]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/Diagnostics.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / i386 / Diagnostics.c
1 /*
2 * Copyright (c) 2005-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_FREE_COPYRIGHT@
30 */
31 /*
32 * @APPLE_FREE_COPYRIGHT@
33 */
34
35 /*
36 * Author: Bill Angell, Apple
37 * Date: 10/auht-five
38 *
39 * Random diagnostics, augmented Derek Kumar 2011
40 *
41 *
42 */
43
44
45 #include <kern/machine.h>
46 #include <kern/processor.h>
47 #include <mach/machine.h>
48 #include <mach/processor_info.h>
49 #include <mach/mach_types.h>
50 #include <mach/boolean.h>
51 #include <kern/thread.h>
52 #include <kern/task.h>
53 #include <kern/ipc_kobject.h>
54 #include <mach/vm_param.h>
55 #include <ipc/port.h>
56 #include <ipc/ipc_entry.h>
57 #include <ipc/ipc_space.h>
58 #include <ipc/ipc_object.h>
59 #include <ipc/ipc_port.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_page.h>
63 #include <vm/pmap.h>
64 #include <pexpert/pexpert.h>
65 #include <console/video_console.h>
66 #include <i386/cpu_data.h>
67 #include <i386/Diagnostics.h>
68 #include <i386/mp.h>
69 #include <i386/pmCPU.h>
70 #include <i386/tsc.h>
71 #include <mach/i386/syscall_sw.h>
72 #include <kern/kalloc.h>
73 #include <sys/kdebug.h>
74 #include <i386/machine_cpu.h>
75 #include <i386/misc_protos.h>
76 #include <i386/cpuid.h>
77
78 #if MONOTONIC
79 #include <kern/monotonic.h>
80 #endif /* MONOTONIC */
81
82 #define PERMIT_PERMCHECK (0)
83
84 diagWork dgWork;
85 uint64_t lastRuptClear = 0ULL;
86 boolean_t diag_pmc_enabled = FALSE;
87 void cpu_powerstats(void *);
88
89 typedef struct {
90 uint64_t caperf;
91 uint64_t cmperf;
92 uint64_t ccres[6];
93 uint64_t crtimes[CPU_RTIME_BINS];
94 uint64_t citimes[CPU_ITIME_BINS];
95 uint64_t crtime_total;
96 uint64_t citime_total;
97 uint64_t cpu_idle_exits;
98 uint64_t cpu_insns;
99 uint64_t cpu_ucc;
100 uint64_t cpu_urc;
101 #if DIAG_ALL_PMCS
102 uint64_t gpmcs[4];
103 #endif /* DIAG_ALL_PMCS */
104 } core_energy_stat_t;
105
106 typedef struct {
107 uint64_t pkes_version;
108 uint64_t pkg_cres[2][7];
109 uint64_t pkg_power_unit;
110 uint64_t pkg_energy;
111 uint64_t pp0_energy;
112 uint64_t pp1_energy;
113 uint64_t ddr_energy;
114 uint64_t llc_flushed_cycles;
115 uint64_t ring_ratio_instantaneous;
116 uint64_t IA_frequency_clipping_cause;
117 uint64_t GT_frequency_clipping_cause;
118 uint64_t pkg_idle_exits;
119 uint64_t pkg_rtimes[CPU_RTIME_BINS];
120 uint64_t pkg_itimes[CPU_ITIME_BINS];
121 uint64_t mbus_delay_time;
122 uint64_t mint_delay_time;
123 uint32_t ncpus;
124 core_energy_stat_t cest[];
125 } pkg_energy_statistics_t;
126
127
128 int
129 diagCall64(x86_saved_state_t * state)
130 {
131 uint64_t curpos, i, j;
132 uint64_t selector, data;
133 uint64_t currNap, durNap;
134 x86_saved_state64_t *regs;
135 boolean_t diagflag;
136 uint32_t rval = 0;
137
138 assert(is_saved_state64(state));
139 regs = saved_state64(state);
140
141 diagflag = ((dgWork.dgFlags & enaDiagSCs) != 0);
142 selector = regs->rdi;
143
144 switch (selector) { /* Select the routine */
145 case dgRuptStat: /* Suck Interruption statistics */
146 (void) ml_set_interrupts_enabled(TRUE);
