]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5ba3f43e | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
5ba3f43e | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
5ba3f43e | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
5ba3f43e | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
5ba3f43e | 31 | /* |
1c79356b A |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
5ba3f43e | 35 | * |
1c79356b A |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
5ba3f43e | 41 | * |
1c79356b A |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
5ba3f43e | 45 | * |
1c79356b | 46 | * Carnegie Mellon requests users of this software to return to |
5ba3f43e | 47 | * |
1c79356b A |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
5ba3f43e | 52 | * |
1c79356b A |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm_fault.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Page fault handling module. | |
63 | */ | |
1c79356b A |
64 | |
65 | #include <mach_cluster_stats.h> | |
66 | #include <mach_pagemap.h> | |
2d21ac55 | 67 | #include <libkern/OSAtomic.h> |
1c79356b | 68 | |
91447636 | 69 | #include <mach/mach_types.h> |
1c79356b | 70 | #include <mach/kern_return.h> |
0a7de745 | 71 | #include <mach/message.h> /* for error codes */ |
91447636 A |
72 | #include <mach/vm_param.h> |
73 | #include <mach/vm_behavior.h> | |
74 | #include <mach/memory_object.h> | |
0a7de745 | 75 | /* For memory_object_data_{request,unlock} */ |
2d21ac55 | 76 | #include <mach/sdt.h> |
91447636 A |
77 | |
78 | #include <kern/kern_types.h> | |
1c79356b A |
79 | #include <kern/host_statistics.h> |
80 | #include <kern/counters.h> | |
81 | #include <kern/task.h> | |
82 | #include <kern/thread.h> | |
83 | #include <kern/sched_prim.h> | |
84 | #include <kern/host.h> | |
85 | #include <kern/xpr.h> | |
91447636 A |
86 | #include <kern/mach_param.h> |
87 | #include <kern/macro_help.h> | |
88 | #include <kern/zalloc.h> | |
89 | #include <kern/misc_protos.h> | |
39037602 | 90 | #include <kern/policy_internal.h> |
91447636 | 91 | |
39236c6e A |
92 | #include <vm/vm_compressor.h> |
93 | #include <vm/vm_compressor_pager.h> | |
91447636 | 94 | #include <vm/vm_fault.h> |
1c79356b A |
95 | #include <vm/vm_map.h> |
96 | #include <vm/vm_object.h> | |
97 | #include <vm/vm_page.h> | |
55e303ae | 98 | #include <vm/vm_kern.h> |
1c79356b A |
99 | #include <vm/pmap.h> |
100 | #include <vm/vm_pageout.h> | |
91447636 | 101 | #include <vm/vm_protos.h> |
2d21ac55 A |
102 | #include <vm/vm_external.h> |
103 | #include <vm/memory_object.h> | |
0a7de745 | 104 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ |
6d2010ae | 105 | #include <vm/vm_shared_region.h> |
1c79356b | 106 | |
39236c6e | 107 | #include <sys/codesign.h> |
39037602 A |
108 | #include <sys/reason.h> |
109 | #include <sys/signalvar.h> | |
39236c6e | 110 | |
5ba3f43e | 111 | #include <san/kasan.h> |
15129b1c | 112 | |
0a7de745 | 113 | #define VM_FAULT_CLASSIFY 0 |
1c79356b | 114 | |
2d21ac55 | 115 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ |
1c79356b | 116 | |
0a7de745 | 117 | unsigned int vm_object_pagein_throttle = 16; |
1c79356b | 118 | |
b0d623f7 | 119 | /* |
5ba3f43e | 120 | * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which |
b0d623f7 A |
121 | * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts |
122 | * of memory if they're buggy and can run the system completely out of swap space. If this happens, we | |
123 | * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps | |
5ba3f43e | 124 | * keep the UI active so that the user has a chance to kill the offending task before the system |
b0d623f7 A |
125 | * completely hangs. |
126 | * | |
127 | * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied | |
128 | * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold | |
129 | * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a | |
130 | * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again. | |
131 | */ | |
132 | ||
99c3a104 | 133 | extern void throttle_lowpri_io(int); |
b0d623f7 | 134 | |
39037602 A |
135 | extern struct vnode *vnode_pager_lookup_vnode(memory_object_t); |
136 | ||
b0d623f7 A |
137 | uint64_t vm_hard_throttle_threshold; |
138 | ||
b0d623f7 | 139 | |
b0d623f7 | 140 | |
0a7de745 A |
141 | #define NEED_TO_HARD_THROTTLE_THIS_TASK() (vm_wants_task_throttled(current_task()) || \ |
142 | ((vm_page_free_count < vm_page_throttle_limit || \ | |
143 | HARD_THROTTLE_LIMIT_REACHED()) && \ | |
144 | proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED)) | |
b0d623f7 A |
145 | |
146 | ||
0a7de745 A |
147 | #define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */ |
148 | #define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */ | |
04b8595b | 149 | |
0a7de745 A |
150 | #define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6 |
151 | #define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000 | |
04b8595b | 152 | |
1c79356b | 153 | |
b0d623f7 | 154 | boolean_t current_thread_aborted(void); |
91447636 | 155 | |
1c79356b | 156 | /* Forward declarations of internal routines. */ |
3e170ce0 | 157 | static kern_return_t vm_fault_wire_fast( |
0a7de745 A |
158 | vm_map_t map, |
159 | vm_map_offset_t va, | |
160 | vm_prot_t prot, | |
161 | vm_tag_t wire_tag, | |
162 | vm_map_entry_t entry, | |
163 | pmap_t pmap, | |
164 | vm_map_offset_t pmap_addr, | |
165 | ppnum_t *physpage_p); | |
1c79356b | 166 | |
3e170ce0 | 167 | static kern_return_t vm_fault_internal( |
0a7de745 A |
168 | vm_map_t map, |
169 | vm_map_offset_t vaddr, | |
170 | vm_prot_t caller_prot, | |
171 | boolean_t change_wiring, | |
172 | vm_tag_t wire_tag, | |
173 | int interruptible, | |
174 | pmap_t pmap, | |
175 | vm_map_offset_t pmap_addr, | |
176 | ppnum_t *physpage_p); | |
3e170ce0 A |
177 | |
178 | static void vm_fault_copy_cleanup( | |
0a7de745 A |
179 | vm_page_t page, |
180 | vm_page_t top_page); | |
1c79356b | 181 | |
3e170ce0 | 182 | static void vm_fault_copy_dst_cleanup( |
0a7de745 | 183 | vm_page_t page); |
1c79356b | 184 | |
0a7de745 A |
185 | #if VM_FAULT_CLASSIFY |
186 | extern void vm_fault_classify(vm_object_t object, | |
187 | vm_object_offset_t offset, | |
188 | vm_prot_t fault_type); | |
1c79356b A |
189 | |
190 | extern void vm_fault_classify_init(void); | |
191 | #endif | |
192 | ||
d1ecb069 | 193 | unsigned long vm_pmap_enter_blocked = 0; |
316670eb | 194 | unsigned long vm_pmap_enter_retried = 0; |
4a3eedf9 A |
195 | |
196 | unsigned long vm_cs_validates = 0; | |
197 | unsigned long vm_cs_revalidates = 0; | |
198 | unsigned long vm_cs_query_modified = 0; | |
199 | unsigned long vm_cs_validated_dirtied = 0; | |
6d2010ae | 200 | unsigned long vm_cs_bitmap_validated = 0; |
d9a64523 A |
201 | #if PMAP_CS |
202 | uint64_t vm_cs_defer_to_pmap_cs = 0; | |
203 | uint64_t vm_cs_defer_to_pmap_cs_not = 0; | |
204 | #endif /* PMAP_CS */ | |
593a1d5f | 205 | |
fe8ab488 A |
206 | void vm_pre_fault(vm_map_offset_t); |
207 | ||
3e170ce0 | 208 | extern char *kdp_compressor_decompressed_page; |
0a7de745 A |
209 | extern addr64_t kdp_compressor_decompressed_page_paddr; |
210 | extern ppnum_t kdp_compressor_decompressed_page_ppnum; | |
3e170ce0 | 211 | |
d9a64523 A |
212 | struct vmrtfr { |
213 | int vmrtfr_maxi; | |
214 | int vmrtfr_curi; | |
215 | int64_t vmrtf_total; | |
216 | vm_rtfault_record_t *vm_rtf_records; | |
217 | } vmrtfrs; | |
218 | #define VMRTF_DEFAULT_BUFSIZE (4096) | |
219 | #define VMRTF_NUM_RECORDS_DEFAULT (VMRTF_DEFAULT_BUFSIZE / sizeof(vm_rtfault_record_t)) | |
220 | int vmrtf_num_records = VMRTF_NUM_RECORDS_DEFAULT; | |
221 | ||
222 | static void vm_rtfrecord_lock(void); | |
223 | static void vm_rtfrecord_unlock(void); | |
224 | static void vm_record_rtfault(thread_t, uint64_t, vm_map_offset_t, int); | |
225 | ||
226 | lck_spin_t vm_rtfr_slock; | |
227 | extern lck_grp_t vm_page_lck_grp_bucket; | |
228 | extern lck_attr_t vm_page_lck_attr; | |
229 | ||
1c79356b A |
230 | /* |
231 | * Routine: vm_fault_init | |
232 | * Purpose: | |
233 | * Initialize our private data structures. | |
234 | */ | |
235 | void | |
236 | vm_fault_init(void) | |
237 | { | |
39236c6e A |
238 | int i, vm_compressor_temp; |
239 | boolean_t need_default_val = TRUE; | |
b0d623f7 A |
240 | /* |
241 | * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is | |
242 | * computed as a percentage of available memory, and the percentage used is scaled inversely with | |
39236c6e | 243 | * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems |
b0d623f7 A |
244 | * and reduce the value down to 10% for very large memory configurations. This helps give us a |
245 | * definition of a memory hog that makes more sense relative to the amount of ram in the machine. | |
246 | * The formula here simply uses the number of gigabytes of ram to adjust the percentage. | |
247 | */ | |
248 | ||
0a7de745 | 249 | vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024 * 1024 * 1024)), 25)) / 100; |
39236c6e A |
250 | |
251 | /* | |
252 | * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry. | |
253 | */ | |
254 | ||
0a7de745 A |
255 | if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof(vm_compressor_temp))) { |
256 | for (i = 0; i < VM_PAGER_MAX_MODES; i++) { | |
5ba3f43e | 257 | if (vm_compressor_temp > 0 && |
0a7de745 | 258 | ((vm_compressor_temp & (1 << i)) == vm_compressor_temp)) { |
39236c6e A |
259 | need_default_val = FALSE; |
260 | vm_compressor_mode = vm_compressor_temp; | |
261 | break; | |
262 | } | |
263 | } | |
0a7de745 | 264 | if (need_default_val) { |
39236c6e | 265 | printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp); |
0a7de745 | 266 | } |
5ba3f43e | 267 | } |
39236c6e A |
268 | if (need_default_val) { |
269 | /* If no boot arg or incorrect boot arg, try device tree. */ | |
270 | PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode)); | |
271 | } | |
39236c6e | 272 | printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode); |
1c79356b A |
273 | } |
274 | ||
0a7de745 A |
275 | void |
276 | vm_rtfault_record_init(void) | |
277 | { | |
d9a64523 A |
278 | PE_parse_boot_argn("vm_rtfault_records", &vmrtf_num_records, sizeof(vmrtf_num_records)); |
279 | ||
280 | assert(vmrtf_num_records >= 1); | |
281 | vmrtf_num_records = MAX(vmrtf_num_records, 1); | |
282 | size_t kallocsz = vmrtf_num_records * sizeof(vm_rtfault_record_t); | |
283 | vmrtfrs.vm_rtf_records = kalloc(kallocsz); | |
284 | bzero(vmrtfrs.vm_rtf_records, kallocsz); | |
285 | vmrtfrs.vmrtfr_maxi = vmrtf_num_records - 1; | |
286 | lck_spin_init(&vm_rtfr_slock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); | |
287 | } | |
1c79356b A |
288 | /* |
289 | * Routine: vm_fault_cleanup | |
290 | * Purpose: | |
291 | * Clean up the result of vm_fault_page. | |
292 | * Results: | |
293 | * The paging reference for "object" is released. | |
294 | * "object" is unlocked. | |
295 | * If "top_page" is not null, "top_page" is | |
296 | * freed and the paging reference for the object | |
297 | * containing it is released. | |
298 | * | |
299 | * In/out conditions: | |
300 | * "object" must be locked. | |
301 | */ | |
302 | void | |
303 | vm_fault_cleanup( | |
0a7de745 A |
304 | vm_object_t object, |
305 | vm_page_t top_page) | |
1c79356b A |
306 | { |
307 | vm_object_paging_end(object); | |
0a7de745 | 308 | vm_object_unlock(object); |
1c79356b A |
309 | |
310 | if (top_page != VM_PAGE_NULL) { | |
0a7de745 | 311 | object = VM_PAGE_OBJECT(top_page); |
2d21ac55 A |
312 | |
313 | vm_object_lock(object); | |
314 | VM_PAGE_FREE(top_page); | |
315 | vm_object_paging_end(object); | |
316 | vm_object_unlock(object); | |
1c79356b A |
317 | } |
318 | } | |
319 | ||
55e303ae A |
320 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
321 | ||
322 | ||
0a7de745 | 323 | boolean_t vm_page_deactivate_behind = TRUE; |
5ba3f43e A |
324 | /* |
325 | * default sizes given VM_BEHAVIOR_DEFAULT reference behavior | |
1c79356b | 326 | */ |
0a7de745 A |
327 | #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128 |
328 | #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */ | |
b0d623f7 A |
329 | /* we use it to size an array on the stack */ |
330 | ||
331 | int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW; | |
55e303ae | 332 | |
0a7de745 | 333 | #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) |
2d21ac55 A |
334 | |
335 | /* | |
336 | * vm_page_is_sequential | |
337 | * | |
338 | * Determine if sequential access is in progress | |
339 | * in accordance with the behavior specified. | |
340 | * Update state to indicate current access pattern. | |
341 | * | |
342 | * object must have at least the shared lock held | |
343 | */ | |
344 | static | |
345 | void | |
346 | vm_fault_is_sequential( | |
0a7de745 A |
347 | vm_object_t object, |
348 | vm_object_offset_t offset, | |
349 | vm_behavior_t behavior) | |
2d21ac55 | 350 | { |
0a7de745 A |
351 | vm_object_offset_t last_alloc; |
352 | int sequential; | |
353 | int orig_sequential; | |
2d21ac55 | 354 | |
0a7de745 | 355 | last_alloc = object->last_alloc; |
2d21ac55 A |
356 | sequential = object->sequential; |
357 | orig_sequential = sequential; | |
358 | ||
359 | switch (behavior) { | |
360 | case VM_BEHAVIOR_RANDOM: | |
0a7de745 | 361 | /* |
2d21ac55 A |
362 | * reset indicator of sequential behavior |
363 | */ | |
0a7de745 A |
364 | sequential = 0; |
365 | break; | |
2d21ac55 A |
366 | |
367 | case VM_BEHAVIOR_SEQUENTIAL: | |
0a7de745 A |
368 | if (offset && last_alloc == offset - PAGE_SIZE_64) { |
369 | /* | |
2d21ac55 A |
370 | * advance indicator of sequential behavior |
371 | */ | |
0a7de745 A |
372 | if (sequential < MAX_SEQUENTIAL_RUN) { |
373 | sequential += PAGE_SIZE; | |
374 | } | |
2d21ac55 | 375 | } else { |
0a7de745 | 376 | /* |
2d21ac55 A |
377 | * reset indicator of sequential behavior |
378 | */ | |
0a7de745 | 379 | sequential = 0; |
2d21ac55 | 380 | } |
0a7de745 | 381 | break; |
2d21ac55 A |
382 | |
383 | case VM_BEHAVIOR_RSEQNTL: | |
0a7de745 A |
384 | if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { |
385 | /* | |
2d21ac55 A |
386 | * advance indicator of sequential behavior |
387 | */ | |
0a7de745 A |
388 | if (sequential > -MAX_SEQUENTIAL_RUN) { |
389 | sequential -= PAGE_SIZE; | |
390 | } | |
2d21ac55 | 391 | } else { |
0a7de745 | 392 | /* |
2d21ac55 A |
393 | * reset indicator of sequential behavior |
394 | */ | |
0a7de745 | 395 | sequential = 0; |
2d21ac55 | 396 | } |
0a7de745 | 397 | break; |
2d21ac55 A |
398 | |
399 | case VM_BEHAVIOR_DEFAULT: | |
400 | default: | |
0a7de745 A |
401 | if (offset && last_alloc == (offset - PAGE_SIZE_64)) { |
402 | /* | |
2d21ac55 A |
403 | * advance indicator of sequential behavior |
404 | */ | |
0a7de745 A |
405 | if (sequential < 0) { |
406 | sequential = 0; | |
407 | } | |
408 | if (sequential < MAX_SEQUENTIAL_RUN) { | |
409 | sequential += PAGE_SIZE; | |
410 | } | |
2d21ac55 | 411 | } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { |
0a7de745 | 412 | /* |
2d21ac55 A |
413 | * advance indicator of sequential behavior |
414 | */ | |
0a7de745 A |
415 | if (sequential > 0) { |
416 | sequential = 0; | |
417 | } | |
418 | if (sequential > -MAX_SEQUENTIAL_RUN) { | |
419 | sequential -= PAGE_SIZE; | |
420 | } | |
2d21ac55 | 421 | } else { |
0a7de745 | 422 | /* |
2d21ac55 A |
423 | * reset indicator of sequential behavior |
424 | */ | |
0a7de745 | 425 | sequential = 0; |
2d21ac55 | 426 | } |
0a7de745 | 427 | break; |
2d21ac55 A |
428 | } |
429 | if (sequential != orig_sequential) { | |
0a7de745 A |
430 | if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { |
431 | /* | |
2d21ac55 A |
432 | * if someone else has already updated object->sequential |
433 | * don't bother trying to update it or object->last_alloc | |
434 | */ | |
0a7de745 | 435 | return; |
2d21ac55 A |
436 | } |
437 | } | |
438 | /* | |
439 | * I'd like to do this with a OSCompareAndSwap64, but that | |
440 | * doesn't exist for PPC... however, it shouldn't matter | |
441 | * that much... last_alloc is maintained so that we can determine | |
442 | * if a sequential access pattern is taking place... if only | |
443 | * one thread is banging on this object, no problem with the unprotected | |
444 | * update... if 2 or more threads are banging away, we run the risk of | |
445 | * someone seeing a mangled update... however, in the face of multiple | |
446 | * accesses, no sequential access pattern can develop anyway, so we | |
447 | * haven't lost any real info. | |
448 | */ | |
449 | object->last_alloc = offset; | |
450 | } | |
451 | ||
452 | ||
b0d623f7 A |
453 | int vm_page_deactivate_behind_count = 0; |
454 | ||
55e303ae | 455 | /* |
2d21ac55 A |
456 | * vm_page_deactivate_behind |
457 | * | |
458 | * Determine if sequential access is in progress | |
459 | * in accordance with the behavior specified. If | |
460 | * so, compute a potential page to deactivate and | |
461 | * deactivate it. | |
55e303ae | 462 | * |
2d21ac55 | 463 | * object must be locked. |
55e303ae | 464 | * |
2d21ac55 | 465 | * return TRUE if we actually deactivate a page |
55e303ae A |
466 | */ |
467 | static | |
468 | boolean_t | |
469 | vm_fault_deactivate_behind( | |
0a7de745 A |
470 | vm_object_t object, |
471 | vm_object_offset_t offset, | |
472 | vm_behavior_t behavior) | |
55e303ae | 473 | { |
0a7de745 A |
474 | int n; |
475 | int pages_in_run = 0; | |
476 | int max_pages_in_run = 0; | |
477 | int sequential_run; | |
478 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
479 | vm_object_offset_t run_offset = 0; | |
480 | vm_object_offset_t pg_offset = 0; | |
481 | vm_page_t m; | |
482 | vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER]; | |
55e303ae | 483 | |
b0d623f7 | 484 | pages_in_run = 0; |
55e303ae | 485 | #if TRACEFAULTPAGE |
0a7de745 | 486 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ |
55e303ae A |
487 | #endif |
488 | ||
2d21ac55 | 489 | if (object == kernel_object || vm_page_deactivate_behind == FALSE) { |
91447636 A |
490 | /* |
491 | * Do not deactivate pages from the kernel object: they | |
492 | * are not intended to become pageable. | |
2d21ac55 | 493 | * or we've disabled the deactivate behind mechanism |
91447636 A |
494 | */ |
495 | return FALSE; | |
496 | } | |
2d21ac55 | 497 | if ((sequential_run = object->sequential)) { |
0a7de745 A |
498 | if (sequential_run < 0) { |
499 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
500 | sequential_run = 0 - sequential_run; | |
501 | } else { | |
502 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
503 | } | |
2d21ac55 | 504 | } |
55e303ae A |
505 | switch (behavior) { |
506 | case VM_BEHAVIOR_RANDOM: | |
55e303ae A |
507 | break; |
508 | case VM_BEHAVIOR_SEQUENTIAL: | |
0a7de745 | 509 | if (sequential_run >= (int)PAGE_SIZE) { |
b0d623f7 A |
510 | run_offset = 0 - PAGE_SIZE_64; |
511 | max_pages_in_run = 1; | |
512 | } | |
55e303ae A |
513 | break; |
514 | case VM_BEHAVIOR_RSEQNTL: | |
0a7de745 | 515 | if (sequential_run >= (int)PAGE_SIZE) { |
b0d623f7 A |
516 | run_offset = PAGE_SIZE_64; |
517 | max_pages_in_run = 1; | |
518 | } | |
55e303ae A |
519 | break; |
520 | case VM_BEHAVIOR_DEFAULT: | |
521 | default: | |
0a7de745 | 522 | { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; |
2d21ac55 | 523 | |
0a7de745 | 524 | /* |
2d21ac55 A |
525 | * determine if the run of sequential accesss has been |
526 | * long enough on an object with default access behavior | |
527 | * to consider it for deactivation | |
528 | */ | |
b0d623f7 A |
529 | if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) { |
530 | /* | |
531 | * the comparisons between offset and behind are done | |
532 | * in this kind of odd fashion in order to prevent wrap around | |
533 | * at the end points | |
534 | */ | |
0a7de745 A |
535 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { |
536 | if (offset >= behind) { | |
b0d623f7 A |
537 | run_offset = 0 - behind; |
538 | pg_offset = PAGE_SIZE_64; | |
539 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; | |
540 | } | |
2d21ac55 | 541 | } else { |
0a7de745 | 542 | if (offset < -behind) { |
b0d623f7 A |
543 | run_offset = behind; |
544 | pg_offset = 0 - PAGE_SIZE_64; | |
545 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; | |
546 | } | |
2d21ac55 | 547 | } |
55e303ae | 548 | } |
0a7de745 | 549 | break;} |
2d21ac55 | 550 | } |
0a7de745 | 551 | for (n = 0; n < max_pages_in_run; n++) { |
b0d623f7 A |
552 | m = vm_page_lookup(object, offset + run_offset + (n * pg_offset)); |
553 | ||
d9a64523 | 554 | if (m && !m->vmp_laundry && !m->vmp_busy && !m->vmp_no_cache && (m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->vmp_fictitious && !m->vmp_absent) { |
b0d623f7 | 555 | page_run[pages_in_run++] = m; |
39236c6e A |
556 | |
557 | /* | |
558 | * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... | |
559 | * | |
560 | * a TLB flush isn't really needed here since at worst we'll miss the reference bit being | |
561 | * updated in the PTE if a remote processor still has this mapping cached in its TLB when the | |
562 | * new reference happens. If no futher references happen on the page after that remote TLB flushes | |
563 | * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue | |
564 | * by pageout_scan, which is just fine since the last reference would have happened quite far | |
565 | * in the past (TLB caches don't hang around for very long), and of course could just as easily | |
566 | * have happened before we did the deactivate_behind. | |
567 | */ | |
39037602 | 568 | pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); |
b0d623f7 A |
569 | } |
570 | } | |
571 | if (pages_in_run) { | |
572 | vm_page_lockspin_queues(); | |
573 | ||
574 | for (n = 0; n < pages_in_run; n++) { | |
b0d623f7 A |
575 | m = page_run[n]; |
576 | ||
577 | vm_page_deactivate_internal(m, FALSE); | |
578 | ||
579 | vm_page_deactivate_behind_count++; | |
55e303ae | 580 | #if TRACEFAULTPAGE |
0a7de745 | 581 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
55e303ae A |
582 | #endif |
583 | } | |
b0d623f7 A |
584 | vm_page_unlock_queues(); |
585 | ||
586 | return TRUE; | |
55e303ae A |
587 | } |
588 | return FALSE; | |
589 | } | |
1c79356b | 590 | |
1c79356b | 591 | |
04b8595b | 592 | #if (DEVELOPMENT || DEBUG) |
0a7de745 A |
593 | uint32_t vm_page_creation_throttled_hard = 0; |
594 | uint32_t vm_page_creation_throttled_soft = 0; | |
595 | uint64_t vm_page_creation_throttle_avoided = 0; | |
04b8595b A |
596 | #endif /* DEVELOPMENT || DEBUG */ |
597 | ||
6d2010ae | 598 | static int |
04b8595b | 599 | vm_page_throttled(boolean_t page_kept) |
b0d623f7 | 600 | { |
0a7de745 A |
601 | clock_sec_t elapsed_sec; |
602 | clock_sec_t tv_sec; | |
603 | clock_usec_t tv_usec; | |
5ba3f43e | 604 | |
b0d623f7 | 605 | thread_t thread = current_thread(); |
5ba3f43e | 606 | |
0a7de745 A |
607 | if (thread->options & TH_OPT_VMPRIV) { |
608 | return 0; | |
609 | } | |
b0d623f7 | 610 | |
04b8595b A |
611 | if (thread->t_page_creation_throttled) { |
612 | thread->t_page_creation_throttled = 0; | |
5ba3f43e | 613 | |
0a7de745 | 614 | if (page_kept == FALSE) { |
04b8595b | 615 | goto no_throttle; |
0a7de745 | 616 | } |
04b8595b A |
617 | } |
618 | if (NEED_TO_HARD_THROTTLE_THIS_TASK()) { | |
619 | #if (DEVELOPMENT || DEBUG) | |
620 | thread->t_page_creation_throttled_hard++; | |
621 | OSAddAtomic(1, &vm_page_creation_throttled_hard); | |
622 | #endif /* DEVELOPMENT || DEBUG */ | |
0a7de745 | 623 | return HARD_THROTTLE_DELAY; |
04b8595b | 624 | } |
b0d623f7 | 625 | |
39037602 | 626 | if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) && |
04b8595b | 627 | thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) { |
3e170ce0 A |
628 | if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) { |
629 | #if (DEVELOPMENT || DEBUG) | |
630 | OSAddAtomic64(1, &vm_page_creation_throttle_avoided); | |
631 | #endif | |
632 | goto no_throttle; | |
633 | } | |
b0d623f7 A |
634 | clock_get_system_microtime(&tv_sec, &tv_usec); |
635 | ||
636 | elapsed_sec = tv_sec - thread->t_page_creation_time; | |
637 | ||
04b8595b A |
638 | if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS || |
639 | (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) { | |
04b8595b | 640 | if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) { |
b0d623f7 A |
641 | /* |
642 | * we'll reset our stats to give a well behaved app | |
643 | * that was unlucky enough to accumulate a bunch of pages | |
644 | * over a long period of time a chance to get out of | |
645 | * the throttled state... we reset the counter and timestamp | |
646 | * so that if it stays under the rate limit for the next second | |
5ba3f43e | 647 | * it will be back in our good graces... if it exceeds it, it |
b0d623f7 A |
648 | * will remain in the throttled state |
649 | */ | |
650 | thread->t_page_creation_time = tv_sec; | |
04b8595b | 651 | thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1); |
b0d623f7 | 652 | } |
d9a64523 | 653 | VM_PAGEOUT_DEBUG(vm_page_throttle_count, 1); |
b0d623f7 | 654 | |
04b8595b A |
655 | thread->t_page_creation_throttled = 1; |
656 | ||
39037602 | 657 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) { |
04b8595b A |
658 | #if (DEVELOPMENT || DEBUG) |
659 | thread->t_page_creation_throttled_hard++; | |
660 | OSAddAtomic(1, &vm_page_creation_throttled_hard); | |
661 | #endif /* DEVELOPMENT || DEBUG */ | |
0a7de745 | 662 | return HARD_THROTTLE_DELAY; |
04b8595b A |
663 | } else { |
664 | #if (DEVELOPMENT || DEBUG) | |
665 | thread->t_page_creation_throttled_soft++; | |
666 | OSAddAtomic(1, &vm_page_creation_throttled_soft); | |
667 | #endif /* DEVELOPMENT || DEBUG */ | |
0a7de745 | 668 | return SOFT_THROTTLE_DELAY; |
04b8595b | 669 | } |
b0d623f7 A |
670 | } |
671 | thread->t_page_creation_time = tv_sec; | |
672 | thread->t_page_creation_count = 0; | |
673 | } | |
04b8595b A |
674 | no_throttle: |
675 | thread->t_page_creation_count++; | |
676 | ||
0a7de745 | 677 | return 0; |
b0d623f7 A |
678 | } |
679 | ||
3e170ce0 | 680 | |
2d21ac55 A |
681 | /* |
682 | * check for various conditions that would | |
683 | * prevent us from creating a ZF page... | |
684 | * cleanup is based on being called from vm_fault_page | |
685 | * | |
686 | * object must be locked | |
d9a64523 | 687 | * object == m->vmp_object |
2d21ac55 A |
688 | */ |
689 | static vm_fault_return_t | |
d9a64523 | 690 | vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, wait_interrupt_t interruptible_state, boolean_t page_throttle) |
2d21ac55 | 691 | { |
6d2010ae A |
692 | int throttle_delay; |
693 | ||
0a7de745 | 694 | if (object->shadow_severed || |
b0d623f7 | 695 | VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { |
0a7de745 | 696 | /* |
b0d623f7 A |
697 | * Either: |
698 | * 1. the shadow chain was severed, | |
699 | * 2. the purgeable object is volatile or empty and is marked | |
700 | * to fault on access while volatile. | |
701 | * Just have to return an error at this point | |
2d21ac55 | 702 | */ |
0a7de745 A |
703 | if (m != VM_PAGE_NULL) { |
704 | VM_PAGE_FREE(m); | |
705 | } | |
2d21ac55 A |
706 | vm_fault_cleanup(object, first_m); |
707 | ||
708 | thread_interrupt_level(interruptible_state); | |
709 | ||
0a7de745 | 710 | return VM_FAULT_MEMORY_ERROR; |
2d21ac55 | 711 | } |
3e170ce0 A |
712 | if (page_throttle == TRUE) { |
713 | if ((throttle_delay = vm_page_throttled(FALSE))) { | |
714 | /* | |
715 | * we're throttling zero-fills... | |
716 | * treat this as if we couldn't grab a page | |
717 | */ | |
0a7de745 | 718 | if (m != VM_PAGE_NULL) { |
3e170ce0 | 719 | VM_PAGE_FREE(m); |
0a7de745 | 720 | } |
3e170ce0 | 721 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 722 | |
3e170ce0 | 723 | VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
b0d623f7 | 724 | |
3e170ce0 | 725 | delay(throttle_delay); |
b0d623f7 | 726 | |
3e170ce0 A |
727 | if (current_thread_aborted()) { |
728 | thread_interrupt_level(interruptible_state); | |
729 | return VM_FAULT_INTERRUPTED; | |
730 | } | |
6d2010ae | 731 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 732 | |
0a7de745 | 733 | return VM_FAULT_MEMORY_SHORTAGE; |
3e170ce0 | 734 | } |
2d21ac55 | 735 | } |
0a7de745 | 736 | return VM_FAULT_SUCCESS; |
2d21ac55 A |
737 | } |
738 | ||
739 | ||
740 | /* | |
741 | * do the work to zero fill a page and | |
742 | * inject it into the correct paging queue | |
743 | * | |
d9a64523 | 744 | * m->vmp_object must be locked |
2d21ac55 A |
745 | * page queue lock must NOT be held |
746 | */ | |
747 | static int | |
748 | vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) | |
749 | { | |
0a7de745 A |
750 | int my_fault = DBG_ZERO_FILL_FAULT; |
751 | vm_object_t object; | |
39037602 A |
752 | |
753 | object = VM_PAGE_OBJECT(m); | |
2d21ac55 A |
754 | |
755 | /* | |
756 | * This is is a zero-fill page fault... | |
757 | * | |
758 | * Checking the page lock is a waste of | |
759 | * time; this page was absent, so | |
760 | * it can't be page locked by a pager. | |
761 | * | |
762 | * we also consider it undefined | |
763 | * with respect to instruction | |
764 | * execution. i.e. it is the responsibility | |
765 | * of higher layers to call for an instruction | |
766 | * sync after changing the contents and before | |
5ba3f43e | 767 | * sending a program into this area. We |
2d21ac55 A |
768 | * choose this approach for performance |
769 | */ | |
d9a64523 | 770 | m->vmp_pmapped = TRUE; |
2d21ac55 | 771 | |
d9a64523 A |
772 | m->vmp_cs_validated = FALSE; |
773 | m->vmp_cs_tainted = FALSE; | |
774 | m->vmp_cs_nx = FALSE; | |
2d21ac55 | 775 | |
6d2010ae A |
776 | if (no_zero_fill == TRUE) { |
777 | my_fault = DBG_NZF_PAGE_FAULT; | |
fe8ab488 | 778 | |
0a7de745 A |
779 | if (m->vmp_absent && m->vmp_busy) { |
780 | return my_fault; | |
781 | } | |
6d2010ae | 782 | } else { |
2d21ac55 A |
783 | vm_page_zero_fill(m); |
784 | ||
785 | VM_STAT_INCR(zero_fill_count); | |
786 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); | |
787 | } | |
d9a64523 | 788 | assert(!m->vmp_laundry); |
39037602 | 789 | assert(object != kernel_object); |
d9a64523 | 790 | //assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); |
2d21ac55 | 791 | |
39037602 | 792 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
0a7de745 A |
793 | (object->purgable == VM_PURGABLE_DENY || |
794 | object->purgable == VM_PURGABLE_NONVOLATILE || | |
795 | object->purgable == VM_PURGABLE_VOLATILE)) { | |
b0d623f7 | 796 | vm_page_lockspin_queues(); |
2d21ac55 | 797 | |
39037602 | 798 | if (!VM_DYNAMIC_PAGING_ENABLED()) { |
39236c6e | 799 | assert(!VM_PAGE_WIRED(m)); |
6d2010ae | 800 | |
39236c6e A |
801 | /* |
802 | * can't be on the pageout queue since we don't | |
803 | * have a pager to try and clean to | |
804 | */ | |
39037602 | 805 | vm_page_queues_remove(m, TRUE); |
3e170ce0 | 806 | vm_page_check_pageable_safe(m); |
0a7de745 | 807 | vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); |
d9a64523 | 808 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; |
39236c6e A |
809 | vm_page_throttled_count++; |
810 | } | |
2d21ac55 | 811 | vm_page_unlock_queues(); |
2d21ac55 | 812 | } |
0a7de745 | 813 | return my_fault; |
2d21ac55 A |
814 | } |
815 | ||
816 | ||
1c79356b A |
817 | /* |
818 | * Routine: vm_fault_page | |
819 | * Purpose: | |
820 | * Find the resident page for the virtual memory | |
821 | * specified by the given virtual memory object | |
822 | * and offset. | |
823 | * Additional arguments: | |
824 | * The required permissions for the page is given | |
825 | * in "fault_type". Desired permissions are included | |
2d21ac55 | 826 | * in "protection". |
5ba3f43e | 827 | * fault_info is passed along to determine pagein cluster |
2d21ac55 A |
828 | * limits... it contains the expected reference pattern, |
829 | * cluster size if available, etc... | |
1c79356b A |
830 | * |
831 | * If the desired page is known to be resident (for | |
832 | * example, because it was previously wired down), asserting | |
