]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm_fault.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Page fault handling module. | |
63 | */ | |
1c79356b A |
64 | |
65 | #include <mach_cluster_stats.h> | |
66 | #include <mach_pagemap.h> | |
2d21ac55 | 67 | #include <libkern/OSAtomic.h> |
1c79356b | 68 | |
91447636 | 69 | #include <mach/mach_types.h> |
1c79356b A |
70 | #include <mach/kern_return.h> |
71 | #include <mach/message.h> /* for error codes */ | |
91447636 A |
72 | #include <mach/vm_param.h> |
73 | #include <mach/vm_behavior.h> | |
74 | #include <mach/memory_object.h> | |
75 | /* For memory_object_data_{request,unlock} */ | |
2d21ac55 | 76 | #include <mach/sdt.h> |
91447636 A |
77 | |
78 | #include <kern/kern_types.h> | |
1c79356b A |
79 | #include <kern/host_statistics.h> |
80 | #include <kern/counters.h> | |
81 | #include <kern/task.h> | |
82 | #include <kern/thread.h> | |
83 | #include <kern/sched_prim.h> | |
84 | #include <kern/host.h> | |
85 | #include <kern/xpr.h> | |
91447636 A |
86 | #include <kern/mach_param.h> |
87 | #include <kern/macro_help.h> | |
88 | #include <kern/zalloc.h> | |
89 | #include <kern/misc_protos.h> | |
90 | ||
39236c6e A |
91 | #include <vm/vm_compressor.h> |
92 | #include <vm/vm_compressor_pager.h> | |
91447636 | 93 | #include <vm/vm_fault.h> |
1c79356b A |
94 | #include <vm/vm_map.h> |
95 | #include <vm/vm_object.h> | |
96 | #include <vm/vm_page.h> | |
55e303ae | 97 | #include <vm/vm_kern.h> |
1c79356b A |
98 | #include <vm/pmap.h> |
99 | #include <vm/vm_pageout.h> | |
91447636 | 100 | #include <vm/vm_protos.h> |
2d21ac55 A |
101 | #include <vm/vm_external.h> |
102 | #include <vm/memory_object.h> | |
103 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ | |
6d2010ae | 104 | #include <vm/vm_shared_region.h> |
1c79356b | 105 | |
39236c6e A |
106 | #include <sys/codesign.h> |
107 | ||
15129b1c A |
108 | #include <libsa/sys/timers.h> /* for struct timespec */ |
109 | ||
1c79356b | 110 | #define VM_FAULT_CLASSIFY 0 |
1c79356b | 111 | |
2d21ac55 | 112 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ |
1c79356b | 113 | |
fe8ab488 | 114 | unsigned int vm_object_pagein_throttle = 16; |
1c79356b | 115 | |
b0d623f7 A |
116 | /* |
117 | * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which | |
118 | * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts | |
119 | * of memory if they're buggy and can run the system completely out of swap space. If this happens, we | |
120 | * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps | |
121 | * keep the UI active so that the user has a chance to kill the offending task before the system | |
122 | * completely hangs. | |
123 | * | |
124 | * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied | |
125 | * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold | |
126 | * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a | |
127 | * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again. | |
128 | */ | |
129 | ||
99c3a104 | 130 | extern void throttle_lowpri_io(int); |
b0d623f7 A |
131 | |
132 | uint64_t vm_hard_throttle_threshold; | |
133 | ||
b0d623f7 | 134 | |
b0d623f7 | 135 | |
fe8ab488 A |
136 | #define NEED_TO_HARD_THROTTLE_THIS_TASK() (vm_wants_task_throttled(current_task()) || \ |
137 | (vm_page_free_count < vm_page_throttle_limit && \ | |
138 | proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED)) | |
b0d623f7 A |
139 | |
140 | ||
39236c6e A |
141 | #define HARD_THROTTLE_DELAY 20000 /* 20000 us == 20 ms */ |
142 | #define SOFT_THROTTLE_DELAY 2000 /* 2000 us == 2 ms */ | |
1c79356b | 143 | |
b0d623f7 | 144 | boolean_t current_thread_aborted(void); |
91447636 | 145 | |
1c79356b A |
146 | /* Forward declarations of internal routines. */ |
147 | extern kern_return_t vm_fault_wire_fast( | |
148 | vm_map_t map, | |
91447636 | 149 | vm_map_offset_t va, |
1c79356b | 150 | vm_map_entry_t entry, |
9bccf70c | 151 | pmap_t pmap, |
fe8ab488 A |
152 | vm_map_offset_t pmap_addr, |
153 | ppnum_t *physpage_p); | |
1c79356b A |
154 | |
155 | extern void vm_fault_continue(void); | |
156 | ||
157 | extern void vm_fault_copy_cleanup( | |
158 | vm_page_t page, | |
159 | vm_page_t top_page); | |
160 | ||
161 | extern void vm_fault_copy_dst_cleanup( | |
162 | vm_page_t page); | |
163 | ||
164 | #if VM_FAULT_CLASSIFY | |
165 | extern void vm_fault_classify(vm_object_t object, | |
166 | vm_object_offset_t offset, | |
167 | vm_prot_t fault_type); | |
168 | ||
169 | extern void vm_fault_classify_init(void); | |
170 | #endif | |
171 | ||
d1ecb069 | 172 | unsigned long vm_pmap_enter_blocked = 0; |
316670eb | 173 | unsigned long vm_pmap_enter_retried = 0; |
4a3eedf9 A |
174 | |
175 | unsigned long vm_cs_validates = 0; | |
176 | unsigned long vm_cs_revalidates = 0; | |
177 | unsigned long vm_cs_query_modified = 0; | |
178 | unsigned long vm_cs_validated_dirtied = 0; | |
6d2010ae | 179 | unsigned long vm_cs_bitmap_validated = 0; |
593a1d5f | 180 | |
fe8ab488 A |
181 | void vm_pre_fault(vm_map_offset_t); |
182 | ||
1c79356b A |
183 | /* |
184 | * Routine: vm_fault_init | |
185 | * Purpose: | |
186 | * Initialize our private data structures. | |
187 | */ | |
188 | void | |
189 | vm_fault_init(void) | |
190 | { | |
39236c6e A |
191 | int i, vm_compressor_temp; |
192 | boolean_t need_default_val = TRUE; | |
b0d623f7 A |
193 | /* |
194 | * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is | |
195 | * computed as a percentage of available memory, and the percentage used is scaled inversely with | |
39236c6e | 196 | * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems |
b0d623f7 A |
197 | * and reduce the value down to 10% for very large memory configurations. This helps give us a |
198 | * definition of a memory hog that makes more sense relative to the amount of ram in the machine. | |
199 | * The formula here simply uses the number of gigabytes of ram to adjust the percentage. | |
200 | */ | |
201 | ||
202 | vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100; | |
39236c6e A |
203 | |
204 | /* | |
205 | * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry. | |
206 | */ | |
207 | ||
