_t sha2_word32
; /* Exactly 4 bytes */
112 typedef uint64_t sha2_word64
; /* Exactly 8 bytes */
114 #else /* SHA2_USE_INTTYPES_H */
116 typedef u_int8_t sha2_byte
; /* Exactly 1 byte */
117 typedef u_int32_t sha2_word32
; /* Exactly 4 bytes */
118 typedef u_int64_t sha2_word64
; /* Exactly 8 bytes */
120 #endif /* SHA2_USE_INTTYPES_H */
123 /*** SHA-256/384/512 Various Length Definitions ***********************/
124 /* NOTE: Most of these are in sha2.h */
125 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
126 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
127 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
130 /*** ENDIAN REVERSAL MACROS *******************************************/
131 #if BYTE_ORDER == LITTLE_ENDIAN
132 #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
133 #define REVERSE32(w,x) { \
134 (x) = __builtin_bswap32(w); \
136 #define REVERSE64(w,x) { \
137 (x) = __builtin_bswap64(w); \
140 #define REVERSE32(w,x) { \
141 sha2_word32 tmp = (w); \
142 tmp = (tmp >> 16) | (tmp << 16); \
143 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
145 #define REVERSE64(w,x) { \
146 sha2_word64 tmp = (w); \
147 tmp = (tmp >> 32) | (tmp << 32); \
148 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
149 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
150 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
151 ((tmp & 0x0000ffff0000ffffULL) << 16); \
154 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
157 * Macro for incrementally adding the unsigned 64-bit integer n to the
158 * unsigned 128-bit integer (represented using a two-element array of
161 #define ADDINC128(w,n) { \
162 (w)[0] += (sha2_word64)(n); \
163 if ((w)[0] < (n)) { \
169 * Macros for copying blocks of memory and for zeroing out ranges
170 * of memory. Using these macros makes it easy to switch from
171 * using memset()/memcpy() and using bzero()/bcopy().
173 * Please define either SHA2_USE_MEMSET_MEMCPY or define
174 * SHA2_USE_BZERO_BCOPY depending on which function set you
177 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
178 /* Default to memset()/memcpy() if no option is specified */
179 #define SHA2_USE_MEMSET_MEMCPY 1
181 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
182 /* Abort with an error if BOTH options are defined */
183 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
186 #ifdef SHA2_USE_MEMSET_MEMCPY
187 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
188 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
190 #ifdef SHA2_USE_BZERO_BCOPY
191 #define MEMSET_BZERO(p,l) bzero((p), (l))
192 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
196 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
198 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
200 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
201 * S is a ROTATION) because the SHA-256/384/512 description document
202 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
203 * same "backwards" definition.
205 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
206 #define R(b,x) ((x) >> (b))
207 /* 32-bit Rotate-right (used in SHA-256): */
208 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
209 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
210 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
212 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
213 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
214 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
216 /* Four of six logical functions used in SHA-256: */
217 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
218 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
219 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
220 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
222 /* Four of six logical functions used in SHA-384 and SHA-512: */
223 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
224 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
225 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
226 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
228 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
229 /* NOTE: These should not be accessed directly from outside this
230 * library -- they are intended for private internal visibility/use
233 static void SHA512_Last(SHA512_CTX
*);
234 static void SHA256_Transform(SHA256_CTX
*, const sha2_word32
*);
235 static void SHA512_Transform(SHA512_CTX
*, const sha2_word64
*);
238 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
239 /* Hash constant words K for SHA-256: */
240 const static sha2_word32 K256
[64] = {
241 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
242 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
243 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
244 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