833 | * the "unwiring" parameter will speed the search. | |
834 | * | |
835 | * If the operation can be interrupted (by thread_abort | |
836 | * or thread_terminate), then the "interruptible" | |
837 | * parameter should be asserted. | |
838 | * | |
839 | * Results: | |
840 | * The page containing the proper data is returned | |
841 | * in "result_page". | |
842 | * | |
843 | * In/out conditions: | |
844 | * The source object must be locked and referenced, | |
845 | * and must donate one paging reference. The reference | |
846 | * is not affected. The paging reference and lock are | |
847 | * consumed. | |
848 | * | |
849 | * If the call succeeds, the object in which "result_page" | |
850 | * resides is left locked and holding a paging reference. | |
851 | * If this is not the original object, a busy page in the | |
852 | * original object is returned in "top_page", to prevent other | |
853 | * callers from pursuing this same data, along with a paging | |
854 | * reference for the original object. The "top_page" should | |
855 | * be destroyed when this guarantee is no longer required. | |
856 | * The "result_page" is also left busy. It is not removed | |
857 | * from the pageout queues. | |
b0d623f7 | 858 | * Special Case: |
5ba3f43e | 859 | * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the |
b0d623f7 | 860 | * fault succeeded but there's no VM page (i.e. the VM object |
0a7de745 | 861 | * does not actually hold VM pages, but device memory or |
b0d623f7 A |
862 | * large pages). The object is still locked and we still hold a |
863 | * paging_in_progress reference. | |
1c79356b | 864 | */ |
b0d623f7 | 865 | unsigned int vm_fault_page_blocked_access = 0; |
316670eb | 866 | unsigned int vm_fault_page_forced_retry = 0; |
1c79356b A |
867 | |
868 | vm_fault_return_t | |
869 | vm_fault_page( | |
870 | /* Arguments: */ | |
0a7de745 A |
871 | vm_object_t first_object, /* Object to begin search */ |
872 | vm_object_offset_t first_offset, /* Offset into object */ | |
873 | vm_prot_t fault_type, /* What access is requested */ | |
874 | boolean_t must_be_resident,/* Must page be resident? */ | |
875 | boolean_t caller_lookup, /* caller looked up page */ | |
1c79356b | 876 | /* Modifies in place: */ |
0a7de745 A |
877 | vm_prot_t *protection, /* Protection for mapping */ |
878 | vm_page_t *result_page, /* Page found, if successful */ | |
39236c6e | 879 | /* Returns: */ |
0a7de745 A |
880 | vm_page_t *top_page, /* Page in top object, if |
881 | * not result_page. */ | |
1c79356b | 882 | int *type_of_fault, /* if non-null, fill in with type of fault |
0a7de745 | 883 | * COW, zero-fill, etc... returned in trace point */ |
1c79356b | 884 | /* More arguments: */ |
0a7de745 A |
885 | kern_return_t *error_code, /* code if page is in error */ |
886 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
887 | boolean_t data_supply, /* treat as data_supply if | |
888 | * it is a write fault and a full | |
889 | * page is provided */ | |
2d21ac55 | 890 | vm_object_fault_info_t fault_info) |
1c79356b | 891 | { |
0a7de745 A |
892 | vm_page_t m; |
893 | vm_object_t object; | |
894 | vm_object_offset_t offset; | |
895 | vm_page_t first_m; | |
896 | vm_object_t next_object; | |
897 | vm_object_t copy_object; | |
898 | boolean_t look_for_page; | |
899 | boolean_t force_fault_retry = FALSE; | |
900 | vm_prot_t access_required = fault_type; | |
901 | vm_prot_t wants_copy_flag; | |
902 | kern_return_t wait_result; | |
903 | wait_interrupt_t interruptible_state; | |
904 | boolean_t data_already_requested = FALSE; | |
905 | vm_behavior_t orig_behavior; | |
906 | vm_size_t orig_cluster_size; | |
907 | vm_fault_return_t error; | |
908 | int my_fault; | |
909 | uint32_t try_failed_count; | |
910 | int interruptible; /* how may fault be interrupted? */ | |
911 | int external_state = VM_EXTERNAL_STATE_UNKNOWN; | |
912 | memory_object_t pager; | |
913 | vm_fault_return_t retval; | |
914 | int grab_options; | |
1c79356b | 915 | |
1c79356b | 916 | /* |
5ba3f43e | 917 | * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is |
39037602 | 918 | * marked as paged out in the compressor pager or the pager doesn't exist. |
5ba3f43e A |
919 | * Note also that if the pager for an internal object |
920 | * has not been created, the pager is not invoked regardless of the value | |
39037602 | 921 | * of MUST_ASK_PAGER(). |
1c79356b A |
922 | * |
923 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
39037602 | 924 | * is marked as paged out in the compressor pager. |
1c79356b A |
925 | * PAGED_OUT() is used to determine if a page has already been pushed |
926 | * into a copy object in order to avoid a redundant page out operation. | |
927 | */ | |
0a7de745 | 928 | #define MUST_ASK_PAGER(o, f, s) \ |
39236c6e | 929 | ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT) |
39037602 | 930 | |
39236c6e A |
931 | #define PAGED_OUT(o, f) \ |
932 | (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS) | |
1c79356b A |
933 | |
934 | /* | |
935 | * Recovery actions | |
936 | */ | |
0a7de745 A |
937 | #define RELEASE_PAGE(m) \ |
938 | MACRO_BEGIN \ | |
939 | PAGE_WAKEUP_DONE(m); \ | |
940 | if ( !VM_PAGE_PAGEABLE(m)) { \ | |
941 | vm_page_lockspin_queues(); \ | |
942 | if ( !VM_PAGE_PAGEABLE(m)) { \ | |
943 | if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \ | |
944 | vm_page_deactivate(m); \ | |
945 | else \ | |
946 | vm_page_activate(m); \ | |
947 | } \ | |
948 | vm_page_unlock_queues(); \ | |
949 | } \ | |
1c79356b A |
950 | MACRO_END |
951 | ||
952 | #if TRACEFAULTPAGE | |
0a7de745 | 953 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ |
1c79356b A |
954 | #endif |
955 | ||
2d21ac55 | 956 | interruptible = fault_info->interruptible; |
9bccf70c | 957 | interruptible_state = thread_interrupt_level(interruptible); |
5ba3f43e | 958 | |
1c79356b A |
959 | /* |
960 | * INVARIANTS (through entire routine): | |
961 | * | |
962 | * 1) At all times, we must either have the object | |
963 | * lock or a busy page in some object to prevent | |
964 | * some other thread from trying to bring in | |
965 | * the same page. | |
966 | * | |
967 | * Note that we cannot hold any locks during the | |
968 | * pager access or when waiting for memory, so | |
969 | * we use a busy page then. | |
970 | * | |
1c79356b A |
971 | * 2) To prevent another thread from racing us down the |
972 | * shadow chain and entering a new page in the top | |
973 | * object before we do, we must keep a busy page in | |
974 | * the top object while following the shadow chain. | |
975 | * | |
976 | * 3) We must increment paging_in_progress on any object | |
2d21ac55 A |
977 | * for which we have a busy page before dropping |
978 | * the object lock | |
1c79356b A |
979 | * |
980 | * 4) We leave busy pages on the pageout queues. | |
981 | * If the pageout daemon comes across a busy page, | |
982 | * it will remove the page from the pageout queues. | |
983 | */ | |
984 | ||
1c79356b A |
985 | object = first_object; |
986 | offset = first_offset; | |
987 | first_m = VM_PAGE_NULL; | |
988 | access_required = fault_type; | |
989 | ||
2d21ac55 | 990 | |
1c79356b | 991 | XPR(XPR_VM_FAULT, |
0a7de745 A |
992 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", |
993 | object, offset, fault_type, *protection, 0); | |
1c79356b A |
994 | |
995 | /* | |
2d21ac55 | 996 | * default type of fault |
1c79356b | 997 | */ |
2d21ac55 | 998 | my_fault = DBG_CACHE_HIT_FAULT; |
1c79356b A |
999 | |
1000 | while (TRUE) { | |
1001 | #if TRACEFAULTPAGE | |
0a7de745 | 1002 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1003 | #endif |
39037602 A |
1004 | |
1005 | grab_options = 0; | |
1006 | #if CONFIG_SECLUDED_MEMORY | |
1007 | if (object->can_grab_secluded) { | |
1008 | grab_options |= VM_PAGE_GRAB_SECLUDED; | |
1009 | } | |
1010 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
1011 | ||
1c79356b | 1012 | if (!object->alive) { |
0a7de745 | 1013 | /* |
2d21ac55 A |
1014 | * object is no longer valid |
1015 | * clean up and return error | |
1016 | */ | |
1c79356b | 1017 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1018 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1019 | |
0a7de745 | 1020 | return VM_FAULT_MEMORY_ERROR; |
1c79356b | 1021 | } |
2d21ac55 | 1022 | |
b0d623f7 A |
1023 | if (!object->pager_created && object->phys_contiguous) { |
1024 | /* | |
1025 | * A physically-contiguous object without a pager: | |
1026 | * must be a "large page" object. We do not deal | |
1027 | * with VM pages for this object. | |
1028 | */ | |
39236c6e | 1029 | caller_lookup = FALSE; |
b0d623f7 A |
1030 | m = VM_PAGE_NULL; |
1031 | goto phys_contig_object; | |
1032 | } | |
1033 | ||
1034 | if (object->blocked_access) { | |
1035 | /* | |
1036 | * Access to this VM object has been blocked. | |
1037 | * Replace our "paging_in_progress" reference with | |
1038 | * a "activity_in_progress" reference and wait for | |
1039 | * access to be unblocked. | |
1040 | */ | |
39236c6e | 1041 | caller_lookup = FALSE; /* no longer valid after sleep */ |
b0d623f7 A |
1042 | vm_object_activity_begin(object); |
1043 | vm_object_paging_end(object); | |
1044 | while (object->blocked_access) { | |
1045 | vm_object_sleep(object, | |
0a7de745 A |
1046 | VM_OBJECT_EVENT_UNBLOCKED, |
1047 | THREAD_UNINT); | |
b0d623f7 A |
1048 | } |
1049 | vm_fault_page_blocked_access++; | |
1050 | vm_object_paging_begin(object); | |
1051 | vm_object_activity_end(object); | |
1052 | } | |
1053 | ||
2d21ac55 A |
1054 | /* |
1055 | * See whether the page at 'offset' is resident | |
1056 | */ | |
39236c6e A |
1057 | if (caller_lookup == TRUE) { |
1058 | /* | |
1059 | * The caller has already looked up the page | |
1060 | * and gave us the result in "result_page". | |
1061 | * We can use this for the first lookup but | |
1062 | * it loses its validity as soon as we unlock | |
1063 | * the object. | |
1064 | */ | |
1065 | m = *result_page; | |
1066 | caller_lookup = FALSE; /* no longer valid after that */ | |
1067 | } else { | |
1068 | m = vm_page_lookup(object, offset); | |
1069 | } | |
1c79356b | 1070 | #if TRACEFAULTPAGE |
0a7de745 | 1071 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
1c79356b A |
1072 | #endif |
1073 | if (m != VM_PAGE_NULL) { | |
d9a64523 | 1074 | if (m->vmp_busy) { |
0a7de745 | 1075 | /* |
2d21ac55 A |
1076 | * The page is being brought in, |
1077 | * wait for it and then retry. | |
2d21ac55 | 1078 | */ |
1c79356b | 1079 | #if TRACEFAULTPAGE |
0a7de745 | 1080 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1081 | #endif |
316670eb | 1082 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1c79356b | 1083 | |
316670eb A |
1084 | XPR(XPR_VM_FAULT, |
1085 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
1086 | object, offset, | |
1087 | m, 0, 0); | |
1088 | counter(c_vm_fault_page_block_busy_kernel++); | |
2d21ac55 | 1089 | |
316670eb A |
1090 | if (wait_result != THREAD_AWAKENED) { |
1091 | vm_fault_cleanup(object, first_m); | |
1092 | thread_interrupt_level(interruptible_state); | |
6d2010ae | 1093 | |
0a7de745 A |
1094 | if (wait_result == THREAD_RESTART) { |
1095 | return VM_FAULT_RETRY; | |
1096 | } else { | |
1097 | return VM_FAULT_INTERRUPTED; | |
1098 | } | |
1c79356b | 1099 | } |
316670eb | 1100 | continue; |
1c79356b | 1101 | } |
d9a64523 A |
1102 | if (m->vmp_laundry) { |
1103 | m->vmp_free_when_done = FALSE; | |
1c79356b | 1104 | |
0a7de745 | 1105 | if (!m->vmp_cleaning) { |
316670eb | 1106 | vm_pageout_steal_laundry(m, FALSE); |
0a7de745 | 1107 | } |
316670eb | 1108 | } |
39037602 | 1109 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
91447636 | 1110 | /* |
2d21ac55 | 1111 | * Guard page: off limits ! |
91447636 | 1112 | */ |
2d21ac55 A |
1113 | if (fault_type == VM_PROT_NONE) { |
1114 | /* | |
1115 | * The fault is not requesting any | |
1116 | * access to the guard page, so it must | |
1117 | * be just to wire or unwire it. | |
1118 | * Let's pretend it succeeded... | |
1119 | */ | |
d9a64523 | 1120 | m->vmp_busy = TRUE; |
2d21ac55 A |
1121 | *result_page = m; |
1122 | assert(first_m == VM_PAGE_NULL); | |
1123 | *top_page = first_m; | |
0a7de745 | 1124 | if (type_of_fault) { |
2d21ac55 | 1125 | *type_of_fault = DBG_GUARD_FAULT; |
0a7de745 | 1126 | } |
99c3a104 | 1127 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1128 | return VM_FAULT_SUCCESS; |
1129 | } else { | |
1130 | /* | |
1131 | * The fault requests access to the | |
1132 | * guard page: let's deny that ! | |
1133 | */ | |
1134 | vm_fault_cleanup(object, first_m); | |
1135 | thread_interrupt_level(interruptible_state); | |
1136 | return VM_FAULT_MEMORY_ERROR; | |
1137 | } | |
91447636 | 1138 | } |
1c79356b | 1139 | |
d9a64523 | 1140 | if (m->vmp_error) { |
0a7de745 | 1141 | /* |
2d21ac55 A |
1142 | * The page is in error, give up now. |
1143 | */ | |
1c79356b | 1144 | #if TRACEFAULTPAGE |
0a7de745 | 1145 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ |
1c79356b | 1146 | #endif |
0a7de745 A |
1147 | if (error_code) { |
1148 | *error_code = KERN_MEMORY_ERROR; | |
1149 | } | |
1c79356b | 1150 | VM_PAGE_FREE(m); |
2d21ac55 | 1151 | |
1c79356b | 1152 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1153 | thread_interrupt_level(interruptible_state); |
1c79356b | 1154 | |
0a7de745 | 1155 | return VM_FAULT_MEMORY_ERROR; |
2d21ac55 | 1156 | } |
d9a64523 | 1157 | if (m->vmp_restart) { |
0a7de745 | 1158 | /* |
2d21ac55 A |
1159 | * The pager wants us to restart |
1160 | * at the top of the chain, | |
1161 | * typically because it has moved the | |
1162 | * page to another pager, then do so. | |
1163 | */ | |
1c79356b | 1164 | #if TRACEFAULTPAGE |
0a7de745 | 1165 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b A |
1166 | #endif |
1167 | VM_PAGE_FREE(m); | |
2d21ac55 | 1168 | |
1c79356b | 1169 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1170 | thread_interrupt_level(interruptible_state); |
1c79356b | 1171 | |
0a7de745 | 1172 | return VM_FAULT_RETRY; |
2d21ac55 | 1173 | } |
d9a64523 | 1174 | if (m->vmp_absent) { |
0a7de745 | 1175 | /* |
2d21ac55 A |
1176 | * The page isn't busy, but is absent, |
1177 | * therefore it's deemed "unavailable". | |
1178 | * | |
1c79356b A |
1179 | * Remove the non-existent page (unless it's |
1180 | * in the top object) and move on down to the | |
1181 | * next object (if there is one). | |
1182 | */ | |
1183 | #if TRACEFAULTPAGE | |
0a7de745 | 1184 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ |
1c79356b | 1185 | #endif |
1c79356b | 1186 | next_object = object->shadow; |
1c79356b | 1187 | |
2d21ac55 | 1188 | if (next_object == VM_OBJECT_NULL) { |
1c79356b A |
1189 | /* |
1190 | * Absent page at bottom of shadow | |
1191 | * chain; zero fill the page we left | |
2d21ac55 A |
1192 | * busy in the first object, and free |
1193 | * the absent page. | |
1c79356b | 1194 | */ |
2d21ac55 | 1195 | assert(!must_be_resident); |
55e303ae A |
1196 | |
1197 | /* | |
2d21ac55 A |
1198 | * check for any conditions that prevent |
1199 | * us from creating a new zero-fill page | |
5ba3f43e | 1200 | * vm_fault_check will do all of the |
2d21ac55 A |
1201 | * fault cleanup in the case of an error condition |
1202 | * including resetting the thread_interrupt_level | |
55e303ae | 1203 | */ |
04b8595b | 1204 | error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE); |
55e303ae | 1205 | |
0a7de745 A |
1206 | if (error != VM_FAULT_SUCCESS) { |
1207 | return error; | |
1208 | } | |
55e303ae | 1209 | |
1c79356b | 1210 | XPR(XPR_VM_FAULT, |
2d21ac55 | 1211 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", |
0a7de745 A |
1212 | object, offset, |
1213 | m, | |
1214 | first_object, 0); | |
2d21ac55 | 1215 | |
1c79356b | 1216 | if (object != first_object) { |
0a7de745 | 1217 | /* |
2d21ac55 A |
1218 | * free the absent page we just found |
1219 | */ | |
1c79356b | 1220 | VM_PAGE_FREE(m); |
2d21ac55 A |
1221 | |
1222 | /* | |
1223 | * drop reference and lock on current object | |
1224 | */ | |
1c79356b A |
1225 | vm_object_paging_end(object); |
1226 | vm_object_unlock(object); | |
2d21ac55 A |
1227 | |
1228 | /* | |
5ba3f43e | 1229 | * grab the original page we |
2d21ac55 A |
1230 | * 'soldered' in place and |
1231 | * retake lock on 'first_object' | |
1232 | */ | |
1c79356b A |
1233 | m = first_m; |
1234 | first_m = VM_PAGE_NULL; | |
1c79356b | 1235 | |
2d21ac55 A |
1236 | object = first_object; |
1237 | offset = first_offset; | |
0b4e3aa0 | 1238 | |
1c79356b | 1239 | vm_object_lock(object); |
9bccf70c | 1240 | } else { |
0a7de745 | 1241 | /* |
2d21ac55 A |
1242 | * we're going to use the absent page we just found |
1243 | * so convert it to a 'busy' page | |
1244 | */ | |
0a7de745 | 1245 | m->vmp_absent = FALSE; |
d9a64523 | 1246 | m->vmp_busy = TRUE; |
0b4e3aa0 | 1247 | } |
0a7de745 | 1248 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { |
d9a64523 | 1249 | m->vmp_absent = TRUE; |
0a7de745 | 1250 | } |
2d21ac55 A |
1251 | /* |
1252 | * zero-fill the page and put it on | |
1253 | * the correct paging queue | |
1254 | */ | |
1255 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
1256 | ||
1c79356b A |
1257 | break; |
1258 | } else { | |
0a7de745 | 1259 | if (must_be_resident) { |
1c79356b | 1260 | vm_object_paging_end(object); |
0a7de745 | 1261 | } else if (object != first_object) { |
1c79356b A |
1262 | vm_object_paging_end(object); |
1263 | VM_PAGE_FREE(m); | |
1264 | } else { | |
1265 | first_m = m; | |
d9a64523 A |
1266 | m->vmp_absent = FALSE; |
1267 | m->vmp_busy = TRUE; | |
1c79356b | 1268 | |
2d21ac55 | 1269 | vm_page_lockspin_queues(); |
39037602 | 1270 | vm_page_queues_remove(m, FALSE); |
1c79356b A |
1271 | vm_page_unlock_queues(); |
1272 | } | |
1273 | XPR(XPR_VM_FAULT, | |
1274 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
0a7de745 A |
1275 | object, offset, |
1276 | next_object, | |
1277 | offset + object->vo_shadow_offset, 0); | |
2d21ac55 | 1278 | |
6d2010ae A |
1279 | offset += object->vo_shadow_offset; |
1280 | fault_info->lo_offset += object->vo_shadow_offset; | |
1281 | fault_info->hi_offset += object->vo_shadow_offset; | |
1c79356b | 1282 | access_required = VM_PROT_READ; |
2d21ac55 | 1283 | |
1c79356b A |
1284 | vm_object_lock(next_object); |
1285 | vm_object_unlock(object); | |
1286 | object = next_object; | |
1287 | vm_object_paging_begin(object); | |
5ba3f43e | 1288 | |
2d21ac55 A |
1289 | /* |
1290 | * reset to default type of fault | |
1291 | */ | |
1292 | my_fault = DBG_CACHE_HIT_FAULT; | |
1293 | ||
1c79356b A |
1294 | continue; |
1295 | } | |
1296 | } | |
d9a64523 | 1297 | if ((m->vmp_cleaning) |
2d21ac55 A |
1298 | && ((object != first_object) || (object->copy != VM_OBJECT_NULL)) |
1299 | && (fault_type & VM_PROT_WRITE)) { | |
1c79356b A |
1300 | /* |
1301 | * This is a copy-on-write fault that will | |
1302 | * cause us to revoke access to this page, but | |
1303 | * this page is in the process of being cleaned | |
1304 | * in a clustered pageout. We must wait until | |
1305 | * the cleaning operation completes before | |
1306 | * revoking access to the original page, | |
1307 | * otherwise we might attempt to remove a | |
1308 | * wired mapping. | |
1309 | */ | |
1310 | #if TRACEFAULTPAGE | |
0a7de745 | 1311 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ |
1c79356b A |
1312 | #endif |
1313 | XPR(XPR_VM_FAULT, | |
1314 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
0a7de745 A |
1315 | object, offset, |
1316 | m, 0, 0); | |
2d21ac55 A |
1317 | /* |
1318 | * take an extra ref so that object won't die | |
1319 | */ | |
1320 | vm_object_reference_locked(object); | |
1321 | ||
1c79356b | 1322 | vm_fault_cleanup(object, first_m); |
5ba3f43e | 1323 | |
1c79356b A |
1324 | counter(c_vm_fault_page_block_backoff_kernel++); |
1325 | vm_object_lock(object); | |
1326 | assert(object->ref_count > 0); | |
2d21ac55 | 1327 | |
1c79356b | 1328 | m = vm_page_lookup(object, offset); |
2d21ac55 | 1329 | |
d9a64523 | 1330 | if (m != VM_PAGE_NULL && m->vmp_cleaning) { |
1c79356b | 1331 | PAGE_ASSERT_WAIT(m, interruptible); |
2d21ac55 | 1332 | |
1c79356b | 1333 | vm_object_unlock(object); |
9bccf70c | 1334 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1335 | vm_object_deallocate(object); |
2d21ac55 | 1336 | |
1c79356b A |
1337 | goto backoff; |
1338 | } else { | |
1339 | vm_object_unlock(object); | |
2d21ac55 | 1340 | |
1c79356b | 1341 | vm_object_deallocate(object); |
9bccf70c | 1342 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1343 | |
0a7de745 | 1344 | return VM_FAULT_RETRY; |
1c79356b A |
1345 | } |
1346 | } | |
d9a64523 | 1347 | if (type_of_fault == NULL && (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) && |
b0d623f7 | 1348 | !(fault_info != NULL && fault_info->stealth)) { |
0a7de745 | 1349 | /* |
2d21ac55 A |
1350 | * If we were passed a non-NULL pointer for |
1351 | * "type_of_fault", than we came from | |
1352 | * vm_fault... we'll let it deal with | |
1353 | * this condition, since it | |
d9a64523 | 1354 | * needs to see m->vmp_speculative to correctly |
2d21ac55 A |
1355 | * account the pageins, otherwise... |
1356 | * take it off the speculative queue, we'll | |
1357 | * let the caller of vm_fault_page deal | |
1358 | * with getting it onto the correct queue | |
b0d623f7 A |
1359 | * |
1360 | * If the caller specified in fault_info that | |
1361 | * it wants a "stealth" fault, we also leave | |
1362 | * the page in the speculative queue. | |
2d21ac55 | 1363 | */ |
0a7de745 A |
1364 | vm_page_lockspin_queues(); |
1365 | if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { | |
39037602 | 1366 | vm_page_queues_remove(m, FALSE); |
0a7de745 A |
1367 | } |
1368 | vm_page_unlock_queues(); | |
2d21ac55 | 1369 | } |
39037602 | 1370 | assert(object == VM_PAGE_OBJECT(m)); |
1c79356b | 1371 | |
39037602 | 1372 | if (object->code_signed) { |
2d21ac55 A |
1373 | /* |
1374 | * CODE SIGNING: | |
1375 | * We just paged in a page from a signed | |
1376 | * memory object but we don't need to | |
1377 | * validate it now. We'll validate it if | |
1378 | * when it gets mapped into a user address | |
1379 | * space for the first time or when the page | |
1380 | * gets copied to another object as a result | |
1381 | * of a copy-on-write. | |
1382 | */ | |
1c79356b | 1383 | } |
2d21ac55 | 1384 | |
1c79356b | 1385 | /* |
2d21ac55 A |
1386 | * We mark the page busy and leave it on |
1387 | * the pageout queues. If the pageout | |
1388 | * deamon comes across it, then it will | |
1389 | * remove the page from the queue, but not the object | |
1c79356b | 1390 | */ |
1c79356b | 1391 | #if TRACEFAULTPAGE |
0a7de745 | 1392 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1393 | #endif |
1c79356b A |
1394 | XPR(XPR_VM_FAULT, |
1395 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
0a7de745 | 1396 | object, offset, m, 0, 0); |
d9a64523 A |
1397 | assert(!m->vmp_busy); |
1398 | assert(!m->vmp_absent); | |
2d21ac55 | 1399 | |
d9a64523 | 1400 | m->vmp_busy = TRUE; |
1c79356b A |
1401 | break; |
1402 | } | |
5ba3f43e | 1403 | |
1c79356b | 1404 | |
2d21ac55 A |
1405 | /* |
1406 | * we get here when there is no page present in the object at | |
1407 | * the offset we're interested in... we'll allocate a page | |
1408 | * at this point if the pager associated with | |
1409 | * this object can provide the data or we're the top object... | |
1410 | * object is locked; m == NULL | |
1411 | */ | |
5ba3f43e | 1412 | |
39236c6e A |
1413 | if (must_be_resident) { |
1414 | if (fault_type == VM_PROT_NONE && | |
1415 | object == kernel_object) { | |
1416 | /* | |
1417 | * We've been called from vm_fault_unwire() | |
1418 | * while removing a map entry that was allocated | |
1419 | * with KMA_KOBJECT and KMA_VAONLY. This page | |
1420 | * is not present and there's nothing more to | |
1421 | * do here (nothing to unwire). | |
1422 | */ | |
1423 | vm_fault_cleanup(object, first_m); | |
1424 | thread_interrupt_level(interruptible_state); | |
1425 | ||
1426 | return VM_FAULT_MEMORY_ERROR; | |
1427 | } | |
1428 | ||
316670eb | 1429 | goto dont_look_for_page; |
39236c6e | 1430 | } |
5ba3f43e A |
1431 | |
1432 | /* Don't expect to fault pages into the kernel object. */ | |
1433 | assert(object != kernel_object); | |
1434 | ||
39236c6e | 1435 | data_supply = FALSE; |
39236c6e | 1436 | |
0a7de745 | 1437 | look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply); |
5ba3f43e | 1438 | |
1c79356b | 1439 | #if TRACEFAULTPAGE |
0a7de745 | 1440 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ |
1c79356b | 1441 | #endif |
316670eb | 1442 | if (!look_for_page && object == first_object && !object->phys_contiguous) { |
1c79356b | 1443 | /* |
316670eb | 1444 | * Allocate a new page for this object/offset pair as a placeholder |
1c79356b | 1445 | */ |
39037602 | 1446 | m = vm_page_grab_options(grab_options); |
1c79356b | 1447 | #if TRACEFAULTPAGE |
0a7de745 | 1448 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
1c79356b A |
1449 | #endif |
1450 | if (m == VM_PAGE_NULL) { | |
1451 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1452 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1453 | |
0a7de745 | 1454 | return VM_FAULT_MEMORY_SHORTAGE; |
1c79356b | 1455 | } |
316670eb A |
1456 | |
1457 | if (fault_info && fault_info->batch_pmap_op == TRUE) { | |
3e170ce0 | 1458 | vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); |
316670eb A |
1459 | } else { |
1460 | vm_page_insert(m, object, offset); | |
1461 | } | |
1c79356b | 1462 | } |
316670eb | 1463 | if (look_for_page) { |
0a7de745 A |
1464 | kern_return_t rc; |
1465 | int my_fault_type; | |
1c79356b A |
1466 | |
1467 | /* | |
1468 | * If the memory manager is not ready, we | |
1469 | * cannot make requests. | |
1470 | */ | |
1471 | if (!object->pager_ready) { | |
1472 | #if TRACEFAULTPAGE | |
0a7de745 | 1473 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1474 | #endif |
0a7de745 A |
1475 | if (m != VM_PAGE_NULL) { |
1476 | VM_PAGE_FREE(m); | |
1477 | } | |
2d21ac55 | 1478 | |
1c79356b | 1479 | XPR(XPR_VM_FAULT, |
0a7de745 A |
1480 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", |
1481 | object, offset, 0, 0, 0); | |
2d21ac55 A |
1482 | |
1483 | /* | |
1484 | * take an extra ref so object won't die | |
1485 | */ | |
1486 | vm_object_reference_locked(object); | |
1c79356b A |
1487 | vm_fault_cleanup(object, first_m); |
1488 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 1489 | |
1c79356b A |
1490 | vm_object_lock(object); |
1491 | assert(object->ref_count > 0); | |
2d21ac55 | 1492 | |
1c79356b | 1493 | if (!object->pager_ready) { |
2d21ac55 A |
1494 | wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); |
1495 | ||
1c79356b | 1496 | vm_object_unlock(object); |
0a7de745 | 1497 | if (wait_result == THREAD_WAITING) { |
9bccf70c | 1498 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
0a7de745 | 1499 | } |
1c79356b | 1500 | vm_object_deallocate(object); |
2d21ac55 | 1501 | |
1c79356b A |
1502 | goto backoff; |
1503 | } else { | |
1504 | vm_object_unlock(object); | |
1505 | vm_object_deallocate(object); | |
9bccf70c | 1506 | thread_interrupt_level(interruptible_state); |
1c79356b | 1507 | |
0a7de745 | 1508 | return VM_FAULT_RETRY; |
0b4e3aa0 | 1509 | } |
0b4e3aa0 | 1510 | } |
2d21ac55 | 1511 | if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { |
1c79356b | 1512 | /* |
2d21ac55 A |
1513 | * If there are too many outstanding page |
1514 | * requests pending on this external object, we | |
1515 | * wait for them to be resolved now. | |
1c79356b | 1516 | */ |
1c79356b | 1517 | #if TRACEFAULTPAGE |
0a7de745 | 1518 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1519 | #endif |
0a7de745 | 1520 | if (m != VM_PAGE_NULL) { |
1c79356b | 1521 | VM_PAGE_FREE(m); |
0a7de745 | 1522 | } |
1c79356b | 1523 | /* |
2d21ac55 | 1524 | * take an extra ref so object won't die |
1c79356b | 1525 | */ |
2d21ac55 | 1526 | vm_object_reference_locked(object); |
1c79356b | 1527 | |
1c79356b | 1528 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 1529 | |
1c79356b | 1530 | counter(c_vm_fault_page_block_backoff_kernel++); |
2d21ac55 | 1531 | |
1c79356b A |
1532 | vm_object_lock(object); |
1533 | assert(object->ref_count > 0); | |
2d21ac55 | 1534 | |
6d2010ae | 1535 | if (object->paging_in_progress >= vm_object_pagein_throttle) { |
0a7de745 | 1536 | vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible); |
2d21ac55 | 1537 | |
1c79356b | 1538 | vm_object_unlock(object); |
9bccf70c | 1539 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1540 | vm_object_deallocate(object); |
2d21ac55 | 1541 | |
1c79356b A |
1542 | goto backoff; |
1543 | } else { | |
1544 | vm_object_unlock(object); | |
1545 | vm_object_deallocate(object); | |
9bccf70c | 1546 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1547 | |
0a7de745 | 1548 | return VM_FAULT_RETRY; |
1c79356b A |
1549 | } |
1550 | } | |
39037602 | 1551 | if (object->internal) { |
fe8ab488 | 1552 | int compressed_count_delta; |
39236c6e | 1553 | |
39037602 A |
1554 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
1555 | ||
39236c6e A |
1556 | if (m == VM_PAGE_NULL) { |
1557 | /* | |
1558 | * Allocate a new page for this object/offset pair as a placeholder | |
1559 | */ | |
39037602 | 1560 | m = vm_page_grab_options(grab_options); |
39236c6e | 1561 | #if TRACEFAULTPAGE |
0a7de745 | 1562 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
39236c6e A |
1563 | #endif |
1564 | if (m == VM_PAGE_NULL) { | |
39236c6e A |
1565 | vm_fault_cleanup(object, first_m); |
1566 | thread_interrupt_level(interruptible_state); | |
1567 | ||
0a7de745 | 1568 | return VM_FAULT_MEMORY_SHORTAGE; |
39236c6e A |
1569 | } |
1570 | ||
d9a64523 | 1571 | m->vmp_absent = TRUE; |
39236c6e | 1572 | if (fault_info && fault_info->batch_pmap_op == TRUE) { |
3e170ce0 | 1573 | vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); |
39236c6e A |
1574 | } else { |
1575 | vm_page_insert(m, object, offset); | |
1576 | } | |
1577 | } | |
d9a64523 | 1578 | assert(m->vmp_busy); |
5ba3f43e | 1579 | |
d9a64523 | 1580 | m->vmp_absent = TRUE; |
39236c6e A |
1581 | pager = object->pager; |
1582 | ||
fe8ab488 | 1583 | assert(object->paging_in_progress > 0); |
39236c6e A |
1584 | vm_object_unlock(object); |
1585 | ||
fe8ab488 A |
1586 | rc = vm_compressor_pager_get( |
1587 | pager, | |
1588 | offset + object->paging_offset, | |
39037602 | 1589 | VM_PAGE_GET_PHYS_PAGE(m), |
fe8ab488 A |
1590 | &my_fault_type, |
1591 | 0, | |
1592 | &compressed_count_delta); | |
39236c6e | 1593 | |
04b8595b | 1594 | if (type_of_fault == NULL) { |
0a7de745 | 1595 | int throttle_delay; |
04b8595b A |
1596 | |
1597 | /* | |
1598 | * we weren't called from vm_fault, so we | |
1599 | * need to apply page creation throttling | |
1600 | * do it before we re-acquire any locks | |
1601 | */ | |
1602 | if (my_fault_type == DBG_COMPRESSOR_FAULT) { | |
1603 | if ((throttle_delay = vm_page_throttled(TRUE))) { | |
1604 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0); | |
1605 | delay(throttle_delay); | |
1606 | } | |
1607 | } | |
1608 | } | |
39236c6e | 1609 | vm_object_lock(object); |
fe8ab488 A |
1610 | assert(object->paging_in_progress > 0); |
1611 | ||
1612 | vm_compressor_pager_count( | |
1613 | pager, | |
1614 | compressed_count_delta, | |
1615 | FALSE, /* shared_lock */ | |
1616 | object); | |
39236c6e A |
1617 | |
1618 | switch (rc) { | |
1619 | case KERN_SUCCESS: | |
d9a64523 A |
1620 | m->vmp_absent = FALSE; |
1621 | m->vmp_dirty = TRUE; | |
39037602 | 1622 | if ((object->wimg_bits & |
0a7de745 | 1623 | VM_WIMG_MASK) != |
39236c6e A |
1624 | VM_WIMG_USE_DEFAULT) { |
1625 | /* | |
1626 | * If the page is not cacheable, | |
1627 | * we can't let its contents | |
1628 | * linger in the data cache | |
1629 | * after the decompression. | |
1630 | */ | |
1631 | pmap_sync_page_attributes_phys( | |
39037602 | 1632 | VM_PAGE_GET_PHYS_PAGE(m)); |
fe8ab488 | 1633 | } else { |