208 | if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof (vm_compressor_temp))) { | |
209 | for ( i = 0; i < VM_PAGER_MAX_MODES; i++) { | |
210 | if (vm_compressor_temp > 0 && | |
211 | ((vm_compressor_temp & ( 1 << i)) == vm_compressor_temp)) { | |
212 | need_default_val = FALSE; | |
213 | vm_compressor_mode = vm_compressor_temp; | |
214 | break; | |
215 | } | |
216 | } | |
217 | if (need_default_val) | |
218 | printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp); | |
219 | } | |
220 | if (need_default_val) { | |
221 | /* If no boot arg or incorrect boot arg, try device tree. */ | |
222 | PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode)); | |
223 | } | |
224 | PE_parse_boot_argn("vm_compressor_threads", &vm_compressor_thread_count, sizeof (vm_compressor_thread_count)); | |
225 | printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode); | |
1c79356b A |
226 | } |
227 | ||
228 | /* | |
229 | * Routine: vm_fault_cleanup | |
230 | * Purpose: | |
231 | * Clean up the result of vm_fault_page. | |
232 | * Results: | |
233 | * The paging reference for "object" is released. | |
234 | * "object" is unlocked. | |
235 | * If "top_page" is not null, "top_page" is | |
236 | * freed and the paging reference for the object | |
237 | * containing it is released. | |
238 | * | |
239 | * In/out conditions: | |
240 | * "object" must be locked. | |
241 | */ | |
242 | void | |
243 | vm_fault_cleanup( | |
244 | register vm_object_t object, | |
245 | register vm_page_t top_page) | |
246 | { | |
247 | vm_object_paging_end(object); | |
316670eb | 248 | vm_object_unlock(object); |
1c79356b A |
249 | |
250 | if (top_page != VM_PAGE_NULL) { | |
2d21ac55 A |
251 | object = top_page->object; |
252 | ||
253 | vm_object_lock(object); | |
254 | VM_PAGE_FREE(top_page); | |
255 | vm_object_paging_end(object); | |
256 | vm_object_unlock(object); | |
1c79356b A |
257 | } |
258 | } | |
259 | ||
260 | #if MACH_CLUSTER_STATS | |
261 | #define MAXCLUSTERPAGES 16 | |
262 | struct { | |
263 | unsigned long pages_in_cluster; | |
264 | unsigned long pages_at_higher_offsets; | |
265 | unsigned long pages_at_lower_offsets; | |
266 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
267 | #define CLUSTER_STAT(clause) clause | |
268 | #define CLUSTER_STAT_HIGHER(x) \ | |
269 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
270 | #define CLUSTER_STAT_LOWER(x) \ | |
271 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
272 | #define CLUSTER_STAT_CLUSTER(x) \ | |
273 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
274 | #else /* MACH_CLUSTER_STATS */ | |
275 | #define CLUSTER_STAT(clause) | |
276 | #endif /* MACH_CLUSTER_STATS */ | |
277 | ||
55e303ae A |
278 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
279 | ||
280 | ||
281 | boolean_t vm_page_deactivate_behind = TRUE; | |
1c79356b | 282 | /* |
2d21ac55 | 283 | * default sizes given VM_BEHAVIOR_DEFAULT reference behavior |
1c79356b | 284 | */ |
b0d623f7 A |
285 | #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128 |
286 | #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */ | |
287 | /* we use it to size an array on the stack */ | |
288 | ||
289 | int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW; | |
55e303ae | 290 | |
2d21ac55 A |
291 | #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) |
292 | ||
293 | /* | |
294 | * vm_page_is_sequential | |
295 | * | |
296 | * Determine if sequential access is in progress | |
297 | * in accordance with the behavior specified. | |
298 | * Update state to indicate current access pattern. | |
299 | * | |
300 | * object must have at least the shared lock held | |
301 | */ | |
302 | static | |
303 | void | |
304 | vm_fault_is_sequential( | |
305 | vm_object_t object, | |
306 | vm_object_offset_t offset, | |
307 | vm_behavior_t behavior) | |
308 | { | |
309 | vm_object_offset_t last_alloc; | |
310 | int sequential; | |
311 | int orig_sequential; | |
312 | ||
313 | last_alloc = object->last_alloc; | |
314 | sequential = object->sequential; | |
315 | orig_sequential = sequential; | |
316 | ||
317 | switch (behavior) { | |
318 | case VM_BEHAVIOR_RANDOM: | |
319 | /* | |
320 | * reset indicator of sequential behavior | |
321 | */ | |
322 | sequential = 0; | |
323 | break; | |
324 | ||
325 | case VM_BEHAVIOR_SEQUENTIAL: | |
326 | if (offset && last_alloc == offset - PAGE_SIZE_64) { | |
327 | /* | |
328 | * advance indicator of sequential behavior | |
329 | */ | |
330 | if (sequential < MAX_SEQUENTIAL_RUN) | |
331 | sequential += PAGE_SIZE; | |
332 | } else { | |
333 | /* | |
334 | * reset indicator of sequential behavior | |
335 | */ | |
336 | sequential = 0; | |
337 | } | |
338 | break; | |
339 | ||
340 | case VM_BEHAVIOR_RSEQNTL: | |
341 | if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { | |
342 | /* | |
343 | * advance indicator of sequential behavior | |
344 | */ | |
345 | if (sequential > -MAX_SEQUENTIAL_RUN) | |
346 | sequential -= PAGE_SIZE; | |
347 | } else { | |
348 | /* | |
349 | * reset indicator of sequential behavior | |
350 | */ | |
351 | sequential = 0; | |
352 | } | |
353 | break; | |
354 | ||
355 | case VM_BEHAVIOR_DEFAULT: | |
356 | default: | |
357 | if (offset && last_alloc == (offset - PAGE_SIZE_64)) { | |
358 | /* | |
359 | * advance indicator of sequential behavior | |
360 | */ | |
361 | if (sequential < 0) | |
362 | sequential = 0; | |
363 | if (sequential < MAX_SEQUENTIAL_RUN) | |
364 | sequential += PAGE_SIZE; | |
365 | ||
366 | } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { | |
367 | /* | |
368 | * advance indicator of sequential behavior | |
369 | */ | |
370 | if (sequential > 0) | |
371 | sequential = 0; | |
372 | if (sequential > -MAX_SEQUENTIAL_RUN) | |
373 | sequential -= PAGE_SIZE; | |
374 | } else { | |
375 | /* | |
376 | * reset indicator of sequential behavior | |
377 | */ | |
378 | sequential = 0; | |
379 | } | |
380 | break; | |
381 | } | |
382 | if (sequential != orig_sequential) { | |
383 | if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { | |
384 | /* | |
385 | * if someone else has already updated object->sequential | |