147 data = regs->rsi; /* Get the number of processors */
148
149 if (data == 0) { /* If no location is specified for data, clear all
150 * counts
151 */
152 for (i = 0; i < real_ncpus; i++) { /* Cycle through
153 * processors */
154 for (j = 0; j < 256; j++) {
155 cpu_data_ptr[i]->cpu_hwIntCnt[j] = 0;
156 }
157 }
158
159 lastRuptClear = mach_absolute_time(); /* Get the time of clear */
160 rval = 1; /* Normal return */
161 (void) ml_set_interrupts_enabled(FALSE);
162 break;
163 }
164
165 (void) copyout((char *) &real_ncpus, data, sizeof(real_ncpus)); /* Copy out number of
166 * processors */
167 currNap = mach_absolute_time(); /* Get the time now */
168 durNap = currNap - lastRuptClear; /* Get the last interval
169 * duration */
170 if (durNap == 0) {
171 durNap = 1; /* This is a very short time, make it
172 * bigger */
173 }
174 curpos = data + sizeof(real_ncpus); /* Point to the next
175 * available spot */
176
177 for (i = 0; i < real_ncpus; i++) { /* Move 'em all out */
178 (void) copyout((char *) &durNap, curpos, 8); /* Copy out the time
179 * since last clear */
180 (void) copyout((char *) &cpu_data_ptr[i]->cpu_hwIntCnt, curpos + 8, 256 * sizeof(uint32_t)); /* Copy out interrupt
181 * data for this
182 * processor */
183 curpos = curpos + (256 * sizeof(uint32_t) + 8); /* Point to next out put
184 * slot */
185 }
186 rval = 1;
187 (void) ml_set_interrupts_enabled(FALSE);
188 break;
189
190 case dgPowerStat:
191 {
192 uint32_t c2l = 0, c2h = 0, c3l = 0, c3h = 0, c6l = 0, c6h = 0, c7l = 0, c7h = 0;
193 uint32_t pkg_unit_l = 0, pkg_unit_h = 0, pkg_ecl = 0, pkg_ech = 0;
194
195 pkg_energy_statistics_t pkes;
196 core_energy_stat_t cest;
197
198 bzero(&pkes, sizeof(pkes));
199 bzero(&cest, sizeof(cest));
200
201 pkes.pkes_version = 1ULL;
202 rdmsr_carefully(MSR_IA32_PKG_C2_RESIDENCY, &c2l, &c2h);
203 rdmsr_carefully(MSR_IA32_PKG_C3_RESIDENCY, &c3l, &c3h);
204 rdmsr_carefully(MSR_IA32_PKG_C6_RESIDENCY, &c6l, &c6h);
205 rdmsr_carefully(MSR_IA32_PKG_C7_RESIDENCY, &c7l, &c7h);
206
207 pkes.pkg_cres[0][0] = ((uint64_t)c2h << 32) | c2l;
208 pkes.pkg_cres[0][1] = ((uint64_t)c3h << 32) | c3l;
209 pkes.pkg_cres[0][2] = ((uint64_t)c6h << 32) | c6l;
210 pkes.pkg_cres[0][3] = ((uint64_t)c7h << 32) | c7l;
211
212 uint64_t c8r = ~0ULL, c9r = ~0ULL, c10r = ~0ULL;
213
214 rdmsr64_carefully(MSR_IA32_PKG_C8_RESIDENCY, &c8r);
215 rdmsr64_carefully(MSR_IA32_PKG_C9_RESIDENCY, &c9r);
216 rdmsr64_carefully(MSR_IA32_PKG_C10_RESIDENCY, &c10r);
217
218 pkes.pkg_cres[0][4] = c8r;
219 pkes.pkg_cres[0][5] = c9r;
220 pkes.pkg_cres[0][6] = c10r;
221
222 pkes.ddr_energy = ~0ULL;
223 rdmsr64_carefully(MSR_IA32_DDR_ENERGY_STATUS, &pkes.ddr_energy);
224 pkes.llc_flushed_cycles = ~0ULL;
225 rdmsr64_carefully(MSR_IA32_LLC_FLUSHED_RESIDENCY_TIMER, &pkes.llc_flushed_cycles);
226
227 pkes.ring_ratio_instantaneous = ~0ULL;
228 rdmsr64_carefully(MSR_IA32_RING_PERF_STATUS, &pkes.ring_ratio_instantaneous);
229
230 pkes.IA_frequency_clipping_cause = ~0ULL;
231
232 uint32_t ia_perf_limits = MSR_IA32_IA_PERF_LIMIT_REASONS;
233 /* Should perhaps be a generic register map module for these
234 * registers with identical functionality that were renumbered.