d9a64523 | 1634 | m->vmp_written_by_kernel = TRUE; |
fe8ab488 A |
1635 | } |
1636 | ||
1637 | /* | |
1638 | * If the object is purgeable, its | |
1639 | * owner's purgeable ledgers have been | |
1640 | * updated in vm_page_insert() but the | |
1641 | * page was also accounted for in a | |
1642 | * "compressed purgeable" ledger, so | |
1643 | * update that now. | |
1644 | */ | |
d9a64523 | 1645 | if (((object->purgable != |
0a7de745 A |
1646 | VM_PURGABLE_DENY) || |
1647 | object->vo_ledger_tag) && | |
d9a64523 | 1648 | (object->vo_owner != |
0a7de745 | 1649 | NULL)) { |
fe8ab488 A |
1650 | /* |
1651 | * One less compressed | |
d9a64523 | 1652 | * purgeable/tagged page. |
fe8ab488 | 1653 | */ |
d9a64523 | 1654 | vm_object_owner_compressed_update( |
fe8ab488 A |
1655 | object, |
1656 | -1); | |
1657 | } | |
1658 | ||
39236c6e A |
1659 | break; |
1660 | case KERN_MEMORY_FAILURE: | |
d9a64523 A |
1661 | m->vmp_unusual = TRUE; |
1662 | m->vmp_error = TRUE; | |
1663 | m->vmp_absent = FALSE; | |
39236c6e A |
1664 | break; |
1665 | case KERN_MEMORY_ERROR: | |
d9a64523 | 1666 | assert(m->vmp_absent); |
39236c6e A |
1667 | break; |
1668 | default: | |
fe8ab488 | 1669 | panic("vm_fault_page(): unexpected " |
0a7de745 A |
1670 | "error %d from " |
1671 | "vm_compressor_pager_get()\n", | |
1672 | rc); | |
39236c6e A |
1673 | } |
1674 | PAGE_WAKEUP_DONE(m); | |
1675 | ||
1676 | rc = KERN_SUCCESS; | |
1677 | goto data_requested; | |
1678 | } | |
1679 | my_fault_type = DBG_PAGEIN_FAULT; | |
5ba3f43e | 1680 | |
2d21ac55 | 1681 | if (m != VM_PAGE_NULL) { |
316670eb A |
1682 | VM_PAGE_FREE(m); |
1683 | m = VM_PAGE_NULL; | |
0b4e3aa0 | 1684 | } |
1c79356b | 1685 | |
1c79356b | 1686 | #if TRACEFAULTPAGE |
0a7de745 | 1687 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1688 | #endif |
2d21ac55 | 1689 | |
1c79356b | 1690 | /* |
2d21ac55 | 1691 | * It's possible someone called vm_object_destroy while we weren't |
5ba3f43e | 1692 | * holding the object lock. If that has happened, then bail out |
2d21ac55 | 1693 | * here. |
1c79356b | 1694 | */ |
2d21ac55 A |
1695 | |
1696 | pager = object->pager; | |
1697 | ||
1698 | if (pager == MEMORY_OBJECT_NULL) { | |
1699 | vm_fault_cleanup(object, first_m); | |
1700 | thread_interrupt_level(interruptible_state); | |
1701 | return VM_FAULT_MEMORY_ERROR; | |
1702 | } | |
1c79356b A |
1703 | |
1704 | /* | |
2d21ac55 A |
1705 | * We have an absent page in place for the faulting offset, |
1706 | * so we can release the object lock. | |
1c79356b A |
1707 | */ |
1708 | ||
d9a64523 | 1709 | if (object->object_is_shared_cache) { |
5ba3f43e A |
1710 | set_thread_rwlock_boost(); |
1711 | } | |
1712 | ||
2d21ac55 | 1713 | vm_object_unlock(object); |
1c79356b A |
1714 | |
1715 | /* | |
2d21ac55 A |
1716 | * If this object uses a copy_call strategy, |
1717 | * and we are interested in a copy of this object | |
1718 | * (having gotten here only by following a | |
1719 | * shadow chain), then tell the memory manager | |
1720 | * via a flag added to the desired_access | |
1721 | * parameter, so that it can detect a race | |
1722 | * between our walking down the shadow chain | |
1723 | * and its pushing pages up into a copy of | |
1724 | * the object that it manages. | |
1c79356b | 1725 | */ |
0a7de745 | 1726 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) { |
1c79356b | 1727 | wants_copy_flag = VM_PROT_WANTS_COPY; |
0a7de745 | 1728 | } else { |
1c79356b | 1729 | wants_copy_flag = VM_PROT_NONE; |
0a7de745 | 1730 | } |
1c79356b A |
1731 | |
1732 | XPR(XPR_VM_FAULT, | |
1733 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
0a7de745 A |
1734 | object, offset, m, |
1735 | access_required | wants_copy_flag, 0); | |
1c79356b | 1736 | |
316670eb A |
1737 | if (object->copy == first_object) { |
1738 | /* | |
1739 | * if we issue the memory_object_data_request in | |
1740 | * this state, we are subject to a deadlock with | |
1741 | * the underlying filesystem if it is trying to | |
1742 | * shrink the file resulting in a push of pages | |
1743 | * into the copy object... that push will stall | |
1744 | * on the placeholder page, and if the pushing thread | |
1745 | * is holding a lock that is required on the pagein | |
1746 | * path (such as a truncate lock), we'll deadlock... | |
1747 | * to avoid this potential deadlock, we throw away | |
1748 | * our placeholder page before calling memory_object_data_request | |
1749 | * and force this thread to retry the vm_fault_page after | |
1750 | * we have issued the I/O. the second time through this path | |
1751 | * we will find the page already in the cache (presumably still | |
1752 | * busy waiting for the I/O to complete) and then complete | |
1753 | * the fault w/o having to go through memory_object_data_request again | |
1754 | */ | |
1755 | assert(first_m != VM_PAGE_NULL); | |
39037602 | 1756 | assert(VM_PAGE_OBJECT(first_m) == first_object); |
5ba3f43e | 1757 | |
316670eb A |
1758 | vm_object_lock(first_object); |
1759 | VM_PAGE_FREE(first_m); | |
1760 | vm_object_paging_end(first_object); | |
1761 | vm_object_unlock(first_object); | |
1762 | ||
1763 | first_m = VM_PAGE_NULL; | |
1764 | force_fault_retry = TRUE; | |
1765 | ||
1766 | vm_fault_page_forced_retry++; | |
1767 | } | |
1768 | ||
1769 | if (data_already_requested == TRUE) { | |
1770 | orig_behavior = fault_info->behavior; | |
1771 | orig_cluster_size = fault_info->cluster_size; | |
1772 | ||
1773 | fault_info->behavior = VM_BEHAVIOR_RANDOM; | |
1774 | fault_info->cluster_size = PAGE_SIZE; | |
1775 | } | |
2d21ac55 A |
1776 | /* |
1777 | * Call the memory manager to retrieve the data. | |
1778 | */ | |
1779 | rc = memory_object_data_request( | |
1780 | pager, | |
1781 | offset + object->paging_offset, | |
1782 | PAGE_SIZE, | |
1783 | access_required | wants_copy_flag, | |
1784 | (memory_object_fault_info_t)fault_info); | |
1c79356b | 1785 | |
316670eb A |
1786 | if (data_already_requested == TRUE) { |
1787 | fault_info->behavior = orig_behavior; | |
1788 | fault_info->cluster_size = orig_cluster_size; | |
0a7de745 | 1789 | } else { |
316670eb | 1790 | data_already_requested = TRUE; |
0a7de745 | 1791 | } |
316670eb | 1792 | |
fe8ab488 | 1793 | DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); |
1c79356b | 1794 | #if TRACEFAULTPAGE |
0a7de745 | 1795 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ |
1c79356b | 1796 | #endif |
2d21ac55 A |
1797 | vm_object_lock(object); |
1798 | ||
d9a64523 | 1799 | if (object->object_is_shared_cache) { |
5ba3f43e A |
1800 | clear_thread_rwlock_boost(); |
1801 | } | |
1802 | ||
0a7de745 | 1803 | data_requested: |
1c79356b | 1804 | if (rc != KERN_SUCCESS) { |
1c79356b | 1805 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1806 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1807 | |
0a7de745 A |
1808 | return (rc == MACH_SEND_INTERRUPTED) ? |
1809 | VM_FAULT_INTERRUPTED : | |
1810 | VM_FAULT_MEMORY_ERROR; | |
b0d623f7 A |
1811 | } else { |
1812 | clock_sec_t tv_sec; | |
1813 | clock_usec_t tv_usec; | |
39236c6e A |
1814 | |
1815 | if (my_fault_type == DBG_PAGEIN_FAULT) { | |
1816 | clock_get_system_microtime(&tv_sec, &tv_usec); | |
1817 | current_thread()->t_page_creation_time = tv_sec; | |
1818 | current_thread()->t_page_creation_count = 0; | |
1819 | } | |
1c79356b | 1820 | } |
6d2010ae | 1821 | if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) { |
1c79356b | 1822 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1823 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1824 | |
0a7de745 | 1825 | return VM_FAULT_INTERRUPTED; |
1c79356b | 1826 | } |
316670eb | 1827 | if (force_fault_retry == TRUE) { |
316670eb A |
1828 | vm_fault_cleanup(object, first_m); |
1829 | thread_interrupt_level(interruptible_state); | |
1830 | ||
0a7de745 | 1831 | return VM_FAULT_RETRY; |
316670eb | 1832 | } |
2d21ac55 | 1833 | if (m == VM_PAGE_NULL && object->phys_contiguous) { |
91447636 A |
1834 | /* |
1835 | * No page here means that the object we | |
5ba3f43e | 1836 | * initially looked up was "physically |
91447636 A |
1837 | * contiguous" (i.e. device memory). However, |
1838 | * with Virtual VRAM, the object might not | |
1839 | * be backed by that device memory anymore, | |
1840 | * so we're done here only if the object is | |
1841 | * still "phys_contiguous". | |
1842 | * Otherwise, if the object is no longer | |
1843 | * "phys_contiguous", we need to retry the | |
1844 | * page fault against the object's new backing | |
1845 | * store (different memory object). | |
1846 | */ | |
0a7de745 | 1847 | phys_contig_object: |
b0d623f7 | 1848 | goto done; |
91447636 | 1849 | } |
2d21ac55 A |
1850 | /* |
1851 | * potentially a pagein fault | |
1852 | * if we make it through the state checks | |
1853 | * above, than we'll count it as such | |
1854 | */ | |
39236c6e | 1855 | my_fault = my_fault_type; |
91447636 A |
1856 | |
1857 | /* | |
1858 | * Retry with same object/offset, since new data may | |
1859 | * be in a different page (i.e., m is meaningless at | |
1860 | * this point). | |
1861 | */ | |
1c79356b A |
1862 | continue; |
1863 | } | |
316670eb | 1864 | dont_look_for_page: |
1c79356b | 1865 | /* |
5ba3f43e | 1866 | * We get here if the object has no pager, or an existence map |
2d21ac55 A |
1867 | * exists and indicates the page isn't present on the pager |
1868 | * or we're unwiring a page. If a pager exists, but there | |
d9a64523 | 1869 | * is no existence map, then the m->vmp_absent case above handles |
2d21ac55 | 1870 | * the ZF case when the pager can't provide the page |
1c79356b A |
1871 | */ |
1872 | #if TRACEFAULTPAGE | |
0a7de745 | 1873 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
1c79356b | 1874 | #endif |
0a7de745 | 1875 | if (object == first_object) { |
1c79356b | 1876 | first_m = m; |
0a7de745 | 1877 | } else { |
1c79356b | 1878 | assert(m == VM_PAGE_NULL); |
0a7de745 | 1879 | } |
1c79356b A |
1880 | |
1881 | XPR(XPR_VM_FAULT, | |
1882 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
0a7de745 A |
1883 | object, offset, m, |
1884 | object->shadow, 0); | |
2d21ac55 | 1885 | |
1c79356b | 1886 | next_object = object->shadow; |
2d21ac55 | 1887 | |
1c79356b | 1888 | if (next_object == VM_OBJECT_NULL) { |
1c79356b | 1889 | /* |
2d21ac55 A |
1890 | * we've hit the bottom of the shadown chain, |
1891 | * fill the page in the top object with zeros. | |
1c79356b | 1892 | */ |
2d21ac55 | 1893 | assert(!must_be_resident); |
1c79356b A |
1894 | |
1895 | if (object != first_object) { | |
1896 | vm_object_paging_end(object); | |
1897 | vm_object_unlock(object); | |
1898 | ||
1899 | object = first_object; | |
1900 | offset = first_offset; | |
1901 | vm_object_lock(object); | |
1902 | } | |
1c79356b | 1903 | m = first_m; |
39037602 | 1904 | assert(VM_PAGE_OBJECT(m) == object); |
1c79356b A |
1905 | first_m = VM_PAGE_NULL; |
1906 | ||
55e303ae | 1907 | /* |
2d21ac55 A |
1908 | * check for any conditions that prevent |
1909 | * us from creating a new zero-fill page | |
5ba3f43e | 1910 | * vm_fault_check will do all of the |
2d21ac55 A |
1911 | * fault cleanup in the case of an error condition |
1912 | * including resetting the thread_interrupt_level | |
55e303ae | 1913 | */ |
04b8595b | 1914 | error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE); |
55e303ae | 1915 | |
0a7de745 A |
1916 | if (error != VM_FAULT_SUCCESS) { |
1917 | return error; | |
1918 | } | |
55e303ae | 1919 | |
2d21ac55 | 1920 | if (m == VM_PAGE_NULL) { |
39037602 | 1921 | m = vm_page_grab_options(grab_options); |
1c79356b | 1922 | |
2d21ac55 A |
1923 | if (m == VM_PAGE_NULL) { |
1924 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1925 | thread_interrupt_level(interruptible_state); | |
55e303ae | 1926 | |
0a7de745 | 1927 | return VM_FAULT_MEMORY_SHORTAGE; |
2d21ac55 A |
1928 | } |
1929 | vm_page_insert(m, object, offset); | |
0b4e3aa0 | 1930 | } |
0a7de745 | 1931 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { |
d9a64523 | 1932 | m->vmp_absent = TRUE; |
0a7de745 | 1933 | } |
fe8ab488 A |
1934 | |
1935 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
1936 | ||
1c79356b | 1937 | break; |
2d21ac55 | 1938 | } else { |
0a7de745 | 1939 | /* |
2d21ac55 A |
1940 | * Move on to the next object. Lock the next |
1941 | * object before unlocking the current one. | |
1942 | */ | |
0a7de745 | 1943 | if ((object != first_object) || must_be_resident) { |
1c79356b | 1944 | vm_object_paging_end(object); |
0a7de745 | 1945 | } |
2d21ac55 | 1946 | |
6d2010ae A |
1947 | offset += object->vo_shadow_offset; |
1948 | fault_info->lo_offset += object->vo_shadow_offset; | |
1949 | fault_info->hi_offset += object->vo_shadow_offset; | |
1c79356b | 1950 | access_required = VM_PROT_READ; |
2d21ac55 | 1951 | |
1c79356b A |
1952 | vm_object_lock(next_object); |
1953 | vm_object_unlock(object); | |
2d21ac55 | 1954 | |
1c79356b A |
1955 | object = next_object; |
1956 | vm_object_paging_begin(object); | |
1957 | } | |
1958 | } | |
1959 | ||
1960 | /* | |
1961 | * PAGE HAS BEEN FOUND. | |
1962 | * | |
1963 | * This page (m) is: | |
1964 | * busy, so that we can play with it; | |
1965 | * not absent, so that nobody else will fill it; | |
1966 | * possibly eligible for pageout; | |
1967 | * | |
1968 | * The top-level page (first_m) is: | |
1969 | * VM_PAGE_NULL if the page was found in the | |
1970 | * top-level object; | |
1971 | * busy, not absent, and ineligible for pageout. | |
1972 | * | |
1973 | * The current object (object) is locked. A paging | |
1974 | * reference is held for the current and top-level | |
1975 | * objects. | |
1976 | */ | |
1977 | ||
1978 | #if TRACEFAULTPAGE | |
0a7de745 | 1979 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
1c79356b | 1980 | #endif |
0a7de745 | 1981 | #if EXTRA_ASSERTIONS |
d9a64523 | 1982 | assert(m->vmp_busy && !m->vmp_absent); |
b0d623f7 | 1983 | assert((first_m == VM_PAGE_NULL) || |
0a7de745 A |
1984 | (first_m->vmp_busy && !first_m->vmp_absent && |
1985 | !first_m->vmp_active && !first_m->vmp_inactive && !first_m->vmp_secluded)); | |
1986 | #endif /* EXTRA_ASSERTIONS */ | |
1c79356b A |
1987 | |
1988 | XPR(XPR_VM_FAULT, | |
2d21ac55 | 1989 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", |
0a7de745 A |
1990 | object, offset, m, |
1991 | first_object, first_m); | |
2d21ac55 | 1992 | |
1c79356b | 1993 | /* |
2d21ac55 A |
1994 | * If the page is being written, but isn't |
1995 | * already owned by the top-level object, | |
1996 | * we have to copy it into a new page owned | |
1997 | * by the top-level object. | |
1c79356b | 1998 | */ |
b0d623f7 | 1999 | if (object != first_object) { |
1c79356b | 2000 | #if TRACEFAULTPAGE |
0a7de745 | 2001 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
1c79356b | 2002 | #endif |
0a7de745 | 2003 | if (fault_type & VM_PROT_WRITE) { |
1c79356b A |
2004 | vm_page_t copy_m; |
2005 | ||
2d21ac55 A |
2006 | /* |
2007 | * We only really need to copy if we | |
2008 | * want to write it. | |
2009 | */ | |
1c79356b A |
2010 | assert(!must_be_resident); |
2011 | ||
2012 | /* | |
2d21ac55 A |
2013 | * If we try to collapse first_object at this |
2014 | * point, we may deadlock when we try to get | |
2015 | * the lock on an intermediate object (since we | |
2016 | * have the bottom object locked). We can't | |
2017 | * unlock the bottom object, because the page | |
2018 | * we found may move (by collapse) if we do. | |
1c79356b | 2019 | * |
2d21ac55 A |
2020 | * Instead, we first copy the page. Then, when |
2021 | * we have no more use for the bottom object, | |
2022 | * we unlock it and try to collapse. | |
1c79356b | 2023 | * |
2d21ac55 A |
2024 | * Note that we copy the page even if we didn't |
2025 | * need to... that's the breaks. | |
1c79356b A |
2026 | */ |
2027 | ||
2028 | /* | |
2d21ac55 | 2029 | * Allocate a page for the copy |
1c79356b | 2030 | */ |
39037602 | 2031 | copy_m = vm_page_grab_options(grab_options); |
2d21ac55 | 2032 | |
1c79356b A |
2033 | if (copy_m == VM_PAGE_NULL) { |
2034 | RELEASE_PAGE(m); | |
2d21ac55 | 2035 | |
1c79356b | 2036 | vm_fault_cleanup(object, first_m); |
9bccf70c | 2037 | thread_interrupt_level(interruptible_state); |
1c79356b | 2038 | |
0a7de745 | 2039 | return VM_FAULT_MEMORY_SHORTAGE; |
2d21ac55 | 2040 | } |
1c79356b A |
2041 | XPR(XPR_VM_FAULT, |
2042 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
0a7de745 A |
2043 | object, offset, |
2044 | m, copy_m, 0); | |
2d21ac55 | 2045 | |
1c79356b A |
2046 | vm_page_copy(m, copy_m); |
2047 | ||
2048 | /* | |
2d21ac55 A |
2049 | * If another map is truly sharing this |
2050 | * page with us, we have to flush all | |
2051 | * uses of the original page, since we | |
2052 | * can't distinguish those which want the | |
2053 | * original from those which need the | |
2054 | * new copy. | |
1c79356b | 2055 | * |
2d21ac55 A |
2056 | * XXXO If we know that only one map has |
2057 | * access to this page, then we could | |
2058 | * avoid the pmap_disconnect() call. | |
1c79356b | 2059 | */ |
0a7de745 A |
2060 | if (m->vmp_pmapped) { |
2061 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
2062 | } | |
1c79356b | 2063 | |
d9a64523 | 2064 | if (m->vmp_clustered) { |
fe8ab488 A |
2065 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2066 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2067 | } | |
d9a64523 | 2068 | assert(!m->vmp_cleaning); |
1c79356b A |
2069 | |
2070 | /* | |
2d21ac55 | 2071 | * We no longer need the old page or object. |
1c79356b | 2072 | */ |
39236c6e A |
2073 | RELEASE_PAGE(m); |
2074 | ||
39037602 A |
2075 | /* |
2076 | * This check helps with marking the object as having a sequential pattern | |
2077 | * Normally we'll miss doing this below because this fault is about COW to | |
2078 | * the first_object i.e. bring page in from disk, push to object above but | |
2079 | * don't update the file object's sequential pattern. | |
2080 | */ | |
0a7de745 | 2081 | if (object->internal == FALSE) { |
39037602 A |
2082 | vm_fault_is_sequential(object, offset, fault_info->behavior); |
2083 | } | |
2084 | ||
1c79356b A |
2085 | vm_object_paging_end(object); |
2086 | vm_object_unlock(object); | |
2087 | ||
2d21ac55 A |
2088 | my_fault = DBG_COW_FAULT; |
2089 | VM_STAT_INCR(cow_faults); | |
2090 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
1c79356b | 2091 | current_task()->cow_faults++; |
2d21ac55 | 2092 | |
1c79356b A |
2093 | object = first_object; |
2094 | offset = first_offset; | |
2095 | ||
2096 | vm_object_lock(object); | |
2d21ac55 A |
2097 | /* |
2098 | * get rid of the place holder | |
2099 | * page that we soldered in earlier | |
2100 | */ | |
1c79356b A |
2101 | VM_PAGE_FREE(first_m); |
2102 | first_m = VM_PAGE_NULL; | |
5ba3f43e | 2103 | |
2d21ac55 A |
2104 | /* |
2105 | * and replace it with the | |
2106 | * page we just copied into | |
2107 | */ | |
d9a64523 | 2108 | assert(copy_m->vmp_busy); |
1c79356b | 2109 | vm_page_insert(copy_m, object, offset); |
316670eb | 2110 | SET_PAGE_DIRTY(copy_m, TRUE); |
1c79356b | 2111 | |
2d21ac55 | 2112 | m = copy_m; |
1c79356b | 2113 | /* |
2d21ac55 A |
2114 | * Now that we've gotten the copy out of the |
2115 | * way, let's try to collapse the top object. | |
2116 | * But we have to play ugly games with | |
2117 | * paging_in_progress to do that... | |
5ba3f43e A |
2118 | */ |
2119 | vm_object_paging_end(object); | |
0c530ab8 | 2120 | vm_object_collapse(object, offset, TRUE); |
1c79356b | 2121 | vm_object_paging_begin(object); |
0a7de745 A |
2122 | } else { |
2123 | *protection &= (~VM_PROT_WRITE); | |
2124 | } | |
1c79356b | 2125 | } |
1c79356b | 2126 | /* |
2d21ac55 A |
2127 | * Now check whether the page needs to be pushed into the |
2128 | * copy object. The use of asymmetric copy on write for | |
2129 | * shared temporary objects means that we may do two copies to | |
2130 | * satisfy the fault; one above to get the page from a | |
2131 | * shadowed object, and one here to push it into the copy. | |
1c79356b | 2132 | */ |
2d21ac55 | 2133 | try_failed_count = 0; |
1c79356b | 2134 | |
b0d623f7 | 2135 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL) { |
0a7de745 A |
2136 | vm_object_offset_t copy_offset; |
2137 | vm_page_t copy_m; | |
1c79356b A |
2138 | |
2139 | #if TRACEFAULTPAGE | |
0a7de745 | 2140 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
1c79356b A |
2141 | #endif |
2142 | /* | |
2d21ac55 A |
2143 | * If the page is being written, but hasn't been |
2144 | * copied to the copy-object, we have to copy it there. | |
1c79356b | 2145 | */ |
1c79356b A |
2146 | if ((fault_type & VM_PROT_WRITE) == 0) { |
2147 | *protection &= ~VM_PROT_WRITE; | |
2148 | break; | |
2149 | } | |
2150 | ||
2151 | /* | |
2d21ac55 A |
2152 | * If the page was guaranteed to be resident, |
2153 | * we must have already performed the copy. | |
1c79356b | 2154 | */ |
0a7de745 | 2155 | if (must_be_resident) { |
1c79356b | 2156 | break; |
0a7de745 | 2157 | } |
1c79356b A |
2158 | |
2159 | /* | |
2d21ac55 | 2160 | * Try to get the lock on the copy_object. |
1c79356b A |
2161 | */ |
2162 | if (!vm_object_lock_try(copy_object)) { | |
2d21ac55 A |
2163 | vm_object_unlock(object); |
2164 | try_failed_count++; | |
1c79356b | 2165 | |
0a7de745 | 2166 | mutex_pause(try_failed_count); /* wait a bit */ |
1c79356b | 2167 | vm_object_lock(object); |
2d21ac55 | 2168 | |
1c79356b A |
2169 | continue; |
2170 | } | |
2d21ac55 | 2171 | try_failed_count = 0; |
1c79356b A |
2172 | |
2173 | /* | |
2d21ac55 A |
2174 | * Make another reference to the copy-object, |
2175 | * to keep it from disappearing during the | |
2176 | * copy. | |
1c79356b | 2177 | */ |
2d21ac55 | 2178 | vm_object_reference_locked(copy_object); |
1c79356b A |
2179 | |
2180 | /* | |
2d21ac55 | 2181 | * Does the page exist in the copy? |
1c79356b | 2182 | */ |
6d2010ae | 2183 | copy_offset = first_offset - copy_object->vo_shadow_offset; |
2d21ac55 | 2184 | |
0a7de745 | 2185 | if (copy_object->vo_size <= copy_offset) { |
1c79356b A |
2186 | /* |
2187 | * Copy object doesn't cover this page -- do nothing. | |
2188 | */ | |
2189 | ; | |
0a7de745 | 2190 | } else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { |
2d21ac55 A |
2191 | /* |
2192 | * Page currently exists in the copy object | |
2193 | */ | |
d9a64523 | 2194 | if (copy_m->vmp_busy) { |
1c79356b | 2195 | /* |
2d21ac55 A |
2196 | * If the page is being brought |
2197 | * in, wait for it and then retry. | |
1c79356b A |
2198 | */ |
2199 | RELEASE_PAGE(m); | |
2d21ac55 A |
2200 | |
2201 | /* | |
2202 | * take an extra ref so object won't die | |
2203 | */ | |
2204 | vm_object_reference_locked(copy_object); | |
1c79356b A |
2205 | vm_object_unlock(copy_object); |
2206 | vm_fault_cleanup(object, first_m); | |
2207 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 2208 | |
1c79356b A |
2209 | vm_object_lock(copy_object); |
2210 | assert(copy_object->ref_count > 0); | |
2211 | VM_OBJ_RES_DECR(copy_object); | |
2d21ac55 | 2212 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
2213 | copy_object->ref_count--; |
2214 | assert(copy_object->ref_count > 0); | |
2215 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
5ba3f43e | 2216 | |
d9a64523 | 2217 | if (copy_m != VM_PAGE_NULL && copy_m->vmp_busy) { |
1c79356b | 2218 | PAGE_ASSERT_WAIT(copy_m, interruptible); |
2d21ac55 | 2219 | |
1c79356b | 2220 | vm_object_unlock(copy_object); |
9bccf70c | 2221 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 2222 | vm_object_deallocate(copy_object); |
2d21ac55 | 2223 | |
1c79356b A |
2224 | goto backoff; |
2225 | } else { | |
2226 | vm_object_unlock(copy_object); | |
2227 | vm_object_deallocate(copy_object); | |
9bccf70c | 2228 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 2229 | |
0a7de745 | 2230 | return VM_FAULT_RETRY; |
1c79356b A |
2231 | } |
2232 | } | |
0a7de745 | 2233 | } else if (!PAGED_OUT(copy_object, copy_offset)) { |
1c79356b A |
2234 | /* |
2235 | * If PAGED_OUT is TRUE, then the page used to exist | |
2236 | * in the copy-object, and has already been paged out. | |
2237 | * We don't need to repeat this. If PAGED_OUT is | |
2238 | * FALSE, then either we don't know (!pager_created, | |
2239 | * for example) or it hasn't been paged out. | |
2240 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
2241 | * We must copy the page to the copy object. | |
d9a64523 | 2242 | * |
2d21ac55 | 2243 | * Allocate a page for the copy |
1c79356b A |
2244 | */ |
2245 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
2d21ac55 | 2246 | |
1c79356b A |
2247 | if (copy_m == VM_PAGE_NULL) { |
2248 | RELEASE_PAGE(m); | |
2d21ac55 | 2249 | |
1c79356b | 2250 | VM_OBJ_RES_DECR(copy_object); |
2d21ac55 | 2251 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
2252 | copy_object->ref_count--; |
2253 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 2254 | |
1c79356b A |
2255 | vm_object_unlock(copy_object); |
2256 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 2257 | thread_interrupt_level(interruptible_state); |
1c79356b | 2258 | |
0a7de745 | 2259 | return VM_FAULT_MEMORY_SHORTAGE; |
2d21ac55 | 2260 | } |
1c79356b | 2261 | /* |
2d21ac55 | 2262 | * Must copy page into copy-object. |
1c79356b | 2263 | */ |
1c79356b | 2264 | vm_page_copy(m, copy_m); |
5ba3f43e | 2265 | |
1c79356b | 2266 | /* |
2d21ac55 A |
2267 | * If the old page was in use by any users |
2268 | * of the copy-object, it must be removed | |
2269 | * from all pmaps. (We can't know which | |
2270 | * pmaps use it.) | |
1c79356b | 2271 | */ |
0a7de745 A |
2272 | if (m->vmp_pmapped) { |
2273 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); | |
2274 | } | |
1c79356b | 2275 | |
d9a64523 | 2276 | if (m->vmp_clustered) { |
fe8ab488 A |
2277 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2278 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2279 | } | |
1c79356b | 2280 | /* |
2d21ac55 A |
2281 | * If there's a pager, then immediately |
2282 | * page out this page, using the "initialize" | |
2283 | * option. Else, we use the copy. | |
1c79356b | 2284 | */ |
0a7de745 | 2285 | if ((!copy_object->pager_ready) |
39236c6e | 2286 | || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT |
0a7de745 | 2287 | ) { |
2d21ac55 | 2288 | vm_page_lockspin_queues(); |
d9a64523 | 2289 | assert(!m->vmp_cleaning); |
1c79356b A |
2290 | vm_page_activate(copy_m); |
2291 | vm_page_unlock_queues(); | |
2d21ac55 | 2292 | |
316670eb | 2293 | SET_PAGE_DIRTY(copy_m, TRUE); |
1c79356b | 2294 | PAGE_WAKEUP_DONE(copy_m); |
316670eb | 2295 | } else { |
d9a64523 A |
2296 | assert(copy_m->vmp_busy == TRUE); |
2297 | assert(!m->vmp_cleaning); | |
1c79356b A |
2298 | |
2299 | /* | |
2d21ac55 | 2300 | * dirty is protected by the object lock |
1c79356b | 2301 | */ |
316670eb | 2302 | SET_PAGE_DIRTY(copy_m, TRUE); |
1c79356b | 2303 | |
2d21ac55 A |
2304 | /* |
2305 | * The page is already ready for pageout: | |
2306 | * not on pageout queues and busy. | |
2307 | * Unlock everything except the | |
2308 | * copy_object itself. | |
2309 | */ | |
1c79356b A |
2310 | vm_object_unlock(object); |
2311 | ||
2312 | /* | |
2d21ac55 A |
2313 | * Write the page to the copy-object, |
2314 | * flushing it from the kernel. | |
1c79356b | 2315 | */ |
1c79356b A |
2316 | vm_pageout_initialize_page(copy_m); |
2317 | ||
2318 | /* | |
2d21ac55 A |
2319 | * Since the pageout may have |
2320 | * temporarily dropped the | |
2321 | * copy_object's lock, we | |
2322 | * check whether we'll have | |
2323 | * to deallocate the hard way. | |
1c79356b | 2324 | */ |
2d21ac55 | 2325 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { |
1c79356b A |
2326 | vm_object_unlock(copy_object); |
2327 | vm_object_deallocate(copy_object); | |
2328 | vm_object_lock(object); | |
2d21ac55 | 2329 | |
1c79356b A |
2330 | continue; |
2331 | } | |
1c79356b | 2332 | /* |
2d21ac55 A |
2333 | * Pick back up the old object's |
2334 | * lock. [It is safe to do so, | |
2335 | * since it must be deeper in the | |
2336 | * object tree.] | |
1c79356b | 2337 | */ |
1c79356b A |
2338 | vm_object_lock(object); |
2339 | } | |
316670eb | 2340 | |
1c79356b | 2341 | /* |
2d21ac55 A |
2342 | * Because we're pushing a page upward |
2343 | * in the object tree, we must restart | |
2344 | * any faults that are waiting here. | |
2345 | * [Note that this is an expansion of | |
2346 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
2347 | * wait result]. Can't turn off the page's | |
2348 | * busy bit because we're not done with it. | |
1c79356b | 2349 | */ |
d9a64523 A |
2350 | if (m->vmp_wanted) { |
2351 | m->vmp_wanted = FALSE; | |
2d21ac55 | 2352 | thread_wakeup_with_result((event_t) m, THREAD_RESTART); |
1c79356b A |
2353 | } |
2354 | } | |
1c79356b | 2355 | /* |
2d21ac55 A |
2356 | * The reference count on copy_object must be |
2357 | * at least 2: one for our extra reference, | |
2358 | * and at least one from the outside world | |
2359 | * (we checked that when we last locked | |
2360 | * copy_object). | |
1c79356b | 2361 | */ |
2d21ac55 | 2362 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
2363 | copy_object->ref_count--; |
2364 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 2365 | |
5ba3f43e | 2366 | VM_OBJ_RES_DECR(copy_object); |
1c79356b A |
2367 | vm_object_unlock(copy_object); |
2368 | ||
2369 | break; | |
2370 | } | |
b0d623f7 A |
2371 | |
2372 | done: | |
1c79356b A |
2373 | *result_page = m; |
2374 | *top_page = first_m; | |
2375 | ||
2376 | XPR(XPR_VM_FAULT, | |
0a7de745 A |
2377 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", |
2378 | object, offset, m, first_m, 0); | |
1c79356b | 2379 | |
2d21ac55 | 2380 | if (m != VM_PAGE_NULL) { |
39037602 A |
2381 | assert(VM_PAGE_OBJECT(m) == object); |
2382 | ||
b0d623f7 | 2383 | retval = VM_FAULT_SUCCESS; |
fe8ab488 | 2384 | |
2d21ac55 | 2385 | if (my_fault == DBG_PAGEIN_FAULT) { |
fe8ab488 | 2386 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2d21ac55 | 2387 | |
0a7de745 | 2388 | if (object->internal) { |
b0d623f7 | 2389 | my_fault = DBG_PAGEIND_FAULT; |
0a7de745 | 2390 | } else { |
b0d623f7 | 2391 | my_fault = DBG_PAGEINV_FAULT; |
0a7de745 | 2392 | } |
2d21ac55 | 2393 | |
0a7de745 | 2394 | /* |
2d21ac55 A |
2395 | * evaluate access pattern and update state |
2396 | * vm_fault_deactivate_behind depends on the | |
2397 | * state being up to date | |
2398 | */ | |
0a7de745 | 2399 | vm_fault_is_sequential(object, offset, fault_info->behavior); |
d9a64523 | 2400 | vm_fault_deactivate_behind(object, offset, fault_info->behavior); |
d9a64523 | 2401 | } else if (type_of_fault == NULL && my_fault == DBG_CACHE_HIT_FAULT) { |
0a7de745 | 2402 | /* |
d9a64523 A |
2403 | * we weren't called from vm_fault, so handle the |
2404 | * accounting here for hits in the cache | |
2405 | */ | |
0a7de745 A |
2406 | if (m->vmp_clustered) { |
2407 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
d9a64523 A |
2408 | VM_PAGE_CONSUME_CLUSTERED(m); |
2409 | } | |
0a7de745 | 2410 | vm_fault_is_sequential(object, offset, fault_info->behavior); |
2d21ac55 | 2411 | vm_fault_deactivate_behind(object, offset, fault_info->behavior); |
39236c6e | 2412 | } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) { |
39236c6e | 2413 | VM_STAT_INCR(decompressions); |
2d21ac55 | 2414 | } |
0a7de745 A |
2415 | if (type_of_fault) { |
2416 | *type_of_fault = my_fault; | |
2417 | } | |
b0d623f7 A |
2418 | } else { |
2419 | retval = VM_FAULT_SUCCESS_NO_VM_PAGE; | |
2420 | assert(first_m == VM_PAGE_NULL); | |
2421 | assert(object == first_object); | |
2422 | } | |
2d21ac55 | 2423 | |
55e303ae A |
2424 | thread_interrupt_level(interruptible_state); |
2425 | ||
1c79356b | 2426 | #if TRACEFAULTPAGE |
0a7de745 | 2427 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ |
1c79356b | 2428 | #endif |
b0d623f7 | 2429 | return retval; |
1c79356b | 2430 | |
2d21ac55 | 2431 | backoff: |
9bccf70c | 2432 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 2433 | |
0a7de745 A |
2434 | if (wait_result == THREAD_INTERRUPTED) { |