386 | * don't bother trying to update it or object->last_alloc | |
387 | */ | |
388 | return; | |
389 | } | |
390 | } | |
391 | /* | |
392 | * I'd like to do this with a OSCompareAndSwap64, but that | |
393 | * doesn't exist for PPC... however, it shouldn't matter | |
394 | * that much... last_alloc is maintained so that we can determine | |
395 | * if a sequential access pattern is taking place... if only | |
396 | * one thread is banging on this object, no problem with the unprotected | |
397 | * update... if 2 or more threads are banging away, we run the risk of | |
398 | * someone seeing a mangled update... however, in the face of multiple | |
399 | * accesses, no sequential access pattern can develop anyway, so we | |
400 | * haven't lost any real info. | |
401 | */ | |
402 | object->last_alloc = offset; | |
403 | } | |
404 | ||
405 | ||
b0d623f7 A |
406 | int vm_page_deactivate_behind_count = 0; |
407 | ||
55e303ae | 408 | /* |
2d21ac55 A |
409 | * vm_page_deactivate_behind |
410 | * | |
411 | * Determine if sequential access is in progress | |
412 | * in accordance with the behavior specified. If | |
413 | * so, compute a potential page to deactivate and | |
414 | * deactivate it. | |
55e303ae | 415 | * |
2d21ac55 | 416 | * object must be locked. |
55e303ae | 417 | * |
2d21ac55 | 418 | * return TRUE if we actually deactivate a page |
55e303ae A |
419 | */ |
420 | static | |
421 | boolean_t | |
422 | vm_fault_deactivate_behind( | |
91447636 A |
423 | vm_object_t object, |
424 | vm_object_offset_t offset, | |
425 | vm_behavior_t behavior) | |
55e303ae | 426 | { |
b0d623f7 A |
427 | int n; |
428 | int pages_in_run = 0; | |
429 | int max_pages_in_run = 0; | |
2d21ac55 A |
430 | int sequential_run; |
431 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
b0d623f7 A |
432 | vm_object_offset_t run_offset = 0; |
433 | vm_object_offset_t pg_offset = 0; | |
434 | vm_page_t m; | |
435 | vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER]; | |
55e303ae | 436 | |
b0d623f7 | 437 | pages_in_run = 0; |
55e303ae A |
438 | #if TRACEFAULTPAGE |
439 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ | |
440 | #endif | |
441 | ||
2d21ac55 | 442 | if (object == kernel_object || vm_page_deactivate_behind == FALSE) { |
91447636 A |
443 | /* |
444 | * Do not deactivate pages from the kernel object: they | |
445 | * are not intended to become pageable. | |
2d21ac55 | 446 | * or we've disabled the deactivate behind mechanism |
91447636 A |
447 | */ |
448 | return FALSE; | |
449 | } | |
2d21ac55 A |
450 | if ((sequential_run = object->sequential)) { |
451 | if (sequential_run < 0) { | |
452 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
453 | sequential_run = 0 - sequential_run; | |
454 | } else { | |
455 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
456 | } | |
457 | } | |
55e303ae A |
458 | switch (behavior) { |
459 | case VM_BEHAVIOR_RANDOM: | |
55e303ae A |
460 | break; |
461 | case VM_BEHAVIOR_SEQUENTIAL: | |
b0d623f7 A |
462 | if (sequential_run >= (int)PAGE_SIZE) { |
463 | run_offset = 0 - PAGE_SIZE_64; | |
464 | max_pages_in_run = 1; | |
465 | } | |
55e303ae A |
466 | break; |
467 | case VM_BEHAVIOR_RSEQNTL: | |
b0d623f7 A |
468 | if (sequential_run >= (int)PAGE_SIZE) { |
469 | run_offset = PAGE_SIZE_64; | |
470 | max_pages_in_run = 1; | |
471 | } | |
55e303ae A |
472 | break; |
473 | case VM_BEHAVIOR_DEFAULT: | |
474 | default: | |
2d21ac55 A |
475 | { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; |
476 | ||
477 | /* | |
478 | * determine if the run of sequential accesss has been | |
479 | * long enough on an object with default access behavior | |
480 | * to consider it for deactivation | |
481 | */ | |
b0d623f7 A |
482 | if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) { |
483 | /* | |
484 | * the comparisons between offset and behind are done | |
485 | * in this kind of odd fashion in order to prevent wrap around | |
486 | * at the end points | |
487 | */ | |
2d21ac55 | 488 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { |
b0d623f7 A |
489 | if (offset >= behind) { |
490 | run_offset = 0 - behind; | |
491 | pg_offset = PAGE_SIZE_64; | |
492 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; | |
493 | } | |
2d21ac55 | 494 | } else { |
b0d623f7 A |
495 | if (offset < -behind) { |
496 | run_offset = behind; | |
497 | pg_offset = 0 - PAGE_SIZE_64; | |
498 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; | |
499 | } | |
2d21ac55 | 500 | } |
55e303ae A |
501 | } |
502 | break; | |
503 | } | |
2d21ac55 | 504 | } |
b0d623f7 A |
505 | for (n = 0; n < max_pages_in_run; n++) { |
506 | m = vm_page_lookup(object, offset + run_offset + (n * pg_offset)); | |
507 | ||
316670eb | 508 | if (m && !m->laundry && !m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) { |
b0d623f7 | 509 | page_run[pages_in_run++] = m; |
39236c6e A |
510 | |
511 | /* | |
512 | * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... | |
513 | * | |
514 | * a TLB flush isn't really needed here since at worst we'll miss the reference bit being | |
515 | * updated in the PTE if a remote processor still has this mapping cached in its TLB when the | |
516 | * new reference happens. If no futher references happen on the page after that remote TLB flushes | |
517 | * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue | |
518 | * by pageout_scan, which is just fine since the last reference would have happened quite far | |
519 | * in the past (TLB caches don't hang around for very long), and of course could just as easily | |
520 | * have happened before we did the deactivate_behind. | |
521 | */ | |
522 | pmap_clear_refmod_options(m->phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); | |
b0d623f7 A |
523 | } |
524 | } | |
525 | if (pages_in_run) { | |
526 | vm_page_lockspin_queues(); | |
527 | ||
528 | for (n = 0; n < pages_in_run; n++) { | |
529 | ||
530 | m = page_run[n]; | |
531 | ||
532 | vm_page_deactivate_internal(m, FALSE); | |
533 | ||
534 | vm_page_deactivate_behind_count++; | |
55e303ae A |
535 | #if TRACEFAULTPAGE |
536 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