245 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
246 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
247 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
248 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
249 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
250 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
251 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
252 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
253 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
254 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
255 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
256 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
259 /* Initial hash value H for SHA-256: */
260 const static sha2_word32 sha256_initial_hash_value
[8] = {
271 /* Hash constant words K for SHA-384 and SHA-512: */
272 const static sha2_word64 K512
[80] = {
273 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
274 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
275 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
276 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
277 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
278 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
279 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
280 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
281 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
282 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
283 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
284 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
285 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
286 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
287 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
288 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
289 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
290 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
291 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
292 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
293 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
294 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
295 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
296 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
297 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
298 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
299 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
300 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
301 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
302 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
303 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
304 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
305 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
306 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
307 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
308 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
309 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
310 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
311 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
312 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
315 /* Initial hash value H for SHA-384 */
316 const static sha2_word64 sha384_initial_hash_value
[8] = {
317 0xcbbb9d5dc1059ed8ULL
,
318 0x629a292a367cd507ULL
,
319 0x9159015a3070dd17ULL
,
320 0x152fecd8f70e5939ULL
,
321 0x67332667ffc00b31ULL
,
322 0x8eb44a8768581511ULL
,
323 0xdb0c2e0d64f98fa7ULL
,
324 0x47b5481dbefa4fa4ULL
327 /* Initial hash value H for SHA-512 */
328 const static sha2_word64 sha512_initial_hash_value
[8] = {
329 0x6a09e667f3bcc908ULL
,
330 0xbb67ae8584caa73bULL
,
331 0x3c6ef372fe94f82bULL
,
332 0xa54ff53a5f1d36f1ULL
,
333 0x510e527fade682d1ULL
,
334 0x9b05688c2b3e6c1fULL
,
335 0x1f83d9abfb41bd6bULL
,
336 0x5be0cd19137e2179ULL
340 * Constant used by SHA256/384/512_End() functions for converting the
341 * digest to a readable hexadecimal character string:
343 static const char *sha2_hex_digits
= "0123456789abcdef";
346 /*** SHA-256: *********************************************************/
347 void SHA256_Init(SHA256_CTX
* context
) {
348 if (context
== (SHA256_CTX
*)0) {
351 MEMCPY_BCOPY(context
->state
, sha256_initial_hash_value
, SHA256_DIGEST_LENGTH
);
352 MEMSET_BZERO(context
->buffer
, SHA256_BLOCK_LENGTH
);
353 context
->bitcount
= 0;
356 #ifdef SHA2_UNROLL_TRANSFORM
358 /* Unrolled SHA-256 round macros: */
360 #if BYTE_ORDER == LITTLE_ENDIAN
362 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
363 REVERSE32(*data++, W256[j]); \
364 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
367 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
371 #else /* BYTE_ORDER == LITTLE_ENDIAN */
373 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