2435 | return VM_FAULT_INTERRUPTED; | |
2436 | } | |
2437 | return VM_FAULT_RETRY; | |
1c79356b | 2438 | |
0a7de745 | 2439 | #undef RELEASE_PAGE |
1c79356b A |
2440 | } |
2441 | ||
2d21ac55 A |
2442 | |
2443 | ||
593a1d5f A |
2444 | /* |
2445 | * CODE SIGNING: | |
2446 | * When soft faulting a page, we have to validate the page if: | |
2447 | * 1. the page is being mapped in user space | |
2448 | * 2. the page hasn't already been found to be "tainted" | |
2449 | * 3. the page belongs to a code-signed object | |
2450 | * 4. the page has not been validated yet or has been mapped for write. | |
2451 | */ | |
0a7de745 A |
2452 | #define VM_FAULT_NEED_CS_VALIDATION(pmap, page, page_obj) \ |
2453 | ((pmap) != kernel_pmap /*1*/ && \ | |
2454 | !(page)->vmp_cs_tainted /*2*/ && \ | |
2455 | (page_obj)->code_signed /*3*/ && \ | |
2456 | (!(page)->vmp_cs_validated || (page)->vmp_wpmapped /*4*/ )) | |
593a1d5f A |
2457 | |
2458 | ||
55e303ae | 2459 | /* |
2d21ac55 | 2460 | * page queue lock must NOT be held |
d9a64523 | 2461 | * m->vmp_object must be locked |
2d21ac55 | 2462 | * |
d9a64523 | 2463 | * NOTE: m->vmp_object could be locked "shared" only if we are called |
2d21ac55 A |
2464 | * from vm_fault() as part of a soft fault. If so, we must be |
2465 | * careful not to modify the VM object in any way that is not | |
2466 | * legal under a shared lock... | |
55e303ae | 2467 | */ |
39037602 | 2468 | extern int panic_on_cs_killed; |
15129b1c A |
2469 | extern int proc_selfpid(void); |
2470 | extern char *proc_name_address(void *p); | |
2d21ac55 A |
2471 | unsigned long cs_enter_tainted_rejected = 0; |
2472 | unsigned long cs_enter_tainted_accepted = 0; | |
2473 | kern_return_t | |
2474 | vm_fault_enter(vm_page_t m, | |
0a7de745 A |
2475 | pmap_t pmap, |
2476 | vm_map_offset_t vaddr, | |
2477 | vm_prot_t prot, | |
2478 | vm_prot_t caller_prot, | |
2479 | boolean_t wired, | |
2480 | boolean_t change_wiring, | |
2481 | vm_tag_t wire_tag, | |
2482 | vm_object_fault_info_t fault_info, | |
2483 | boolean_t *need_retry, | |
2484 | int *type_of_fault) | |
55e303ae | 2485 | { |
0a7de745 A |
2486 | kern_return_t kr, pe_result; |
2487 | boolean_t previously_pmapped = m->vmp_pmapped; | |
2488 | boolean_t must_disconnect = 0; | |
2489 | boolean_t map_is_switched, map_is_switch_protected; | |
2490 | boolean_t cs_violation; | |
2491 | int cs_enforcement_enabled; | |
3e170ce0 | 2492 | vm_prot_t fault_type; |
0a7de745 A |
2493 | vm_object_t object; |
2494 | boolean_t no_cache = fault_info->no_cache; | |
2495 | boolean_t cs_bypass = fault_info->cs_bypass; | |
2496 | int pmap_options = fault_info->pmap_options; | |
5ba3f43e | 2497 | |
3e170ce0 | 2498 | fault_type = change_wiring ? VM_PROT_NONE : caller_prot; |
39037602 | 2499 | object = VM_PAGE_OBJECT(m); |
3e170ce0 | 2500 | |
39037602 | 2501 | vm_object_lock_assert_held(object); |
5ba3f43e A |
2502 | |
2503 | #if KASAN | |
2504 | if (pmap == kernel_pmap) { | |
2505 | kasan_notify_address(vaddr, PAGE_SIZE); | |
2506 | } | |
2507 | #endif | |
2508 | ||
39037602 | 2509 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
2d21ac55 | 2510 | |
39037602 | 2511 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
d9a64523 | 2512 | assert(m->vmp_fictitious); |
2d21ac55 A |
2513 | return KERN_SUCCESS; |
2514 | } | |
2515 | ||
6d2010ae | 2516 | if (*type_of_fault == DBG_ZERO_FILL_FAULT) { |
39037602 | 2517 | vm_object_lock_assert_exclusive(object); |
d9a64523 | 2518 | } else if ((fault_type & VM_PROT_WRITE) == 0 && |
0a7de745 | 2519 | (!m->vmp_wpmapped |
d9a64523 | 2520 | #if VM_OBJECT_ACCESS_TRACKING |
0a7de745 | 2521 | || object->access_tracking |
d9a64523 | 2522 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
0a7de745 | 2523 | )) { |
2d21ac55 | 2524 | /* |
6d2010ae A |
2525 | * This is not a "write" fault, so we |
2526 | * might not have taken the object lock | |
2527 | * exclusively and we might not be able | |
2528 | * to update the "wpmapped" bit in | |
2529 | * vm_fault_enter(). | |
2530 | * Let's just grant read access to | |
2531 | * the page for now and we'll | |
2532 | * soft-fault again if we need write | |
2533 | * access later... | |
2d21ac55 | 2534 | */ |
5ba3f43e A |
2535 | |
2536 | /* This had better not be a JIT page. */ | |
2537 | if (!pmap_has_prot_policy(prot)) { | |
2538 | prot &= ~VM_PROT_WRITE; | |
2539 | } else { | |
2540 | assert(cs_bypass); | |
2541 | } | |
fe8ab488 | 2542 | } |
d9a64523 | 2543 | if (m->vmp_pmapped == FALSE) { |
d9a64523 | 2544 | if (m->vmp_clustered) { |
fe8ab488 A |
2545 | if (*type_of_fault == DBG_CACHE_HIT_FAULT) { |
2546 | /* | |
2547 | * found it in the cache, but this | |
d9a64523 | 2548 | * is the first fault-in of the page (m->vmp_pmapped == FALSE) |
fe8ab488 A |
2549 | * so it must have come in as part of |
2550 | * a cluster... account 1 pagein against it | |
2551 | */ | |
0a7de745 | 2552 | if (object->internal) { |
fe8ab488 | 2553 | *type_of_fault = DBG_PAGEIND_FAULT; |
0a7de745 | 2554 | } else { |
fe8ab488 | 2555 | *type_of_fault = DBG_PAGEINV_FAULT; |
0a7de745 | 2556 | } |
5ba3f43e | 2557 | |
fe8ab488 | 2558 | VM_PAGE_COUNT_AS_PAGEIN(m); |
55e303ae | 2559 | } |
fe8ab488 | 2560 | VM_PAGE_CONSUME_CLUSTERED(m); |
2d21ac55 | 2561 | } |
6d2010ae | 2562 | } |
2d21ac55 A |
2563 | |
2564 | if (*type_of_fault != DBG_COW_FAULT) { | |
2565 | DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); | |
2566 | ||
2567 | if (pmap == kernel_pmap) { | |
2568 | DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL); | |
2569 | } | |
2570 | } | |
2571 | ||
b0d623f7 | 2572 | /* Validate code signature if necessary. */ |
d9a64523 A |
2573 | if (!cs_bypass && |
2574 | VM_FAULT_NEED_CS_VALIDATION(pmap, m, object)) { | |
39037602 | 2575 | vm_object_lock_assert_exclusive(object); |
593a1d5f | 2576 | |
d9a64523 | 2577 | if (m->vmp_cs_validated) { |
593a1d5f A |
2578 | vm_cs_revalidates++; |
2579 | } | |
2580 | ||
5ba3f43e | 2581 | /* VM map is locked, so 1 ref will remain on VM object - |
b0d623f7 | 2582 | * so no harm if vm_page_validate_cs drops the object lock */ |
d9a64523 A |
2583 | |
2584 | #if PMAP_CS | |
2585 | if (fault_info->pmap_cs_associated && | |
2586 | pmap_cs_enforced(pmap) && | |
2587 | !m->vmp_cs_validated && | |
2588 | !m->vmp_cs_tainted && | |
2589 | !m->vmp_cs_nx && | |
2590 | (prot & VM_PROT_EXECUTE) && | |
2591 | (caller_prot & VM_PROT_EXECUTE)) { | |
2592 | /* | |
2593 | * With pmap_cs, the pmap layer will validate the | |
2594 | * code signature for any executable pmap mapping. | |
2595 | * No need for us to validate this page too: | |
2596 | * in pmap_cs we trust... | |
2597 | */ | |
2598 | vm_cs_defer_to_pmap_cs++; | |
2599 | } else { | |
2600 | vm_cs_defer_to_pmap_cs_not++; | |
2601 | vm_page_validate_cs(m); | |
2602 | } | |
2603 | #else /* PMAP_CS */ | |
593a1d5f | 2604 | vm_page_validate_cs(m); |
d9a64523 | 2605 | #endif /* PMAP_CS */ |
593a1d5f A |
2606 | } |
2607 | ||
0a7de745 | 2608 | #define page_immutable(m, prot) ((m)->vmp_cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/ ) |
d9a64523 | 2609 | #define page_nx(m) ((m)->vmp_cs_nx) |
b0d623f7 A |
2610 | |
2611 | map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) && | |
0a7de745 | 2612 | (pmap == vm_map_pmap(current_thread()->map))); |
b0d623f7 | 2613 | map_is_switch_protected = current_thread()->map->switch_protect; |
5ba3f43e | 2614 | |
b0d623f7 | 2615 | /* If the map is switched, and is switch-protected, we must protect |
5ba3f43e | 2616 | * some pages from being write-faulted: immutable pages because by |
b0d623f7 A |
2617 | * definition they may not be written, and executable pages because that |
2618 | * would provide a way to inject unsigned code. | |
2619 | * If the page is immutable, we can simply return. However, we can't | |
2620 | * immediately determine whether a page is executable anywhere. But, | |
2621 | * we can disconnect it everywhere and remove the executable protection | |
5ba3f43e | 2622 | * from the current map. We do that below right before we do the |
b0d623f7 A |
2623 | * PMAP_ENTER. |
2624 | */ | |
d9a64523 | 2625 | cs_enforcement_enabled = cs_process_enforcement(NULL); |
39236c6e | 2626 | |
0a7de745 A |
2627 | if (cs_enforcement_enabled && map_is_switched && |
2628 | map_is_switch_protected && page_immutable(m, prot) && | |
2629 | (prot & VM_PROT_WRITE)) { | |
b0d623f7 A |
2630 | return KERN_CODESIGN_ERROR; |
2631 | } | |
2632 | ||
c18c124e | 2633 | if (cs_enforcement_enabled && page_nx(m) && (prot & VM_PROT_EXECUTE)) { |
0a7de745 | 2634 | if (cs_debug) { |
c18c124e | 2635 | printf("page marked to be NX, not letting it be mapped EXEC\n"); |
0a7de745 | 2636 | } |
c18c124e A |
2637 | return KERN_CODESIGN_ERROR; |
2638 | } | |
2639 | ||
b0d623f7 A |
2640 | /* A page could be tainted, or pose a risk of being tainted later. |
2641 | * Check whether the receiving process wants it, and make it feel | |
2642 | * the consequences (that hapens in cs_invalid_page()). | |
5ba3f43e A |
2643 | * For CS Enforcement, two other conditions will |
2644 | * cause that page to be tainted as well: | |
b0d623f7 A |
2645 | * - pmapping an unsigned page executable - this means unsigned code; |
2646 | * - writeable mapping of a validated page - the content of that page | |
2647 | * can be changed without the kernel noticing, therefore unsigned | |
2648 | * code can be created | |
2649 | */ | |
d9a64523 A |
2650 | if (cs_bypass) { |
2651 | /* code-signing is bypassed */ | |
2652 | cs_violation = FALSE; | |
2653 | } else if (m->vmp_cs_tainted) { | |
2654 | /* tainted page */ | |
2655 | cs_violation = TRUE; | |
2656 | } else if (!cs_enforcement_enabled) { | |
2657 | /* no further code-signing enforcement */ | |
2658 | cs_violation = FALSE; | |
2659 | } else if (page_immutable(m, prot) && | |
0a7de745 A |
2660 | ((prot & VM_PROT_WRITE) || |
2661 | m->vmp_wpmapped)) { | |
d9a64523 A |
2662 | /* |
2663 | * The page should be immutable, but is in danger of being | |
2664 | * modified. | |
2665 | * This is the case where we want policy from the code | |
2666 | * directory - is the page immutable or not? For now we have | |
2667 | * to assume that code pages will be immutable, data pages not. | |
2668 | * We'll assume a page is a code page if it has a code directory | |
2669 | * and we fault for execution. | |
2670 | * That is good enough since if we faulted the code page for | |
2671 | * writing in another map before, it is wpmapped; if we fault | |
2672 | * it for writing in this map later it will also be faulted for | |
2673 | * executing at the same time; and if we fault for writing in | |
2674 | * another map later, we will disconnect it from this pmap so | |
2675 | * we'll notice the change. | |
2676 | */ | |
2677 | cs_violation = TRUE; | |
2678 | } else if (!m->vmp_cs_validated && | |
0a7de745 | 2679 | (prot & VM_PROT_EXECUTE) |
d9a64523 | 2680 | #if PMAP_CS |
0a7de745 A |
2681 | /* |
2682 | * Executable pages will be validated by pmap_cs; | |
2683 | * in pmap_cs we trust... | |
2684 | * If pmap_cs is turned off, this is a code-signing | |
2685 | * violation. | |
2686 | */ | |
2687 | && !(pmap_cs_enforced(pmap)) | |
d9a64523 | 2688 | #endif /* PMAP_CS */ |
0a7de745 | 2689 | ) { |
d9a64523 A |
2690 | cs_violation = TRUE; |
2691 | } else { | |
2692 | cs_violation = FALSE; | |
2693 | } | |
2694 | ||
2695 | if (cs_violation) { | |
b0d623f7 A |
2696 | /* We will have a tainted page. Have to handle the special case |
2697 | * of a switched map now. If the map is not switched, standard | |
2698 | * procedure applies - call cs_invalid_page(). | |
2699 | * If the map is switched, the real owner is invalid already. | |
2700 | * There is no point in invalidating the switching process since | |
2701 | * it will not be executing from the map. So we don't call | |
2702 | * cs_invalid_page() in that case. */ | |
39037602 | 2703 | boolean_t reject_page, cs_killed; |
0a7de745 A |
2704 | if (map_is_switched) { |
2705 | assert(pmap == vm_map_pmap(current_thread()->map)); | |
b0d623f7 A |
2706 | assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE)); |
2707 | reject_page = FALSE; | |
2708 | } else { | |
0a7de745 | 2709 | if (cs_debug > 5) { |
d9a64523 | 2710 | printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s prot: 0x%x\n", |
0a7de745 A |
2711 | object->code_signed ? "yes" : "no", |
2712 | m->vmp_cs_validated ? "yes" : "no", | |
2713 | m->vmp_cs_tainted ? "yes" : "no", | |
2714 | m->vmp_wpmapped ? "yes" : "no", | |
2715 | (int)prot); | |
2716 | } | |
39037602 | 2717 | reject_page = cs_invalid_page((addr64_t) vaddr, &cs_killed); |
b0d623f7 | 2718 | } |
5ba3f43e | 2719 | |
b0d623f7 | 2720 | if (reject_page) { |
fe8ab488 | 2721 | /* reject the invalid page: abort the page fault */ |
0a7de745 A |
2722 | int pid; |
2723 | const char *procname; | |
2724 | task_t task; | |
2725 | vm_object_t file_object, shadow; | |
2726 | vm_object_offset_t file_offset; | |
2727 | char *pathname, *filename; | |
2728 | vm_size_t pathname_len, filename_len; | |
2729 | boolean_t truncated_path; | |
15129b1c | 2730 | #define __PATH_MAX 1024 |
0a7de745 A |
2731 | struct timespec mtime, cs_mtime; |
2732 | int shadow_depth; | |
2733 | os_reason_t codesigning_exit_reason = OS_REASON_NULL; | |
15129b1c | 2734 | |
b0d623f7 A |
2735 | kr = KERN_CODESIGN_ERROR; |
2736 | cs_enter_tainted_rejected++; | |
15129b1c A |
2737 | |
2738 | /* get process name and pid */ | |
2739 | procname = "?"; | |
2740 | task = current_task(); | |
2741 | pid = proc_selfpid(); | |
0a7de745 | 2742 | if (task->bsd_info != NULL) { |
15129b1c | 2743 | procname = proc_name_address(task->bsd_info); |
0a7de745 | 2744 | } |
15129b1c A |
2745 | |
2746 | /* get file's VM object */ | |
39037602 | 2747 | file_object = object; |
d9a64523 | 2748 | file_offset = m->vmp_offset; |
39037602 | 2749 | for (shadow = file_object->shadow, |
0a7de745 A |
2750 | shadow_depth = 0; |
2751 | shadow != VM_OBJECT_NULL; | |
2752 | shadow = file_object->shadow, | |
2753 | shadow_depth++) { | |
15129b1c | 2754 | vm_object_lock_shared(shadow); |
39037602 | 2755 | if (file_object != object) { |
15129b1c A |
2756 | vm_object_unlock(file_object); |
2757 | } | |
2758 | file_offset += file_object->vo_shadow_offset; | |
2759 | file_object = shadow; | |
2760 | } | |
2761 | ||
2762 | mtime.tv_sec = 0; | |
2763 | mtime.tv_nsec = 0; | |
2764 | cs_mtime.tv_sec = 0; | |
2765 | cs_mtime.tv_nsec = 0; | |
2766 | ||
2767 | /* get file's pathname and/or filename */ | |
2768 | pathname = NULL; | |
2769 | filename = NULL; | |
2770 | pathname_len = 0; | |
2771 | filename_len = 0; | |
2772 | truncated_path = FALSE; | |
3e170ce0 A |
2773 | /* no pager -> no file -> no pathname, use "<nil>" in that case */ |
2774 | if (file_object->pager != NULL) { | |
15129b1c A |
2775 | pathname = (char *)kalloc(__PATH_MAX * 2); |
2776 | if (pathname) { | |
fe8ab488 | 2777 | pathname[0] = '\0'; |
15129b1c A |
2778 | pathname_len = __PATH_MAX; |
2779 | filename = pathname + pathname_len; | |
2780 | filename_len = __PATH_MAX; | |
2781 | } | |
2782 | vnode_pager_get_object_name(file_object->pager, | |
0a7de745 A |
2783 | pathname, |
2784 | pathname_len, | |
2785 | filename, | |
2786 | filename_len, | |
2787 | &truncated_path); | |
3e170ce0 A |
2788 | if (pathname) { |
2789 | /* safety first... */ | |
0a7de745 A |
2790 | pathname[__PATH_MAX - 1] = '\0'; |
2791 | filename[__PATH_MAX - 1] = '\0'; | |
3e170ce0 | 2792 | } |
15129b1c | 2793 | vnode_pager_get_object_mtime(file_object->pager, |
0a7de745 A |
2794 | &mtime, |
2795 | &cs_mtime); | |
15129b1c A |
2796 | } |
2797 | printf("CODE SIGNING: process %d[%s]: " | |
0a7de745 A |
2798 | "rejecting invalid page at address 0x%llx " |
2799 | "from offset 0x%llx in file \"%s%s%s\" " | |
2800 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " | |
2801 | "(signed:%d validated:%d tainted:%d nx:%d " | |
2802 | "wpmapped:%d dirty:%d depth:%d)\n", | |
2803 | pid, procname, (addr64_t) vaddr, | |
2804 | file_offset, | |
2805 | (pathname ? pathname : "<nil>"), | |
2806 | (truncated_path ? "/.../" : ""), | |
2807 | (truncated_path ? filename : ""), | |
2808 | cs_mtime.tv_sec, cs_mtime.tv_nsec, | |
2809 | ((cs_mtime.tv_sec == mtime.tv_sec && | |
2810 | cs_mtime.tv_nsec == mtime.tv_nsec) | |
2811 | ? "==" | |
2812 | : "!="), | |
2813 | mtime.tv_sec, mtime.tv_nsec, | |
2814 | object->code_signed, | |
2815 | m->vmp_cs_validated, | |
2816 | m->vmp_cs_tainted, | |
2817 | m->vmp_cs_nx, | |
2818 | m->vmp_wpmapped, | |
2819 | m->vmp_dirty, | |
2820 | shadow_depth); | |
39037602 A |
2821 | |
2822 | /* | |
2823 | * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page | |
2824 | * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the | |
2825 | * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler | |
2826 | * will deal with the segmentation fault. | |
2827 | */ | |
2828 | if (cs_killed) { | |
2829 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, | |
0a7de745 | 2830 | pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE, 0, 0); |
39037602 A |
2831 | |
2832 | codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE); | |
2833 | if (codesigning_exit_reason == NULL) { | |
2834 | printf("vm_fault_enter: failed to allocate codesigning exit reason\n"); | |
2835 | } else { | |
2836 | mach_vm_address_t data_addr = 0; | |
2837 | struct codesigning_exit_reason_info *ceri = NULL; | |
2838 | uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(1, sizeof(*ceri)); | |
2839 | ||
d190cdc3 | 2840 | if (os_reason_alloc_buffer_noblock(codesigning_exit_reason, reason_buffer_size_estimate)) { |
39037602 A |
2841 | printf("vm_fault_enter: failed to allocate buffer for codesigning exit reason\n"); |
2842 | } else { | |
2843 | if (KERN_SUCCESS == kcdata_get_memory_addr(&codesigning_exit_reason->osr_kcd_descriptor, | |
0a7de745 | 2844 | EXIT_REASON_CODESIGNING_INFO, sizeof(*ceri), &data_addr)) { |
39037602 A |
2845 | ceri = (struct codesigning_exit_reason_info *)data_addr; |
2846 | static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname)); | |
2847 | ||
2848 | ceri->ceri_virt_addr = vaddr; | |
2849 | ceri->ceri_file_offset = file_offset; | |
0a7de745 | 2850 | if (pathname) { |
39037602 | 2851 | strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname)); |
0a7de745 | 2852 | } else { |
39037602 | 2853 | ceri->ceri_pathname[0] = '\0'; |
0a7de745 A |
2854 | } |
2855 | if (filename) { | |
39037602 | 2856 | strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename)); |
0a7de745 | 2857 | } else { |
39037602 | 2858 | ceri->ceri_filename[0] = '\0'; |
0a7de745 | 2859 | } |
39037602 A |
2860 | ceri->ceri_path_truncated = (truncated_path); |
2861 | ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec; | |
2862 | ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec; | |
2863 | ceri->ceri_page_modtime_secs = mtime.tv_sec; | |
2864 | ceri->ceri_page_modtime_nsecs = mtime.tv_nsec; | |
2865 | ceri->ceri_object_codesigned = (object->code_signed); | |
d9a64523 A |
2866 | ceri->ceri_page_codesig_validated = (m->vmp_cs_validated); |
2867 | ceri->ceri_page_codesig_tainted = (m->vmp_cs_tainted); | |
2868 | ceri->ceri_page_codesig_nx = (m->vmp_cs_nx); | |
2869 | ceri->ceri_page_wpmapped = (m->vmp_wpmapped); | |
2870 | ceri->ceri_page_slid = 0; | |
2871 | ceri->ceri_page_dirty = (m->vmp_dirty); | |
39037602 A |
2872 | ceri->ceri_page_shadow_depth = shadow_depth; |
2873 | } else { | |
2874 | #if DEBUG || DEVELOPMENT | |
2875 | panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason"); | |
2876 | #else | |
2877 | printf("vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n"); | |
2878 | #endif /* DEBUG || DEVELOPMENT */ | |
2879 | /* Free the buffer */ | |
d190cdc3 | 2880 | os_reason_alloc_buffer_noblock(codesigning_exit_reason, 0); |
39037602 A |
2881 | } |
2882 | } | |
2883 | } | |
2884 | ||
2885 | set_thread_exit_reason(current_thread(), codesigning_exit_reason, FALSE); | |
2886 | } | |
2887 | if (panic_on_cs_killed && | |
d9a64523 | 2888 | object->object_is_shared_cache) { |
39037602 | 2889 | panic("CODE SIGNING: process %d[%s]: " |
0a7de745 A |
2890 | "rejecting invalid page at address 0x%llx " |
2891 | "from offset 0x%llx in file \"%s%s%s\" " | |
2892 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " | |
2893 | "(signed:%d validated:%d tainted:%d nx:%d" | |
2894 | "wpmapped:%d dirty:%d depth:%d)\n", | |
2895 | pid, procname, (addr64_t) vaddr, | |
2896 | file_offset, | |
2897 | (pathname ? pathname : "<nil>"), | |
2898 | (truncated_path ? "/.../" : ""), | |
2899 | (truncated_path ? filename : ""), | |
2900 | cs_mtime.tv_sec, cs_mtime.tv_nsec, | |
2901 | ((cs_mtime.tv_sec == mtime.tv_sec && | |
2902 | cs_mtime.tv_nsec == mtime.tv_nsec) | |
2903 | ? "==" | |
2904 | : "!="), | |
2905 | mtime.tv_sec, mtime.tv_nsec, | |
2906 | object->code_signed, | |
2907 | m->vmp_cs_validated, | |
2908 | m->vmp_cs_tainted, | |
2909 | m->vmp_cs_nx, | |
2910 | m->vmp_wpmapped, | |
2911 | m->vmp_dirty, | |
2912 | shadow_depth); | |
39037602 A |
2913 | } |
2914 | ||
2915 | if (file_object != object) { | |
15129b1c A |
2916 | vm_object_unlock(file_object); |
2917 | } | |
2918 | if (pathname_len != 0) { | |
2919 | kfree(pathname, __PATH_MAX * 2); | |
2920 | pathname = NULL; | |
2921 | filename = NULL; | |
2922 | } | |
b0d623f7 | 2923 | } else { |
fe8ab488 | 2924 | /* proceed with the invalid page */ |
b0d623f7 | 2925 | kr = KERN_SUCCESS; |
d9a64523 | 2926 | if (!m->vmp_cs_validated && |
39037602 | 2927 | !object->code_signed) { |
fe8ab488 | 2928 | /* |
490019cf A |
2929 | * This page has not been (fully) validated but |
2930 | * does not belong to a code-signed object | |
2931 | * so it should not be forcefully considered | |
fe8ab488 A |
2932 | * as tainted. |
2933 | * We're just concerned about it here because | |
2934 | * we've been asked to "execute" it but that | |
2935 | * does not mean that it should cause other | |
2936 | * accesses to fail. | |
2937 | * This happens when a debugger sets a | |
2938 | * breakpoint and we then execute code in | |
2939 | * that page. Marking the page as "tainted" | |
2940 | * would cause any inspection tool ("leaks", | |
2941 | * "vmmap", "CrashReporter", ...) to get killed | |
2942 | * due to code-signing violation on that page, | |
2943 | * even though they're just reading it and not | |
2944 | * executing from it. | |
2945 | */ | |
fe8ab488 A |
2946 | } else { |
2947 | /* | |
2948 | * Page might have been tainted before or not; | |
2949 | * now it definitively is. If the page wasn't | |
2950 | * tainted, we must disconnect it from all | |
2951 | * pmaps later, to force existing mappings | |
2952 | * through that code path for re-consideration | |
2953 | * of the validity of that page. | |
2954 | */ | |
d9a64523 A |
2955 | must_disconnect = !m->vmp_cs_tainted; |
2956 | m->vmp_cs_tainted = TRUE; | |
fe8ab488 | 2957 | } |
b0d623f7 | 2958 | cs_enter_tainted_accepted++; |
2d21ac55 | 2959 | } |
15129b1c A |
2960 | if (kr != KERN_SUCCESS) { |
2961 | if (cs_debug) { | |
2962 | printf("CODESIGNING: vm_fault_enter(0x%llx): " | |
0a7de745 A |
2963 | "*** INVALID PAGE ***\n", |
2964 | (long long)vaddr); | |
15129b1c | 2965 | } |
39236c6e | 2966 | #if !SECURE_KERNEL |
15129b1c | 2967 | if (cs_enforcement_panic) { |
39236c6e A |
2968 | panic("CODESIGNING: panicking on invalid page\n"); |
2969 | } | |
2970 | #endif | |
2d21ac55 A |
2971 | } |
2972 | } else { | |
2973 | /* proceed with the valid page */ | |
2974 | kr = KERN_SUCCESS; | |
2975 | } | |
2976 | ||
0a7de745 A |
2977 | boolean_t page_queues_locked = FALSE; |
2978 | #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \ | |
2979 | MACRO_BEGIN \ | |
2980 | if (! page_queues_locked) { \ | |
2981 | page_queues_locked = TRUE; \ | |
2982 | vm_page_lockspin_queues(); \ | |
2983 | } \ | |
39236c6e | 2984 | MACRO_END |
0a7de745 A |
2985 | #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \ |
2986 | MACRO_BEGIN \ | |
2987 | if (page_queues_locked) { \ | |
2988 | page_queues_locked = FALSE; \ | |
2989 | vm_page_unlock_queues(); \ | |
2990 | } \ | |
39236c6e A |
2991 | MACRO_END |
2992 | ||
2993 | /* | |
2994 | * Hold queues lock to manipulate | |
2995 | * the page queues. Change wiring | |
2996 | * case is obvious. | |
2997 | */ | |
d9a64523 | 2998 | assert((m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object); |
39037602 A |
2999 | |
3000 | #if CONFIG_BACKGROUND_QUEUE | |
3001 | vm_page_update_background_state(m); | |
3002 | #endif | |
d9a64523 | 3003 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
39236c6e A |
3004 | /* |
3005 | * Compressor pages are neither wired | |
3006 | * nor pageable and should never change. | |
3007 | */ | |
39037602 | 3008 | assert(object == compressor_object); |
39236c6e | 3009 | } else if (change_wiring) { |
0a7de745 | 3010 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
39236c6e A |
3011 | |
3012 | if (wired) { | |
3013 | if (kr == KERN_SUCCESS) { | |
5ba3f43e | 3014 | vm_page_wire(m, wire_tag, TRUE); |
39236c6e A |
3015 | } |
3016 | } else { | |
0a7de745 | 3017 | vm_page_unwire(m, TRUE); |
39236c6e A |
3018 | } |
3019 | /* we keep the page queues lock, if we need it later */ | |
39236c6e | 3020 | } else { |
39037602 A |
3021 | if (object->internal == TRUE) { |
3022 | /* | |
3023 | * don't allow anonymous pages on | |
3024 | * the speculative queues | |
3025 | */ | |
3026 | no_cache = FALSE; | |
3027 | } | |
0a7de745 A |
3028 | if (kr != KERN_SUCCESS) { |
3029 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); | |
3030 | vm_page_deactivate(m); | |
39236c6e | 3031 | /* we keep the page queues lock, if we need it later */ |
d9a64523 | 3032 | } else if (((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || |
0a7de745 A |
3033 | (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) || |
3034 | (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || | |
3035 | ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) && | |
3036 | !VM_PAGE_WIRED(m)) { | |
5ba3f43e | 3037 | if (vm_page_local_q && |
39236c6e | 3038 | (*type_of_fault == DBG_COW_FAULT || |
0a7de745 A |
3039 | *type_of_fault == DBG_ZERO_FILL_FAULT)) { |
3040 | struct vpl *lq; | |
3041 | uint32_t lid; | |
39236c6e | 3042 | |
d9a64523 | 3043 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
39037602 | 3044 | |
39236c6e | 3045 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); |
39037602 | 3046 | vm_object_lock_assert_exclusive(object); |
39236c6e A |
3047 | |
3048 | /* | |
3049 | * we got a local queue to stuff this | |
3050 | * new page on... | |
3051 | * its safe to manipulate local and | |
3052 | * local_id at this point since we're | |
3053 | * behind an exclusive object lock and | |
3054 | * the page is not on any global queue. | |
3055 | * | |
3056 | * we'll use the current cpu number to | |
3057 | * select the queue note that we don't | |
3058 | * need to disable preemption... we're | |
39037602 | 3059 | * going to be behind the local queue's |
39236c6e A |
3060 | * lock to do the real work |
3061 | */ | |
3062 | lid = cpu_number(); | |
3063 | ||
3064 | lq = &vm_page_local_q[lid].vpl_un.vpl; | |
3065 | ||
3066 | VPL_LOCK(&lq->vpl_lock); | |
3067 | ||
3e170ce0 | 3068 | vm_page_check_pageable_safe(m); |
0a7de745 | 3069 | vm_page_queue_enter(&lq->vpl_queue, m, vmp_pageq); |
d9a64523 A |
3070 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q; |
3071 | m->vmp_local_id = lid; | |
39236c6e | 3072 | lq->vpl_count++; |
5ba3f43e | 3073 | |
0a7de745 | 3074 | if (object->internal) { |
39236c6e | 3075 | lq->vpl_internal_count++; |
0a7de745 | 3076 | } else { |
39236c6e | 3077 | lq->vpl_external_count++; |
0a7de745 | 3078 | } |
39236c6e A |
3079 | |
3080 | VPL_UNLOCK(&lq->vpl_lock); | |
3081 | ||
0a7de745 | 3082 | if (lq->vpl_count > vm_page_local_q_soft_limit) { |
39236c6e A |
3083 | /* |
3084 | * we're beyond the soft limit | |
3085 | * for the local queue | |
3086 | * vm_page_reactivate_local will | |
3087 | * 'try' to take the global page | |
3088 | * queue lock... if it can't | |
3089 | * that's ok... we'll let the | |
3090 | * queue continue to grow up | |
3091 | * to the hard limit... at that | |
3092 | * point we'll wait for the | |
3093 | * lock... once we've got the | |
3094 | * lock, we'll transfer all of | |
3095 | * the pages from the local | |
3096 | * queue to the global active | |
3097 | * queue | |
3098 | */ | |
3099 | vm_page_reactivate_local(lid, FALSE, FALSE); | |
3100 | } | |
3101 | } else { | |
39236c6e A |
3102 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
3103 | ||
3104 | /* | |
3105 | * test again now that we hold the | |
3106 | * page queue lock | |
3107 | */ | |
3108 | if (!VM_PAGE_WIRED(m)) { | |
d9a64523 | 3109 | if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
39037602 | 3110 | vm_page_queues_remove(m, FALSE); |
39236c6e | 3111 | |
d9a64523 A |
3112 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); |
3113 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_fault_reactivated, 1); | |
39236c6e A |
3114 | } |
3115 | ||
0a7de745 A |
3116 | if (!VM_PAGE_ACTIVE_OR_INACTIVE(m) || |
3117 | no_cache) { | |
39236c6e A |
3118 | /* |
3119 | * If this is a no_cache mapping | |
3120 | * and the page has never been | |
3121 | * mapped before or was | |
3122 | * previously a no_cache page, | |
3123 | * then we want to leave pages | |
3124 | * in the speculative state so | |
3125 | * that they can be readily | |
3126 | * recycled if free memory runs | |
3127 | * low. Otherwise the page is | |
5ba3f43e | 3128 | * activated as normal. |
39236c6e A |
3129 | */ |
3130 | ||
3131 | if (no_cache && | |
3132 | (!previously_pmapped || | |
0a7de745 | 3133 | m->vmp_no_cache)) { |
d9a64523 | 3134 | m->vmp_no_cache = TRUE; |
39236c6e | 3135 | |
0a7de745 | 3136 | if (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) { |
39236c6e | 3137 | vm_page_speculate(m, FALSE); |
0a7de745 A |
3138 | } |
3139 | } else if (!VM_PAGE_ACTIVE_OR_INACTIVE(m)) { | |
39236c6e A |
3140 | vm_page_activate(m); |
3141 | } | |
3142 | } | |
3143 | } | |
3144 | /* we keep the page queues lock, if we need it later */ | |
3145 | } | |
3146 | } | |
3147 | } | |
39236c6e A |
3148 | /* we're done with the page queues lock, if we ever took it */ |
3149 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); | |
3150 | ||
3151 | ||
b0d623f7 A |
3152 | /* If we have a KERN_SUCCESS from the previous checks, we either have |
3153 | * a good page, or a tainted page that has been accepted by the process. | |
3154 | * In both cases the page will be entered into the pmap. | |
3155 | * If the page is writeable, we need to disconnect it from other pmaps | |
3156 | * now so those processes can take note. | |
3157 | */ | |
2d21ac55 | 3158 | if (kr == KERN_SUCCESS) { |
0a7de745 | 3159 | /* |
2d21ac55 | 3160 | * NOTE: we may only hold the vm_object lock SHARED |
5ba3f43e | 3161 | * at this point, so we need the phys_page lock to |
fe8ab488 A |
3162 | * properly serialize updating the pmapped and |
3163 | * xpmapped bits | |
2d21ac55 | 3164 | */ |
d9a64523 | 3165 | if ((prot & VM_PROT_EXECUTE) && !m->vmp_xpmapped) { |
0a7de745 | 3166 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); |
fe8ab488 | 3167 | |
39037602 | 3168 | pmap_lock_phys_page(phys_page); |
fe8ab488 A |
3169 | /* |
3170 | * go ahead and take the opportunity | |
3171 | * to set 'pmapped' here so that we don't | |
3172 | * need to grab this lock a 2nd time | |
3173 | * just below | |
3174 | */ | |
d9a64523 | 3175 | m->vmp_pmapped = TRUE; |
5ba3f43e | 3176 | |
d9a64523 | 3177 | if (!m->vmp_xpmapped) { |
d9a64523 | 3178 | m->vmp_xpmapped = TRUE; |
fe8ab488 | 3179 | |
39037602 | 3180 | pmap_unlock_phys_page(phys_page); |
fe8ab488 | 3181 | |
0a7de745 | 3182 | if (!object->internal) { |
fe8ab488 | 3183 | OSAddAtomic(1, &vm_page_xpmapped_external_count); |
0a7de745 | 3184 | } |
fe8ab488 | 3185 | |
5ba3f43e A |
3186 | #if defined(__arm__) || defined(__arm64__) |
3187 | pmap_sync_page_data_phys(phys_page); | |