537 | #endif | |
538 | } | |
b0d623f7 A |
539 | vm_page_unlock_queues(); |
540 | ||
541 | return TRUE; | |
55e303ae A |
542 | } |
543 | return FALSE; | |
544 | } | |
1c79356b | 545 | |
1c79356b | 546 | |
6d2010ae | 547 | static int |
b0d623f7 A |
548 | vm_page_throttled(void) |
549 | { | |
550 | clock_sec_t elapsed_sec; | |
551 | clock_sec_t tv_sec; | |
552 | clock_usec_t tv_usec; | |
553 | ||
554 | thread_t thread = current_thread(); | |
555 | ||
556 | if (thread->options & TH_OPT_VMPRIV) | |
6d2010ae | 557 | return (0); |
b0d623f7 A |
558 | |
559 | thread->t_page_creation_count++; | |
560 | ||
561 | if (NEED_TO_HARD_THROTTLE_THIS_TASK()) | |
6d2010ae | 562 | return (HARD_THROTTLE_DELAY); |
b0d623f7 | 563 | |
39236c6e | 564 | if ((vm_page_free_count < vm_page_throttle_limit || ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && SWAPPER_NEEDS_TO_UNTHROTTLE())) && |
b0d623f7 | 565 | thread->t_page_creation_count > vm_page_creation_throttle) { |
39236c6e | 566 | |
b0d623f7 A |
567 | clock_get_system_microtime(&tv_sec, &tv_usec); |
568 | ||
569 | elapsed_sec = tv_sec - thread->t_page_creation_time; | |
570 | ||
571 | if (elapsed_sec <= 6 || (thread->t_page_creation_count / elapsed_sec) >= (vm_page_creation_throttle / 6)) { | |
572 | ||
573 | if (elapsed_sec >= 60) { | |
574 | /* | |
575 | * we'll reset our stats to give a well behaved app | |
576 | * that was unlucky enough to accumulate a bunch of pages | |
577 | * over a long period of time a chance to get out of | |
578 | * the throttled state... we reset the counter and timestamp | |
579 | * so that if it stays under the rate limit for the next second | |
580 | * it will be back in our good graces... if it exceeds it, it | |
581 | * will remain in the throttled state | |
582 | */ | |
583 | thread->t_page_creation_time = tv_sec; | |
584 | thread->t_page_creation_count = (vm_page_creation_throttle / 6) * 5; | |
585 | } | |
586 | ++vm_page_throttle_count; | |
587 | ||
39236c6e A |
588 | if ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && HARD_THROTTLE_LIMIT_REACHED()) |
589 | return (HARD_THROTTLE_DELAY); | |
590 | else | |
591 | return (SOFT_THROTTLE_DELAY); | |
b0d623f7 A |
592 | } |
593 | thread->t_page_creation_time = tv_sec; | |
594 | thread->t_page_creation_count = 0; | |
595 | } | |
6d2010ae | 596 | return (0); |
b0d623f7 A |
597 | } |
598 | ||
599 | ||
2d21ac55 A |
600 | /* |
601 | * check for various conditions that would | |
602 | * prevent us from creating a ZF page... | |
603 | * cleanup is based on being called from vm_fault_page | |
604 | * | |
605 | * object must be locked | |
606 | * object == m->object | |
607 | */ | |
608 | static vm_fault_return_t | |
609 | vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state) | |
610 | { | |
6d2010ae A |
611 | int throttle_delay; |
612 | ||
b0d623f7 A |
613 | if (object->shadow_severed || |
614 | VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { | |
2d21ac55 | 615 | /* |
b0d623f7 A |
616 | * Either: |
617 | * 1. the shadow chain was severed, | |
618 | * 2. the purgeable object is volatile or empty and is marked | |
619 | * to fault on access while volatile. | |
620 | * Just have to return an error at this point | |
2d21ac55 A |
621 | */ |
622 | if (m != VM_PAGE_NULL) | |
623 | VM_PAGE_FREE(m); | |
624 | vm_fault_cleanup(object, first_m); | |
625 | ||
626 | thread_interrupt_level(interruptible_state); | |
627 | ||
628 | return (VM_FAULT_MEMORY_ERROR); | |
629 | } | |
630 | if (vm_backing_store_low) { | |
631 | /* | |
632 | * are we protecting the system from | |
633 | * backing store exhaustion. If so | |
634 | * sleep unless we are privileged. | |
635 | */ | |
636 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
637 | ||
638 | if (m != VM_PAGE_NULL) | |
639 | VM_PAGE_FREE(m); | |
640 | vm_fault_cleanup(object, first_m); | |
641 | ||
642 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
643 | ||
644 | thread_block(THREAD_CONTINUE_NULL); | |
645 | thread_interrupt_level(interruptible_state); | |
646 | ||
647 | return (VM_FAULT_RETRY); | |
648 | } | |
649 | } | |
6d2010ae | 650 | if ((throttle_delay = vm_page_throttled())) { |
2d21ac55 A |
651 | /* |
652 | * we're throttling zero-fills... | |
653 | * treat this as if we couldn't grab a page | |
654 | */ | |
655 | if (m != VM_PAGE_NULL) | |
656 | VM_PAGE_FREE(m); | |
657 | vm_fault_cleanup(object, first_m); | |
658 | ||
6d2010ae | 659 | VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
b0d623f7 | 660 | |
6d2010ae | 661 | delay(throttle_delay); |
b0d623f7 | 662 | |
6d2010ae A |
663 | if (current_thread_aborted()) { |
664 | thread_interrupt_level(interruptible_state); | |
665 | return VM_FAULT_INTERRUPTED; | |
666 | } | |
2d21ac55 A |
667 | thread_interrupt_level(interruptible_state); |
668 | ||
669 | return (VM_FAULT_MEMORY_SHORTAGE); | |
670 | } | |
671 | return (VM_FAULT_SUCCESS); | |
672 | } | |
673 | ||
674 | ||
675 | /* | |
676 | * do the work to zero fill a page and | |
677 | * inject it into the correct paging queue | |
678 | * | |
679 | * m->object must be locked | |
680 | * page queue lock must NOT be held | |
681 | */ | |
682 | static int | |
683 | vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) | |
684 | { | |
685 | int my_fault = DBG_ZERO_FILL_FAULT; | |
686 | ||
687 | /* | |
688 | * This is is a zero-fill page fault... | |
689 | * | |
690 | * Checking the page lock is a waste of | |
691 | * time; this page was absent, so | |
692 | * it can't be page locked by a pager. | |
693 | * | |
694 | * we also consider it undefined | |
695 | * with respect to instruction | |
696 | * execution. i.e. it is the responsibility | |
697 | * of higher layers to call for an instruction | |
698 | * sync after changing the contents and before | |
699 | * sending a program into this area. We | |
700 | * choose this approach for performance | |
701 | */ | |
702 | m->pmapped = TRUE; | |
703 | ||
704 | m->cs_validated = FALSE; | |
705 | m->cs_tainted = FALSE; | |
706 | ||
6d2010ae A |
707 | if (no_zero_fill == TRUE) { |
708 | my_fault = DBG_NZF_PAGE_FAULT; | |
fe8ab488 A |
709 | |
710 | if (m->absent && m->busy) | |
