2 * Copyright (c) 2005-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * @OSF_FREE_COPYRIGHT@
32 * @APPLE_FREE_COPYRIGHT@
36 * Author: Bill Angell, Apple
39 * Random diagnostics, augmented Derek Kumar 2011
45 #include <kern/machine.h>
46 #include <kern/processor.h>
47 #include <mach/machine.h>
48 #include <mach/processor_info.h>
49 #include <mach/mach_types.h>
50 #include <mach/boolean.h>
51 #include <kern/thread.h>
52 #include <kern/task.h>
53 #include <kern/ipc_kobject.h>
54 #include <mach/vm_param.h>
56 #include <ipc/ipc_entry.h>
57 #include <ipc/ipc_space.h>
58 #include <ipc/ipc_object.h>
59 #include <ipc/ipc_port.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_page.h>
64 #include <pexpert/pexpert.h>
65 #include <console/video_console.h>
66 #include <i386/cpu_data.h>
67 #include <i386/Diagnostics.h>
69 #include <i386/pmCPU.h>
71 #include <mach/i386/syscall_sw.h>
72 #include <kern/kalloc.h>
73 #include <sys/kdebug.h>
74 #include <i386/machine_cpu.h>
75 #include <i386/misc_protos.h>
76 #include <i386/cpuid.h>
79 #include <kern/monotonic.h>
80 #endif /* MONOTONIC */
82 #define PERMIT_PERMCHECK (0)
85 uint64_t lastRuptClear
= 0ULL;
86 boolean_t diag_pmc_enabled
= FALSE
;
87 void cpu_powerstats(void *);
93 uint64_t crtimes
[CPU_RTIME_BINS
];
94 uint64_t citimes
[CPU_ITIME_BINS
];
95 uint64_t crtime_total
;
96 uint64_t citime_total
;
97 uint64_t cpu_idle_exits
;
103 #endif /* DIAG_ALL_PMCS */
104 } core_energy_stat_t
;
107 uint64_t pkes_version
;
108 uint64_t pkg_cres
[2][7];
109 uint64_t pkg_power_unit
;
114 uint64_t llc_flushed_cycles
;
115 uint64_t ring_ratio_instantaneous
;
116 uint64_t IA_frequency_clipping_cause
;
117 uint64_t GT_frequency_clipping_cause
;
118 uint64_t pkg_idle_exits
;
119 uint64_t pkg_rtimes
[CPU_RTIME_BINS
];
120 uint64_t pkg_itimes
[CPU_ITIME_BINS
];
121 uint64_t mbus_delay_time
;
122 uint64_t mint_delay_time
;
124 core_energy_stat_t cest
[];
125 } pkg_energy_statistics_t
;
129 diagCall64(x86_saved_state_t
* state
)
131 uint64_t curpos
, i
, j
;
132 uint64_t selector
, data
;
133 uint64_t currNap
, durNap
;
134 x86_saved_state64_t
*regs
;
138 assert(is_saved_state64(state
));
139 regs
= saved_state64(state
);
141 diagflag
= ((dgWork
.dgFlags
& enaDiagSCs
) != 0);
142 selector
= regs
->rdi
;
144 switch (selector
) { /* Select the routine */
145 case dgRuptStat
: /* Suck Interruption statistics */
146 (void) ml_set_interrupts_enabled(TRUE
);
147 data
= regs
->rsi
; /* Get the number of processors */
149 if (data
== 0) { /* If no location is specified for data, clear all
152 for (i
= 0; i
< real_ncpus
; i
++) { /* Cycle through
154 for (j
= 0; j
< 256; j
++)
155 cpu_data_ptr