3188 | #else | |
39037602 A |
3189 | if (object->internal && |
3190 | object->pager != NULL) { | |
fe8ab488 A |
3191 | /* |
3192 | * This page could have been | |
3193 | * uncompressed by the | |
3194 | * compressor pager and its | |
3195 | * contents might be only in | |
3196 | * the data cache. | |
3197 | * Since it's being mapped for | |
3198 | * "execute" for the fist time, | |
3199 | * make sure the icache is in | |
3200 | * sync. | |
3201 | */ | |
39037602 A |
3202 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
3203 | pmap_sync_page_data_phys(phys_page); | |
fe8ab488 | 3204 | } |
5ba3f43e | 3205 | #endif |
0a7de745 | 3206 | } else { |
39037602 | 3207 | pmap_unlock_phys_page(phys_page); |
0a7de745 | 3208 | } |
fe8ab488 | 3209 | } else { |
d9a64523 | 3210 | if (m->vmp_pmapped == FALSE) { |
0a7de745 | 3211 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); |
39037602 A |
3212 | |
3213 | pmap_lock_phys_page(phys_page); | |
d9a64523 | 3214 | m->vmp_pmapped = TRUE; |
39037602 | 3215 | pmap_unlock_phys_page(phys_page); |
fe8ab488 A |
3216 | } |
3217 | } | |
6d2010ae A |
3218 | |
3219 | if (fault_type & VM_PROT_WRITE) { | |
d9a64523 | 3220 | if (m->vmp_wpmapped == FALSE) { |
39037602 A |
3221 | vm_object_lock_assert_exclusive(object); |
3222 | if (!object->internal && object->pager) { | |
3223 | task_update_logical_writes(current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vnode_pager_lookup_vnode(object->pager)); | |
3224 | } | |
d9a64523 | 3225 | m->vmp_wpmapped = TRUE; |
6d2010ae A |
3226 | } |
3227 | if (must_disconnect) { | |
3228 | /* | |
5ba3f43e | 3229 | * We can only get here |
6d2010ae A |
3230 | * because of the CSE logic |
3231 | */ | |
39236c6e | 3232 | assert(cs_enforcement_enabled); |
39037602 | 3233 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
5ba3f43e | 3234 | /* |
6d2010ae | 3235 | * If we are faulting for a write, we can clear |
b0d623f7 A |
3236 | * the execute bit - that will ensure the page is |
3237 | * checked again before being executable, which | |
3238 | * protects against a map switch. | |
3239 | * This only happens the first time the page | |
5ba3f43e | 3240 | * gets tainted, so we won't get stuck here |
6d2010ae A |
3241 | * to make an already writeable page executable. |
3242 | */ | |
0a7de745 | 3243 | if (!cs_bypass) { |
5ba3f43e | 3244 | assert(!pmap_has_prot_policy(prot)); |
6d2010ae A |
3245 | prot &= ~VM_PROT_EXECUTE; |
3246 | } | |
b0d623f7 | 3247 | } |
4a3eedf9 | 3248 | } |
39037602 | 3249 | assert(VM_PAGE_OBJECT(m) == object); |
d1ecb069 | 3250 | |
d9a64523 A |
3251 | #if VM_OBJECT_ACCESS_TRACKING |
3252 | if (object->access_tracking) { | |
3253 | DTRACE_VM2(access_tracking, vm_map_offset_t, vaddr, int, fault_type); | |
3254 | if (fault_type & VM_PROT_WRITE) { | |
3255 | object->access_tracking_writes++; | |
3256 | vm_object_access_tracking_writes++; | |
3257 | } else { | |
3258 | object->access_tracking_reads++; | |
3259 | vm_object_access_tracking_reads++; | |
3260 | } | |
3261 | } | |
3262 | #endif /* VM_OBJECT_ACCESS_TRACKING */ | |
3263 | ||
3264 | #if PMAP_CS | |
3265 | /* | |
3266 | * If CS enforcement is on, we don't ask for an executable page if the | |
3267 | * fault does not call for execution, because that can fail in | |
3268 | * situations where the caller only actually wanted read access. | |
3269 | * However, it may be better to instead retry without execute on | |
3270 | * failure, or pass a flag into pmap_enter to do the right thing. | |
3271 | */ | |
3272 | // TODO: <rdar://problem/30997388> maybe do something better than masking out VM_PROT_EXECUTE on non-execute faults | |
3273 | if (pmap_cs_enforced(pmap) && !(caller_prot & VM_PROT_EXECUTE)) { | |
3274 | prot &= ~VM_PROT_EXECUTE; | |
3275 | } | |
3276 | #endif | |
3277 | ||
d1ecb069 A |
3278 | /* Prevent a deadlock by not |
3279 | * holding the object lock if we need to wait for a page in | |
3280 | * pmap_enter() - <rdar://problem/7138958> */ | |
316670eb | 3281 | PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, 0, |
0a7de745 A |
3282 | wired, |
3283 | pmap_options | PMAP_OPTIONS_NOWAIT, | |
3284 | pe_result); | |
5ba3f43e A |
3285 | #if __x86_64__ |
3286 | if (pe_result == KERN_INVALID_ARGUMENT && | |
3287 | pmap == PMAP_NULL && | |
3288 | wired) { | |
3289 | /* | |
3290 | * Wiring a page in a pmap-less VM map: | |
3291 | * VMware's "vmmon" kernel extension does this | |
3292 | * to grab pages. | |
3293 | * Let it proceed even though the PMAP_ENTER() failed. | |
3294 | */ | |
3295 | pe_result = KERN_SUCCESS; | |
3296 | } | |
3297 | #endif /* __x86_64__ */ | |
d1ecb069 | 3298 | |
0a7de745 | 3299 | if (pe_result == KERN_RESOURCE_SHORTAGE) { |
316670eb A |
3300 | if (need_retry) { |
3301 | /* | |
3302 | * this will be non-null in the case where we hold the lock | |
3303 | * on the top-object in this chain... we can't just drop | |
3304 | * the lock on the object we're inserting the page into | |
3305 | * and recall the PMAP_ENTER since we can still cause | |
5ba3f43e | 3306 | * a deadlock if one of the critical paths tries to |
316670eb A |
3307 | * acquire the lock on the top-object and we're blocked |
3308 | * in PMAP_ENTER waiting for memory... our only recourse | |
5ba3f43e | 3309 | * is to deal with it at a higher level where we can |
316670eb A |
3310 | * drop both locks. |
3311 | */ | |
3312 | *need_retry = TRUE; | |
3313 | vm_pmap_enter_retried++; | |
3314 | goto after_the_pmap_enter; | |
3315 | } | |
d1ecb069 | 3316 | /* The nonblocking version of pmap_enter did not succeed. |
316670eb | 3317 | * and we don't need to drop other locks and retry |
5ba3f43e | 3318 | * at the level above us, so |
316670eb | 3319 | * use the blocking version instead. Requires marking |
d1ecb069 | 3320 | * the page busy and unlocking the object */ |
d9a64523 | 3321 | boolean_t was_busy = m->vmp_busy; |
39236c6e | 3322 | |
39037602 | 3323 | vm_object_lock_assert_exclusive(object); |
39236c6e | 3324 | |
d9a64523 | 3325 | m->vmp_busy = TRUE; |
39037602 | 3326 | vm_object_unlock(object); |
5ba3f43e | 3327 | |
fe8ab488 | 3328 | PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, |
0a7de745 A |
3329 | 0, wired, |
3330 | pmap_options, pe_result); | |
5ba3f43e | 3331 | |
39037602 A |
3332 | assert(VM_PAGE_OBJECT(m) == object); |
3333 | ||
d1ecb069 | 3334 | /* Take the object lock again. */ |
39037602 | 3335 | vm_object_lock(object); |
5ba3f43e | 3336 | |
d1ecb069 A |
3337 | /* If the page was busy, someone else will wake it up. |
3338 | * Otherwise, we have to do it now. */ | |
d9a64523 | 3339 | assert(m->vmp_busy); |
0a7de745 | 3340 | if (!was_busy) { |
d1ecb069 A |
3341 | PAGE_WAKEUP_DONE(m); |
3342 | } | |
3343 | vm_pmap_enter_blocked++; | |
3344 | } | |
5ba3f43e A |
3345 | |
3346 | kr = pe_result; | |
2d21ac55 A |
3347 | } |
3348 | ||
6d2010ae | 3349 | after_the_pmap_enter: |
2d21ac55 | 3350 | return kr; |
55e303ae A |
3351 | } |
3352 | ||
fe8ab488 A |
3353 | void |
3354 | vm_pre_fault(vm_map_offset_t vaddr) | |
3355 | { | |
3356 | if (pmap_find_phys(current_map()->pmap, vaddr) == 0) { | |
5ba3f43e | 3357 | vm_fault(current_map(), /* map */ |
0a7de745 A |
3358 | vaddr, /* vaddr */ |
3359 | VM_PROT_READ, /* fault_type */ | |
3360 | FALSE, /* change_wiring */ | |
3361 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ | |
3362 | THREAD_UNINT, /* interruptible */ | |
3363 | NULL, /* caller_pmap */ | |
3364 | 0 /* caller_pmap_addr */); | |
fe8ab488 A |
3365 | } |
3366 | } | |
3367 | ||
2d21ac55 | 3368 | |
1c79356b A |
3369 | /* |
3370 | * Routine: vm_fault | |
3371 | * Purpose: | |
3372 | * Handle page faults, including pseudo-faults | |
3373 | * used to change the wiring status of pages. | |
3374 | * Returns: | |
3375 | * Explicit continuations have been removed. | |
3376 | * Implementation: | |
3377 | * vm_fault and vm_fault_page save mucho state | |
3378 | * in the moral equivalent of a closure. The state | |
3379 | * structure is allocated when first entering vm_fault | |
3380 | * and deallocated when leaving vm_fault. | |
3381 | */ | |
3382 | ||
91447636 | 3383 | extern int _map_enter_debug; |
0a7de745 | 3384 | extern uint64_t get_current_unique_pid(void); |
91447636 | 3385 | |
2d21ac55 A |
3386 | unsigned long vm_fault_collapse_total = 0; |
3387 | unsigned long vm_fault_collapse_skipped = 0; | |
3388 | ||
39236c6e | 3389 | |
1c79356b | 3390 | kern_return_t |
5ba3f43e | 3391 | vm_fault_external( |
0a7de745 A |
3392 | vm_map_t map, |
3393 | vm_map_offset_t vaddr, | |
3394 | vm_prot_t fault_type, | |
3395 | boolean_t change_wiring, | |
3396 | int interruptible, | |
3397 | pmap_t caller_pmap, | |
3398 | vm_map_offset_t caller_pmap_addr) | |
fe8ab488 | 3399 | { |
5ba3f43e | 3400 | return vm_fault_internal(map, vaddr, fault_type, change_wiring, vm_tag_bt(), |
0a7de745 A |
3401 | interruptible, caller_pmap, caller_pmap_addr, |
3402 | NULL); | |
fe8ab488 A |
3403 | } |
3404 | ||
5ba3f43e A |
3405 | kern_return_t |
3406 | vm_fault( | |
0a7de745 A |
3407 | vm_map_t map, |
3408 | vm_map_offset_t vaddr, | |
3409 | vm_prot_t fault_type, | |
3410 | boolean_t change_wiring, | |
3411 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ | |
3412 | int interruptible, | |
3413 | pmap_t caller_pmap, | |
3414 | vm_map_offset_t caller_pmap_addr) | |
5ba3f43e A |
3415 | { |
3416 | return vm_fault_internal(map, vaddr, fault_type, change_wiring, wire_tag, | |
0a7de745 A |
3417 | interruptible, caller_pmap, caller_pmap_addr, |
3418 | NULL); | |
5ba3f43e | 3419 | } |
3e170ce0 | 3420 | |
fe8ab488 A |
3421 | kern_return_t |
3422 | vm_fault_internal( | |
0a7de745 A |
3423 | vm_map_t map, |
3424 | vm_map_offset_t vaddr, | |
3425 | vm_prot_t caller_prot, | |
3426 | boolean_t change_wiring, | |
3427 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ | |
3428 | int interruptible, | |
3429 | pmap_t caller_pmap, | |
3430 | vm_map_offset_t caller_pmap_addr, | |
3431 | ppnum_t *physpage_p) | |
1c79356b | 3432 | { |
0a7de745 A |
3433 | vm_map_version_t version; /* Map version for verificiation */ |
3434 | boolean_t wired; /* Should mapping be wired down? */ | |
3435 | vm_object_t object; /* Top-level object */ | |
3436 | vm_object_offset_t offset; /* Top-level offset */ | |
3437 | vm_prot_t prot; /* Protection for mapping */ | |
3438 | vm_object_t old_copy_object; /* Saved copy object */ | |
3439 | vm_page_t result_page; /* Result of vm_fault_page */ | |
3440 | vm_page_t top_page; /* Placeholder page */ | |
3441 | kern_return_t kr; | |
3442 | ||
3443 | vm_page_t m; /* Fast access to result_page */ | |
3444 | kern_return_t error_code; | |
3445 | vm_object_t cur_object; | |
3446 | vm_object_t m_object = NULL; | |
3447 | vm_object_offset_t cur_offset; | |
3448 | vm_page_t cur_m; | |
3449 | vm_object_t new_object; | |
1c79356b | 3450 | int type_of_fault; |
0a7de745 A |
3451 | pmap_t pmap; |
3452 | wait_interrupt_t interruptible_state; | |
3453 | vm_map_t real_map = map; | |
3454 | vm_map_t original_map = map; | |
3455 | boolean_t object_locks_dropped = FALSE; | |
3456 | vm_prot_t fault_type; | |
3457 | vm_prot_t original_fault_type; | |
d9a64523 | 3458 | struct vm_object_fault_info fault_info = {}; |
0a7de745 A |
3459 | boolean_t need_collapse = FALSE; |
3460 | boolean_t need_retry = FALSE; | |
3461 | boolean_t *need_retry_ptr = NULL; | |
3462 | int object_lock_type = 0; | |
3463 | int cur_object_lock_type; | |
3464 | vm_object_t top_object = VM_OBJECT_NULL; | |
3465 | vm_object_t written_on_object = VM_OBJECT_NULL; | |
3466 | memory_object_t written_on_pager = NULL; | |
3467 | vm_object_offset_t written_on_offset = 0; | |
3468 | int throttle_delay; | |
3469 | int compressed_count_delta; | |
3470 | int grab_options; | |
3471 | vm_map_offset_t trace_vaddr; | |
3472 | vm_map_offset_t trace_real_vaddr; | |
d190cdc3 | 3473 | #if DEVELOPMENT || DEBUG |
0a7de745 | 3474 | vm_map_offset_t real_vaddr; |
1c79356b | 3475 | |
39037602 | 3476 | real_vaddr = vaddr; |
d190cdc3 A |
3477 | #endif /* DEVELOPMENT || DEBUG */ |
3478 | trace_real_vaddr = vaddr; | |
39037602 | 3479 | vaddr = vm_map_trunc_page(vaddr, PAGE_MASK); |
de355530 | 3480 | |
d190cdc3 | 3481 | if (map == kernel_map) { |
5ba3f43e A |
3482 | trace_vaddr = VM_KERNEL_ADDRHIDE(vaddr); |
3483 | trace_real_vaddr = VM_KERNEL_ADDRHIDE(trace_real_vaddr); | |
d190cdc3 A |
3484 | } else { |
3485 | trace_vaddr = vaddr; | |
3486 | } | |
3487 | ||
5ba3f43e | 3488 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
3489 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, |
3490 | ((uint64_t)trace_vaddr >> 32), | |
3491 | trace_vaddr, | |
3492 | (map == kernel_map), | |
3493 | 0, | |
3494 | 0); | |
1c79356b | 3495 | |
0c530ab8 | 3496 | if (get_preemption_level() != 0) { |
0a7de745 A |
3497 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3498 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, | |
3499 | ((uint64_t)trace_vaddr >> 32), | |
3500 | trace_vaddr, | |
3501 | KERN_FAILURE, | |
3502 | 0, | |
3503 | 0); | |
3504 | ||
3505 | return KERN_FAILURE; | |
9bccf70c | 3506 | } |
5ba3f43e | 3507 | |
d9a64523 A |
3508 | thread_t cthread = current_thread(); |
3509 | boolean_t rtfault = (cthread->sched_mode == TH_MODE_REALTIME); | |
3510 | uint64_t fstart = 0; | |
3511 | ||
3512 | if (rtfault) { | |
3513 | fstart = mach_continuous_time(); | |
3514 | } | |
3515 | ||
9bccf70c | 3516 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b | 3517 | |
3e170ce0 A |
3518 | fault_type = (change_wiring ? VM_PROT_NONE : caller_prot); |
3519 | ||
2d21ac55 A |
3520 | VM_STAT_INCR(faults); |
3521 | current_task()->faults++; | |
3522 | original_fault_type = fault_type; | |
3523 | ||
0a7de745 A |
3524 | if (fault_type & VM_PROT_WRITE) { |
3525 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3526 | } else { | |
3527 | object_lock_type = OBJECT_LOCK_SHARED; | |
3528 | } | |
2d21ac55 A |
3529 | |
3530 | cur_object_lock_type = OBJECT_LOCK_SHARED; | |
3531 | ||
5ba3f43e A |
3532 | if ((map == kernel_map) && (caller_prot & VM_PROT_WRITE)) { |
3533 | if (compressor_map) { | |
3534 | if ((vaddr >= vm_map_min(compressor_map)) && (vaddr < vm_map_max(compressor_map))) { | |
3535 | panic("Write fault on compressor map, va: %p type: %u bounds: %p->%p", (void *) vaddr, caller_prot, (void *) vm_map_min(compressor_map), (void *) vm_map_max(compressor_map)); | |
5ba3f43e A |
3536 | } |
3537 | } | |
3538 | } | |
2d21ac55 | 3539 | RetryFault: |
d9a64523 A |
3540 | assert(written_on_object == VM_OBJECT_NULL); |
3541 | ||
1c79356b A |
3542 | /* |
3543 | * assume we will hit a page in the cache | |
3544 | * otherwise, explicitly override with | |
3545 | * the real fault type once we determine it | |
3546 | */ | |
3547 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
3548 | ||
1c79356b A |
3549 | /* |
3550 | * Find the backing store object and offset into | |
3551 | * it to begin the search. | |
3552 | */ | |
0c530ab8 | 3553 | fault_type = original_fault_type; |
1c79356b A |
3554 | map = original_map; |
3555 | vm_map_lock_read(map); | |
1c79356b | 3556 | |
2d21ac55 | 3557 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, |
0a7de745 A |
3558 | object_lock_type, &version, |
3559 | &object, &offset, &prot, &wired, | |
3560 | &fault_info, | |
3561 | &real_map); | |
1c79356b A |
3562 | |
3563 | if (kr != KERN_SUCCESS) { | |
3564 | vm_map_unlock_read(map); | |
3565 | goto done; | |
3566 | } | |
2d21ac55 A |
3567 | pmap = real_map->pmap; |
3568 | fault_info.interruptible = interruptible; | |
b0d623f7 | 3569 | fault_info.stealth = FALSE; |
6d2010ae | 3570 | fault_info.io_sync = FALSE; |
0b4c1975 | 3571 | fault_info.mark_zf_absent = FALSE; |
316670eb | 3572 | fault_info.batch_pmap_op = FALSE; |
1c79356b A |
3573 | |
3574 | /* | |
2d21ac55 A |
3575 | * If the page is wired, we must fault for the current protection |
3576 | * value, to avoid further faults. | |
1c79356b | 3577 | */ |
2d21ac55 | 3578 | if (wired) { |
1c79356b | 3579 | fault_type = prot | VM_PROT_WRITE; |
2d21ac55 A |
3580 | /* |
3581 | * since we're treating this fault as a 'write' | |
3582 | * we must hold the top object lock exclusively | |
3583 | */ | |
3584 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
0a7de745 | 3585 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2d21ac55 A |
3586 | |
3587 | if (vm_object_lock_upgrade(object) == FALSE) { | |
0a7de745 | 3588 | /* |
2d21ac55 A |
3589 | * couldn't upgrade, so explictly |
3590 | * take the lock exclusively | |
3591 | */ | |
0a7de745 | 3592 | vm_object_lock(object); |
2d21ac55 A |
3593 | } |
3594 | } | |
3595 | } | |
1c79356b | 3596 | |
0a7de745 | 3597 | #if VM_FAULT_CLASSIFY |
1c79356b A |
3598 | /* |
3599 | * Temporary data gathering code | |
3600 | */ | |
3601 | vm_fault_classify(object, offset, fault_type); | |
3602 | #endif | |
3603 | /* | |
3604 | * Fast fault code. The basic idea is to do as much as | |
3605 | * possible while holding the map lock and object locks. | |
3606 | * Busy pages are not used until the object lock has to | |
3607 | * be dropped to do something (copy, zero fill, pmap enter). | |
3608 | * Similarly, paging references aren't acquired until that | |
3609 | * point, and object references aren't used. | |
3610 | * | |
3611 | * If we can figure out what to do | |
3612 | * (zero fill, copy on write, pmap enter) while holding | |
3613 | * the locks, then it gets done. Otherwise, we give up, | |
3614 | * and use the original fault path (which doesn't hold | |
3615 | * the map lock, and relies on busy pages). | |
3616 | * The give up cases include: | |
0a7de745 | 3617 | * - Have to talk to pager. |
1c79356b A |
3618 | * - Page is busy, absent or in error. |
3619 | * - Pager has locked out desired access. | |
3620 | * - Fault needs to be restarted. | |
3621 | * - Have to push page into copy object. | |
3622 | * | |
3623 | * The code is an infinite loop that moves one level down | |
3624 | * the shadow chain each time. cur_object and cur_offset | |
0a7de745 | 3625 | * refer to the current object being examined. object and offset |
1c79356b A |
3626 | * are the original object from the map. The loop is at the |
3627 | * top level if and only if object and cur_object are the same. | |
3628 | * | |
3629 | * Invariants: Map lock is held throughout. Lock is held on | |
3630 | * original object and cur_object (if different) when | |
3631 | * continuing or exiting loop. | |
3632 | * | |
3633 | */ | |
3634 | ||
5ba3f43e A |
3635 | #if defined(__arm64__) |
3636 | /* | |
3637 | * Fail if reading an execute-only page in a | |
3638 | * pmap that enforces execute-only protection. | |
3639 | */ | |
3640 | if (fault_type == VM_PROT_READ && | |
0a7de745 A |
3641 | (prot & VM_PROT_EXECUTE) && |
3642 | !(prot & VM_PROT_READ) && | |
3643 | pmap_enforces_execute_only(pmap)) { | |
3644 | vm_object_unlock(object); | |
3645 | vm_map_unlock_read(map); | |
3646 | if (real_map != map) { | |
3647 | vm_map_unlock(real_map); | |
3648 | } | |
3649 | kr = KERN_PROTECTION_FAILURE; | |
3650 | goto done; | |
5ba3f43e A |
3651 | } |
3652 | #endif | |
1c79356b A |
3653 | |
3654 | /* | |
2d21ac55 A |
3655 | * If this page is to be inserted in a copy delay object |
3656 | * for writing, and if the object has a copy, then the | |
3657 | * copy delay strategy is implemented in the slow fault page. | |
1c79356b | 3658 | */ |
2d21ac55 | 3659 | if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && |
0a7de745 A |
3660 | object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) { |
3661 | goto handle_copy_delay; | |
3662 | } | |
2d21ac55 | 3663 | |
1c79356b A |
3664 | cur_object = object; |
3665 | cur_offset = offset; | |
3666 | ||
39037602 A |
3667 | grab_options = 0; |
3668 | #if CONFIG_SECLUDED_MEMORY | |
3669 | if (object->can_grab_secluded) { | |
3670 | grab_options |= VM_PAGE_GRAB_SECLUDED; | |
3671 | } | |
3672 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
3673 | ||
1c79356b | 3674 | while (TRUE) { |
b0d623f7 | 3675 | if (!cur_object->pager_created && |
0a7de745 | 3676 | cur_object->phys_contiguous) { /* superpage */ |
b0d623f7 | 3677 | break; |
0a7de745 | 3678 | } |
b0d623f7 A |
3679 | |
3680 | if (cur_object->blocked_access) { | |
3681 | /* | |
3682 | * Access to this VM object has been blocked. | |
3683 | * Let the slow path handle it. | |
3684 | */ | |
3685 | break; | |
3686 | } | |
3687 | ||
1c79356b | 3688 | m = vm_page_lookup(cur_object, cur_offset); |
39037602 | 3689 | m_object = NULL; |
2d21ac55 | 3690 | |
1c79356b | 3691 | if (m != VM_PAGE_NULL) { |
39037602 A |
3692 | m_object = cur_object; |
3693 | ||
d9a64523 | 3694 | if (m->vmp_busy) { |
0a7de745 | 3695 | wait_result_t result; |
143cc14e | 3696 | |
2d21ac55 A |
3697 | /* |
3698 | * in order to do the PAGE_ASSERT_WAIT, we must | |
3699 | * have object that 'm' belongs to locked exclusively | |
3700 | */ | |
3701 | if (object != cur_object) { | |
2d21ac55 | 3702 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
0a7de745 | 3703 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2d21ac55 A |
3704 | |
3705 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
0a7de745 | 3706 | /* |
2d21ac55 | 3707 | * couldn't upgrade so go do a full retry |
39236c6e A |
3708 | * immediately since we can no longer be |
3709 | * certain about cur_object (since we | |
3710 | * don't hold a reference on it)... | |
3711 | * first drop the top object lock | |
2d21ac55 | 3712 | */ |
39236c6e A |
3713 | vm_object_unlock(object); |
3714 | ||
0a7de745 A |
3715 | vm_map_unlock_read(map); |
3716 | if (real_map != map) { | |
3717 | vm_map_unlock(real_map); | |
3718 | } | |
2d21ac55 A |
3719 | |
3720 | goto RetryFault; | |
3721 | } | |
3722 | } | |
3723 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
0a7de745 | 3724 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2d21ac55 A |
3725 | |
3726 | if (vm_object_lock_upgrade(object) == FALSE) { | |
0a7de745 | 3727 | /* |
2d21ac55 A |
3728 | * couldn't upgrade, so explictly take the lock |
3729 | * exclusively and go relookup the page since we | |
3730 | * will have dropped the object lock and | |
3731 | * a different thread could have inserted | |
3732 | * a page at this offset | |
3733 | * no need for a full retry since we're | |
3734 | * at the top level of the object chain | |
3735 | */ | |
0a7de745 | 3736 | vm_object_lock(object); |
2d21ac55 A |
3737 | |
3738 | continue; | |
3739 | } | |
3740 | } | |
d9a64523 | 3741 | if ((m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) { |
39236c6e | 3742 | /* |
d9a64523 | 3743 | * m->vmp_busy == TRUE and the object is locked exclusively |
39236c6e A |
3744 | * if m->pageout_queue == TRUE after we acquire the |
3745 | * queues lock, we are guaranteed that it is stable on | |
3746 | * the pageout queue and therefore reclaimable | |
3747 | * | |
3748 | * NOTE: this is only true for the internal pageout queue | |
3749 | * in the compressor world | |
3750 | */ | |
39037602 A |
3751 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
3752 | ||
39236c6e A |
3753 | vm_page_lock_queues(); |
3754 | ||
d9a64523 | 3755 | if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { |
39236c6e A |
3756 | vm_pageout_throttle_up(m); |
3757 | vm_page_unlock_queues(); | |
3758 | ||
3759 | PAGE_WAKEUP_DONE(m); | |
3760 | goto reclaimed_from_pageout; | |
3761 | } | |
3762 | vm_page_unlock_queues(); | |
3763 | } | |
0a7de745 | 3764 | if (object != cur_object) { |
39236c6e | 3765 | vm_object_unlock(object); |
0a7de745 | 3766 | } |
39236c6e | 3767 | |
143cc14e | 3768 | vm_map_unlock_read(map); |
0a7de745 A |
3769 | if (real_map != map) { |
3770 | vm_map_unlock(real_map); | |
3771 | } | |
143cc14e | 3772 | |
143cc14e | 3773 | result = PAGE_ASSERT_WAIT(m, interruptible); |
1c79356b | 3774 | |
143cc14e A |
3775 | vm_object_unlock(cur_object); |
3776 | ||
3777 | if (result == THREAD_WAITING) { | |
0a7de745 | 3778 | result = thread_block(THREAD_CONTINUE_NULL); |
143cc14e A |
3779 | |
3780 | counter(c_vm_fault_page_block_busy_kernel++); | |
3781 | } | |
0a7de745 A |
3782 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) { |
3783 | goto RetryFault; | |
3784 | } | |
143cc14e A |
3785 | |
3786 | kr = KERN_ABORTED; | |
3787 | goto done; | |
3788 | } | |
39236c6e | 3789 | reclaimed_from_pageout: |
d9a64523 | 3790 | if (m->vmp_laundry) { |
316670eb A |
3791 | if (object != cur_object) { |
3792 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
3793 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3794 | ||
3795 | vm_object_unlock(object); | |
3796 | vm_object_unlock(cur_object); | |
3797 | ||
3798 | vm_map_unlock_read(map); | |
0a7de745 | 3799 | if (real_map != map) { |
316670eb | 3800 | vm_map_unlock(real_map); |
0a7de745 | 3801 | } |
316670eb A |
3802 | |
3803 | goto RetryFault; | |
3804 | } | |
316670eb | 3805 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
316670eb A |
3806 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
3807 | ||
3808 | if (vm_object_lock_upgrade(object) == FALSE) { | |
3809 | /* | |
3810 | * couldn't upgrade, so explictly take the lock | |
3811 | * exclusively and go relookup the page since we | |
3812 | * will have dropped the object lock and | |
3813 | * a different thread could have inserted | |
3814 | * a page at this offset | |
3815 | * no need for a full retry since we're | |
3816 | * at the top level of the object chain | |
3817 | */ | |
3818 | vm_object_lock(object); | |
3819 | ||
3820 | continue; | |
3821 | } | |
3822 | } | |
316670eb A |
3823 | vm_pageout_steal_laundry(m, FALSE); |
3824 | } | |
3825 | ||
39037602 | 3826 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
2d21ac55 A |
3827 | /* |
3828 | * Guard page: let the slow path deal with it | |
3829 | */ | |
3830 | break; | |
3831 | } | |
d9a64523 | 3832 | if (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent)) { |
0a7de745 | 3833 | /* |
2d21ac55 | 3834 | * Unusual case... let the slow path deal with it |
1c79356b A |
3835 | */ |
3836 | break; | |
3837 | } | |
39037602 | 3838 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) { |
0a7de745 | 3839 | if (object != cur_object) { |
b0d623f7 | 3840 | vm_object_unlock(object); |
0a7de745 | 3841 | } |
b0d623f7 | 3842 | vm_map_unlock_read(map); |
0a7de745 A |
3843 | if (real_map != map) { |
3844 | vm_map_unlock(real_map); | |
3845 | } | |
b0d623f7 A |
3846 | vm_object_unlock(cur_object); |
3847 | kr = KERN_MEMORY_ERROR; | |
3848 | goto done; | |
3849 | } | |
39037602 | 3850 | assert(m_object == VM_PAGE_OBJECT(m)); |
6d2010ae | 3851 | |
39037602 | 3852 | if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m, m_object) || |
fe8ab488 | 3853 | (physpage_p != NULL && (prot & VM_PROT_WRITE))) { |
6d2010ae | 3854 | upgrade_for_validation: |
2d21ac55 | 3855 | /* |
4a3eedf9 | 3856 | * We might need to validate this page |
2d21ac55 A |
3857 | * against its code signature, so we |
3858 | * want to hold the VM object exclusively. | |
3859 | */ | |
0a7de745 | 3860 | if (object != cur_object) { |
2d21ac55 A |
3861 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
3862 | vm_object_unlock(object); | |
3863 | vm_object_unlock(cur_object); | |
3864 | ||
0a7de745 | 3865 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2d21ac55 A |
3866 | |
3867 | vm_map_unlock_read(map); | |
0a7de745 | 3868 | if (real_map != map) { |
2d21ac55 | 3869 | vm_map_unlock(real_map); |
0a7de745 | 3870 | } |
2d21ac55 A |
3871 | |
3872 | goto RetryFault; | |
3873 | } | |
2d21ac55 | 3874 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
0a7de745 | 3875 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2d21ac55 A |
3876 | |
3877 | if (vm_object_lock_upgrade(object) == FALSE) { | |
0a7de745 | 3878 | /* |
2d21ac55 A |
3879 | * couldn't upgrade, so explictly take the lock |
3880 | * exclusively and go relookup the page since we | |
3881 | * will have dropped the object lock and | |
3882 | * a different thread could have inserted | |
3883 | * a page at this offset | |
3884 | * no need for a full retry since we're | |
3885 | * at the top level of the object chain | |
3886 | */ | |
0a7de745 | 3887 | vm_object_lock(object); |
2d21ac55 A |
3888 | |
3889 | continue; | |
3890 | } | |
3891 | } | |
3892 | } | |
1c79356b A |
3893 | /* |
3894 | * Two cases of map in faults: | |
3895 | * - At top level w/o copy object. | |
3896 | * - Read fault anywhere. | |
3897 | * --> must disallow write. | |
3898 | */ | |
3899 | ||
4a3eedf9 | 3900 | if (object == cur_object && object->copy == VM_OBJECT_NULL) { |
2d21ac55 | 3901 | goto FastPmapEnter; |
4a3eedf9 | 3902 | } |
1c79356b A |
3903 | |
3904 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
5ba3f43e A |
3905 | if (!pmap_has_prot_policy(prot)) { |
3906 | prot &= ~VM_PROT_WRITE; | |
3907 | } else { | |
3908 | /* | |
3909 | * For a protection that the pmap cares | |
3910 | * about, we must hand over the full | |
3911 | * set of protections (so that the pmap | |
3912 | * layer can apply any desired policy). | |
3913 | * This means that cs_bypass must be | |
3914 | * set, as this can force us to pass | |
3915 | * RWX. | |
3916 | */ | |
3917 | assert(fault_info.cs_bypass); | |
3918 | } | |
39037602 | 3919 | |
0a7de745 A |
3920 | if (object != cur_object) { |
3921 | /* | |
c910b4d9 A |
3922 | * We still need to hold the top object |
3923 | * lock here to prevent a race between | |
3924 | * a read fault (taking only "shared" | |
3925 | * locks) and a write fault (taking | |
3926 | * an "exclusive" lock on the top | |
3927 | * object. | |
3928 | * Otherwise, as soon as we release the | |
3929 | * top lock, the write fault could | |
3930 | * proceed and actually complete before | |
3931 | * the read fault, and the copied page's | |
3932 | * translation could then be overwritten | |
3933 | * by the read fault's translation for | |
3934 | * the original page. | |
3935 | * | |
3936 | * Let's just record what the top object | |
3937 | * is and we'll release it later. | |
2d21ac55 | 3938 | */ |
c910b4d9 | 3939 | top_object = object; |
2d21ac55 A |
3940 | |
3941 | /* | |
3942 | * switch to the object that has the new page | |
3943 | */ | |
1c79356b | 3944 | object = cur_object; |
2d21ac55 | 3945 | object_lock_type = cur_object_lock_type; |
1c79356b | 3946 | } |
1c79356b | 3947 | FastPmapEnter: |
39037602 A |
3948 | assert(m_object == VM_PAGE_OBJECT(m)); |
3949 | ||
1c79356b | 3950 | /* |
2d21ac55 A |
3951 | * prepare for the pmap_enter... |
3952 | * object and map are both locked | |
3953 | * m contains valid data | |
d9a64523 | 3954 | * object == m->vmp_object |
2d21ac55 A |
3955 | * cur_object == NULL or it's been unlocked |
3956 | * no paging references on either object or cur_object | |
1c79356b | 3957 | */ |
0a7de745 | 3958 | if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) { |
39236c6e | 3959 | need_retry_ptr = &need_retry; |
0a7de745 | 3960 | } else { |
39236c6e | 3961 | need_retry_ptr = NULL; |
0a7de745 | 3962 | } |
39236c6e | 3963 | |
2d21ac55 | 3964 | if (caller_pmap) { |
0a7de745 A |
3965 | kr = vm_fault_enter(m, |
3966 | caller_pmap, | |
3967 | caller_pmap_addr, | |
3968 | prot, | |
3969 | caller_prot, | |
3970 | wired, | |
3971 | change_wiring, | |
3972 | wire_tag, | |
3973 | &fault_info, | |
3974 | need_retry_ptr, | |
3975 | &type_of_fault); | |
9bccf70c | 3976 | } else { |
0a7de745 A |
3977 | kr = vm_fault_enter(m, |
3978 | pmap, | |
3979 | vaddr, | |
3980 | prot, | |
3981 | caller_prot, | |
3982 | wired, | |
3983 | change_wiring, | |
3984 | wire_tag, | |
3985 | &fault_info, | |
3986 | need_retry_ptr, | |
3987 | &type_of_fault); | |
9bccf70c | 3988 | } |
39037602 A |
3989 | #if DEVELOPMENT || DEBUG |
3990 | { | |
0a7de745 | 3991 | int event_code = 0; |
39037602 | 3992 | |
0a7de745 A |
3993 | if (m_object->internal) { |
3994 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); | |
3995 | } else if (m_object->object_is_shared_cache) { | |
3996 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); | |
3997 | } else { | |
3998 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); | |