711 | return (my_fault); | |
6d2010ae | 712 | } else { |
2d21ac55 A |
713 | vm_page_zero_fill(m); |
714 | ||
715 | VM_STAT_INCR(zero_fill_count); | |
716 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); | |
717 | } | |
718 | assert(!m->laundry); | |
719 | assert(m->object != kernel_object); | |
720 | //assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
721 | ||
6d2010ae | 722 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && |
2d21ac55 | 723 | (m->object->purgable == VM_PURGABLE_DENY || |
cf7d32b8 A |
724 | m->object->purgable == VM_PURGABLE_NONVOLATILE || |
725 | m->object->purgable == VM_PURGABLE_VOLATILE )) { | |
6d2010ae | 726 | |
b0d623f7 | 727 | vm_page_lockspin_queues(); |
2d21ac55 | 728 | |
39236c6e A |
729 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) { |
730 | assert(!VM_PAGE_WIRED(m)); | |
6d2010ae | 731 | |
39236c6e A |
732 | /* |
733 | * can't be on the pageout queue since we don't | |
734 | * have a pager to try and clean to | |
735 | */ | |
736 | assert(!m->pageout_queue); | |
6d2010ae | 737 | |
39236c6e | 738 | VM_PAGE_QUEUES_REMOVE(m); |
2d21ac55 | 739 | |
39236c6e A |
740 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); |
741 | m->throttled = TRUE; | |
742 | vm_page_throttled_count++; | |
743 | } | |
2d21ac55 | 744 | vm_page_unlock_queues(); |
2d21ac55 A |
745 | } |
746 | return (my_fault); | |
747 | } | |
748 | ||
749 | ||
1c79356b A |
750 | /* |
751 | * Routine: vm_fault_page | |
752 | * Purpose: | |
753 | * Find the resident page for the virtual memory | |
754 | * specified by the given virtual memory object | |
755 | * and offset. | |
756 | * Additional arguments: | |
757 | * The required permissions for the page is given | |
758 | * in "fault_type". Desired permissions are included | |
2d21ac55 A |
759 | * in "protection". |
760 | * fault_info is passed along to determine pagein cluster | |
761 | * limits... it contains the expected reference pattern, | |
762 | * cluster size if available, etc... | |
1c79356b A |
763 | * |
764 | * If the desired page is known to be resident (for | |
765 | * example, because it was previously wired down), asserting | |
766 | * the "unwiring" parameter will speed the search. | |
767 | * | |
768 | * If the operation can be interrupted (by thread_abort | |
769 | * or thread_terminate), then the "interruptible" | |
770 | * parameter should be asserted. | |
771 | * | |
772 | * Results: | |
773 | * The page containing the proper data is returned | |
774 | * in "result_page". | |
775 | * | |
776 | * In/out conditions: | |
777 | * The source object must be locked and referenced, | |
778 | * and must donate one paging reference. The reference | |
779 | * is not affected. The paging reference and lock are | |
780 | * consumed. | |
781 | * | |
782 | * If the call succeeds, the object in which "result_page" | |
783 | * resides is left locked and holding a paging reference. | |
784 | * If this is not the original object, a busy page in the | |
785 | * original object is returned in "top_page", to prevent other | |
786 | * callers from pursuing this same data, along with a paging | |
787 | * reference for the original object. The "top_page" should | |
788 | * be destroyed when this guarantee is no longer required. | |
789 | * The "result_page" is also left busy. It is not removed | |
790 | * from the pageout queues. | |
b0d623f7 A |
791 | * Special Case: |
792 | * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the | |
793 | * fault succeeded but there's no VM page (i.e. the VM object | |
794 | * does not actually hold VM pages, but device memory or | |
795 | * large pages). The object is still locked and we still hold a | |
796 | * paging_in_progress reference. | |
1c79356b | 797 | */ |
b0d623f7 | 798 | unsigned int vm_fault_page_blocked_access = 0; |
316670eb | 799 | unsigned int vm_fault_page_forced_retry = 0; |
1c79356b A |
800 | |
801 | vm_fault_return_t | |
802 | vm_fault_page( | |
803 | /* Arguments: */ | |
804 | vm_object_t first_object, /* Object to begin search */ | |
805 | vm_object_offset_t first_offset, /* Offset into object */ | |
806 | vm_prot_t fault_type, /* What access is requested */ | |
807 | boolean_t must_be_resident,/* Must page be resident? */ | |
39236c6e | 808 | boolean_t caller_lookup, /* caller looked up page */ |
1c79356b A |
809 | /* Modifies in place: */ |
810 | vm_prot_t *protection, /* Protection for mapping */ | |
1c79356b | 811 | vm_page_t *result_page, /* Page found, if successful */ |
39236c6e | 812 | /* Returns: */ |
1c79356b A |
813 | vm_page_t *top_page, /* Page in top object, if |
814 | * not result_page. */ | |
815 | int *type_of_fault, /* if non-null, fill in with type of fault | |
816 | * COW, zero-fill, etc... returned in trace point */ | |
817 | /* More arguments: */ | |
818 | kern_return_t *error_code, /* code if page is in error */ | |
819 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
0b4e3aa0 | 820 | boolean_t data_supply, /* treat as data_supply if |
1c79356b A |
821 | * it is a write fault and a full |
822 | * page is provided */ | |
2d21ac55 | 823 | vm_object_fault_info_t fault_info) |
1c79356b | 824 | { |
1c79356b | 825 | vm_page_t m; |
1c79356b | 826 | vm_object_t object; |
1c79356b A |
827 | vm_object_offset_t offset; |
828 | vm_page_t first_m; | |
829 | vm_object_t next_object; | |
830 | vm_object_t copy_object; | |
831 | boolean_t look_for_page; | |
316670eb | 832 | boolean_t force_fault_retry = FALSE; |
1c79356b A |
833 | vm_prot_t access_required = fault_type; |
834 | vm_prot_t wants_copy_flag; | |
1c79356b A |
835 | CLUSTER_STAT(int pages_at_higher_offsets;) |
836 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
2d21ac55 | 837 | kern_return_t wait_result; |
1c79356b | 838 | boolean_t interruptible_state; |
316670eb A |
839 | boolean_t data_already_requested = FALSE; |
840 | vm_behavior_t orig_behavior; | |
841 | vm_size_t orig_cluster_size; | |
2d21ac55 A |
842 | vm_fault_return_t error; |
843 | int my_fault; | |
844 | uint32_t try_failed_count; | |
845 | int interruptible; /* how may fault be interrupted? */ | |
39236c6e | 846 | int external_state = VM_EXTERNAL_STATE_UNKNOWN; |