374 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
375 K256[j] + (W256[j] = *data++); \
377 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
380 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
382 #define ROUND256(a,b,c,d,e,f,g,h) \
383 s0 = W256[(j+1)&0x0f]; \
384 s0 = sigma0_256(s0); \
385 s1 = W256[(j+14)&0x0f]; \
386 s1 = sigma1_256(s1); \
387 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
388 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
390 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
393 static void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
394 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
395 sha2_word32 T1
, *W256
;
398 W256
= (sha2_word32
*)context
->buffer
;
400 /* Initialize registers with the prev. intermediate value */
401 a
= context
->state
[0];
402 b
= context
->state
[1];
403 c
= context
->state
[2];
404 d
= context
->state
[3];
405 e
= context
->state
[4];
406 f
= context
->state
[5];
407 g
= context
->state
[6];
408 h
= context
->state
[7];
412 /* Rounds 0 to 15 (unrolled): */
413 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
414 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
415 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
416 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
417 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
418 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
419 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
420 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
423 /* Now for the remaining rounds to 64: */
425 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
426 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
427 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
428 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
429 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
430 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
431 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
432 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
435 /* Compute the current intermediate hash value */
436 context
->state
[0] += a
;
437 context
->state
[1] += b
;
438 context
->state
[2] += c
;
439 context
->state
[3] += d
;
440 context
->state
[4] += e
;
441 context
->state
[5] += f
;
442 context
->state
[6] += g
;
443 context
->state
[7] += h
;
446 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
449 #else /* SHA2_UNROLL_TRANSFORM */
451 static void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
452 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
453 sha2_word32 T1
, T2
, *W256
;
456 W256
= (sha2_word32
*)context
->buffer
;
458 /* Initialize registers with the prev. intermediate value */
459 a
= context
->state
[0];
460 b
= context
->state
[1];
461 c
= context
->state
[2];
462 d
= context
->state
[3];
463 e
= context
->state
[4];
464 f
= context
->state
[5];
465 g
= context
->state
[6];
466 h
= context
->state
[7];
470 #if BYTE_ORDER == LITTLE_ENDIAN
471 /* Copy data while converting to host byte order */
472 REVERSE32(*data
++,W256
[j
]);
473 /* Apply the SHA-256 compression function to update a..h */
474 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
475 #else /* BYTE_ORDER == LITTLE_ENDIAN */
476 /* Apply the SHA-256 compression function to update a..h with copy */
477 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + (W256
[j
] = *data
++);
478 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
479 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
493 /* Part of the message block expansion: */
494 s0
= W256
[(j
+1)&0x0f];
496 s1
= W256
[(j
+14)&0x0f];
499 /* Apply the SHA-256 compression function to update a..h */
500 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
501 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
502 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
515 /* Compute the current intermediate hash value */
516 context
->state
[0] += a
;
517 context
->state
[1] += b
;
518 context
->state
[2] += c
;
519 context
->state
[3] += d
;
520 context
->state
[4] += e
;
521 context
->state
[5] += f
;
522 context
->state
[6] += g
;
523 context
->state
[7] += h
;
526 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
529 #endif /* SHA2_UNROLL_TRANSFORM */
531 void SHA256_Update(SHA256_CTX
* context
, const sha2_byte
*data
, size_t len
) {
532 unsigned int freespace
, usedspace
;
535 /* Calling with no data is valid - we do nothing */
540 assert(context
!= (SHA256_CTX
*)0 && data
!= (sha2_byte
*)0);
542 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
544 /* Calculate how much free space is available in the buffer */
545 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
547 if (len
>= freespace
) {
548 /* Fill the buffer completely and process it */