3999 | } | |
0b4e3aa0 | 4000 | |
0a7de745 | 4001 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid(), 0); |
39037602 | 4002 | |
0a7de745 | 4003 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag); |
39037602 A |
4004 | } |
4005 | #endif | |
fe8ab488 A |
4006 | if (kr == KERN_SUCCESS && |
4007 | physpage_p != NULL) { | |
4008 | /* for vm_map_wire_and_extract() */ | |
39037602 | 4009 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
fe8ab488 | 4010 | if (prot & VM_PROT_WRITE) { |
39037602 | 4011 | vm_object_lock_assert_exclusive(m_object); |
d9a64523 | 4012 | m->vmp_dirty = TRUE; |
fe8ab488 A |
4013 | } |
4014 | } | |
4015 | ||
c910b4d9 A |
4016 | if (top_object != VM_OBJECT_NULL) { |
4017 | /* | |
4018 | * It's safe to drop the top object | |
4019 | * now that we've done our | |
4020 | * vm_fault_enter(). Any other fault | |
4021 | * in progress for that virtual | |
4022 | * address will either find our page | |
4023 | * and translation or put in a new page | |
4024 | * and translation. | |
4025 | */ | |
4026 | vm_object_unlock(top_object); | |
4027 | top_object = VM_OBJECT_NULL; | |
4028 | } | |
4029 | ||
0a7de745 A |
4030 | if (need_collapse == TRUE) { |
4031 | vm_object_collapse(object, offset, TRUE); | |
4032 | } | |
5ba3f43e | 4033 | |
316670eb A |
4034 | if (need_retry == FALSE && |
4035 | (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) { | |
0a7de745 | 4036 | /* |
2d21ac55 A |
4037 | * evaluate access pattern and update state |
4038 | * vm_fault_deactivate_behind depends on the | |
4039 | * state being up to date | |
4040 | */ | |
0a7de745 | 4041 | vm_fault_is_sequential(m_object, cur_offset, fault_info.behavior); |
0c530ab8 | 4042 | |
d9a64523 | 4043 | vm_fault_deactivate_behind(m_object, cur_offset, fault_info.behavior); |
1c79356b | 4044 | } |
1c79356b | 4045 | /* |
2d21ac55 | 4046 | * That's it, clean up and return. |
1c79356b | 4047 | */ |
0a7de745 A |
4048 | if (m->vmp_busy) { |
4049 | PAGE_WAKEUP_DONE(m); | |
4050 | } | |
6601e61a | 4051 | |
d9a64523 | 4052 | if (need_retry == FALSE && !m_object->internal && (fault_type & VM_PROT_WRITE)) { |
d9a64523 A |
4053 | vm_object_paging_begin(m_object); |
4054 | ||
4055 | assert(written_on_object == VM_OBJECT_NULL); | |
4056 | written_on_object = m_object; | |
4057 | written_on_pager = m_object->pager; | |
4058 | written_on_offset = m_object->paging_offset + m->vmp_offset; | |
4059 | } | |
1c79356b | 4060 | vm_object_unlock(object); |
143cc14e | 4061 | |
1c79356b | 4062 | vm_map_unlock_read(map); |
0a7de745 | 4063 | if (real_map != map) { |
91447636 | 4064 | vm_map_unlock(real_map); |
0a7de745 | 4065 | } |
1c79356b | 4066 | |
316670eb A |
4067 | if (need_retry == TRUE) { |
4068 | /* | |
4069 | * vm_fault_enter couldn't complete the PMAP_ENTER... | |
4070 | * at this point we don't hold any locks so it's safe | |
4071 | * to ask the pmap layer to expand the page table to | |
4072 | * accommodate this mapping... once expanded, we'll | |
4073 | * re-drive the fault which should result in vm_fault_enter | |
4074 | * being able to successfully enter the mapping this time around | |
4075 | */ | |
fe8ab488 A |
4076 | (void)pmap_enter_options( |
4077 | pmap, vaddr, 0, 0, 0, 0, 0, | |
4078 | PMAP_OPTIONS_NOENTER, NULL); | |
5ba3f43e | 4079 | |
316670eb A |
4080 | need_retry = FALSE; |
4081 | goto RetryFault; | |
4082 | } | |
2d21ac55 | 4083 | goto done; |
1c79356b | 4084 | } |
1c79356b | 4085 | /* |
2d21ac55 | 4086 | * COPY ON WRITE FAULT |
b0d623f7 A |
4087 | */ |
4088 | assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); | |
4089 | ||
0a7de745 | 4090 | /* |
2d21ac55 A |
4091 | * If objects match, then |
4092 | * object->copy must not be NULL (else control | |
4093 | * would be in previous code block), and we | |
4094 | * have a potential push into the copy object | |
4095 | * with which we can't cope with here. | |
1c79356b | 4096 | */ |
2d21ac55 | 4097 | if (cur_object == object) { |
0a7de745 | 4098 | /* |
2d21ac55 A |
4099 | * must take the slow path to |
4100 | * deal with the copy push | |
4101 | */ | |
1c79356b | 4102 | break; |
2d21ac55 | 4103 | } |
5ba3f43e | 4104 | |
1c79356b | 4105 | /* |
2d21ac55 A |
4106 | * This is now a shadow based copy on write |
4107 | * fault -- it requires a copy up the shadow | |
4108 | * chain. | |
6d2010ae | 4109 | */ |
39037602 | 4110 | assert(m_object == VM_PAGE_OBJECT(m)); |
5ba3f43e | 4111 | |
6d2010ae | 4112 | if ((cur_object_lock_type == OBJECT_LOCK_SHARED) && |
39037602 | 4113 | VM_FAULT_NEED_CS_VALIDATION(NULL, m, m_object)) { |
6d2010ae A |
4114 | goto upgrade_for_validation; |
4115 | } | |
4116 | ||
4117 | /* | |
2d21ac55 A |
4118 | * Allocate a page in the original top level |
4119 | * object. Give up if allocate fails. Also | |
4120 | * need to remember current page, as it's the | |
4121 | * source of the copy. | |
1c79356b | 4122 | * |
5ba3f43e | 4123 | * at this point we hold locks on both |
2d21ac55 A |
4124 | * object and cur_object... no need to take |
4125 | * paging refs or mark pages BUSY since | |
4126 | * we don't drop either object lock until | |
4127 | * the page has been copied and inserted | |
1c79356b A |
4128 | */ |
4129 | cur_m = m; | |
39037602 A |
4130 | m = vm_page_grab_options(grab_options); |
4131 | m_object = NULL; | |
2d21ac55 | 4132 | |
1c79356b | 4133 | if (m == VM_PAGE_NULL) { |
0a7de745 | 4134 | /* |
2d21ac55 A |
4135 | * no free page currently available... |
4136 | * must take the slow path | |
4137 | */ | |
1c79356b A |
4138 | break; |
4139 | } | |
1c79356b | 4140 | /* |
2d21ac55 | 4141 | * Now do the copy. Mark the source page busy... |
1c79356b A |
4142 | * |
4143 | * NOTE: This code holds the map lock across | |
4144 | * the page copy. | |
4145 | */ | |
1c79356b A |
4146 | vm_page_copy(cur_m, m); |
4147 | vm_page_insert(m, object, offset); | |
39037602 | 4148 | m_object = object; |
316670eb | 4149 | SET_PAGE_DIRTY(m, FALSE); |
1c79356b A |
4150 | |
4151 | /* | |
2d21ac55 | 4152 | * Now cope with the source page and object |
1c79356b | 4153 | */ |
0a7de745 A |
4154 | if (object->ref_count > 1 && cur_m->vmp_pmapped) { |
4155 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m)); | |
4156 | } | |
5ba3f43e | 4157 | |
d9a64523 | 4158 | if (cur_m->vmp_clustered) { |
fe8ab488 A |
4159 | VM_PAGE_COUNT_AS_PAGEIN(cur_m); |
4160 | VM_PAGE_CONSUME_CLUSTERED(cur_m); | |
39037602 | 4161 | vm_fault_is_sequential(cur_object, cur_offset, fault_info.behavior); |
fe8ab488 | 4162 | } |
2d21ac55 | 4163 | need_collapse = TRUE; |
1c79356b | 4164 | |
2d21ac55 A |
4165 | if (!cur_object->internal && |
4166 | cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
0a7de745 | 4167 | /* |
2d21ac55 A |
4168 | * The object from which we've just |
4169 | * copied a page is most probably backed | |
4170 | * by a vnode. We don't want to waste too | |
4171 | * much time trying to collapse the VM objects | |
4172 | * and create a bottleneck when several tasks | |
4173 | * map the same file. | |
4174 | */ | |
0a7de745 A |
4175 | if (cur_object->copy == object) { |
4176 | /* | |
2d21ac55 A |
4177 | * Shared mapping or no COW yet. |
4178 | * We can never collapse a copy | |
4179 | * object into its backing object. | |
4180 | */ | |
0a7de745 | 4181 | need_collapse = FALSE; |
2d21ac55 | 4182 | } else if (cur_object->copy == object->shadow && |
0a7de745 A |
4183 | object->shadow->resident_page_count == 0) { |
4184 | /* | |
2d21ac55 A |
4185 | * Shared mapping after a COW occurred. |
4186 | */ | |
0a7de745 | 4187 | need_collapse = FALSE; |
2d21ac55 A |
4188 | } |
4189 | } | |
1c79356b A |
4190 | vm_object_unlock(cur_object); |
4191 | ||
0a7de745 A |
4192 | if (need_collapse == FALSE) { |
4193 | vm_fault_collapse_skipped++; | |
4194 | } | |
2d21ac55 A |
4195 | vm_fault_collapse_total++; |
4196 | ||
4197 | type_of_fault = DBG_COW_FAULT; | |
4198 | VM_STAT_INCR(cow_faults); | |
4199 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
4200 | current_task()->cow_faults++; | |
1c79356b A |
4201 | |
4202 | goto FastPmapEnter; | |
2d21ac55 | 4203 | } else { |
1c79356b | 4204 | /* |
2d21ac55 | 4205 | * No page at cur_object, cur_offset... m == NULL |
1c79356b | 4206 | */ |
1c79356b | 4207 | if (cur_object->pager_created) { |
0a7de745 | 4208 | int compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; |
39236c6e | 4209 | |
0a7de745 A |
4210 | if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) { |
4211 | int my_fault_type; | |
4212 | int c_flags = C_DONT_BLOCK; | |
4213 | boolean_t insert_cur_object = FALSE; | |
39236c6e | 4214 | |
0a7de745 | 4215 | /* |
2d21ac55 | 4216 | * May have to talk to a pager... |
39236c6e A |
4217 | * if so, take the slow path by |
4218 | * doing a 'break' from the while (TRUE) loop | |
4219 | * | |
4220 | * external_state will only be set to VM_EXTERNAL_STATE_EXISTS | |
4221 | * if the compressor is active and the page exists there | |
2d21ac55 | 4222 | */ |
0a7de745 | 4223 | if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) { |
39236c6e | 4224 | break; |
0a7de745 | 4225 | } |
39236c6e A |
4226 | |
4227 | if (map == kernel_map || real_map == kernel_map) { | |
4228 | /* | |
4229 | * can't call into the compressor with the kernel_map | |
4230 | * lock held, since the compressor may try to operate | |
4231 | * on the kernel map in order to return an empty c_segment | |
4232 | */ | |
4233 | break; | |
4234 | } | |
4235 | if (object != cur_object) { | |
0a7de745 | 4236 | if (fault_type & VM_PROT_WRITE) { |
39236c6e | 4237 | c_flags |= C_KEEP; |
0a7de745 | 4238 | } else { |
39236c6e | 4239 | insert_cur_object = TRUE; |
0a7de745 | 4240 | } |
39236c6e A |
4241 | } |
4242 | if (insert_cur_object == TRUE) { | |
39236c6e | 4243 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
39236c6e A |
4244 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4245 | ||
4246 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
4247 | /* | |
4248 | * couldn't upgrade so go do a full retry | |
4249 | * immediately since we can no longer be | |
4250 | * certain about cur_object (since we | |
4251 | * don't hold a reference on it)... | |
4252 | * first drop the top object lock | |
4253 | */ | |
4254 | vm_object_unlock(object); | |
4255 | ||
4256 | vm_map_unlock_read(map); | |
0a7de745 | 4257 | if (real_map != map) { |
39236c6e | 4258 | vm_map_unlock(real_map); |
0a7de745 | 4259 | } |
39236c6e A |
4260 | |
4261 | goto RetryFault; | |
4262 | } | |
4263 | } | |
4264 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
39236c6e A |
4265 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4266 | ||
4267 | if (object != cur_object) { | |
4268 | /* | |
4269 | * we can't go for the upgrade on the top | |
4270 | * lock since the upgrade may block waiting | |
4271 | * for readers to drain... since we hold | |
4272 | * cur_object locked at this point, waiting | |
4273 | * for the readers to drain would represent | |
4274 | * a lock order inversion since the lock order | |
4275 | * for objects is the reference order in the | |
4276 | * shadown chain | |
4277 | */ | |
4278 | vm_object_unlock(object); | |
4279 | vm_object_unlock(cur_object); | |
4280 | ||
4281 | vm_map_unlock_read(map); | |
0a7de745 | 4282 | if (real_map != map) { |
39236c6e | 4283 | vm_map_unlock(real_map); |
0a7de745 | 4284 | } |
39236c6e A |
4285 | |
4286 | goto RetryFault; | |
4287 | } | |
4288 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4289 | /* | |
4290 | * couldn't upgrade, so explictly take the lock | |
4291 | * exclusively and go relookup the page since we | |
4292 | * will have dropped the object lock and | |
4293 | * a different thread could have inserted | |
4294 | * a page at this offset | |
4295 | * no need for a full retry since we're | |
4296 | * at the top level of the object chain | |
4297 | */ | |
4298 | vm_object_lock(object); | |
5ba3f43e | 4299 | |
39236c6e A |
4300 | continue; |
4301 | } | |
4302 | } | |
39037602 A |
4303 | m = vm_page_grab_options(grab_options); |
4304 | m_object = NULL; | |
39236c6e A |
4305 | |
4306 | if (m == VM_PAGE_NULL) { | |
4307 | /* | |
4308 | * no free page currently available... | |
4309 | * must take the slow path | |
4310 | */ | |
4311 | break; | |
4312 | } | |
fe8ab488 A |
4313 | |
4314 | /* | |
4315 | * The object is and remains locked | |
4316 | * so no need to take a | |
4317 | * "paging_in_progress" reference. | |
4318 | */ | |
4319 | boolean_t shared_lock; | |
4320 | if ((object == cur_object && | |
0a7de745 | 4321 | object_lock_type == OBJECT_LOCK_EXCLUSIVE) || |
fe8ab488 | 4322 | (object != cur_object && |
0a7de745 | 4323 | cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) { |
fe8ab488 A |
4324 | shared_lock = FALSE; |
4325 | } else { | |
4326 | shared_lock = TRUE; | |
4327 | } | |
4328 | ||
4329 | kr = vm_compressor_pager_get( | |
4330 | cur_object->pager, | |
4331 | (cur_offset + | |
0a7de745 | 4332 | cur_object->paging_offset), |
39037602 | 4333 | VM_PAGE_GET_PHYS_PAGE(m), |
fe8ab488 A |
4334 | &my_fault_type, |
4335 | c_flags, | |
4336 | &compressed_count_delta); | |
4337 | ||
4338 | vm_compressor_pager_count( | |
4339 | cur_object->pager, | |
4340 | compressed_count_delta, | |
4341 | shared_lock, | |
4342 | cur_object); | |
4343 | ||
4344 | if (kr != KERN_SUCCESS) { | |
39037602 A |
4345 | vm_page_release(m, FALSE); |
4346 | m = VM_PAGE_NULL; | |
39236c6e A |
4347 | break; |
4348 | } | |
d9a64523 | 4349 | m->vmp_dirty = TRUE; |
39236c6e | 4350 | |
fe8ab488 A |
4351 | /* |
4352 | * If the object is purgeable, its | |
4353 | * owner's purgeable ledgers will be | |
4354 | * updated in vm_page_insert() but the | |
4355 | * page was also accounted for in a | |
4356 | * "compressed purgeable" ledger, so | |
4357 | * update that now. | |
4358 | */ | |
4359 | if (object != cur_object && | |
4360 | !insert_cur_object) { | |
4361 | /* | |
4362 | * We're not going to insert | |
4363 | * the decompressed page into | |
4364 | * the object it came from. | |
4365 | * | |
4366 | * We're dealing with a | |
4367 | * copy-on-write fault on | |
4368 | * "object". | |
4369 | * We're going to decompress | |
4370 | * the page directly into the | |
4371 | * target "object" while | |
4372 | * keepin the compressed | |
4373 | * page for "cur_object", so | |
4374 | * no ledger update in that | |
4375 | * case. | |
4376 | */ | |
d9a64523 | 4377 | } else if (((cur_object->purgable == |
0a7de745 A |
4378 | VM_PURGABLE_DENY) && |
4379 | (!cur_object->vo_ledger_tag)) || | |
4380 | (cur_object->vo_owner == | |
4381 | NULL)) { | |
fe8ab488 A |
4382 | /* |
4383 | * "cur_object" is not purgeable | |
d9a64523 A |
4384 | * and is not ledger-taged, or |
4385 | * there's no owner for it, | |
4386 | * so no owner's ledgers to | |
4387 | * update. | |
fe8ab488 A |
4388 | */ |
4389 | } else { | |
4390 | /* | |
4391 | * One less compressed | |
d9a64523 | 4392 | * purgeable/tagged page for |
fe8ab488 A |
4393 | * cur_object's owner. |
4394 | */ | |
d9a64523 | 4395 | vm_object_owner_compressed_update( |
fe8ab488 A |
4396 | cur_object, |
4397 | -1); | |
4398 | } | |
4399 | ||
4400 | if (insert_cur_object) { | |
39236c6e | 4401 | vm_page_insert(m, cur_object, cur_offset); |
39037602 | 4402 | m_object = cur_object; |
fe8ab488 | 4403 | } else { |
39236c6e | 4404 | vm_page_insert(m, object, offset); |
39037602 | 4405 | m_object = object; |
fe8ab488 | 4406 | } |
39236c6e | 4407 | |
39037602 | 4408 | if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) { |
0a7de745 | 4409 | /* |
39236c6e A |
4410 | * If the page is not cacheable, |
4411 | * we can't let its contents | |
4412 | * linger in the data cache | |
4413 | * after the decompression. | |
4414 | */ | |
39037602 | 4415 | pmap_sync_page_attributes_phys(VM_PAGE_GET_PHYS_PAGE(m)); |
39236c6e | 4416 | } |
fe8ab488 | 4417 | |
39236c6e A |
4418 | type_of_fault = my_fault_type; |
4419 | ||
4420 | VM_STAT_INCR(decompressions); | |
4421 | ||
4422 | if (cur_object != object) { | |
4423 | if (insert_cur_object) { | |
4424 | top_object = object; | |
4425 | /* | |
4426 | * switch to the object that has the new page | |
4427 | */ | |
4428 | object = cur_object; | |
4429 | object_lock_type = cur_object_lock_type; | |
4430 | } else { | |
4431 | vm_object_unlock(cur_object); | |
4432 | cur_object = object; | |
4433 | } | |
4434 | } | |
4435 | goto FastPmapEnter; | |
2d21ac55 | 4436 | } |
1c79356b | 4437 | /* |
2d21ac55 A |
4438 | * existence map present and indicates |
4439 | * that the pager doesn't have this page | |
1c79356b | 4440 | */ |
1c79356b | 4441 | } |
1c79356b | 4442 | if (cur_object->shadow == VM_OBJECT_NULL) { |
2d21ac55 A |
4443 | /* |
4444 | * Zero fill fault. Page gets | |
4445 | * inserted into the original object. | |
4446 | */ | |
b0d623f7 | 4447 | if (cur_object->shadow_severed || |
39037602 A |
4448 | VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) || |
4449 | cur_object == compressor_object || | |
4450 | cur_object == kernel_object || | |
4451 | cur_object == vm_submap_object) { | |
0a7de745 A |
4452 | if (object != cur_object) { |
4453 | vm_object_unlock(cur_object); | |
4454 | } | |
1c79356b | 4455 | vm_object_unlock(object); |
2d21ac55 | 4456 | |
1c79356b | 4457 | vm_map_unlock_read(map); |
0a7de745 | 4458 | if (real_map != map) { |
91447636 | 4459 | vm_map_unlock(real_map); |
0a7de745 | 4460 | } |
1c79356b | 4461 | |
2d21ac55 A |
4462 | kr = KERN_MEMORY_ERROR; |
4463 | goto done; | |
4464 | } | |
0a7de745 | 4465 | if (cur_object != object) { |
2d21ac55 | 4466 | vm_object_unlock(cur_object); |
1c79356b | 4467 | |
2d21ac55 | 4468 | cur_object = object; |
55e303ae | 4469 | } |
2d21ac55 | 4470 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
0a7de745 | 4471 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2d21ac55 A |
4472 | |
4473 | if (vm_object_lock_upgrade(object) == FALSE) { | |
0a7de745 | 4474 | /* |
2d21ac55 A |
4475 | * couldn't upgrade so do a full retry on the fault |
4476 | * since we dropped the object lock which | |
4477 | * could allow another thread to insert | |
4478 | * a page at this offset | |
4479 | */ | |
0a7de745 A |
4480 | vm_map_unlock_read(map); |
4481 | if (real_map != map) { | |
4482 | vm_map_unlock(real_map); | |
4483 | } | |
2d21ac55 A |
4484 | |
4485 | goto RetryFault; | |
4486 | } | |
1c79356b A |
4487 | } |
4488 | m = vm_page_alloc(object, offset); | |
39037602 | 4489 | m_object = NULL; |
2d21ac55 | 4490 | |
1c79356b | 4491 | if (m == VM_PAGE_NULL) { |
0a7de745 | 4492 | /* |
2d21ac55 A |
4493 | * no free page currently available... |
4494 | * must take the slow path | |
4495 | */ | |
1c79356b A |
4496 | break; |
4497 | } | |
39037602 | 4498 | m_object = object; |
1c79356b | 4499 | |
1c79356b | 4500 | /* |
2d21ac55 | 4501 | * Now zero fill page... |
5ba3f43e | 4502 | * the page is probably going to |
2d21ac55 A |
4503 | * be written soon, so don't bother |
4504 | * to clear the modified bit | |
1c79356b | 4505 | * |
2d21ac55 A |
4506 | * NOTE: This code holds the map |
4507 | * lock across the zero fill. | |
1c79356b | 4508 | */ |
2d21ac55 | 4509 | type_of_fault = vm_fault_zero_page(m, map->no_zero_fill); |
143cc14e | 4510 | |
1c79356b | 4511 | goto FastPmapEnter; |
0a7de745 | 4512 | } |
1c79356b | 4513 | /* |
2d21ac55 | 4514 | * On to the next level in the shadow chain |
1c79356b | 4515 | */ |
6d2010ae | 4516 | cur_offset += cur_object->vo_shadow_offset; |
1c79356b | 4517 | new_object = cur_object->shadow; |
2d21ac55 A |
4518 | |
4519 | /* | |
4520 | * take the new_object's lock with the indicated state | |
4521 | */ | |
0a7de745 A |
4522 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
4523 | vm_object_lock_shared(new_object); | |
4524 | } else { | |
4525 | vm_object_lock(new_object); | |
4526 | } | |
2d21ac55 | 4527 | |
0a7de745 | 4528 | if (cur_object != object) { |
1c79356b | 4529 | vm_object_unlock(cur_object); |
0a7de745 | 4530 | } |
2d21ac55 | 4531 | |
1c79356b A |
4532 | cur_object = new_object; |
4533 | ||
4534 | continue; | |
4535 | } | |
4536 | } | |
1c79356b | 4537 | /* |
2d21ac55 A |
4538 | * Cleanup from fast fault failure. Drop any object |
4539 | * lock other than original and drop map lock. | |
1c79356b | 4540 | */ |
0a7de745 | 4541 | if (object != cur_object) { |
1c79356b | 4542 | vm_object_unlock(cur_object); |
0a7de745 | 4543 | } |
2d21ac55 A |
4544 | |
4545 | /* | |
4546 | * must own the object lock exclusively at this point | |
4547 | */ | |
4548 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
0a7de745 | 4549 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2d21ac55 A |
4550 | |
4551 | if (vm_object_lock_upgrade(object) == FALSE) { | |
0a7de745 | 4552 | /* |
2d21ac55 A |
4553 | * couldn't upgrade, so explictly |
4554 | * take the lock exclusively | |
4555 | * no need to retry the fault at this | |
4556 | * point since "vm_fault_page" will | |
4557 | * completely re-evaluate the state | |
4558 | */ | |
0a7de745 | 4559 | vm_object_lock(object); |
2d21ac55 | 4560 | } |
1c79356b | 4561 | } |
143cc14e | 4562 | |
2d21ac55 A |
4563 | handle_copy_delay: |
4564 | vm_map_unlock_read(map); | |
0a7de745 | 4565 | if (real_map != map) { |
91447636 | 4566 | vm_map_unlock(real_map); |
0a7de745 | 4567 | } |
1c79356b | 4568 | |
813fb2f6 | 4569 | if (__improbable(object == compressor_object || |
0a7de745 A |
4570 | object == kernel_object || |
4571 | object == vm_submap_object)) { | |
813fb2f6 A |
4572 | /* |
4573 | * These objects are explicitly managed and populated by the | |
4574 | * kernel. The virtual ranges backed by these objects should | |
4575 | * either have wired pages or "holes" that are not supposed to | |
4576 | * be accessed at all until they get explicitly populated. | |
4577 | * We should never have to resolve a fault on a mapping backed | |
4578 | * by one of these VM objects and providing a zero-filled page | |
4579 | * would be wrong here, so let's fail the fault and let the | |
4580 | * caller crash or recover. | |
4581 | */ | |
4582 | vm_object_unlock(object); | |
4583 | kr = KERN_MEMORY_ERROR; | |
4584 | goto done; | |
4585 | } | |
4586 | ||
39037602 A |
4587 | assert(object != compressor_object); |
4588 | assert(object != kernel_object); | |
4589 | assert(object != vm_submap_object); | |
4590 | ||
0a7de745 | 4591 | /* |
2d21ac55 A |
4592 | * Make a reference to this object to |
4593 | * prevent its disposal while we are messing with | |
4594 | * it. Once we have the reference, the map is free | |
4595 | * to be diddled. Since objects reference their | |
4596 | * shadows (and copies), they will stay around as well. | |
1c79356b | 4597 | */ |
2d21ac55 | 4598 | vm_object_reference_locked(object); |
1c79356b A |
4599 | vm_object_paging_begin(object); |
4600 | ||
0a7de745 | 4601 | XPR(XPR_VM_FAULT, "vm_fault -> vm_fault_page\n", 0, 0, 0, 0, 0); |
55e303ae | 4602 | |
2d21ac55 | 4603 | error_code = 0; |
55e303ae | 4604 | |
39236c6e | 4605 | result_page = VM_PAGE_NULL; |
1c79356b | 4606 | kr = vm_fault_page(object, offset, fault_type, |
0a7de745 A |
4607 | (change_wiring && !wired), |
4608 | FALSE, /* page not looked up */ | |
4609 | &prot, &result_page, &top_page, | |
4610 | &type_of_fault, | |
4611 | &error_code, map->no_zero_fill, | |
4612 | FALSE, &fault_info); | |
1c79356b A |
4613 | |
4614 | /* | |
2d21ac55 A |
4615 | * if kr != VM_FAULT_SUCCESS, then the paging reference |
4616 | * has been dropped and the object unlocked... the ref_count | |
4617 | * is still held | |
4618 | * | |
4619 | * if kr == VM_FAULT_SUCCESS, then the paging reference | |
4620 | * is still held along with the ref_count on the original object | |
4621 | * | |
b0d623f7 | 4622 | * the object is returned locked with a paging reference |
2d21ac55 | 4623 | * |
5ba3f43e | 4624 | * if top_page != NULL, then it's BUSY and the |
2d21ac55 A |
4625 | * object it belongs to has a paging reference |
4626 | * but is returned unlocked | |
1c79356b | 4627 | */ |
b0d623f7 A |
4628 | if (kr != VM_FAULT_SUCCESS && |
4629 | kr != VM_FAULT_SUCCESS_NO_VM_PAGE) { | |
0a7de745 | 4630 | /* |
2d21ac55 A |
4631 | * we didn't succeed, lose the object reference immediately. |
4632 | */ | |
1c79356b A |
4633 | vm_object_deallocate(object); |
4634 | ||
2d21ac55 A |
4635 | /* |
4636 | * See why we failed, and take corrective action. | |
4637 | */ | |
4638 | switch (kr) { | |
1c79356b | 4639 | case VM_FAULT_MEMORY_SHORTAGE: |
5ba3f43e | 4640 | if (vm_page_wait((change_wiring) ? |
0a7de745 A |
4641 | THREAD_UNINT : |
4642 | THREAD_ABORTSAFE)) { | |
1c79356b | 4643 | goto RetryFault; |
0a7de745 A |
4644 | } |
4645 | /* | |
4646 | * fall thru | |
4647 | */ | |
1c79356b A |
4648 | case VM_FAULT_INTERRUPTED: |
4649 | kr = KERN_ABORTED; | |
4650 | goto done; | |
4651 | case VM_FAULT_RETRY: | |
4652 | goto RetryFault; | |
1c79356b | 4653 | case VM_FAULT_MEMORY_ERROR: |
0a7de745 | 4654 | if (error_code) { |
1c79356b | 4655 | kr = error_code; |
0a7de745 | 4656 | } else { |
1c79356b | 4657 | kr = KERN_MEMORY_ERROR; |
0a7de745 | 4658 | } |
1c79356b | 4659 | goto done; |
b0d623f7 A |
4660 | default: |
4661 | panic("vm_fault: unexpected error 0x%x from " | |
0a7de745 | 4662 | "vm_fault_page()\n", kr); |
2d21ac55 | 4663 | } |
1c79356b | 4664 | } |
1c79356b | 4665 | m = result_page; |
39037602 | 4666 | m_object = NULL; |
1c79356b | 4667 | |
2d21ac55 | 4668 | if (m != VM_PAGE_NULL) { |
39037602 | 4669 | m_object = VM_PAGE_OBJECT(m); |
0b4e3aa0 | 4670 | assert((change_wiring && !wired) ? |
0a7de745 A |
4671 | (top_page == VM_PAGE_NULL) : |
4672 | ((top_page == VM_PAGE_NULL) == (m_object == object))); | |
0b4e3aa0 | 4673 | } |
1c79356b A |
4674 | |
4675 | /* | |
2d21ac55 A |
4676 | * What to do with the resulting page from vm_fault_page |
4677 | * if it doesn't get entered into the physical map: | |
1c79356b | 4678 | */ |
0a7de745 A |
4679 | #define RELEASE_PAGE(m) \ |
4680 | MACRO_BEGIN \ | |
4681 | PAGE_WAKEUP_DONE(m); \ | |
4682 | if ( !VM_PAGE_PAGEABLE(m)) { \ | |
4683 | vm_page_lockspin_queues(); \ | |
4684 | if ( !VM_PAGE_PAGEABLE(m)) \ | |
4685 | vm_page_activate(m); \ | |
4686 | vm_page_unlock_queues(); \ | |
4687 | } \ | |
1c79356b A |
4688 | MACRO_END |
4689 | ||
5ba3f43e A |
4690 | |
4691 | object_locks_dropped = FALSE; | |
1c79356b | 4692 | /* |
2d21ac55 | 4693 | * We must verify that the maps have not changed |
5ba3f43e A |
4694 | * since our last lookup. vm_map_verify() needs the |
4695 | * map lock (shared) but we are holding object locks. | |
4696 | * So we do a try_lock() first and, if that fails, we | |
4697 | * drop the object locks and go in for the map lock again. | |
1c79356b | 4698 | */ |
5ba3f43e | 4699 | if (!vm_map_try_lock_read(original_map)) { |
5ba3f43e A |
4700 | if (m != VM_PAGE_NULL) { |
4701 | old_copy_object = m_object->copy; | |
4702 | vm_object_unlock(m_object); | |
4703 | } else { | |
4704 | old_copy_object = VM_OBJECT_NULL; | |
4705 | vm_object_unlock(object); | |
4706 | } | |
4707 | ||
4708 | object_locks_dropped = TRUE; | |
4709 | ||
4710 | vm_map_lock_read(original_map); | |
b0d623f7 | 4711 | } |
2d21ac55 | 4712 | |
1c79356b | 4713 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
5ba3f43e A |
4714 | if (object_locks_dropped == FALSE) { |
4715 | if (m != VM_PAGE_NULL) { | |
4716 | old_copy_object = m_object->copy; | |
4717 | vm_object_unlock(m_object); | |
4718 | } else { | |
4719 | old_copy_object = VM_OBJECT_NULL; | |
4720 | vm_object_unlock(object); | |
4721 | } | |
0a7de745 | 4722 | |
5ba3f43e A |
4723 | object_locks_dropped = TRUE; |
4724 | } | |
4725 | ||
4726 | /* | |
4727 | * no object locks are held at this point | |
4728 | */ | |
0a7de745 A |
4729 | vm_object_t retry_object; |
4730 | vm_object_offset_t retry_offset; | |
4731 | vm_prot_t retry_prot; | |
1c79356b A |
4732 | |
4733 | /* | |
2d21ac55 A |
4734 | * To avoid trying to write_lock the map while another |
4735 | * thread has it read_locked (in vm_map_pageable), we | |
4736 | * do not try for write permission. If the page is | |
4737 | * still writable, we will get write permission. If it | |
4738 | * is not, or has been marked needs_copy, we enter the | |
4739 | * mapping without write permission, and will merely | |
4740 | * take another fault. | |
1c79356b A |
4741 | */ |
4742 | map = original_map; | |
2d21ac55 | 4743 | |
1c79356b | 4744 | kr = vm_map_lookup_locked(&map, vaddr, |
0a7de745 A |
4745 | fault_type & ~VM_PROT_WRITE, |
4746 | OBJECT_LOCK_EXCLUSIVE, &version, | |
4747 | &retry_object, &retry_offset, &retry_prot, | |
4748 | &wired, | |
4749 | &fault_info, | |
4750 | &real_map); | |
91447636 | 4751 | pmap = real_map->pmap; |
1c79356b A |
4752 | |
4753 | if (kr != KERN_SUCCESS) { | |
4754 | vm_map_unlock_read(map); | |
2d21ac55 A |
4755 | |
4756 | if (m != VM_PAGE_NULL) { | |
39037602 A |
4757 | assert(VM_PAGE_OBJECT(m) == m_object); |
4758 | ||
0a7de745 | 4759 | /* |
2d21ac55 A |
4760 | * retake the lock so that |
4761 | * we can drop the paging reference | |
4762 | * in vm_fault_cleanup and do the | |
4763 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
4764 | */ | |
39037602 | 4765 | vm_object_lock(m_object); |
2d21ac55 | 4766 | |
0b4e3aa0 | 4767 | RELEASE_PAGE(m); |
2d21ac55 | 4768 | |
39037602 | 4769 | vm_fault_cleanup(m_object, top_page); |
0b4e3aa0 | 4770 | } else { |
0a7de745 | 4771 | /* |
2d21ac55 A |
4772 | * retake the lock so that |
4773 | * we can drop the paging reference | |
4774 | * in vm_fault_cleanup | |
4775 | */ | |
0a7de745 | 4776 | vm_object_lock(object); |
2d21ac55 | 4777 | |
0a7de745 | 4778 | vm_fault_cleanup(object, top_page); |
0b4e3aa0 | 4779 | } |
2d21ac55 A |
4780 | vm_object_deallocate(object); |
4781 | ||
1c79356b A |
4782 | goto done; |
4783 | } | |
1c79356b | 4784 | vm_object_unlock(retry_object); |
1c79356b | 4785 | |
2d21ac55 | 4786 | if ((retry_object != object) || (retry_offset != offset)) { |
1c79356b | 4787 | vm_map_unlock_read(map); |
0a7de745 | 4788 | if (real_map != map) { |
91447636 | 4789 | vm_map_unlock(real_map); |
0a7de745 | 4790 | } |
2d21ac55 A |
4791 | |
4792 | if (m != VM_PAGE_NULL) { | |
39037602 A |
4793 | assert(VM_PAGE_OBJECT(m) == m_object); |
4794 | ||
0a7de745 | 4795 | /* |
2d21ac55 A |
4796 | * retake the lock so that |
4797 | * we can drop the paging reference | |
4798 | * in vm_fault_cleanup and do the | |
4799 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
4800 | */ | |
0a7de745 | 4801 | vm_object_lock(m_object); |
2d21ac55 | 4802 | |
0b4e3aa0 | 4803 | RELEASE_PAGE(m); |
2d21ac55 | 4804 | |
39037602 | 4805 | vm_fault_cleanup(m_object, top_page); |
0b4e3aa0 | 4806 | } else { |
0a7de745 | 4807 | /* |
2d21ac55 A |
4808 | * retake the lock so that |
4809 | * we can drop the paging reference | |
4810 | * in vm_fault_cleanup | |
4811 | */ | |
0a7de745 | 4812 | vm_object_lock(object); |
2d21ac55 | 4813 | |
0a7de745 | 4814 | vm_fault_cleanup(object, top_page); |
0b4e3aa0 | 4815 | } |
2d21ac55 A |
4816 | vm_object_deallocate(object); |
4817 | ||
1c79356b A |
4818 | goto RetryFault; |
4819 | } | |
1c79356b | 4820 | /* |
2d21ac55 A |
4821 | * Check whether the protection has changed or the object |
4822 | * has been copied while we left the map unlocked. | |
1c79356b | 4823 | */ |
5ba3f43e A |
4824 | if (pmap_has_prot_policy(retry_prot)) { |
4825 | /* If the pmap layer cares, pass the full set. */ | |
4826 | prot = retry_prot; | |
4827 | } else { | |
4828 | prot &= retry_prot; | |
4829 | } | |
0b4e3aa0 | 4830 | } |
1c79356b | 4831 | |
5ba3f43e A |
4832 | if (object_locks_dropped == TRUE) { |
4833 | if (m != VM_PAGE_NULL) { | |
4834 | vm_object_lock(m_object); | |
4835 | ||
4836 | if (m_object->copy != old_copy_object) { | |
4837 | /* | |
4838 | * The copy object changed while the top-level object | |
4839 | * was unlocked, so take away write permission. | |
4840 | */ | |
4841 | assert(!pmap_has_prot_policy(prot)); | |
4842 | prot &= ~VM_PROT_WRITE; | |
4843 | } | |
0a7de745 | 4844 | } else { |
5ba3f43e | 4845 | vm_object_lock(object); |
0a7de745 | 4846 | } |
5ba3f43e A |
4847 | |