[i
]->cpu_hwIntCnt
[j
] = 0;
158 lastRuptClear
= mach_absolute_time(); /* Get the time of clear */
159 rval
= 1; /* Normal return */
160 (void) ml_set_interrupts_enabled(FALSE
);
164 (void) copyout((char *) &real_ncpus
, data
, sizeof(real_ncpus
)); /* Copy out number of
166 currNap
= mach_absolute_time(); /* Get the time now */
167 durNap
= currNap
- lastRuptClear
; /* Get the last interval
170 durNap
= 1; /* This is a very short time, make it
173 curpos
= data
+ sizeof(real_ncpus
); /* Point to the next
176 for (i
= 0; i
< real_ncpus
; i
++) { /* Move 'em all out */
177 (void) copyout((char *) &durNap
, curpos
, 8); /* Copy out the time
178 * since last clear */
179 (void) copyout((char *) &cpu_data_ptr
[i
]->cpu_hwIntCnt
, curpos
+ 8, 256 * sizeof(uint32_t)); /* Copy out interrupt
182 curpos
= curpos
+ (256 * sizeof(uint32_t) + 8); /* Point to next out put
186 (void) ml_set_interrupts_enabled(FALSE
);
191 uint32_t c2l
= 0, c2h
= 0, c3l
= 0, c3h
= 0, c6l
= 0, c6h
= 0, c7l
= 0, c7h
= 0;
192 uint32_t pkg_unit_l
= 0, pkg_unit_h
= 0, pkg_ecl
= 0, pkg_ech
= 0;
194 pkg_energy_statistics_t pkes
;
195 core_energy_stat_t cest
;
197 bzero(&pkes
, sizeof(pkes
));
198 bzero(&cest
, sizeof(cest
));
200 pkes
.pkes_version
= 1ULL;
201 rdmsr_carefully(MSR_IA32_PKG_C2_RESIDENCY
, &c2l
, &c2h
);
202 rdmsr_carefully(MSR_IA32_PKG_C3_RESIDENCY
, &c3l
, &c3h
);
203 rdmsr_carefully(MSR_IA32_PKG_C6_RESIDENCY
, &c6l
, &c6h
);
204 rdmsr_carefully(MSR_IA32_PKG_C7_RESIDENCY
, &c7l
, &c7h
);
206 pkes
.pkg_cres
[0][0] = ((uint64_t)c2h
<< 32) | c2l
;
207 pkes
.pkg_cres
[0][1] = ((uint64_t)c3h
<< 32) | c3l
;
208 pkes
.pkg_cres
[0][2] = ((uint64_t)c6h
<< 32) | c6l
;
209 pkes
.pkg_cres
[0][3] = ((uint64_t)c7h
<< 32) | c7l
;
211 uint64_t c8r
= ~0ULL, c9r
= ~0ULL, c10r
= ~0ULL;
213 rdmsr64_carefully(MSR_IA32_PKG_C8_RESIDENCY
, &c8r
);
214 rdmsr64_carefully(MSR_IA32_PKG_C9_RESIDENCY
, &c9r
);
215 rdmsr64_carefully(MSR_IA32_PKG_C10_RESIDENCY
, &c10r
);
217 pkes
.pkg_cres
[0][4] = c8r
;
218 pkes
.pkg_cres
[0][5] = c9r
;
219 pkes
.pkg_cres
[0][6] = c10r
;
221 pkes
.ddr_energy
= ~0ULL;
222 rdmsr64_carefully(MSR_IA32_DDR_ENERGY_STATUS
, &pkes
.ddr_energy
);
223 pkes
.llc_flushed_cycles
= ~0ULL;
224 rdmsr64_carefully(MSR_IA32_LLC_FLUSHED_RESIDENCY_TIMER
, &pkes
.llc_flushed_cycles
);
226 pkes
.ring_ratio_instantaneous
= ~0ULL;
227 rdmsr64_carefully(MSR_IA32_RING_PERF_STATUS
, &pkes
.ring_ratio_instantaneous
);
229 pkes
.IA_frequency_clipping_cause
= ~0ULL;
231 uint32_t ia_perf_limits
= MSR_IA32_IA_PERF_LIMIT_REASONS
;
232 /* Should perhaps be a generic register map module for these
233 * registers with identical functionality that were renumbered.