549 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, freespace
);
550 context
->bitcount
+= freespace
<< 3;
553 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
555 /* The buffer is not yet full */
556 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, len
);
557 context
->bitcount
+= len
<< 3;
559 usedspace
= freespace
= 0;
563 while (len
>= SHA256_BLOCK_LENGTH
) {
564 /* Process as many complete blocks as we can */
565 sha2_byte buffer
[SHA256_BLOCK_LENGTH
];
566 MEMCPY_BCOPY(buffer
, data
, SHA256_BLOCK_LENGTH
);
567 SHA256_Transform(context
, (sha2_word32
*)buffer
);
568 context
->bitcount
+= SHA256_BLOCK_LENGTH
<< 3;
569 len
-= SHA256_BLOCK_LENGTH
;
570 data
+= SHA256_BLOCK_LENGTH
;
573 /* There's left-overs, so save 'em */
574 MEMCPY_BCOPY(context
->buffer
, data
, len
);
575 context
->bitcount
+= len
<< 3;
578 usedspace
= freespace
= 0;
581 void SHA256_Final(sha2_byte digest
[], SHA256_CTX
* context
) {
582 sha2_word32
*d
= (sha2_word32
*)digest
;
583 unsigned int usedspace
;
586 assert(context
!= (SHA256_CTX
*)0);
588 /* If no digest buffer is passed, we don't bother doing this: */
589 if (digest
!= (sha2_byte
*)0) {
590 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
591 #if BYTE_ORDER == LITTLE_ENDIAN
592 /* Convert FROM host byte order */
593 REVERSE64(context
->bitcount
,context
->bitcount
);
596 /* Begin padding with a 1 bit: */
597 context
->buffer
[usedspace
++] = 0x80;
599 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
600 /* Set-up for the last transform: */
601 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
603 if (usedspace
< SHA256_BLOCK_LENGTH
) {
604 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA256_BLOCK_LENGTH
- usedspace
);
606 /* Do second-to-last transform: */
607 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
609 /* And set-up for the last transform: */
610 MEMSET_BZERO(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
613 /* Set-up for the last transform: */
614 MEMSET_BZERO(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
616 /* Begin padding with a 1 bit: */
617 *context
->buffer
= 0x80;
619 /* Set the bit count: */
624 bitcount
.c
= &context
->buffer
[SHA256_SHORT_BLOCK_LENGTH
];
625 *(bitcount
.l
) = context
->bitcount
;
627 /* Final transform: */
628 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
630 #if BYTE_ORDER == LITTLE_ENDIAN
632 /* Convert TO host byte order */
634 for (j
= 0; j
< 8; j
++) {
635 REVERSE32(context
->state
[j
],context
->state
[j
]);
636 *d
++ = context
->state
[j
];
640 MEMCPY_BCOPY(d
, context
->state
, SHA256_DIGEST_LENGTH
);
644 /* Clean up state data: */
645 MEMSET_BZERO(context
, sizeof(*context
));
649 char *SHA256_End(SHA256_CTX
* context
, char buffer
[]) {
650 sha2_byte digest
[SHA256_DIGEST_LENGTH
], *d
= digest
;
654 assert(context
!= (SHA256_CTX
*)0);
656 if (buffer
!= (char*)0) {
657 SHA256_Final(digest
, context
);
659 for (i
= 0; i
< SHA256_DIGEST_LENGTH
; i
++) {
660 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
661 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
666 MEMSET_BZERO(context
, sizeof(*context
));
668 MEMSET_BZERO(digest
, SHA256_DIGEST_LENGTH
);
672 char* SHA256_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA256_DIGEST_STRING_LENGTH
]) {
675 SHA256_Init(&context
);
676 SHA256_Update(&context
, data
, len
);
677 return SHA256_End(&context
, digest
);
681 /*** SHA-512: *********************************************************/
682 void SHA512_Init(SHA512_CTX
* context
) {
683 if (context
== (SHA512_CTX
*)0) {
686 MEMCPY_BCOPY(context
->state
, sha512_initial_hash_value
, SHA512_DIGEST_LENGTH
);
687 MEMSET_BZERO(context
->buffer
, SHA512_BLOCK_LENGTH
);
688 context
->bitcount
[0] = context
->bitcount
[1] = 0;
691 #ifdef SHA2_UNROLL_TRANSFORM
693 /* Unrolled SHA-512 round macros: */
694 #if BYTE_ORDER == LITTLE_ENDIAN
696 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
697 REVERSE64(*data++, W512[j]); \
698 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
701 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
705 #else /* BYTE_ORDER == LITTLE_ENDIAN */
707 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
708 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
709 K512[j] + (W512[j] = *data++); \
711 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
714 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
716 #define ROUND512(a,b,c,d,e,f,g,h) \
717 s0 = W512[(j+1)&0x0f]; \
718 s0 = sigma0_512(s0); \
719 s1 = W512[(j+14)&0x0f]; \
720 s1 = sigma1_512(s1); \
721 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
722 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
724 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
727 static void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
728 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
729 sha2_word64 T1