235 */
236 switch (cpuid_cpufamily()) {
237 case CPUFAMILY_INTEL_SKYLAKE:
238 case CPUFAMILY_INTEL_KABYLAKE:
239 case CPUFAMILY_INTEL_ICELAKE:
240 ia_perf_limits = MSR_IA32_IA_PERF_LIMIT_REASONS_SKL;
241 break;
242 default:
243 break;
244 }
245
246 rdmsr64_carefully(ia_perf_limits, &pkes.IA_frequency_clipping_cause);
247
248 pkes.GT_frequency_clipping_cause = ~0ULL;
249 rdmsr64_carefully(MSR_IA32_GT_PERF_LIMIT_REASONS, &pkes.GT_frequency_clipping_cause);
250
251 rdmsr_carefully(MSR_IA32_PKG_POWER_SKU_UNIT, &pkg_unit_l, &pkg_unit_h);
252 rdmsr_carefully(MSR_IA32_PKG_ENERGY_STATUS, &pkg_ecl, &pkg_ech);
253 pkes.pkg_power_unit = ((uint64_t)pkg_unit_h << 32) | pkg_unit_l;
254 pkes.pkg_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl;
255
256 rdmsr_carefully(MSR_IA32_PP0_ENERGY_STATUS, &pkg_ecl, &pkg_ech);
257 pkes.pp0_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl;
258
259 rdmsr_carefully(MSR_IA32_PP1_ENERGY_STATUS, &pkg_ecl, &pkg_ech);
260 pkes.pp1_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl;
261
262 pkes.pkg_idle_exits = current_cpu_datap()->lcpu.package->package_idle_exits;
263 pkes.ncpus = real_ncpus;
264
265 (void) ml_set_interrupts_enabled(TRUE);
266
267 copyout(&pkes, regs->rsi, sizeof(pkes));
268 curpos = regs->rsi + sizeof(pkes);
269
270 mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_powerstats, NULL);
271
272 for (i = 0; i < real_ncpus; i++) {
273 (void) ml_set_interrupts_enabled(FALSE);
274
275 cest.caperf = cpu_data_ptr[i]->cpu_aperf;
276 cest.cmperf = cpu_data_ptr[i]->cpu_mperf;
277 cest.ccres[0] = cpu_data_ptr[i]->cpu_c3res;
278 cest.ccres[1] = cpu_data_ptr[i]->cpu_c6res;
279 cest.ccres[2] = cpu_data_ptr[i]->cpu_c7res;
280
281 bcopy(&cpu_data_ptr[i]->cpu_rtimes[0], &cest.crtimes[0], sizeof(cest.crtimes));
282 bcopy(&cpu_data_ptr[i]->cpu_itimes[0], &cest.citimes[0], sizeof(cest.citimes));
283
284 cest.citime_total = cpu_data_ptr[i]->cpu_itime_total;
285 cest.crtime_total = cpu_data_ptr[i]->cpu_rtime_total;
286 cest.cpu_idle_exits = cpu_data_ptr[i]->cpu_idle_exits;
287 #if MONOTONIC
288 cest.cpu_insns = cpu_data_ptr[i]->cpu_monotonic.mtc_counts[MT_CORE_INSTRS];
289 cest.cpu_ucc = cpu_data_ptr[i]->cpu_monotonic.mtc_counts[MT_CORE_CYCLES];
290 cest.cpu_urc = cpu_data_ptr[i]->cpu_monotonic.mtc_counts[MT_CORE_REFCYCLES];
291 #endif /* MONOTONIC */
292 #if DIAG_ALL_PMCS
293 bcopy(&cpu_data_ptr[i]->cpu_gpmcs[0], &cest.gpmcs[0], sizeof(cest.gpmcs));
294 #endif /* DIAG_ALL_PMCS */
295 (void) ml_set_interrupts_enabled(TRUE);
296
297 copyout(&cest, curpos, sizeof(cest));
298 curpos += sizeof(cest);
299 }
300 rval = 1;
301 (void) ml_set_interrupts_enabled(FALSE);
302 }
303 break;
304 case dgEnaPMC:
305 {
306 boolean_t enable = TRUE;
307 uint32_t cpuinfo[4];
308 /* Require architectural PMC v2 or higher, corresponding to
309 * Merom+, or equivalent virtualised facility.