235 switch (cpuid_cpufamily()) {
236 case CPUFAMILY_INTEL_SKYLAKE
:
237 case CPUFAMILY_INTEL_KABYLAKE
:
238 ia_perf_limits
= MSR_IA32_IA_PERF_LIMIT_REASONS_SKL
;
244 rdmsr64_carefully(ia_perf_limits
, &pkes
.IA_frequency_clipping_cause
);
246 pkes
.GT_frequency_clipping_cause
= ~0ULL;
247 rdmsr64_carefully(MSR_IA32_GT_PERF_LIMIT_REASONS
, &pkes
.GT_frequency_clipping_cause
);
249 rdmsr_carefully(MSR_IA32_PKG_POWER_SKU_UNIT
, &pkg_unit_l
, &pkg_unit_h
);
250 rdmsr_carefully(MSR_IA32_PKG_ENERGY_STATUS
, &pkg_ecl
, &pkg_ech
);
251 pkes
.pkg_power_unit
= ((uint64_t)pkg_unit_h
<< 32) | pkg_unit_l
;
252 pkes
.pkg_energy
= ((uint64_t)pkg_ech
<< 32) | pkg_ecl
;
254 rdmsr_carefully(MSR_IA32_PP0_ENERGY_STATUS
, &pkg_ecl
, &pkg_ech
);
255 pkes
.pp0_energy
= ((uint64_t)pkg_ech
<< 32) | pkg_ecl
;
257 rdmsr_carefully(MSR_IA32_PP1_ENERGY_STATUS
, &pkg_ecl
, &pkg_ech
);
258 pkes
.pp1_energy
= ((uint64_t)pkg_ech
<< 32) | pkg_ecl
;
260 pkes
.pkg_idle_exits
= current_cpu_datap()->lcpu
.package
->package_idle_exits
;
261 pkes
.ncpus
= real_ncpus
;
263 (void) ml_set_interrupts_enabled(TRUE
);
265 copyout(&pkes
, regs
->rsi
, sizeof(pkes
));
266 curpos
= regs
->rsi
+ sizeof(pkes
);
268 mp_cpus_call(CPUMASK_ALL
, ASYNC
, cpu_powerstats
, NULL
);
270 for (i
= 0; i
< real_ncpus
; i
++) {
271 (void) ml_set_interrupts_enabled(FALSE
);
273 cest
.caperf
= cpu_data_ptr
[i
]->cpu_aperf
;
274 cest
.cmperf
= cpu_data_ptr
[i
]->cpu_mperf
;
275 cest
.ccres
[0] = cpu_data_ptr
[i
]->cpu_c3res
;
276 cest
.ccres
[1] = cpu_data_ptr
[i
]->cpu_c6res
;
277 cest
.ccres
[2] = cpu_data_ptr
[i
]->cpu_c7res
;
279 bcopy(&cpu_data_ptr
[i
]->cpu_rtimes
[0], &cest
.crtimes
[0], sizeof(cest
.crtimes
));
280 bcopy(&cpu_data_ptr
[i
]->cpu_itimes
[0], &cest
.citimes
[0], sizeof(cest
.citimes
));
282 cest
.citime_total
= cpu_data_ptr
[i
]->cpu_itime_total
;
283 cest
.crtime_total
= cpu_data_ptr
[i
]->cpu_rtime_total
;
284 cest
.cpu_idle_exits
= cpu_data_ptr
[i
]->cpu_idle_exits
;
286 cest
.cpu_insns
= cpu_data_ptr
[i
]->cpu_monotonic
.mtc_counts
[MT_CORE_INSTRS
];
287 cest
.cpu_ucc
= cpu_data_ptr
[i
]->cpu_monotonic
.mtc_counts
[MT_CORE_CYCLES
];
288 cest
.cpu_urc
= cpu_data_ptr
[i
]->cpu_monotonic
.mtc_counts
[MT_CORE_REFCYCLES
];
289 #endif /* MONOTONIC */
291 bcopy(&cpu_data_ptr
[i
]->cpu_gpmcs
[0], &cest
.gpmcs
[0], sizeof(cest
.gpmcs
));
292 #endif /* DIAG_ALL_PMCS */
293 (void) ml_set_interrupts_enabled(TRUE
);
295 copyout(&cest
, curpos
, sizeof(cest
));
296 curpos
+= sizeof(cest
);
299 (void) ml_set_interrupts_enabled(FALSE
);
304 boolean_t enable
= TRUE
;
306 /* Require architectural PMC v2 or higher, corresponding to
307 * Merom+, or equivalent virtualised facility.