4848 | object_locks_dropped = FALSE; | |
4849 | } | |
1c79356b A |
4850 | |
4851 | /* | |
2d21ac55 A |
4852 | * If we want to wire down this page, but no longer have |
4853 | * adequate permissions, we must start all over. | |
1c79356b | 4854 | */ |
2d21ac55 | 4855 | if (wired && (fault_type != (prot | VM_PROT_WRITE))) { |
5ba3f43e | 4856 | vm_map_unlock_read(map); |
0a7de745 | 4857 | if (real_map != map) { |
91447636 | 4858 | vm_map_unlock(real_map); |
0a7de745 | 4859 | } |
1c79356b | 4860 | |
2d21ac55 | 4861 | if (m != VM_PAGE_NULL) { |
39037602 A |
4862 | assert(VM_PAGE_OBJECT(m) == m_object); |
4863 | ||
2d21ac55 | 4864 | RELEASE_PAGE(m); |
91447636 | 4865 | |
39037602 | 4866 | vm_fault_cleanup(m_object, top_page); |
0a7de745 A |
4867 | } else { |
4868 | vm_fault_cleanup(object, top_page); | |
4869 | } | |
0b4e3aa0 | 4870 | |
2d21ac55 | 4871 | vm_object_deallocate(object); |
55e303ae | 4872 | |
2d21ac55 A |
4873 | goto RetryFault; |
4874 | } | |
4875 | if (m != VM_PAGE_NULL) { | |
55e303ae | 4876 | /* |
2d21ac55 A |
4877 | * Put this page into the physical map. |
4878 | * We had to do the unlock above because pmap_enter | |
4879 | * may cause other faults. The page may be on | |
4880 | * the pageout queues. If the pageout daemon comes | |
4881 | * across the page, it will remove it from the queues. | |
55e303ae | 4882 | */ |
2d21ac55 A |
4883 | if (caller_pmap) { |
4884 | kr = vm_fault_enter(m, | |
0a7de745 A |
4885 | caller_pmap, |
4886 | caller_pmap_addr, | |
4887 | prot, | |
4888 | caller_prot, | |
4889 | wired, | |
4890 | change_wiring, | |
4891 | wire_tag, | |
4892 | &fault_info, | |
4893 | NULL, | |
4894 | &type_of_fault); | |
2d21ac55 A |
4895 | } else { |
4896 | kr = vm_fault_enter(m, | |
0a7de745 A |
4897 | pmap, |
4898 | vaddr, | |
4899 | prot, | |
4900 | caller_prot, | |
4901 | wired, | |
4902 | change_wiring, | |
4903 | wire_tag, | |
4904 | &fault_info, | |
4905 | NULL, | |
4906 | &type_of_fault); | |
2d21ac55 | 4907 | } |
39037602 A |
4908 | assert(VM_PAGE_OBJECT(m) == m_object); |
4909 | ||
4910 | #if DEVELOPMENT || DEBUG | |
0a7de745 A |
4911 | { |
4912 | int event_code = 0; | |
39037602 | 4913 | |
0a7de745 A |
4914 | if (m_object->internal) { |
4915 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); | |
4916 | } else if (m_object->object_is_shared_cache) { | |
4917 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); | |
4918 | } else { | |
4919 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); | |
4920 | } | |
39037602 | 4921 | |
0a7de745 | 4922 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid(), 0); |
39037602 | 4923 | |
0a7de745 A |
4924 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag); |
4925 | } | |
39037602 | 4926 | #endif |
2d21ac55 A |
4927 | if (kr != KERN_SUCCESS) { |
4928 | /* abort this page fault */ | |
5ba3f43e | 4929 | vm_map_unlock_read(map); |
0a7de745 | 4930 | if (real_map != map) { |
2d21ac55 | 4931 | vm_map_unlock(real_map); |
0a7de745 | 4932 | } |
2d21ac55 | 4933 | PAGE_WAKEUP_DONE(m); |
39037602 | 4934 | vm_fault_cleanup(m_object, top_page); |
2d21ac55 A |
4935 | vm_object_deallocate(object); |
4936 | goto done; | |
0b4e3aa0 | 4937 | } |
fe8ab488 A |
4938 | if (physpage_p != NULL) { |
4939 | /* for vm_map_wire_and_extract() */ | |
39037602 | 4940 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
fe8ab488 | 4941 | if (prot & VM_PROT_WRITE) { |
39037602 | 4942 | vm_object_lock_assert_exclusive(m_object); |
d9a64523 | 4943 | m->vmp_dirty = TRUE; |
fe8ab488 A |
4944 | } |
4945 | } | |
0b4e3aa0 | 4946 | } else { |
0a7de745 A |
4947 | vm_map_entry_t entry; |
4948 | vm_map_offset_t laddr; | |
4949 | vm_map_offset_t ldelta, hdelta; | |
143cc14e | 4950 | |
5ba3f43e | 4951 | /* |
0b4e3aa0 | 4952 | * do a pmap block mapping from the physical address |
5ba3f43e | 4953 | * in the object |
0b4e3aa0 | 4954 | */ |
9bccf70c | 4955 | |
0a7de745 | 4956 | if (real_map != map) { |
91447636 | 4957 | vm_map_unlock(real_map); |
0a7de745 | 4958 | } |
2d21ac55 | 4959 | |
9bccf70c A |
4960 | if (original_map != map) { |
4961 | vm_map_unlock_read(map); | |
4962 | vm_map_lock_read(original_map); | |
4963 | map = original_map; | |
4964 | } | |
91447636 | 4965 | real_map = map; |
9bccf70c A |
4966 | |
4967 | laddr = vaddr; | |
4968 | hdelta = 0xFFFFF000; | |
4969 | ldelta = 0xFFFFF000; | |
4970 | ||
2d21ac55 | 4971 | while (vm_map_lookup_entry(map, laddr, &entry)) { |
0a7de745 | 4972 | if (ldelta > (laddr - entry->vme_start)) { |
9bccf70c | 4973 | ldelta = laddr - entry->vme_start; |
0a7de745 A |
4974 | } |
4975 | if (hdelta > (entry->vme_end - laddr)) { | |
9bccf70c | 4976 | hdelta = entry->vme_end - laddr; |
0a7de745 | 4977 | } |
2d21ac55 | 4978 | if (entry->is_sub_map) { |
5ba3f43e | 4979 | laddr = ((laddr - entry->vme_start) |
0a7de745 | 4980 | + VME_OFFSET(entry)); |
3e170ce0 | 4981 | vm_map_lock_read(VME_SUBMAP(entry)); |
2d21ac55 | 4982 | |
0a7de745 | 4983 | if (map != real_map) { |
9bccf70c | 4984 | vm_map_unlock_read(map); |
0a7de745 | 4985 | } |
2d21ac55 | 4986 | if (entry->use_pmap) { |
91447636 | 4987 | vm_map_unlock_read(real_map); |
3e170ce0 | 4988 | real_map = VME_SUBMAP(entry); |
9bccf70c | 4989 | } |
3e170ce0 | 4990 | map = VME_SUBMAP(entry); |
9bccf70c A |
4991 | } else { |
4992 | break; | |
4993 | } | |
4994 | } | |
4995 | ||
5ba3f43e | 4996 | if (vm_map_lookup_entry(map, laddr, &entry) && |
3e170ce0 A |
4997 | (VME_OBJECT(entry) != NULL) && |
4998 | (VME_OBJECT(entry) == object)) { | |
4999 | int superpage; | |
2d21ac55 | 5000 | |
3e170ce0 | 5001 | if (!object->pager_created && |
4bd07ac2 A |
5002 | object->phys_contiguous && |
5003 | VME_OFFSET(entry) == 0 && | |
5004 | (entry->vme_end - entry->vme_start == object->vo_size) && | |
0a7de745 | 5005 | VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size - 1))) { |
3e170ce0 A |
5006 | superpage = VM_MEM_SUPERPAGE; |
5007 | } else { | |
5008 | superpage = 0; | |
5009 | } | |
fe8ab488 A |
5010 | |
5011 | if (superpage && physpage_p) { | |
5012 | /* for vm_map_wire_and_extract() */ | |
3e170ce0 | 5013 | *physpage_p = (ppnum_t) |
0a7de745 A |
5014 | ((((vm_map_offset_t) |
5015 | object->vo_shadow_offset) | |
5016 | + VME_OFFSET(entry) | |
5017 | + (laddr - entry->vme_start)) | |
5018 | >> PAGE_SHIFT); | |
fe8ab488 A |
5019 | } |
5020 | ||
2d21ac55 A |
5021 | if (caller_pmap) { |
5022 | /* | |
5023 | * Set up a block mapped area | |
5024 | */ | |
fe8ab488 | 5025 | assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); |
5ba3f43e | 5026 | kr = pmap_map_block(caller_pmap, |
0a7de745 A |
5027 | (addr64_t)(caller_pmap_addr - ldelta), |
5028 | (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) + | |
5029 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), | |
5030 | (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, | |
5031 | (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); | |
5ba3f43e A |
5032 | |
5033 | if (kr != KERN_SUCCESS) { | |
5034 | goto cleanup; | |
5035 | } | |
5036 | } else { | |
2d21ac55 A |
5037 | /* |
5038 | * Set up a block mapped area | |
5039 | */ | |
fe8ab488 | 5040 | assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); |
5ba3f43e | 5041 | kr = pmap_map_block(real_map->pmap, |
0a7de745 A |
5042 | (addr64_t)(vaddr - ldelta), |
5043 | (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) + | |
5044 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), | |
5045 | (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, | |
5046 | (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); | |
5ba3f43e A |
5047 | |
5048 | if (kr != KERN_SUCCESS) { | |
5049 | goto cleanup; | |
5050 | } | |
9bccf70c A |
5051 | } |
5052 | } | |
0b4e3aa0 | 5053 | } |
1c79356b | 5054 | |
5ba3f43e A |
5055 | /* |
5056 | * Success | |
5057 | */ | |
5058 | kr = KERN_SUCCESS; | |
5059 | ||
5060 | /* | |
5061 | * TODO: could most of the done cases just use cleanup? | |
5062 | */ | |
5063 | cleanup: | |
1c79356b | 5064 | /* |
2d21ac55 | 5065 | * Unlock everything, and return |
1c79356b | 5066 | */ |
5ba3f43e | 5067 | vm_map_unlock_read(map); |
0a7de745 | 5068 | if (real_map != map) { |
91447636 | 5069 | vm_map_unlock(real_map); |
0a7de745 | 5070 | } |
2d21ac55 A |
5071 | |
5072 | if (m != VM_PAGE_NULL) { | |
39037602 A |
5073 | assert(VM_PAGE_OBJECT(m) == m_object); |
5074 | ||
d9a64523 | 5075 | if (!m_object->internal && (fault_type & VM_PROT_WRITE)) { |
d9a64523 A |
5076 | vm_object_paging_begin(m_object); |
5077 | ||
5078 | assert(written_on_object == VM_OBJECT_NULL); | |
5079 | written_on_object = m_object; | |
5080 | written_on_pager = m_object->pager; | |
5081 | written_on_offset = m_object->paging_offset + m->vmp_offset; | |
5082 | } | |
0b4e3aa0 | 5083 | PAGE_WAKEUP_DONE(m); |
1c79356b | 5084 | |
39037602 | 5085 | vm_fault_cleanup(m_object, top_page); |
0a7de745 A |
5086 | } else { |
5087 | vm_fault_cleanup(object, top_page); | |
5088 | } | |
1c79356b | 5089 | |
2d21ac55 A |
5090 | vm_object_deallocate(object); |
5091 | ||
0a7de745 | 5092 | #undef RELEASE_PAGE |
91447636 | 5093 | |
2d21ac55 | 5094 | done: |
9bccf70c | 5095 | thread_interrupt_level(interruptible_state); |
1c79356b | 5096 | |
39236c6e | 5097 | /* |
04b8595b | 5098 | * Only I/O throttle on faults which cause a pagein/swapin. |
39236c6e A |
5099 | */ |
5100 | if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) { | |
5101 | throttle_lowpri_io(1); | |
04b8595b A |
5102 | } else { |
5103 | if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) { | |
04b8595b | 5104 | if ((throttle_delay = vm_page_throttled(TRUE))) { |
04b8595b | 5105 | if (vm_debug_events) { |
0a7de745 | 5106 | if (type_of_fault == DBG_COMPRESSOR_FAULT) { |
04b8595b | 5107 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
0a7de745 | 5108 | } else if (type_of_fault == DBG_COW_FAULT) { |
04b8595b | 5109 | VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
0a7de745 | 5110 | } else { |
04b8595b | 5111 | VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
0a7de745 | 5112 | } |
04b8595b A |
5113 | } |
5114 | delay(throttle_delay); | |
5115 | } | |
5116 | } | |
5117 | } | |
d9a64523 A |
5118 | |
5119 | if (written_on_object) { | |
d9a64523 A |
5120 | vnode_pager_dirtied(written_on_pager, written_on_offset, written_on_offset + PAGE_SIZE_64); |
5121 | ||
5122 | vm_object_lock(written_on_object); | |
5123 | vm_object_paging_end(written_on_object); | |
5124 | vm_object_unlock(written_on_object); | |
5125 | ||
5126 | written_on_object = VM_OBJECT_NULL; | |
5127 | } | |
5128 | ||
5129 | if (rtfault) { | |
5130 | vm_record_rtfault(cthread, fstart, trace_vaddr, type_of_fault); | |
5131 | } | |
5132 | ||
5ba3f43e | 5133 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
5134 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
5135 | ((uint64_t)trace_vaddr >> 32), | |
5136 | trace_vaddr, | |
5137 | kr, | |
5138 | type_of_fault, | |
5139 | 0); | |
5140 | ||
5141 | return kr; | |
1c79356b A |
5142 | } |
5143 | ||
5144 | /* | |
5145 | * vm_fault_wire: | |
5146 | * | |
5147 | * Wire down a range of virtual addresses in a map. | |
5148 | */ | |
5149 | kern_return_t | |
5150 | vm_fault_wire( | |
0a7de745 A |
5151 | vm_map_t map, |
5152 | vm_map_entry_t entry, | |
3e170ce0 | 5153 | vm_prot_t prot, |
5ba3f43e | 5154 | vm_tag_t wire_tag, |
0a7de745 A |
5155 | pmap_t pmap, |
5156 | vm_map_offset_t pmap_addr, | |
5157 | ppnum_t *physpage_p) | |
1c79356b | 5158 | { |
0a7de745 A |
5159 | vm_map_offset_t va; |
5160 | vm_map_offset_t end_addr = entry->vme_end; | |
5161 | kern_return_t rc; | |
1c79356b A |
5162 | |
5163 | assert(entry->in_transition); | |
5164 | ||
5ba3f43e A |
5165 | if ((VME_OBJECT(entry) != NULL) && |
5166 | !entry->is_sub_map && | |
3e170ce0 | 5167 | VME_OBJECT(entry)->phys_contiguous) { |
9bccf70c A |
5168 | return KERN_SUCCESS; |
5169 | } | |
5170 | ||
1c79356b A |
5171 | /* |
5172 | * Inform the physical mapping system that the | |
5173 | * range of addresses may not fault, so that | |
5174 | * page tables and such can be locked down as well. | |
5175 | */ | |
5176 | ||
5ba3f43e | 5177 | pmap_pageable(pmap, pmap_addr, |
0a7de745 | 5178 | pmap_addr + (end_addr - entry->vme_start), FALSE); |
1c79356b A |
5179 | |
5180 | /* | |
5181 | * We simulate a fault to get the page and enter it | |
5182 | * in the physical map. | |
5183 | */ | |
5184 | ||
5185 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
5ba3f43e | 5186 | rc = vm_fault_wire_fast(map, va, prot, wire_tag, entry, pmap, |
0a7de745 A |
5187 | pmap_addr + (va - entry->vme_start), |
5188 | physpage_p); | |
fe8ab488 | 5189 | if (rc != KERN_SUCCESS) { |
5ba3f43e | 5190 | rc = vm_fault_internal(map, va, prot, TRUE, wire_tag, |
0a7de745 A |
5191 | ((pmap == kernel_pmap) |
5192 | ? THREAD_UNINT | |
5193 | : THREAD_ABORTSAFE), | |
5194 | pmap, | |
5195 | (pmap_addr + | |
5196 | (va - entry->vme_start)), | |
5197 | physpage_p); | |
2d21ac55 | 5198 | DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); |
1c79356b A |
5199 | } |
5200 | ||
5201 | if (rc != KERN_SUCCESS) { | |
0a7de745 | 5202 | struct vm_map_entry tmp_entry = *entry; |
1c79356b A |
5203 | |
5204 | /* unwire wired pages */ | |
5205 | tmp_entry.vme_end = va; | |
5ba3f43e | 5206 | vm_fault_unwire(map, |
0a7de745 | 5207 | &tmp_entry, FALSE, pmap, pmap_addr); |
1c79356b A |
5208 | |
5209 | return rc; | |
5210 | } | |
5211 | } | |
5212 | return KERN_SUCCESS; | |
5213 | } | |
5214 | ||
5215 | /* | |
5216 | * vm_fault_unwire: | |
5217 | * | |
5218 | * Unwire a range of virtual addresses in a map. | |
5219 | */ | |
5220 | void | |
5221 | vm_fault_unwire( | |
0a7de745 A |
5222 | vm_map_t map, |
5223 | vm_map_entry_t entry, | |
5224 | boolean_t deallocate, | |
5225 | pmap_t pmap, | |
5226 | vm_map_offset_t pmap_addr) | |
1c79356b | 5227 | { |
0a7de745 A |
5228 | vm_map_offset_t va; |
5229 | vm_map_offset_t end_addr = entry->vme_end; | |
5230 | vm_object_t object; | |
d9a64523 | 5231 | struct vm_object_fault_info fault_info = {}; |
5ba3f43e | 5232 | unsigned int unwired_pages; |
1c79356b | 5233 | |
3e170ce0 | 5234 | object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry); |
1c79356b | 5235 | |
2d21ac55 A |
5236 | /* |
5237 | * If it's marked phys_contiguous, then vm_fault_wire() didn't actually | |
5238 | * do anything since such memory is wired by default. So we don't have | |
5239 | * anything to undo here. | |
5240 | */ | |
5241 | ||
0a7de745 | 5242 | if (object != VM_OBJECT_NULL && object->phys_contiguous) { |
2d21ac55 | 5243 | return; |
0a7de745 | 5244 | } |
2d21ac55 A |
5245 | |
5246 | fault_info.interruptible = THREAD_UNINT; | |
5247 | fault_info.behavior = entry->behavior; | |
3e170ce0 | 5248 | fault_info.user_tag = VME_ALIAS(entry); |
fe8ab488 A |
5249 | if (entry->iokit_acct || |
5250 | (!entry->is_sub_map && !entry->use_pmap)) { | |
5251 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; | |
5252 | } | |
3e170ce0 A |
5253 | fault_info.lo_offset = VME_OFFSET(entry); |
5254 | fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry); | |
2d21ac55 | 5255 | fault_info.no_cache = entry->no_cache; |
b0d623f7 | 5256 | fault_info.stealth = TRUE; |
2d21ac55 | 5257 | |
5ba3f43e A |
5258 | unwired_pages = 0; |
5259 | ||
1c79356b A |
5260 | /* |
5261 | * Since the pages are wired down, we must be able to | |
5262 | * get their mappings from the physical map system. | |
5263 | */ | |
5264 | ||
5265 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
1c79356b | 5266 | if (object == VM_OBJECT_NULL) { |
593a1d5f | 5267 | if (pmap) { |
5ba3f43e | 5268 | pmap_change_wiring(pmap, |
0a7de745 | 5269 | pmap_addr + (va - entry->vme_start), FALSE); |
593a1d5f | 5270 | } |
5ba3f43e | 5271 | (void) vm_fault(map, va, VM_PROT_NONE, |
0a7de745 | 5272 | TRUE, VM_KERN_MEMORY_NONE, THREAD_UNINT, pmap, pmap_addr); |
1c79356b | 5273 | } else { |
0a7de745 A |
5274 | vm_prot_t prot; |
5275 | vm_page_t result_page; | |
5276 | vm_page_t top_page; | |
5277 | vm_object_t result_object; | |
1c79356b A |
5278 | vm_fault_return_t result; |
5279 | ||
d9a64523 A |
5280 | /* cap cluster size at maximum UPL size */ |
5281 | upl_size_t cluster_size; | |
5282 | if (os_sub_overflow(end_addr, va, &cluster_size)) { | |
5283 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; | |
b0d623f7 | 5284 | } |
d9a64523 | 5285 | fault_info.cluster_size = cluster_size; |
2d21ac55 | 5286 | |
1c79356b A |
5287 | do { |
5288 | prot = VM_PROT_NONE; | |
5289 | ||
5290 | vm_object_lock(object); | |
5291 | vm_object_paging_begin(object); | |
5292 | XPR(XPR_VM_FAULT, | |
0a7de745 A |
5293 | "vm_fault_unwire -> vm_fault_page\n", |
5294 | 0, 0, 0, 0, 0); | |
39236c6e | 5295 | result_page = VM_PAGE_NULL; |
0a7de745 | 5296 | result = vm_fault_page( |
2d21ac55 | 5297 | object, |
3e170ce0 | 5298 | (VME_OFFSET(entry) + |
0a7de745 | 5299 | (va - entry->vme_start)), |
2d21ac55 | 5300 | VM_PROT_NONE, TRUE, |
39236c6e | 5301 | FALSE, /* page not looked up */ |
2d21ac55 A |
5302 | &prot, &result_page, &top_page, |
5303 | (int *)0, | |
5ba3f43e | 5304 | NULL, map->no_zero_fill, |
2d21ac55 | 5305 | FALSE, &fault_info); |
1c79356b A |
5306 | } while (result == VM_FAULT_RETRY); |
5307 | ||
2d21ac55 A |
5308 | /* |
5309 | * If this was a mapping to a file on a device that has been forcibly | |
5310 | * unmounted, then we won't get a page back from vm_fault_page(). Just | |
5311 | * move on to the next one in case the remaining pages are mapped from | |
5312 | * different objects. During a forced unmount, the object is terminated | |
5313 | * so the alive flag will be false if this happens. A forced unmount will | |
5ba3f43e | 5314 | * will occur when an external disk is unplugged before the user does an |
2d21ac55 A |
5315 | * eject, so we don't want to panic in that situation. |
5316 | */ | |
5317 | ||
0a7de745 | 5318 | if (result == VM_FAULT_MEMORY_ERROR && !object->alive) { |
2d21ac55 | 5319 | continue; |
0a7de745 | 5320 | } |
2d21ac55 | 5321 | |
39236c6e A |
5322 | if (result == VM_FAULT_MEMORY_ERROR && |
5323 | object == kernel_object) { | |
5324 | /* | |
5325 | * This must have been allocated with | |
5326 | * KMA_KOBJECT and KMA_VAONLY and there's | |
5327 | * no physical page at this offset. | |
5328 | * We're done (no page to free). | |
5329 | */ | |
5330 | assert(deallocate); | |
5331 | continue; | |
5332 | } | |
5333 | ||
0a7de745 | 5334 | if (result != VM_FAULT_SUCCESS) { |
1c79356b | 5335 | panic("vm_fault_unwire: failure"); |
0a7de745 | 5336 | } |
1c79356b | 5337 | |
39037602 | 5338 | result_object = VM_PAGE_OBJECT(result_page); |
2d21ac55 | 5339 | |
1c79356b | 5340 | if (deallocate) { |
39037602 | 5341 | assert(VM_PAGE_GET_PHYS_PAGE(result_page) != |
0a7de745 | 5342 | vm_page_fictitious_addr); |
39037602 | 5343 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(result_page)); |
5ba3f43e A |
5344 | if (VM_PAGE_WIRED(result_page)) { |
5345 | unwired_pages++; | |
5346 | } | |
1c79356b A |
5347 | VM_PAGE_FREE(result_page); |
5348 | } else { | |
0a7de745 | 5349 | if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(result_page) != vm_page_guard_addr)) { |
5ba3f43e | 5350 | pmap_change_wiring(pmap, |
6d2010ae | 5351 | pmap_addr + (va - entry->vme_start), FALSE); |
0a7de745 | 5352 | } |
6d2010ae A |
5353 | |
5354 | ||
b0d623f7 A |
5355 | if (VM_PAGE_WIRED(result_page)) { |
5356 | vm_page_lockspin_queues(); | |
0b4c1975 | 5357 | vm_page_unwire(result_page, TRUE); |
b0d623f7 | 5358 | vm_page_unlock_queues(); |
5ba3f43e | 5359 | unwired_pages++; |
b0d623f7 | 5360 | } |
0a7de745 | 5361 | if (entry->zero_wired_pages) { |
39037602 | 5362 | pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(result_page)); |
b0d623f7 A |
5363 | entry->zero_wired_pages = FALSE; |
5364 | } | |
5365 | ||
1c79356b A |
5366 | PAGE_WAKEUP_DONE(result_page); |
5367 | } | |
1c79356b A |
5368 | vm_fault_cleanup(result_object, top_page); |
5369 | } | |
5370 | } | |
5371 | ||
5372 | /* | |
5373 | * Inform the physical mapping system that the range | |
5374 | * of addresses may fault, so that page tables and | |
5375 | * such may be unwired themselves. | |
5376 | */ | |
5377 | ||
5ba3f43e | 5378 | pmap_pageable(pmap, pmap_addr, |
0a7de745 | 5379 | pmap_addr + (end_addr - entry->vme_start), TRUE); |
1c79356b | 5380 | |
5ba3f43e | 5381 | if (kernel_object == object) { |
0a7de745 | 5382 | vm_tag_update_size(fault_info.user_tag, -ptoa_64(unwired_pages)); |
5ba3f43e | 5383 | } |
1c79356b A |
5384 | } |
5385 | ||
5386 | /* | |
5387 | * vm_fault_wire_fast: | |
5388 | * | |
5389 | * Handle common case of a wire down page fault at the given address. | |
5390 | * If successful, the page is inserted into the associated physical map. | |
5391 | * The map entry is passed in to avoid the overhead of a map lookup. | |
5392 | * | |
5393 | * NOTE: the given address should be truncated to the | |
5394 | * proper page address. | |
5395 | * | |
5396 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
5397 | * a standard error specifying why the fault is fatal is returned. | |
5398 | * | |
5399 | * The map in question must be referenced, and remains so. | |
5400 | * Caller has a read lock on the map. | |
5401 | * | |
5402 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
5403 | * other than the common case will return KERN_FAILURE, and the caller | |
5404 | * is expected to call vm_fault(). | |
5405 | */ | |
3e170ce0 | 5406 | static kern_return_t |
1c79356b | 5407 | vm_fault_wire_fast( |
0a7de745 A |
5408 | __unused vm_map_t map, |
5409 | vm_map_offset_t va, | |
5ba3f43e | 5410 | __unused vm_prot_t caller_prot, |
0a7de745 A |
5411 | vm_tag_t wire_tag, |
5412 | vm_map_entry_t entry, | |
5413 | pmap_t pmap, | |
5414 | vm_map_offset_t pmap_addr, | |
5415 | ppnum_t *physpage_p) | |
1c79356b | 5416 | { |
0a7de745 A |
5417 | vm_object_t object; |
5418 | vm_object_offset_t offset; | |
5419 | vm_page_t m; | |
5420 | vm_prot_t prot; | |
5421 | thread_t thread = current_thread(); | |
5422 | int type_of_fault; | |
5423 | kern_return_t kr; | |
d9a64523 | 5424 | struct vm_object_fault_info fault_info = {}; |
1c79356b | 5425 | |
2d21ac55 | 5426 | VM_STAT_INCR(faults); |
1c79356b | 5427 | |
0a7de745 A |
5428 | if (thread != THREAD_NULL && thread->task != TASK_NULL) { |
5429 | thread->task->faults++; | |
5430 | } | |
1c79356b A |
5431 | |
5432 | /* | |
5433 | * Recovery actions | |
5434 | */ | |
5435 | ||
0a7de745 A |
5436 | #undef RELEASE_PAGE |
5437 | #define RELEASE_PAGE(m) { \ | |
5438 | PAGE_WAKEUP_DONE(m); \ | |
5439 | vm_page_lockspin_queues(); \ | |
5440 | vm_page_unwire(m, TRUE); \ | |
5441 | vm_page_unlock_queues(); \ | |
1c79356b A |
5442 | } |
5443 | ||
5444 | ||
0a7de745 A |
5445 | #undef UNLOCK_THINGS |
5446 | #define UNLOCK_THINGS { \ | |
5447 | vm_object_paging_end(object); \ | |
5448 | vm_object_unlock(object); \ | |
1c79356b A |
5449 | } |
5450 | ||
0a7de745 A |
5451 | #undef UNLOCK_AND_DEALLOCATE |
5452 | #define UNLOCK_AND_DEALLOCATE { \ | |
5453 | UNLOCK_THINGS; \ | |
5454 | vm_object_deallocate(object); \ | |
1c79356b A |
5455 | } |
5456 | /* | |
5457 | * Give up and have caller do things the hard way. | |
5458 | */ | |
5459 | ||
0a7de745 A |
5460 | #define GIVE_UP { \ |
5461 | UNLOCK_AND_DEALLOCATE; \ | |
5462 | return(KERN_FAILURE); \ | |
1c79356b A |
5463 | } |
5464 | ||
5465 | ||
5466 | /* | |
5467 | * If this entry is not directly to a vm_object, bail out. | |
5468 | */ | |
fe8ab488 A |
5469 | if (entry->is_sub_map) { |
5470 | assert(physpage_p == NULL); | |
0a7de745 | 5471 | return KERN_FAILURE; |
fe8ab488 | 5472 | } |
1c79356b A |
5473 | |
5474 | /* | |
5475 | * Find the backing store object and offset into it. | |
5476 | */ | |
5477 | ||
3e170ce0 A |
5478 | object = VME_OBJECT(entry); |
5479 | offset = (va - entry->vme_start) + VME_OFFSET(entry); | |
1c79356b A |
5480 | prot = entry->protection; |
5481 | ||
0a7de745 | 5482 | /* |
1c79356b A |
5483 | * Make a reference to this object to prevent its |
5484 | * disposal while we are messing with it. | |
5485 | */ | |
5486 | ||
5487 | vm_object_lock(object); | |
2d21ac55 | 5488 | vm_object_reference_locked(object); |
ff6e181a | 5489 | vm_object_paging_begin(object); |
1c79356b A |
5490 | |
5491 | /* | |
5492 | * INVARIANTS (through entire routine): | |
5493 | * | |
5494 | * 1) At all times, we must either have the object | |
5495 | * lock or a busy page in some object to prevent | |
5496 | * some other thread from trying to bring in | |
5497 | * the same page. | |
5498 | * | |
5499 | * 2) Once we have a busy page, we must remove it from | |
5500 | * the pageout queues, so that the pageout daemon | |
5501 | * will not grab it away. | |
5502 | * | |
5503 | */ | |
5504 | ||
5505 | /* | |
5506 | * Look for page in top-level object. If it's not there or | |
5507 | * there's something going on, give up. | |
5508 | */ | |
5509 | m = vm_page_lookup(object, offset); | |
d9a64523 | 5510 | if ((m == VM_PAGE_NULL) || (m->vmp_busy) || |
0a7de745 | 5511 | (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_absent))) { |
1c79356b A |
5512 | GIVE_UP; |
5513 | } | |
d9a64523 | 5514 | if (m->vmp_fictitious && |
39037602 | 5515 | VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
2d21ac55 A |
5516 | /* |
5517 | * Guard pages are fictitious pages and are never | |
5518 | * entered into a pmap, so let's say it's been wired... | |
5519 | */ | |
5520 | kr = KERN_SUCCESS; | |
5521 | goto done; | |
5522 | } | |
5523 | ||
1c79356b A |
5524 | /* |
5525 | * Wire the page down now. All bail outs beyond this | |
5ba3f43e | 5526 | * point must unwire the page. |
1c79356b A |
5527 | */ |
5528 | ||
2d21ac55 | 5529 | vm_page_lockspin_queues(); |
5ba3f43e | 5530 | vm_page_wire(m, wire_tag, TRUE); |
1c79356b A |
5531 | vm_page_unlock_queues(); |
5532 | ||
5533 | /* | |
5534 | * Mark page busy for other threads. | |
5535 | */ | |
d9a64523 A |
5536 | assert(!m->vmp_busy); |
5537 | m->vmp_busy = TRUE; | |
5538 | assert(!m->vmp_absent); | |
1c79356b A |
5539 | |
5540 | /* | |
5541 | * Give up if the page is being written and there's a copy object | |
5542 | */ | |
5543 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
5544 | RELEASE_PAGE(m); | |
5545 | GIVE_UP; | |
5546 | } | |
5547 | ||
d9a64523 A |
5548 | fault_info.user_tag = VME_ALIAS(entry); |
5549 | fault_info.pmap_options = 0; | |
5550 | if (entry->iokit_acct || | |
5551 | (!entry->is_sub_map && !entry->use_pmap)) { | |
5552 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; | |
5553 | } | |
5554 | ||
1c79356b A |
5555 | /* |
5556 | * Put this page into the physical map. | |
1c79356b | 5557 | */ |
2d21ac55 A |
5558 | type_of_fault = DBG_CACHE_HIT_FAULT; |
5559 | kr = vm_fault_enter(m, | |
0a7de745 A |
5560 | pmap, |
5561 | pmap_addr, | |
5562 | prot, | |
5563 | prot, | |
5564 | TRUE, /* wired */ | |
5565 | FALSE, /* change_wiring */ | |
5566 | wire_tag, | |
5567 | &fault_info, | |
5568 | NULL, | |
5569 | &type_of_fault); | |
39037602 A |
5570 | if (kr != KERN_SUCCESS) { |
5571 | RELEASE_PAGE(m); | |
5572 | GIVE_UP; | |
5573 | } | |
2d21ac55 A |
5574 | |
5575 | done: | |
1c79356b A |
5576 | /* |
5577 | * Unlock everything, and return | |
5578 | */ | |
5579 | ||
fe8ab488 A |
5580 | if (physpage_p) { |
5581 | /* for vm_map_wire_and_extract() */ | |
5582 | if (kr == KERN_SUCCESS) { | |
39037602 A |
5583 | assert(object == VM_PAGE_OBJECT(m)); |
5584 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); | |
fe8ab488 | 5585 | if (prot & VM_PROT_WRITE) { |
39037602 | 5586 | vm_object_lock_assert_exclusive(object); |
d9a64523 | 5587 | m->vmp_dirty = TRUE; |
fe8ab488 A |
5588 | } |
5589 | } else { | |
5590 | *physpage_p = 0; | |
5591 | } | |
5592 | } | |
5593 | ||
1c79356b A |
5594 | PAGE_WAKEUP_DONE(m); |
5595 | UNLOCK_AND_DEALLOCATE; | |
5596 | ||
2d21ac55 | 5597 | return kr; |
1c79356b A |
5598 | } |
5599 | ||
5600 | /* | |
5601 | * Routine: vm_fault_copy_cleanup | |
5602 | * Purpose: | |
5603 | * Release a page used by vm_fault_copy. | |
5604 | */ | |
5605 | ||
3e170ce0 | 5606 | static void |
1c79356b | 5607 | vm_fault_copy_cleanup( |
0a7de745 A |
5608 | vm_page_t page, |
5609 | vm_page_t top_page) | |
1c79356b | 5610 | { |
0a7de745 | 5611 | vm_object_t object = VM_PAGE_OBJECT(page); |
1c79356b A |
5612 | |
5613 | vm_object_lock(object); | |
5614 | PAGE_WAKEUP_DONE(page); | |
0a7de745 | 5615 | if (!VM_PAGE_PAGEABLE(page)) { |
b0d623f7 | 5616 | vm_page_lockspin_queues(); |
0a7de745 | 5617 | if (!VM_PAGE_PAGEABLE(page)) { |
b0d623f7 | 5618 | vm_page_activate(page); |
39037602 | 5619 | } |
b0d623f7 A |
5620 | vm_page_unlock_queues(); |
5621 | } | |
1c79356b A |
5622 | vm_fault_cleanup(object, top_page); |
5623 | } | |
5624 | ||
3e170ce0 | 5625 | static void |
1c79356b | 5626 | vm_fault_copy_dst_cleanup( |
0a7de745 | 5627 | vm_page_t page) |
1c79356b | 5628 | { |
0a7de745 | 5629 | vm_object_t object; |
1c79356b A |
5630 | |
5631 | if (page != VM_PAGE_NULL) { | |
39037602 | 5632 | object = VM_PAGE_OBJECT(page); |
1c79356b | 5633 | vm_object_lock(object); |
2d21ac55 | 5634 | vm_page_lockspin_queues(); |
0b4c1975 | 5635 | vm_page_unwire(page, TRUE); |
1c79356b | 5636 | vm_page_unlock_queues(); |
5ba3f43e | 5637 | vm_object_paging_end(object); |
1c79356b A |
5638 | vm_object_unlock(object); |
5639 | } | |
5640 | } | |
5641 | ||
5642 | /* | |
5643 | * Routine: vm_fault_copy | |
5644 | * | |
5645 | * Purpose: | |
5646 | * Copy pages from one virtual memory object to another -- | |
5647 | * neither the source nor destination pages need be resident. | |
5648 | * | |
5649 | * Before actually copying a page, the version associated with | |
5650 | * the destination address map wil be verified. | |
5651 | * | |
5652 | * In/out conditions: | |
5653 | * The caller must hold a reference, but not a lock, to | |
5654 | * each of the source and destination objects and to the | |
5655 | * destination map. | |
5656 | * | |
5657 | * Results: | |
5658 | * Returns KERN_SUCCESS if no errors were encountered in | |
5659 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
5660 | * the operation was interrupted (only possible if the | |
5661 | * "interruptible" argument is asserted). Other return values | |
5662 | * indicate a permanent error in copying the data. | |
5663 | * | |
5664 | * The actual amount of data copied will be returned in the | |
5665 | * "copy_size" argument. In the event that the destination map | |
5666 | * verification failed, this amount may be less than the amount | |
5667 | * requested. | |
5668 | */ | |
5669 | kern_return_t | |
5670 | vm_fault_copy( | |
0a7de745 A |
5671 | vm_object_t src_object, |
5672 | vm_object_offset_t src_offset, | |
5673 | vm_map_size_t *copy_size, /* INOUT */ | |
5674 | vm_object_t dst_object, | |
5675 | vm_object_offset_t dst_offset, | |
5676 | vm_map_t dst_map, | |
5677 | vm_map_version_t *dst_version, | |
5678 | int interruptible) | |
1c79356b | 5679 | { |
0a7de745 | 5680 | vm_page_t result_page; |
5ba3f43e | 5681 | |
0a7de745 A |
5682 | vm_page_t src_page; |
5683 | vm_page_t src_top_page; | |
5684 | vm_prot_t src_prot; | |
1c79356b | 5685 | |
0a7de745 A |
5686 | vm_page_t dst_page; |
5687 | vm_page_t dst_top_page; | |
5688 | vm_prot_t dst_prot; | |
1c79356b | 5689 | |
0a7de745 A |
5690 | vm_map_size_t amount_left; |
5691 | vm_object_t old_copy_object; | |
5692 | vm_object_t result_page_object = NULL; | |
5693 | kern_return_t error = 0; | |
5694 | vm_fault_return_t result; | |
1c79356b | 5695 | |
0a7de745 | 5696 | vm_map_size_t part_size; |
d9a64523 A |
5697 | struct vm_object_fault_info fault_info_src = {}; |
5698 | struct vm_object_fault_info fault_info_dst = {}; | |
1c79356b A |
5699 | |
5700 | /* | |
5701 | * In order not to confuse the clustered pageins, align | |
5702 | * the different offsets on a page boundary. | |
5703 | */ | |
1c79356b | 5704 | |
0a7de745 A |
5705 | #define RETURN(x) \ |
5706 | MACRO_BEGIN \ | |
5707 | *copy_size -= amount_left; \ | |
5708 | MACRO_RETURN(x); \ | |
1c79356b A |
5709 | MACRO_END |
5710 | ||
91447636 | 5711 | amount_left = *copy_size; |