, *W512
= (sha2_word64
*)context
->buffer
;
732 /* Initialize registers with the prev. intermediate value */
733 a
= context
->state
[0];
734 b
= context
->state
[1];
735 c
= context
->state
[2];
736 d
= context
->state
[3];
737 e
= context
->state
[4];
738 f
= context
->state
[5];
739 g
= context
->state
[6];
740 h
= context
->state
[7];
744 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
745 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
746 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
747 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
748 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
749 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
750 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
751 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
754 /* Now for the remaining rounds up to 79: */
756 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
757 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
758 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
759 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
760 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
761 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
762 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
763 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
766 /* Compute the current intermediate hash value */
767 context
->state
[0] += a
;
768 context
->state
[1] += b
;
769 context
->state
[2] += c
;
770 context
->state
[3] += d
;
771 context
->state
[4] += e
;
772 context
->state
[5] += f
;
773 context
->state
[6] += g
;
774 context
->state
[7] += h
;
777 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
780 #else /* SHA2_UNROLL_TRANSFORM */
782 static void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
783 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
784 sha2_word64 T1
, T2
, *W512
= (sha2_word64
*)context
->buffer
;
787 /* Initialize registers with the prev. intermediate value */
788 a
= context
->state
[0];
789 b
= context
->state
[1];
790 c
= context
->state
[2];
791 d
= context
->state
[3];
792 e
= context
->state
[4];
793 f
= context
->state
[5];
794 g
= context
->state
[6];
795 h
= context
->state
[7];
799 #if BYTE_ORDER == LITTLE_ENDIAN
800 /* Convert TO host byte order */
801 REVERSE64(*data
++, W512
[j
]);
802 /* Apply the SHA-512 compression function to update a..h */
803 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
804 #else /* BYTE_ORDER == LITTLE_ENDIAN */
805 /* Apply the SHA-512 compression function to update a..h with copy */
806 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + (W512
[j
] = *data
++);
807 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
808 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
822 /* Part of the message block expansion: */
823 s0
= W512
[(j
+1)&0x0f];
825 s1
= W512
[(j
+14)&0x0f];
828 /* Apply the SHA-512 compression function to update a..h */
829 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
830 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
831 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
844 /* Compute the current intermediate hash value */
845 context
->state
[0] += a
;
846 context
->state
[1] += b
;
847 context
->state
[2] += c
;
848 context
->state
[3] += d
;
849 context
->state
[4] += e
;
850 context
->state
[5] += f
;
851 context
->state
[6] += g
;
852 context
->state
[7] += h
;
855 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
858 #endif /* SHA2_UNROLL_TRANSFORM */
860 void SHA512_Update(SHA512_CTX
* context
, const sha2_byte
*data
, size_t len
) {
861 unsigned int freespace
, usedspace
;
864 /* Calling with no data is valid - we do nothing */
869 assert(context
!= (SHA512_CTX
*)0 && data
!= (sha2_byte
*)0);
871 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
873 /* Calculate how much free space is available in the buffer */
874 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
876 if (len
>= freespace
) {
877 /* Fill the buffer completely and process it */
878 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, freespace
);
879 ADDINC128(context
->bitcount
, freespace
<< 3);
882 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
884 /* The buffer is not yet full */
885 MEMCPY_BCOPY(&context
->buffer
[usedspace
], data
, len
);
886 ADDINC128(context
->bitcount
, len
<< 3);
888 usedspace
= freespace
= 0;
892 while (len
>= SHA512_BLOCK_LENGTH
) {
893 /* Process as many complete blocks as we can */
894 sha2_byte buffer
[SHA512_BLOCK_LENGTH
];
895 MEMCPY_BCOPY(buffer
, data
, SHA512_BLOCK_LENGTH
);
896 SHA512_Transform(context
, (sha2_word64
*)buffer
);
897 ADDINC128(context
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
898 len
-= SHA512_BLOCK_LENGTH
;
899 data
+= SHA512_BLOCK_LENGTH
;
902 /* There's left-overs, so save 'em */