2d21ac55 | 847 | memory_object_t pager; |
b0d623f7 | 848 | vm_fault_return_t retval; |
1c79356b | 849 | |
1c79356b A |
850 | /* |
851 | * MACH page map - an optional optimization where a bit map is maintained | |
852 | * by the VM subsystem for internal objects to indicate which pages of | |
853 | * the object currently reside on backing store. This existence map | |
854 | * duplicates information maintained by the vnode pager. It is | |
855 | * created at the time of the first pageout against the object, i.e. | |
856 | * at the same time pager for the object is created. The optimization | |
857 | * is designed to eliminate pager interaction overhead, if it is | |
858 | * 'known' that the page does not exist on backing store. | |
859 | * | |
2d21ac55 | 860 | * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is |
1c79356b | 861 | * either marked as paged out in the existence map for the object or no |
2d21ac55 | 862 | * existence map exists for the object. MUST_ASK_PAGER() is one of the |
1c79356b A |
863 | * criteria in the decision to invoke the pager. It is also used as one |
864 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
2d21ac55 | 865 | * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for |
1c79356b A |
866 | * permanent objects. Note also that if the pager for an internal object |
867 | * has not been created, the pager is not invoked regardless of the value | |
2d21ac55 | 868 | * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object |
1c79356b A |
869 | * for which a pager has been created. |
870 | * | |
871 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
872 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
873 | * PAGED_OUT() is used to determine if a page has already been pushed | |
874 | * into a copy object in order to avoid a redundant page out operation. | |
875 | */ | |
2d21ac55 | 876 | #if MACH_PAGEMAP |
39236c6e A |
877 | #define MUST_ASK_PAGER(o, f, s) \ |
878 | ((vm_external_state_get((o)->existence_map, (f)) \ | |
879 | != VM_EXTERNAL_STATE_ABSENT) && \ | |
880 | (s = (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)))) \ | |
881 | != VM_EXTERNAL_STATE_ABSENT) | |
882 | #define PAGED_OUT(o, f) \ | |
883 | ((vm_external_state_get((o)->existence_map, (f)) \ | |
884 | == VM_EXTERNAL_STATE_EXISTS) || \ | |
885 | (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) \ | |
886 | == VM_EXTERNAL_STATE_EXISTS)) | |
887 | #else /* MACH_PAGEMAP */ | |
888 | #define MUST_ASK_PAGER(o, f, s) \ | |
889 | ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT) | |
890 | #define PAGED_OUT(o, f) \ | |
891 | (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS) | |
892 | #endif /* MACH_PAGEMAP */ | |
1c79356b A |
893 | |
894 | /* | |
895 | * Recovery actions | |
896 | */ | |
1c79356b A |
897 | #define RELEASE_PAGE(m) \ |
898 | MACRO_BEGIN \ | |
b0d623f7 A |
899 | PAGE_WAKEUP_DONE(m); \ |
900 | if (!m->active && !m->inactive && !m->throttled) { \ | |
901 | vm_page_lockspin_queues(); \ | |
39236c6e | 902 | if (!m->active && !m->inactive && !m->throttled) { \ |
fe8ab488 | 903 | if (COMPRESSED_PAGER_IS_ACTIVE) \ |
39236c6e A |
904 | vm_page_deactivate(m); \ |
905 | else \ | |
906 | vm_page_activate(m); \ | |
907 | } \ | |
b0d623f7 A |
908 | vm_page_unlock_queues(); \ |
909 | } \ | |
1c79356b A |
910 | MACRO_END |
911 | ||
912 | #if TRACEFAULTPAGE | |
913 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
914 | #endif | |
915 | ||
2d21ac55 | 916 | interruptible = fault_info->interruptible; |
9bccf70c | 917 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
918 | |
919 | /* | |
920 | * INVARIANTS (through entire routine): | |
921 | * | |
922 | * 1) At all times, we must either have the object | |
923 | * lock or a busy page in some object to prevent | |
924 | * some other thread from trying to bring in | |
925 | * the same page. | |
926 | * | |
927 | * Note that we cannot hold any locks during the | |
928 | * pager access or when waiting for memory, so | |
929 | * we use a busy page then. | |
930 | * | |
1c79356b A |
931 | * 2) To prevent another thread from racing us down the |
932 | * shadow chain and entering a new page in the top | |
933 | * object before we do, we must keep a busy page in | |
934 | * the top object while following the shadow chain. | |
935 | * | |
936 | * 3) We must increment paging_in_progress on any object | |
2d21ac55 A |
937 | * for which we have a busy page before dropping |
938 | * the object lock | |
1c79356b A |
939 | * |
940 | * 4) We leave busy pages on the pageout queues. | |
941 | * If the pageout daemon comes across a busy page, | |
942 | * it will remove the page from the pageout queues. | |
943 | */ | |
944 | ||
1c79356b A |
945 | object = first_object; |
946 | offset = first_offset; | |
947 | first_m = VM_PAGE_NULL; | |
948 | access_required = fault_type; | |
949 | ||
2d21ac55 | 950 | |
1c79356b A |
951 | XPR(XPR_VM_FAULT, |
952 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
b0d623f7 | 953 | object, offset, fault_type, *protection, 0); |
1c79356b A |
954 | |
955 | /* | |
2d21ac55 | 956 | * default type of fault |
1c79356b | 957 | */ |
2d21ac55 | 958 | my_fault = DBG_CACHE_HIT_FAULT; |
1c79356b A |
959 | |
960 | while (TRUE) { | |
961 | #if TRACEFAULTPAGE | |
962 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
963 | #endif | |
964 | if (!object->alive) { | |
2d21ac55 A |
965 | /* |
966 | * object is no longer valid | |
967 | * clean up and return error | |
968 | */ | |
1c79356b | 969 | vm_fault_cleanup(object, first_m); |
9bccf70c | 970 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
971 | |
972 | return (VM_FAULT_MEMORY_ERROR); | |
1c79356b | 973 | } |
2d21ac55 | 974 | |
b0d623f7 A |
975 | if (!object->pager_created && object->phys_contiguous) { |
976 | /* | |
977 | * A physically-contiguous object without a pager: | |
978 | * must be a "large page" object. We do not deal | |
979 | * with VM pages for this object. | |
980 | */ | |
39236c6e | 981 | caller_lookup = FALSE; |
b0d623f7 A |
982 | m = VM_PAGE_NULL; |
983 | goto phys_contig_object; | |
984 | } | |
985 | ||