309 do_cpuid(0xA, &cpuinfo
[0]);
310 if ((cpuinfo
[0] & 0xFF) >= 2) {
311 mp_cpus_call(CPUMASK_ALL
, ASYNC
, cpu_pmc_control
, &enable
);
312 diag_pmc_enabled
= TRUE
;
317 #if DEVELOPMENT || DEBUG
320 (void) ml_set_interrupts_enabled(TRUE
);
322 unsigned *ptr
= (unsigned *)kalloc(1024);
326 (void) ml_set_interrupts_enabled(FALSE
);
331 #if DEVELOPMENT || DEBUG
334 (void) ml_set_interrupts_enabled(TRUE
);
336 rval
= pmap_permissions_verify(kernel_pmap
, kernel_map
, 0, ~0ULL);
337 (void) ml_set_interrupts_enabled(FALSE
);
340 #endif /* DEVELOPMENT || DEBUG */
341 default: /* Handle invalid ones */
342 rval
= 0; /* Return an exception */
347 assert(ml_get_interrupts_enabled() == FALSE
);
351 void cpu_powerstats(__unused
void *arg
) {
352 cpu_data_t
*cdp
= current_cpu_datap();
353 __unused
int cnum
= cdp
->cpu_number
;
354 uint32_t cl
= 0, ch
= 0, mpl
= 0, mph
= 0, apl
= 0, aph
= 0;
356 rdmsr_carefully(MSR_IA32_MPERF
, &mpl
, &mph
);
357 rdmsr_carefully(MSR_IA32_APERF
, &apl
, &aph
);
359 cdp
->cpu_mperf
= ((uint64_t)mph
<< 32) | mpl
;
360 cdp
->cpu_aperf
= ((uint64_t)aph
<< 32) | apl
;
362 uint64_t ctime
= mach_absolute_time();
363 cdp
->cpu_rtime_total
+= ctime
- cdp
->cpu_ixtime
;
364 cdp
->cpu_ixtime
= ctime
;
366 rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY
, &cl
, &ch
);
367 cdp
->cpu_c3res
= ((uint64_t)ch
<< 32) | cl
;
369 rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY
, &cl
, &ch
);
370 cdp
->cpu_c6res
= ((uint64_t)ch
<< 32) | cl
;
372 rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY
, &cl
, &ch
);
373 cdp
->cpu_c7res
= ((uint64_t)ch
<< 32) | cl
;
375 if (diag_pmc_enabled
) {
377 mt_update_fixed_counts();
378 #else /* MONOTONIC */
379 uint64_t insns
= read_pmc(FIXED_PMC0
);
380 uint64_t ucc
= read_pmc(FIXED_PMC1
);
381 uint64_t urc
= read_pmc(FIXED_PMC2
);
382 #endif /* !MONOTONIC */
386 for (i
= 0; i
< 4; i
++) {
387 cdp
->cpu_gpmcs
[i
] = read_pmc(i
);
389 #endif /* DIAG_ALL_PMCS */
391 cdp
->cpu_cur_insns
= insns
;
392 cdp
->cpu_cur_ucc
= ucc
;
393 cdp
->cpu_cur_urc
= urc
;
394 #endif /* !MONOTONIC */
398 void cpu_pmc_control(void *enablep
) {
400 boolean_t enable
= *(boolean_t
*)enablep
;
401 cpu_data_t
*cdp
= current_cpu_datap();
404 wrmsr64(0x38F, 0x70000000FULL
);
405 wrmsr64(0x38D, 0x333);
406 set_cr4(get_cr4() | CR4_PCE
);
411 set_cr4((get_cr4() & ~CR4_PCE
));
413 cdp
->cpu_fixed_pmcs_enabled
= enable
;
414 #else /* !MONOTONIC */
415 #pragma unused(enablep)
416 #endif /* MONOTONIC */