903 MEMCPY_BCOPY(context
->buffer
, data
, len
);
904 ADDINC128(context
->bitcount
, len
<< 3);
907 usedspace
= freespace
= 0;
910 static void SHA512_Last(SHA512_CTX
* context
) {
911 unsigned int usedspace
;
913 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
914 #if BYTE_ORDER == LITTLE_ENDIAN
915 /* Convert FROM host byte order */
916 REVERSE64(context
->bitcount
[0],context
->bitcount
[0]);
917 REVERSE64(context
->bitcount
[1],context
->bitcount
[1]);
920 /* Begin padding with a 1 bit: */
921 context
->buffer
[usedspace
++] = 0x80;
923 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
924 /* Set-up for the last transform: */
925 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
927 if (usedspace
< SHA512_BLOCK_LENGTH
) {
928 MEMSET_BZERO(&context
->buffer
[usedspace
], SHA512_BLOCK_LENGTH
- usedspace
);
930 /* Do second-to-last transform: */
931 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
933 /* And set-up for the last transform: */
934 MEMSET_BZERO(context
->buffer
, SHA512_BLOCK_LENGTH
- 2);
937 /* Prepare for final transform: */
938 MEMSET_BZERO(context
->buffer
, SHA512_SHORT_BLOCK_LENGTH
);
940 /* Begin padding with a 1 bit: */
941 *context
->buffer
= 0x80;
943 /* Store the length of input data (in bits): */
948 bitcount
.c
= &context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
];
949 bitcount
.l
[0] = context
->bitcount
[1];
950 bitcount
.l
[1] = context
->bitcount
[0];
952 /* Final transform: */
953 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
956 void SHA512_Final(sha2_byte digest
[], SHA512_CTX
* context
) {
957 sha2_word64
*d
= (sha2_word64
*)digest
;
960 assert(context
!= (SHA512_CTX
*)0);
962 /* If no digest buffer is passed, we don't bother doing this: */
963 if (digest
!= (sha2_byte
*)0) {
964 SHA512_Last(context
);
966 /* Save the hash data for output: */
967 #if BYTE_ORDER == LITTLE_ENDIAN
969 /* Convert TO host byte order */
971 for (j
= 0; j
< 8; j
++) {
972 REVERSE64(context
->state
[j
],context
->state
[j
]);
973 *d
++ = context
->state
[j
];
977 MEMCPY_BCOPY(d
, context
->state
, SHA512_DIGEST_LENGTH
);
981 /* Zero out state data */
982 MEMSET_BZERO(context
, sizeof(*context
));
985 char *SHA512_End(SHA512_CTX
* context
, char buffer
[]) {
986 sha2_byte digest
[SHA512_DIGEST_LENGTH
], *d
= digest
;
990 assert(context
!= (SHA512_CTX
*)0);
992 if (buffer
!= (char*)0) {
993 SHA512_Final(digest
, context
);
995 for (i
= 0; i
< SHA512_DIGEST_LENGTH
; i
++) {
996 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
997 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1002 MEMSET_BZERO(context
, sizeof(*context
));
1004 MEMSET_BZERO(digest
, SHA512_DIGEST_LENGTH
);
1008 char* SHA512_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA512_DIGEST_STRING_LENGTH
]) {
1011 SHA512_Init(&context
);
1012 SHA512_Update(&context
, data
, len
);
1013 return SHA512_End(&context
, digest
);
1017 /*** SHA-384: *********************************************************/
1018 void SHA384_Init(SHA384_CTX
* context
) {
1019 if (context
== (SHA384_CTX
*)0) {
1022 MEMCPY_BCOPY(context
->state
, sha384_initial_hash_value
, SHA512_DIGEST_LENGTH
);
1023 MEMSET_BZERO(context
->buffer
, SHA384_BLOCK_LENGTH
);
1024 context
->bitcount
[0] = context
->bitcount
[1] = 0;
1027 void SHA384_Update(SHA384_CTX
* context
, const sha2_byte
* data
, size_t len
) {
1028 SHA512_Update((SHA512_CTX
*)context
, data
, len
);
1031 void SHA384_Final(sha2_byte digest
[], SHA384_CTX
* context
) {
1032 sha2_word64
*d
= (sha2_word64
*)digest
;
1035 assert(context
!= (SHA384_CTX
*)0);
1037 /* If no digest buffer is passed, we don't bother doing this: */
1038 if (digest
!= (sha2_byte
*)0) {
1039 SHA512_Last((SHA512_CTX
*)context
);
1041 /* Save the hash data for output: */
1042 #if BYTE_ORDER == LITTLE_ENDIAN
1044 /* Convert TO host byte order */
1046 for (j
= 0; j
< 6; j
++) {
1047 REVERSE64(context
->state
[j
],context
->state
[j
]);
1048 *d
++ = context
->state
[j
];
1052 MEMCPY_BCOPY(d
, context
->state
, SHA384_DIGEST_LENGTH
);
1056 /* Zero out state data */
1057 MEMSET_BZERO(context
, sizeof(*context
));
1060 char *SHA384_End(SHA384_CTX
* context
, char buffer
[]) {
1061 sha2_byte digest
[SHA384_DIGEST_LENGTH
], *d
= digest
;
1065 assert(context
!= (SHA384_CTX
*)0);
1067 if (buffer
!= (char*)0) {
1068 SHA384_Final(digest
, context
);
1070 for (i
= 0; i
< SHA384_DIGEST_LENGTH
; i
++) {
1071 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1072 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1077 MEMSET_BZERO(context
, sizeof(*context
));
1079 MEMSET_BZERO(digest
, SHA384_DIGEST_LENGTH
);
1083 char* SHA384_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA384_DIGEST_STRING_LENGTH
]) {
1086 SHA384_Init(&context
);
1087 SHA384_Update(&context
, data
, len
);
1088 return SHA384_End(&context
, digest
);