986 | if (object->blocked_access) { | |
987 | /* | |
988 | * Access to this VM object has been blocked. | |
989 | * Replace our "paging_in_progress" reference with | |
990 | * a "activity_in_progress" reference and wait for | |
991 | * access to be unblocked. | |
992 | */ | |
39236c6e | 993 | caller_lookup = FALSE; /* no longer valid after sleep */ |
b0d623f7 A |
994 | vm_object_activity_begin(object); |
995 | vm_object_paging_end(object); | |
996 | while (object->blocked_access) { | |
997 | vm_object_sleep(object, | |
998 | VM_OBJECT_EVENT_UNBLOCKED, | |
999 | THREAD_UNINT); | |
1000 | } | |
1001 | vm_fault_page_blocked_access++; | |
1002 | vm_object_paging_begin(object); | |
1003 | vm_object_activity_end(object); | |
1004 | } | |
1005 | ||
2d21ac55 A |
1006 | /* |
1007 | * See whether the page at 'offset' is resident | |
1008 | */ | |
39236c6e A |
1009 | if (caller_lookup == TRUE) { |
1010 | /* | |
1011 | * The caller has already looked up the page | |
1012 | * and gave us the result in "result_page". | |
1013 | * We can use this for the first lookup but | |
1014 | * it loses its validity as soon as we unlock | |
1015 | * the object. | |
1016 | */ | |
1017 | m = *result_page; | |
1018 | caller_lookup = FALSE; /* no longer valid after that */ | |
1019 | } else { | |
1020 | m = vm_page_lookup(object, offset); | |
1021 | } | |
1c79356b A |
1022 | #if TRACEFAULTPAGE |
1023 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1024 | #endif | |
1025 | if (m != VM_PAGE_NULL) { | |
1c79356b A |
1026 | |
1027 | if (m->busy) { | |
2d21ac55 A |
1028 | /* |
1029 | * The page is being brought in, | |
1030 | * wait for it and then retry. | |
2d21ac55 | 1031 | */ |
1c79356b A |
1032 | #if TRACEFAULTPAGE |
1033 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1034 | #endif | |
316670eb | 1035 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1c79356b | 1036 | |
316670eb A |
1037 | XPR(XPR_VM_FAULT, |
1038 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
1039 | object, offset, | |
1040 | m, 0, 0); | |
1041 | counter(c_vm_fault_page_block_busy_kernel++); | |
2d21ac55 | 1042 | |
316670eb A |
1043 | if (wait_result != THREAD_AWAKENED) { |
1044 | vm_fault_cleanup(object, first_m); | |
1045 | thread_interrupt_level(interruptible_state); | |
6d2010ae | 1046 | |
316670eb A |
1047 | if (wait_result == THREAD_RESTART) |
1048 | return (VM_FAULT_RETRY); | |
1049 | else | |
1050 | return (VM_FAULT_INTERRUPTED); | |
1c79356b | 1051 | } |
316670eb | 1052 | continue; |
1c79356b | 1053 | } |
316670eb A |
1054 | if (m->laundry) { |
1055 | m->pageout = FALSE; | |
1c79356b | 1056 | |
316670eb A |
1057 | if (!m->cleaning) |
1058 | vm_pageout_steal_laundry(m, FALSE); | |
1059 | } | |
2d21ac55 | 1060 | if (m->phys_page == vm_page_guard_addr) { |
91447636 | 1061 | /* |
2d21ac55 | 1062 | * Guard page: off limits ! |
91447636 | 1063 | */ |
2d21ac55 A |
1064 | if (fault_type == VM_PROT_NONE) { |
1065 | /* | |
1066 | * The fault is not requesting any | |
1067 | * access to the guard page, so it must | |
1068 | * be just to wire or unwire it. | |
1069 | * Let's pretend it succeeded... | |
1070 | */ | |
1071 | m->busy = TRUE; | |
1072 | *result_page = m; | |
1073 | assert(first_m == VM_PAGE_NULL); | |
1074 | *top_page = first_m; | |
1075 | if (type_of_fault) | |
1076 | *type_of_fault = DBG_GUARD_FAULT; | |
99c3a104 | 1077 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1078 | return VM_FAULT_SUCCESS; |
1079 | } else { | |
1080 | /* | |
1081 | * The fault requests access to the | |
1082 | * guard page: let's deny that ! | |
1083 | */ | |
1084 | vm_fault_cleanup(object, first_m); | |
1085 | thread_interrupt_level(interruptible_state); | |
1086 | return VM_FAULT_MEMORY_ERROR; | |
1087 | } | |
91447636 | 1088 | } |
1c79356b A |
1089 | |
1090 | if (m->error) { | |
2d21ac55 A |
1091 | /* |
1092 | * The page is in error, give up now. | |
1093 | */ | |
1c79356b A |
1094 | #if TRACEFAULTPAGE |
1095 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
1096 | #endif | |
1097 | if (error_code) | |
2d21ac55 | 1098 | *error_code = KERN_MEMORY_ERROR; |
1c79356b | 1099 | VM_PAGE_FREE(m); |
2d21ac55 | 1100 | |
1c79356b | 1101 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1102 | thread_interrupt_level(interruptible_state); |
1c79356b | 1103 | |
2d21ac55 A |
1104 | return (VM_FAULT_MEMORY_ERROR); |
1105 | } | |
1c79356b | 1106 | if (m->restart) { |
2d21ac55 A |
1107 | /* |
1108 | * The pager wants us to restart | |
1109 | * at the top of the chain, | |
1110 | * typically because it has moved the | |
1111 | * page to another pager, then do so. | |
1112 | */ | |
1c79356b A |
1113 | #if TRACEFAULTPAGE |
1114 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1115 | #endif | |
1116 | VM_PAGE_FREE(m); | |
2d21ac55 | 1117 | |
1c79356b | 1118 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1119 | thread_interrupt_level(interruptible_state); |
1c79356b | 1120 | |
2d21ac55 A |
1121 | return (VM_FAULT_RETRY); |
1122 | } | |
1c79356b | 1123 | if (m->absent) { |
2d21ac55 A |
1124 | /* |
1125 | * The page isn't busy, but is absent, | |
1126 | * therefore it's deemed "unavailable". | |
1127 | * | |
1c79356b A |
1128 | * Remove the non-existent page (unless it's |
1129 | * in the top object) and move on down to the | |
1130 | * next object (if there is one). | |
1131 | */ | |
1132 | #if TRACEFAULTPAGE | |
1133 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
1134 | #endif | |
1c79356b | 1135 | next_object = object->shadow; |
1c79356b | 1136 | |
2d21ac55 | 1137 | if (next_object == VM_OBJECT_NULL) { |
1c79356b A |
1138 | /* |
1139 | * Absent page at bottom of shadow | |
1140 | * chain; zero fill the page we left | |
2d21ac55 A |
1141 | * busy in the first object, and free |
1142 | * the absent page. | |
1c79356b | 1143 | */ |
2d21ac55 | 1144 | assert(!must_be_resident); |
55e303ae A |
1145 | |
1146 | /* | |
2d21ac55 A |
1147 | * check for any conditions that prevent |
1148 | * us from creating a new zero-fill page | |
1149 | * vm_fault_check will do all of the | |
1150 | * fault cleanup in the case of an error condition | |