2d21ac55 A |
5712 | |
5713 | fault_info_src.interruptible = interruptible; | |
5714 | fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
2d21ac55 A |
5715 | fault_info_src.lo_offset = vm_object_trunc_page(src_offset); |
5716 | fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; | |
b0d623f7 | 5717 | fault_info_src.stealth = TRUE; |
2d21ac55 A |
5718 | |
5719 | fault_info_dst.interruptible = interruptible; | |
5720 | fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
2d21ac55 A |
5721 | fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); |
5722 | fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; | |
b0d623f7 | 5723 | fault_info_dst.stealth = TRUE; |
2d21ac55 | 5724 | |
1c79356b A |
5725 | do { /* while (amount_left > 0) */ |
5726 | /* | |
5727 | * There may be a deadlock if both source and destination | |
5728 | * pages are the same. To avoid this deadlock, the copy must | |
5729 | * start by getting the destination page in order to apply | |
5730 | * COW semantics if any. | |
5731 | */ | |
5732 | ||
0a7de745 | 5733 | RetryDestinationFault:; |
1c79356b | 5734 | |
0a7de745 | 5735 | dst_prot = VM_PROT_WRITE | VM_PROT_READ; |
1c79356b A |
5736 | |
5737 | vm_object_lock(dst_object); | |
5738 | vm_object_paging_begin(dst_object); | |
5739 | ||
d9a64523 A |
5740 | /* cap cluster size at maximum UPL size */ |
5741 | upl_size_t cluster_size; | |
5742 | if (os_convert_overflow(amount_left, &cluster_size)) { | |
5743 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; | |
b0d623f7 | 5744 | } |
d9a64523 | 5745 | fault_info_dst.cluster_size = cluster_size; |
2d21ac55 | 5746 | |
0a7de745 | 5747 | XPR(XPR_VM_FAULT, "vm_fault_copy -> vm_fault_page\n", 0, 0, 0, 0, 0); |
39236c6e | 5748 | dst_page = VM_PAGE_NULL; |
b0d623f7 | 5749 | result = vm_fault_page(dst_object, |
0a7de745 A |
5750 | vm_object_trunc_page(dst_offset), |
5751 | VM_PROT_WRITE | VM_PROT_READ, | |
5752 | FALSE, | |
5753 | FALSE, /* page not looked up */ | |
5754 | &dst_prot, &dst_page, &dst_top_page, | |
5755 | (int *)0, | |
5756 | &error, | |
5757 | dst_map->no_zero_fill, | |
5758 | FALSE, &fault_info_dst); | |
b0d623f7 | 5759 | switch (result) { |
1c79356b A |
5760 | case VM_FAULT_SUCCESS: |
5761 | break; | |
5762 | case VM_FAULT_RETRY: | |
5763 | goto RetryDestinationFault; | |
5764 | case VM_FAULT_MEMORY_SHORTAGE: | |
0a7de745 | 5765 | if (vm_page_wait(interruptible)) { |
1c79356b | 5766 | goto RetryDestinationFault; |
0a7de745 A |
5767 | } |
5768 | /* fall thru */ | |
1c79356b A |
5769 | case VM_FAULT_INTERRUPTED: |
5770 | RETURN(MACH_SEND_INTERRUPTED); | |
b0d623f7 A |
5771 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
5772 | /* success but no VM page: fail the copy */ | |
5773 | vm_object_paging_end(dst_object); | |
5774 | vm_object_unlock(dst_object); | |
0a7de745 | 5775 | /*FALLTHROUGH*/ |
1c79356b | 5776 | case VM_FAULT_MEMORY_ERROR: |
0a7de745 A |
5777 | if (error) { |
5778 | return error; | |
5779 | } else { | |
5780 | return KERN_MEMORY_ERROR; | |
5781 | } | |
b0d623f7 A |
5782 | default: |
5783 | panic("vm_fault_copy: unexpected error 0x%x from " | |
0a7de745 | 5784 | "vm_fault_page()\n", result); |
1c79356b | 5785 | } |
0a7de745 | 5786 | assert((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); |
1c79356b | 5787 | |
39037602 A |
5788 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); |
5789 | old_copy_object = dst_object->copy; | |
1c79356b A |
5790 | |
5791 | /* | |
5792 | * There exists the possiblity that the source and | |
5793 | * destination page are the same. But we can't | |
5794 | * easily determine that now. If they are the | |
5795 | * same, the call to vm_fault_page() for the | |
5796 | * destination page will deadlock. To prevent this we | |
5797 | * wire the page so we can drop busy without having | |
5ba3f43e | 5798 | * the page daemon steal the page. We clean up the |
1c79356b A |
5799 | * top page but keep the paging reference on the object |
5800 | * holding the dest page so it doesn't go away. | |
5801 | */ | |
5802 | ||
2d21ac55 | 5803 | vm_page_lockspin_queues(); |
3e170ce0 | 5804 | vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE); |
1c79356b A |
5805 | vm_page_unlock_queues(); |
5806 | PAGE_WAKEUP_DONE(dst_page); | |
39037602 | 5807 | vm_object_unlock(dst_object); |
1c79356b A |
5808 | |
5809 | if (dst_top_page != VM_PAGE_NULL) { | |
5810 | vm_object_lock(dst_object); | |
5811 | VM_PAGE_FREE(dst_top_page); | |
5812 | vm_object_paging_end(dst_object); | |
5813 | vm_object_unlock(dst_object); | |
5814 | } | |
5815 | ||
0a7de745 | 5816 | RetrySourceFault:; |
1c79356b A |
5817 | |
5818 | if (src_object == VM_OBJECT_NULL) { | |
5819 | /* | |
5820 | * No source object. We will just | |
5821 | * zero-fill the page in dst_object. | |
5822 | */ | |
5823 | src_page = VM_PAGE_NULL; | |
e3027f41 | 5824 | result_page = VM_PAGE_NULL; |
1c79356b A |
5825 | } else { |
5826 | vm_object_lock(src_object); | |
5827 | src_page = vm_page_lookup(src_object, | |
0a7de745 | 5828 | vm_object_trunc_page(src_offset)); |
e3027f41 | 5829 | if (src_page == dst_page) { |
1c79356b | 5830 | src_prot = dst_prot; |
e3027f41 A |
5831 | result_page = VM_PAGE_NULL; |
5832 | } else { | |
1c79356b A |
5833 | src_prot = VM_PROT_READ; |
5834 | vm_object_paging_begin(src_object); | |
5835 | ||
d9a64523 A |
5836 | /* cap cluster size at maximum UPL size */ |
5837 | if (os_convert_overflow(amount_left, &cluster_size)) { | |
5838 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; | |
b0d623f7 | 5839 | } |
d9a64523 | 5840 | fault_info_src.cluster_size = cluster_size; |
2d21ac55 | 5841 | |
1c79356b | 5842 | XPR(XPR_VM_FAULT, |
0a7de745 A |
5843 | "vm_fault_copy(2) -> vm_fault_page\n", |
5844 | 0, 0, 0, 0, 0); | |
39236c6e | 5845 | result_page = VM_PAGE_NULL; |
b0d623f7 | 5846 | result = vm_fault_page( |
5ba3f43e | 5847 | src_object, |
b0d623f7 A |
5848 | vm_object_trunc_page(src_offset), |
5849 | VM_PROT_READ, FALSE, | |
39236c6e | 5850 | FALSE, /* page not looked up */ |
5ba3f43e | 5851 | &src_prot, |
b0d623f7 A |
5852 | &result_page, &src_top_page, |
5853 | (int *)0, &error, FALSE, | |
5854 | FALSE, &fault_info_src); | |
5855 | ||
5856 | switch (result) { | |
1c79356b A |
5857 | case VM_FAULT_SUCCESS: |
5858 | break; | |
5859 | case VM_FAULT_RETRY: | |
5860 | goto RetrySourceFault; | |
5861 | case VM_FAULT_MEMORY_SHORTAGE: | |
0a7de745 | 5862 | if (vm_page_wait(interruptible)) { |
1c79356b | 5863 | goto RetrySourceFault; |
0a7de745 A |
5864 | } |
5865 | /* fall thru */ | |
1c79356b A |
5866 | case VM_FAULT_INTERRUPTED: |
5867 | vm_fault_copy_dst_cleanup(dst_page); | |
5868 | RETURN(MACH_SEND_INTERRUPTED); | |
b0d623f7 A |
5869 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
5870 | /* success but no VM page: fail */ | |
5871 | vm_object_paging_end(src_object); | |
5872 | vm_object_unlock(src_object); | |
0a7de745 | 5873 | /*FALLTHROUGH*/ |
1c79356b A |
5874 | case VM_FAULT_MEMORY_ERROR: |
5875 | vm_fault_copy_dst_cleanup(dst_page); | |
0a7de745 A |
5876 | if (error) { |
5877 | return error; | |
5878 | } else { | |
5879 | return KERN_MEMORY_ERROR; | |
5880 | } | |
b0d623f7 A |
5881 | default: |
5882 | panic("vm_fault_copy(2): unexpected " | |
0a7de745 A |
5883 | "error 0x%x from " |
5884 | "vm_fault_page()\n", result); | |
1c79356b A |
5885 | } |
5886 | ||
39037602 | 5887 | result_page_object = VM_PAGE_OBJECT(result_page); |
1c79356b | 5888 | assert((src_top_page == VM_PAGE_NULL) == |
0a7de745 | 5889 | (result_page_object == src_object)); |
1c79356b | 5890 | } |
0a7de745 | 5891 | assert((src_prot & VM_PROT_READ) != VM_PROT_NONE); |
39037602 | 5892 | vm_object_unlock(result_page_object); |
1c79356b A |
5893 | } |
5894 | ||
5ba3f43e A |
5895 | vm_map_lock_read(dst_map); |
5896 | ||
1c79356b | 5897 | if (!vm_map_verify(dst_map, dst_version)) { |
5ba3f43e | 5898 | vm_map_unlock_read(dst_map); |
0a7de745 | 5899 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
e3027f41 | 5900 | vm_fault_copy_cleanup(result_page, src_top_page); |
0a7de745 | 5901 | } |
1c79356b A |
5902 | vm_fault_copy_dst_cleanup(dst_page); |
5903 | break; | |
5904 | } | |
39037602 | 5905 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); |
1c79356b | 5906 | |
39037602 | 5907 | vm_object_lock(dst_object); |
1c79356b | 5908 | |
39037602 A |
5909 | if (dst_object->copy != old_copy_object) { |
5910 | vm_object_unlock(dst_object); | |
5ba3f43e | 5911 | vm_map_unlock_read(dst_map); |
0a7de745 | 5912 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
e3027f41 | 5913 | vm_fault_copy_cleanup(result_page, src_top_page); |
0a7de745 | 5914 | } |
1c79356b A |
5915 | vm_fault_copy_dst_cleanup(dst_page); |
5916 | break; | |
5917 | } | |
39037602 | 5918 | vm_object_unlock(dst_object); |
1c79356b A |
5919 | |
5920 | /* | |
5921 | * Copy the page, and note that it is dirty | |
5922 | * immediately. | |
5923 | */ | |
5924 | ||
5925 | if (!page_aligned(src_offset) || | |
0a7de745 A |
5926 | !page_aligned(dst_offset) || |
5927 | !page_aligned(amount_left)) { | |
5928 | vm_object_offset_t src_po, | |
5929 | dst_po; | |
1c79356b | 5930 | |
91447636 A |
5931 | src_po = src_offset - vm_object_trunc_page(src_offset); |
5932 | dst_po = dst_offset - vm_object_trunc_page(dst_offset); | |
1c79356b A |
5933 | |
5934 | if (dst_po > src_po) { | |
5935 | part_size = PAGE_SIZE - dst_po; | |
5936 | } else { | |
5937 | part_size = PAGE_SIZE - src_po; | |
5938 | } | |
0a7de745 | 5939 | if (part_size > (amount_left)) { |
1c79356b A |
5940 | part_size = amount_left; |
5941 | } | |
5942 | ||
e3027f41 | 5943 | if (result_page == VM_PAGE_NULL) { |
b0d623f7 A |
5944 | assert((vm_offset_t) dst_po == dst_po); |
5945 | assert((vm_size_t) part_size == part_size); | |
1c79356b | 5946 | vm_page_part_zero_fill(dst_page, |
0a7de745 A |
5947 | (vm_offset_t) dst_po, |
5948 | (vm_size_t) part_size); | |
1c79356b | 5949 | } else { |
b0d623f7 A |
5950 | assert((vm_offset_t) src_po == src_po); |
5951 | assert((vm_offset_t) dst_po == dst_po); | |
5952 | assert((vm_size_t) part_size == part_size); | |
5953 | vm_page_part_copy(result_page, | |
0a7de745 A |
5954 | (vm_offset_t) src_po, |
5955 | dst_page, | |
5956 | (vm_offset_t) dst_po, | |
5957 | (vm_size_t)part_size); | |
5958 | if (!dst_page->vmp_dirty) { | |
1c79356b | 5959 | vm_object_lock(dst_object); |
316670eb | 5960 | SET_PAGE_DIRTY(dst_page, TRUE); |
39037602 | 5961 | vm_object_unlock(dst_object); |
1c79356b | 5962 | } |
1c79356b A |
5963 | } |
5964 | } else { | |
5965 | part_size = PAGE_SIZE; | |
5966 | ||
0a7de745 | 5967 | if (result_page == VM_PAGE_NULL) { |
1c79356b | 5968 | vm_page_zero_fill(dst_page); |
0a7de745 | 5969 | } else { |
39037602 | 5970 | vm_object_lock(result_page_object); |
e3027f41 | 5971 | vm_page_copy(result_page, dst_page); |
39037602 | 5972 | vm_object_unlock(result_page_object); |
316670eb | 5973 | |
0a7de745 | 5974 | if (!dst_page->vmp_dirty) { |
1c79356b | 5975 | vm_object_lock(dst_object); |
316670eb | 5976 | SET_PAGE_DIRTY(dst_page, TRUE); |
39037602 | 5977 | vm_object_unlock(dst_object); |
1c79356b A |
5978 | } |
5979 | } | |
1c79356b A |
5980 | } |
5981 | ||
5982 | /* | |
5983 | * Unlock everything, and return | |
5984 | */ | |
5985 | ||
5ba3f43e | 5986 | vm_map_unlock_read(dst_map); |
1c79356b | 5987 | |
0a7de745 | 5988 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
e3027f41 | 5989 | vm_fault_copy_cleanup(result_page, src_top_page); |
0a7de745 | 5990 | } |
1c79356b A |
5991 | vm_fault_copy_dst_cleanup(dst_page); |
5992 | ||
5993 | amount_left -= part_size; | |
5994 | src_offset += part_size; | |
5995 | dst_offset += part_size; | |
5996 | } while (amount_left > 0); | |
5997 | ||
5998 | RETURN(KERN_SUCCESS); | |
0a7de745 | 5999 | #undef RETURN |
1c79356b | 6000 | |
5ba3f43e | 6001 | /*NOTREACHED*/ |
1c79356b A |
6002 | } |
6003 | ||
0a7de745 | 6004 | #if VM_FAULT_CLASSIFY |
1c79356b A |
6005 | /* |
6006 | * Temporary statistics gathering support. | |
6007 | */ | |
6008 | ||
6009 | /* | |
6010 | * Statistics arrays: | |
6011 | */ | |
0a7de745 A |
6012 | #define VM_FAULT_TYPES_MAX 5 |
6013 | #define VM_FAULT_LEVEL_MAX 8 | |
1c79356b | 6014 | |
0a7de745 | 6015 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; |
1c79356b | 6016 | |
0a7de745 A |
6017 | #define VM_FAULT_TYPE_ZERO_FILL 0 |
6018 | #define VM_FAULT_TYPE_MAP_IN 1 | |
6019 | #define VM_FAULT_TYPE_PAGER 2 | |
6020 | #define VM_FAULT_TYPE_COPY 3 | |
6021 | #define VM_FAULT_TYPE_OTHER 4 | |
1c79356b A |
6022 | |
6023 | ||
6024 | void | |
0a7de745 A |
6025 | vm_fault_classify(vm_object_t object, |
6026 | vm_object_offset_t offset, | |
6027 | vm_prot_t fault_type) | |
1c79356b | 6028 | { |
0a7de745 A |
6029 | int type, level = 0; |
6030 | vm_page_t m; | |
1c79356b A |
6031 | |
6032 | while (TRUE) { | |
6033 | m = vm_page_lookup(object, offset); | |
5ba3f43e | 6034 | if (m != VM_PAGE_NULL) { |
0a7de745 | 6035 | if (m->vmp_busy || m->vmp_error || m->vmp_restart || m->vmp_absent) { |
1c79356b A |
6036 | type = VM_FAULT_TYPE_OTHER; |
6037 | break; | |
6038 | } | |
6039 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
6040 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
6041 | type = VM_FAULT_TYPE_MAP_IN; | |
5ba3f43e | 6042 | break; |
1c79356b A |
6043 | } |
6044 | type = VM_FAULT_TYPE_COPY; | |
6045 | break; | |
0a7de745 | 6046 | } else { |
1c79356b A |
6047 | if (object->pager_created) { |
6048 | type = VM_FAULT_TYPE_PAGER; | |
6049 | break; | |
6050 | } | |
6051 | if (object->shadow == VM_OBJECT_NULL) { | |
6052 | type = VM_FAULT_TYPE_ZERO_FILL; | |
6053 | break; | |
0a7de745 | 6054 | } |
1c79356b | 6055 | |
6d2010ae | 6056 | offset += object->vo_shadow_offset; |
1c79356b A |
6057 | object = object->shadow; |
6058 | level++; | |
6059 | continue; | |
6060 | } | |
6061 | } | |
6062 | ||
0a7de745 | 6063 | if (level > VM_FAULT_LEVEL_MAX) { |
1c79356b | 6064 | level = VM_FAULT_LEVEL_MAX; |
0a7de745 | 6065 | } |
1c79356b A |
6066 | |
6067 | vm_fault_stats[type][level] += 1; | |
6068 | ||
6069 | return; | |
6070 | } | |
6071 | ||
6072 | /* cleanup routine to call from debugger */ | |
6073 | ||
6074 | void | |
6075 | vm_fault_classify_init(void) | |
6076 | { | |
6077 | int type, level; | |
6078 | ||
6079 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
6080 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
6081 | vm_fault_stats[type][level] = 0; | |
6082 | } | |
6083 | } | |
6084 | ||
6085 | return; | |
6086 | } | |
0a7de745 | 6087 | #endif /* VM_FAULT_CLASSIFY */ |
2d21ac55 | 6088 | |
3e170ce0 | 6089 | vm_offset_t |
39037602 | 6090 | kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr) |
3e170ce0 | 6091 | { |
0a7de745 A |
6092 | vm_map_entry_t entry; |
6093 | vm_object_t object; | |
6094 | vm_offset_t object_offset; | |
6095 | vm_page_t m; | |
6096 | int compressor_external_state, compressed_count_delta; | |
6097 | int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP); | |
6098 | int my_fault_type = VM_PROT_READ; | |
6099 | kern_return_t kr; | |
3e170ce0 | 6100 | |
3e170ce0 A |
6101 | if (not_in_kdp) { |
6102 | panic("kdp_lightweight_fault called from outside of debugger context"); | |
6103 | } | |
6104 | ||
6105 | assert(map != VM_MAP_NULL); | |
6106 | ||
6107 | assert((cur_target_addr & PAGE_MASK) == 0); | |
6108 | if ((cur_target_addr & PAGE_MASK) != 0) { | |
6109 | return 0; | |
6110 | } | |
6111 | ||
6112 | if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) { | |
6113 | return 0; | |
6114 | } | |
6115 | ||
6116 | if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) { | |
6117 | return 0; | |
6118 | } | |
6119 | ||
6120 | if (entry->is_sub_map) { | |
6121 | return 0; | |
6122 | } | |
6123 | ||
6124 | object = VME_OBJECT(entry); | |
6125 | if (object == VM_OBJECT_NULL) { | |
6126 | return 0; | |
6127 | } | |
6128 | ||
6129 | object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry); | |
6130 | ||
6131 | while (TRUE) { | |
6132 | if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) { | |
6133 | return 0; | |
6134 | } | |
6135 | ||
6136 | if (object->pager_created && (object->paging_in_progress || | |
0a7de745 | 6137 | object->activity_in_progress)) { |
3e170ce0 A |
6138 | return 0; |
6139 | } | |
6140 | ||
6141 | m = kdp_vm_page_lookup(object, object_offset); | |
6142 | ||
6143 | if (m != VM_PAGE_NULL) { | |
3e170ce0 A |
6144 | if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { |
6145 | return 0; | |
6146 | } | |
6147 | ||
d9a64523 | 6148 | if (m->vmp_laundry || m->vmp_busy || m->vmp_free_when_done || m->vmp_absent || m->vmp_error || m->vmp_cleaning || |
0a7de745 | 6149 | m->vmp_overwriting || m->vmp_restart || m->vmp_unusual) { |
3e170ce0 A |
6150 | return 0; |
6151 | } | |
6152 | ||
d9a64523 A |
6153 | assert(!m->vmp_private); |
6154 | if (m->vmp_private) { | |
3e170ce0 A |
6155 | return 0; |
6156 | } | |
6157 | ||
d9a64523 A |
6158 | assert(!m->vmp_fictitious); |
6159 | if (m->vmp_fictitious) { | |
3e170ce0 A |
6160 | return 0; |
6161 | } | |
6162 | ||
d9a64523 A |
6163 | assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); |
6164 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { | |
3e170ce0 A |
6165 | return 0; |
6166 | } | |
2d21ac55 | 6167 | |
39037602 | 6168 | return ptoa(VM_PAGE_GET_PHYS_PAGE(m)); |
3e170ce0 A |
6169 | } |
6170 | ||
6171 | compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; | |
6172 | ||
6173 | if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) { | |
6174 | if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) { | |
6175 | kr = vm_compressor_pager_get(object->pager, (object_offset + object->paging_offset), | |
0a7de745 A |
6176 | kdp_compressor_decompressed_page_ppnum, &my_fault_type, |
6177 | compressor_flags, &compressed_count_delta); | |
3e170ce0 | 6178 | if (kr == KERN_SUCCESS) { |
3e170ce0 A |
6179 | return kdp_compressor_decompressed_page_paddr; |
6180 | } else { | |
6181 | return 0; | |
6182 | } | |
6183 | } | |
6184 | } | |
6185 | ||
6186 | if (object->shadow == VM_OBJECT_NULL) { | |
6187 | return 0; | |
6188 | } | |
6189 | ||
6190 | object_offset += object->vo_shadow_offset; | |
6191 | object = object->shadow; | |
6192 | } | |
39037602 | 6193 | } |
3e170ce0 | 6194 | |
d9a64523 A |
6195 | /* |
6196 | * vm_page_validate_cs_fast(): | |
6197 | * Performs a few quick checks to determine if the page's code signature | |
6198 | * really needs to be fully validated. It could: | |
6199 | * 1. have been modified (i.e. automatically tainted), | |
6200 | * 2. have already been validated, | |
6201 | * 3. have already been found to be tainted, | |
6202 | * 4. no longer have a backing store. | |
6203 | * Returns FALSE if the page needs to be fully validated. | |
6204 | */ | |
6205 | static boolean_t | |
6206 | vm_page_validate_cs_fast( | |
0a7de745 | 6207 | vm_page_t page) |
593a1d5f | 6208 | { |
0a7de745 | 6209 | vm_object_t object; |
593a1d5f | 6210 | |
39037602 | 6211 | object = VM_PAGE_OBJECT(page); |
d9a64523 | 6212 | vm_object_lock_assert_held(object); |
593a1d5f | 6213 | |
d9a64523 | 6214 | if (page->vmp_wpmapped && !page->vmp_cs_tainted) { |
593a1d5f A |
6215 | /* |
6216 | * This page was mapped for "write" access sometime in the | |
6217 | * past and could still be modifiable in the future. | |
6218 | * Consider it tainted. | |
6219 | * [ If the page was already found to be "tainted", no | |
6220 | * need to re-validate. ] | |
6221 | */ | |
d9a64523 A |
6222 | vm_object_lock_assert_exclusive(object); |
6223 | page->vmp_cs_validated = TRUE; | |
6224 | page->vmp_cs_tainted = TRUE; | |
593a1d5f | 6225 | if (cs_debug) { |
d9a64523 | 6226 | printf("CODESIGNING: %s: " |
0a7de745 A |
6227 | "page %p obj %p off 0x%llx " |
6228 | "was modified\n", | |
6229 | __FUNCTION__, | |
6230 | page, object, page->vmp_offset); | |
593a1d5f A |
6231 | } |
6232 | vm_cs_validated_dirtied++; | |
6233 | } | |
6234 | ||
d9a64523 A |
6235 | if (page->vmp_cs_validated || page->vmp_cs_tainted) { |
6236 | return TRUE; | |
593a1d5f | 6237 | } |
d9a64523 | 6238 | vm_object_lock_assert_exclusive(object); |
593a1d5f | 6239 | |
d9a64523 A |
6240 | #if CHECK_CS_VALIDATION_BITMAP |
6241 | kern_return_t kr; | |
593a1d5f | 6242 | |
d9a64523 A |
6243 | kr = vnode_pager_cs_check_validation_bitmap( |
6244 | object->pager, | |
6245 | page->vmp_offset + object->paging_offset, | |
6246 | CS_BITMAP_CHECK); | |
6247 | if (kr == KERN_SUCCESS) { | |
6248 | page->vmp_cs_validated = TRUE; | |
6249 | page->vmp_cs_tainted = FALSE; | |
6250 | vm_cs_bitmap_validated++; | |
6251 | return TRUE; | |
6252 | } | |
6253 | #endif /* CHECK_CS_VALIDATION_BITMAP */ | |
593a1d5f A |
6254 | |
6255 | if (!object->alive || object->terminating || object->pager == NULL) { | |
6256 | /* | |
6257 | * The object is terminating and we don't have its pager | |
6258 | * so we can't validate the data... | |
6259 | */ | |
d9a64523 | 6260 | return TRUE; |
593a1d5f | 6261 | } |
d9a64523 A |
6262 | |
6263 | /* we need to really validate this page */ | |
6264 | vm_object_lock_assert_exclusive(object); | |
6265 | return FALSE; | |
6266 | } | |
6267 | ||
6268 | void | |
6269 | vm_page_validate_cs_mapped_slow( | |
0a7de745 A |
6270 | vm_page_t page, |
6271 | const void *kaddr) | |
d9a64523 | 6272 | { |
0a7de745 A |
6273 | vm_object_t object; |
6274 | memory_object_offset_t mo_offset; | |
6275 | memory_object_t pager; | |
6276 | struct vnode *vnode; | |
6277 | boolean_t validated; | |
6278 | unsigned tainted; | |
d9a64523 A |
6279 | |
6280 | assert(page->vmp_busy); | |
6281 | object = VM_PAGE_OBJECT(page); | |
6282 | vm_object_lock_assert_exclusive(object); | |
6283 | ||
6284 | vm_cs_validates++; | |
6285 | ||
593a1d5f A |
6286 | /* |
6287 | * Since we get here to validate a page that was brought in by | |
6288 | * the pager, we know that this pager is all setup and ready | |
6289 | * by now. | |
6290 | */ | |
d9a64523 | 6291 | assert(object->code_signed); |
593a1d5f A |
6292 | assert(!object->internal); |
6293 | assert(object->pager != NULL); | |
6294 | assert(object->pager_ready); | |
6295 | ||
6296 | pager = object->pager; | |
b0d623f7 | 6297 | assert(object->paging_in_progress); |
39037602 | 6298 | vnode = vnode_pager_lookup_vnode(pager); |
d9a64523 | 6299 | mo_offset = page->vmp_offset + object->paging_offset; |
593a1d5f A |
6300 | |
6301 | /* verify the SHA1 hash for this page */ | |
39037602 A |
6302 | tainted = 0; |
6303 | validated = cs_validate_range(vnode, | |
0a7de745 A |
6304 | pager, |
6305 | mo_offset, | |
6306 | (const void *)((const char *)kaddr), | |
6307 | PAGE_SIZE_64, | |
6308 | &tainted); | |
39037602 A |
6309 | |
6310 | if (tainted & CS_VALIDATE_TAINTED) { | |
d9a64523 | 6311 | page->vmp_cs_tainted = TRUE; |
39037602 A |
6312 | } |
6313 | if (tainted & CS_VALIDATE_NX) { | |
d9a64523 | 6314 | page->vmp_cs_nx = TRUE; |
3e170ce0 | 6315 | } |
39037602 | 6316 | if (validated) { |
d9a64523 A |
6317 | page->vmp_cs_validated = TRUE; |
6318 | } | |
6319 | ||
6320 | #if CHECK_CS_VALIDATION_BITMAP | |
6321 | if (page->vmp_cs_validated && !page->vmp_cs_tainted) { | |
6322 | vnode_pager_cs_check_validation_bitmap(object->pager, | |
0a7de745 A |
6323 | mo_offset, |
6324 | CS_BITMAP_SET); | |
d9a64523 A |
6325 | } |
6326 | #endif /* CHECK_CS_VALIDATION_BITMAP */ | |
6327 | } | |
6328 | ||
6329 | void | |
6330 | vm_page_validate_cs_mapped( | |
0a7de745 A |
6331 | vm_page_t page, |
6332 | const void *kaddr) | |
d9a64523 A |
6333 | { |
6334 | if (!vm_page_validate_cs_fast(page)) { | |
6335 | vm_page_validate_cs_mapped_slow(page, kaddr); | |
593a1d5f A |
6336 | } |
6337 | } | |
6338 | ||
2d21ac55 A |
6339 | void |
6340 | vm_page_validate_cs( | |
0a7de745 | 6341 | vm_page_t page) |
2d21ac55 | 6342 | { |
0a7de745 A |
6343 | vm_object_t object; |
6344 | vm_object_offset_t offset; | |
6345 | vm_map_offset_t koffset; | |
6346 | vm_map_size_t ksize; | |
6347 | vm_offset_t kaddr; | |
6348 | kern_return_t kr; | |
6349 | boolean_t busy_page; | |
6350 | boolean_t need_unmap; | |
2d21ac55 | 6351 | |
39037602 A |
6352 | object = VM_PAGE_OBJECT(page); |
6353 | vm_object_lock_assert_held(object); | |
2d21ac55 | 6354 | |
d9a64523 | 6355 | if (vm_page_validate_cs_fast(page)) { |
6d2010ae A |
6356 | return; |
6357 | } | |
39037602 | 6358 | vm_object_lock_assert_exclusive(object); |
4a3eedf9 | 6359 | |
2d21ac55 | 6360 | assert(object->code_signed); |
d9a64523 | 6361 | offset = page->vmp_offset; |
2d21ac55 | 6362 | |
d9a64523 | 6363 | busy_page = page->vmp_busy; |
2d21ac55 A |
6364 | if (!busy_page) { |
6365 | /* keep page busy while we map (and unlock) the VM object */ | |
d9a64523 | 6366 | page->vmp_busy = TRUE; |
2d21ac55 | 6367 | } |
5ba3f43e | 6368 | |
2d21ac55 A |
6369 | /* |
6370 | * Take a paging reference on the VM object | |
6371 | * to protect it from collapse or bypass, | |
6372 | * and keep it from disappearing too. | |
6373 | */ | |
6374 | vm_object_paging_begin(object); | |
6375 | ||
6376 | /* map the page in the kernel address space */ | |
2d21ac55 | 6377 | ksize = PAGE_SIZE_64; |
39236c6e A |
6378 | koffset = 0; |
6379 | need_unmap = FALSE; | |
6380 | kr = vm_paging_map_object(page, | |
0a7de745 A |
6381 | object, |
6382 | offset, | |
6383 | VM_PROT_READ, | |
6384 | FALSE, /* can't unlock object ! */ | |
6385 | &ksize, | |
6386 | &koffset, | |
6387 | &need_unmap); | |
2d21ac55 | 6388 | if (kr != KERN_SUCCESS) { |
d9a64523 | 6389 | panic("%s: could not map page: 0x%x\n", __FUNCTION__, kr); |
2d21ac55 A |
6390 | } |
6391 | kaddr = CAST_DOWN(vm_offset_t, koffset); | |
6392 | ||
593a1d5f | 6393 | /* validate the mapped page */ |
d9a64523 | 6394 | vm_page_validate_cs_mapped_slow(page, (const void *) kaddr); |
2d21ac55 | 6395 | |
d9a64523 | 6396 | assert(page->vmp_busy); |
39037602 | 6397 | assert(object == VM_PAGE_OBJECT(page)); |
2d21ac55 A |
6398 | vm_object_lock_assert_exclusive(object); |
6399 | ||
2d21ac55 A |
6400 | if (!busy_page) { |
6401 | PAGE_WAKEUP_DONE(page); | |
6402 | } | |
39236c6e | 6403 | if (need_unmap) { |
2d21ac55 A |
6404 | /* unmap the map from the kernel address space */ |
6405 | vm_paging_unmap_object(object, koffset, koffset + ksize); | |
6406 | koffset = 0; | |
6407 | ksize = 0; | |
6408 | kaddr = 0; | |
6409 | } | |
6410 | vm_object_paging_end(object); | |
6411 | } | |
3e170ce0 A |
6412 | |
6413 | void | |
6414 | vm_page_validate_cs_mapped_chunk( | |
0a7de745 A |
6415 | vm_page_t page, |
6416 | const void *kaddr, | |
6417 | vm_offset_t chunk_offset, | |
6418 | vm_size_t chunk_size, | |
6419 | boolean_t *validated_p, | |
6420 | unsigned *tainted_p) | |
3e170ce0 | 6421 | { |
0a7de745 A |
6422 | vm_object_t object; |
6423 | vm_object_offset_t offset, offset_in_page; | |
6424 | memory_object_t pager; | |
6425 | struct vnode *vnode; | |
6426 | boolean_t validated; | |
6427 | unsigned tainted; | |
3e170ce0 A |
6428 | |
6429 | *validated_p = FALSE; | |
6430 | *tainted_p = 0; | |
6431 | ||
d9a64523 | 6432 | assert(page->vmp_busy); |
39037602 A |
6433 | object = VM_PAGE_OBJECT(page); |
6434 | vm_object_lock_assert_exclusive(object); | |
3e170ce0 | 6435 | |
3e170ce0 | 6436 | assert(object->code_signed); |
d9a64523 | 6437 | offset = page->vmp_offset; |
3e170ce0 A |
6438 | |
6439 | if (!object->alive || object->terminating || object->pager == NULL) { | |
6440 | /* | |
6441 | * The object is terminating and we don't have its pager | |
6442 | * so we can't validate the data... | |
6443 | */ | |
6444 | return; | |
6445 | } | |
6446 | /* | |
6447 | * Since we get here to validate a page that was brought in by | |
6448 | * the pager, we know that this pager is all setup and ready | |
6449 | * by now. | |
6450 | */ | |
6451 | assert(!object->internal); | |
6452 | assert(object->pager != NULL); | |
6453 | assert(object->pager_ready); | |
6454 | ||
6455 | pager = object->pager; | |
6456 | assert(object->paging_in_progress); | |
39037602 | 6457 | vnode = vnode_pager_lookup_vnode(pager); |
3e170ce0 A |
6458 | |
6459 | /* verify the signature for this chunk */ | |
6460 | offset_in_page = chunk_offset; | |
6461 | assert(offset_in_page < PAGE_SIZE); | |
3e170ce0 A |
6462 | |
6463 | tainted = 0; | |
39037602 | 6464 | validated = cs_validate_range(vnode, |
0a7de745 A |
6465 | pager, |
6466 | (object->paging_offset + | |
6467 | offset + | |
6468 | offset_in_page), | |
6469 | (const void *)((const char *)kaddr | |
6470 | + offset_in_page), | |
6471 | chunk_size, | |
6472 | &tainted); | |
3e170ce0 A |
6473 | if (validated) { |
6474 | *validated_p = TRUE; | |
6475 | } | |
6476 | if (tainted) { | |
6477 | *tainted_p = tainted; | |
6478 | } | |
6479 | } | |
d9a64523 | 6480 | |
0a7de745 A |
6481 | static void |
6482 | vm_rtfrecord_lock(void) | |
6483 | { | |
d9a64523 A |
6484 | lck_spin_lock(&vm_rtfr_slock); |
6485 | } | |
6486 | ||
0a7de745 A |
6487 | static void |
6488 | vm_rtfrecord_unlock(void) | |
6489 | { | |
d9a64523 A |
6490 | lck_spin_unlock(&vm_rtfr_slock); |
6491 | } | |
6492 | ||
0a7de745 A |
6493 | unsigned int |
6494 | vmrtfaultinfo_bufsz(void) | |
6495 | { | |
6496 | return vmrtf_num_records * sizeof(vm_rtfault_record_t); | |
d9a64523 A |
6497 | } |
6498 | ||
6499 | #include <kern/backtrace.h> | |
6500 | ||
0a7de745 A |
6501 | static void |
6502 | vm_record_rtfault(thread_t cthread, uint64_t fstart, vm_map_offset_t fault_vaddr, int type_of_fault) | |
6503 | { | |
d9a64523 A |
6504 | uint64_t fend = mach_continuous_time(); |
6505 | ||
6506 | uint64_t cfpc = 0; | |
6507 | uint64_t ctid = cthread->thread_id; | |
6508 | uint64_t cupid = get_current_unique_pid(); | |
6509 | ||
6510 | uintptr_t bpc = 0; | |
6511 | uint32_t bfrs = 0; | |
6512 | bool u64 = false; | |
6513 | ||
6514 | /* Capture a single-frame backtrace; this extracts just the program | |
6515 | * counter at the point of the fault into "bpc", and should perform no | |
6516 | * further user stack traversals, thus avoiding copyin()s and further | |
6517 | * faults. | |
6518 | */ | |
6519 | int btr = backtrace_thread_user(cthread, &bpc, 1U, &bfrs, &u64); | |
6520 | ||
6521 | if ((btr == 0) && (bfrs > 0)) { | |
6522 | cfpc = bpc; | |
6523 | } | |
6524 | ||
6525 | assert((fstart != 0) && fend >= fstart); | |
6526 | vm_rtfrecord_lock(); | |
6527 | assert(vmrtfrs.vmrtfr_curi <= vmrtfrs.vmrtfr_maxi); | |
6528 | ||
6529 | vmrtfrs.vmrtf_total++; | |
6530 | vm_rtfault_record_t *cvmr = &vmrtfrs.vm_rtf_records[vmrtfrs.vmrtfr_curi++]; | |
6531 | ||
6532 | cvmr->rtfabstime = fstart; | |
6533 | cvmr->rtfduration = fend - fstart; | |
6534 | cvmr->rtfaddr = fault_vaddr; | |
6535 | cvmr->rtfpc = cfpc; | |
6536 | cvmr->rtftype = type_of_fault; | |
6537 | cvmr->rtfupid = cupid; | |
6538 | cvmr->rtftid = ctid; | |
6539 | ||
6540 | if (vmrtfrs.vmrtfr_curi > vmrtfrs.vmrtfr_maxi) { | |
6541 | vmrtfrs.vmrtfr_curi = 0; | |
6542 | } | |
6543 | ||
6544 | vm_rtfrecord_unlock(); | |
6545 | } | |
6546 | ||
0a7de745 A |
6547 | int |
6548 | vmrtf_extract(uint64_t cupid, __unused boolean_t isroot, int vrecordsz, void *vrecords, int *vmrtfrv) | |
6549 | { | |
d9a64523 A |
6550 | vm_rtfault_record_t *cvmrd = vrecords; |
6551 | size_t residue = vrecordsz; | |
6552 | int numextracted = 0; | |
6553 | boolean_t early_exit = FALSE; | |
6554 | ||
6555 | vm_rtfrecord_lock(); | |
6556 | ||
6557 | for (int vmfi = 0; vmfi <= vmrtfrs.vmrtfr_maxi; vmfi++) { | |
d9a64523 A |
6558 | if (residue < sizeof(vm_rtfault_record_t)) { |
6559 | early_exit = TRUE; | |
6560 | break; | |
6561 | } | |
6562 | ||
6563 | if (vmrtfrs.vm_rtf_records[vmfi].rtfupid != cupid) { | |
0a7de745 | 6564 | #if DEVELOPMENT || DEBUG |
d9a64523 A |
6565 | if (isroot == FALSE) { |
6566 | continue; | |
6567 | } | |
6568 | #else | |
6569 | continue; | |
6570 | #endif /* DEVDEBUG */ | |
6571 | } | |
6572 | ||
6573 | *cvmrd = vmrtfrs.vm_rtf_records[vmfi]; | |
6574 | cvmrd++; | |
6575 | residue -= sizeof(vm_rtfault_record_t); | |
6576 | numextracted++; | |
6577 | } | |
6578 | ||
6579 | vm_rtfrecord_unlock(); | |
6580 | ||
6581 | *vmrtfrv = numextracted; | |
0a7de745 | 6582 | return early_exit; |
d9a64523 | 6583 | } |