310 */
311 do_cpuid(0xA, &cpuinfo[0]);
312 if ((cpuinfo[0] & 0xFF) >= 2) {
313 mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_pmc_control, &enable);
314 diag_pmc_enabled = TRUE;
315 }
316 rval = 1;
317 }
318 break;
319 #if DEVELOPMENT || DEBUG
320 case dgGzallocTest:
321 {
322 (void) ml_set_interrupts_enabled(TRUE);
323 if (diagflag) {
324 unsigned *ptr = (unsigned *)kalloc(1024);
325 kfree(ptr, 1024);
326 *ptr = 0x42;
327 }
328 (void) ml_set_interrupts_enabled(FALSE);
329 }
330 break;
331 #endif
332
333 #if DEVELOPMENT || DEBUG
334 case dgPermCheck:
335 {
336 (void) ml_set_interrupts_enabled(TRUE);
337 if (diagflag) {
338 rval = pmap_permissions_verify(kernel_pmap, kernel_map, 0, ~0ULL);
339 }
340 (void) ml_set_interrupts_enabled(FALSE);
341 }
342 break;
343 #endif /* DEVELOPMENT || DEBUG */
344 default: /* Handle invalid ones */
345 rval = 0; /* Return an exception */
346 }
347
348 regs->rax = rval;
349
350 assert(ml_get_interrupts_enabled() == FALSE);
351 return rval;
352 }
353
354 void
355 cpu_powerstats(__unused void *arg)
356 {
357 cpu_data_t *cdp = current_cpu_datap();
358 __unused int cnum = cdp->cpu_number;
359 uint32_t cl = 0, ch = 0, mpl = 0, mph = 0, apl = 0, aph = 0;
360
361 rdmsr_carefully(MSR_IA32_MPERF, &mpl, &mph);
362 rdmsr_carefully(MSR_IA32_APERF, &apl, &aph);
363
364 cdp->cpu_mperf = ((uint64_t)mph << 32) | mpl;
365 cdp->cpu_aperf = ((uint64_t)aph << 32) | apl;
366
367 uint64_t ctime = mach_absolute_time();
368 cdp->cpu_rtime_total += ctime - cdp->cpu_ixtime;
369 cdp->cpu_ixtime = ctime;
370
371 rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
372 cdp->cpu_c3res = ((uint64_t)ch << 32) | cl;
373
374 rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
375 cdp->cpu_c6res = ((uint64_t)ch << 32) | cl;
376
377 rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
378 cdp->cpu_c7res = ((uint64_t)ch << 32) | cl;
379
380 if (diag_pmc_enabled) {
381 #if MONOTONIC
382 mt_update_fixed_counts();
383 #else /* MONOTONIC */
384 uint64_t insns = read_pmc(FIXED_PMC0);
385 uint64_t ucc = read_pmc(FIXED_PMC1);
386 uint64_t urc = read_pmc(FIXED_PMC2);
387 #endif /* !MONOTONIC */
388 #if DIAG_ALL_PMCS
389 int i;
390
391 for (i = 0; i < 4; i++) {
392 cdp->cpu_gpmcs[i] = read_pmc(i);
393 }
394 #endif /* DIAG_ALL_PMCS */
395 #if !MONOTONIC
396 cdp->cpu_cur_insns = insns;
397 cdp->cpu_cur_ucc = ucc;
398 cdp->cpu_cur_urc = urc;
399 #endif /* !MONOTONIC */
400 }
401 }
402
403 void
404 cpu_pmc_control(void *enablep)
405 {
406 #if !MONOTONIC
407 boolean_t enable = *(boolean_t *)enablep;
408 cpu_data_t *cdp = current_cpu_datap();
409
410 if (enable) {
411 wrmsr64(0x38F, 0x70000000FULL);
412 wrmsr64(0x38D, 0x333);
413 set_cr4(get_cr4() | CR4_PCE);
414 } else {
415 wrmsr64(0x38F, 0);
416 wrmsr64(0x38D, 0);
417 set_cr4((get_cr4() & ~CR4_PCE));
418 }
419 cdp->cpu_fixed_pmcs_enabled = enable;
420 #else /* !MONOTONIC */
421 #pragma unused(enablep)
422 #endif /* MONOTONIC */
423 }