1151 | * including resetting the thread_interrupt_level | |
55e303ae | 1152 | */ |
2d21ac55 | 1153 | error = vm_fault_check(object, m, first_m, interruptible_state); |
55e303ae | 1154 | |
2d21ac55 A |
1155 | if (error != VM_FAULT_SUCCESS) |
1156 | return (error); | |
55e303ae | 1157 | |
1c79356b | 1158 | XPR(XPR_VM_FAULT, |
2d21ac55 | 1159 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", |
b0d623f7 A |
1160 | object, offset, |
1161 | m, | |
1162 | first_object, 0); | |
2d21ac55 | 1163 | |
1c79356b | 1164 | if (object != first_object) { |
2d21ac55 A |
1165 | /* |
1166 | * free the absent page we just found | |
1167 | */ | |
1c79356b | 1168 | VM_PAGE_FREE(m); |
2d21ac55 A |
1169 | |
1170 | /* | |
1171 | * drop reference and lock on current object | |
1172 | */ | |
1c79356b A |
1173 | vm_object_paging_end(object); |
1174 | vm_object_unlock(object); | |
2d21ac55 A |
1175 | |
1176 | /* | |
1177 | * grab the original page we | |
1178 | * 'soldered' in place and | |
1179 | * retake lock on 'first_object' | |
1180 | */ | |
1c79356b A |
1181 | m = first_m; |
1182 | first_m = VM_PAGE_NULL; | |
1c79356b | 1183 | |
2d21ac55 A |
1184 | object = first_object; |
1185 | offset = first_offset; | |
0b4e3aa0 | 1186 | |
1c79356b | 1187 | vm_object_lock(object); |
9bccf70c | 1188 | } else { |
2d21ac55 A |
1189 | /* |
1190 | * we're going to use the absent page we just found | |
1191 | * so convert it to a 'busy' page | |
1192 | */ | |
1193 | m->absent = FALSE; | |
1194 | m->busy = TRUE; | |
0b4e3aa0 | 1195 | } |
fe8ab488 A |
1196 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) |
1197 | m->absent = TRUE; | |
2d21ac55 A |
1198 | /* |
1199 | * zero-fill the page and put it on | |
1200 | * the correct paging queue | |
1201 | */ | |
1202 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
1203 | ||
1c79356b A |
1204 | break; |
1205 | } else { | |
2d21ac55 | 1206 | if (must_be_resident) |
1c79356b | 1207 | vm_object_paging_end(object); |
2d21ac55 | 1208 | else if (object != first_object) { |
1c79356b A |
1209 | vm_object_paging_end(object); |
1210 | VM_PAGE_FREE(m); | |
1211 | } else { | |
1212 | first_m = m; | |
1213 | m->absent = FALSE; | |
1c79356b A |
1214 | m->busy = TRUE; |
1215 | ||
2d21ac55 | 1216 | vm_page_lockspin_queues(); |
316670eb A |
1217 | |
1218 | assert(!m->pageout_queue); | |
1c79356b | 1219 | VM_PAGE_QUEUES_REMOVE(m); |
316670eb | 1220 | |
1c79356b A |
1221 | vm_page_unlock_queues(); |
1222 | } | |
1223 | XPR(XPR_VM_FAULT, | |
1224 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
b0d623f7 A |
1225 | object, offset, |
1226 | next_object, | |
6d2010ae | 1227 | offset+object->vo_shadow_offset,0); |
2d21ac55 | 1228 | |
6d2010ae A |
1229 | offset += object->vo_shadow_offset; |
1230 | fault_info->lo_offset += object->vo_shadow_offset; | |
1231 | fault_info->hi_offset += object->vo_shadow_offset; | |
1c79356b | 1232 | access_required = VM_PROT_READ; |
2d21ac55 | 1233 | |
1c79356b A |
1234 | vm_object_lock(next_object); |
1235 | vm_object_unlock(object); | |
1236 | object = next_object; | |
1237 | vm_object_paging_begin(object); | |
2d21ac55 A |
1238 | |
1239 | /* | |
1240 | * reset to default type of fault | |
1241 | */ | |
1242 | my_fault = DBG_CACHE_HIT_FAULT; | |
1243 | ||
1c79356b A |
1244 | continue; |
1245 | } | |
1246 | } | |
1c79356b | 1247 | if ((m->cleaning) |
2d21ac55 A |
1248 | && ((object != first_object) || (object->copy != VM_OBJECT_NULL)) |
1249 | && (fault_type & VM_PROT_WRITE)) { | |
1c79356b A |
1250 | /* |
1251 | * This is a copy-on-write fault that will | |
1252 | * cause us to revoke access to this page, but | |
1253 | * this page is in the process of being cleaned | |
1254 | * in a clustered pageout. We must wait until | |
1255 | * the cleaning operation completes before | |
1256 | * revoking access to the original page, | |
1257 | * otherwise we might attempt to remove a | |
1258 | * wired mapping. | |
1259 | */ | |
1260 | #if TRACEFAULTPAGE | |
1261 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
1262 | #endif | |
1263 | XPR(XPR_VM_FAULT, | |
1264 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
b0d623f7 A |
1265 | object, offset, |
1266 | m, 0, 0); | |
2d21ac55 A |
1267 | /* |
1268 | * take an extra ref so that object won't die | |
1269 | */ | |
1270 | vm_object_reference_locked(object); | |
1271 | ||
1c79356b | 1272 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 1273 | |
1c79356b A |
1274 | counter(c_vm_fault_page_block_backoff_kernel++); |
1275 | vm_object_lock(object); | |
1276 | assert(object->ref_count > 0); | |
2d21ac55 | 1277 | |
1c79356b | 1278 | m = vm_page_lookup(object, offset); |
2d21ac55 | 1279 | |
1c79356b A |
1280 | if (m != VM_PAGE_NULL && m->cleaning) { |
1281 | PAGE_ASSERT_WAIT(m, interruptible); | |
2d21ac55 | 1282 | |
1c79356b | 1283 | vm_object_unlock(object); |
9bccf70c | 1284 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1285 | vm_object_deallocate(object); |
2d21ac55 | 1286 | |
1c79356b A |
1287 | goto backoff; |
1288 | } else { | |
1289 | vm_object_unlock(object); | |
2d21ac55 | 1290 | |
1c79356b | 1291 | vm_object_deallocate(object); |
9bccf70c | 1292 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1293 | |
1294 | return (VM_FAULT_RETRY); | |
1c79356b A |
1295 | } |
1296 | } | |
b0d623f7 A |
1297 | if (type_of_fault == NULL && m->speculative && |
1298 | !(fault_info != NULL && fault_info->stealth)) { | |
2d21ac55 A |
1299 | /* |
1300 | * If we were passed a non-NULL pointer for | |
1301 | * "type_of_fault", than we came from | |
1302 | * vm_fault... we'll let it deal with | |
1303 | * this condition, since it | |
1304 | * needs to see m->speculative to correctly | |
1305 | * account the pageins, otherwise... | |
1306 | * take it off the speculative queue, we'll | |
1307 | * let the caller of vm_fault_page deal | |
1308 | * with getting it onto the correct queue | |
b0d623f7 A |
1309 | * |
1310 | * If the caller specified in fault_info that | |
1311 | * it wants a "stealth" fault, we also leave | |
1312 | * the page in the speculative queue. | |
2d21ac55 A |
1313 | */ |
1314 | vm_page_lockspin_queues(); | |
316670eb A |
1315 | if (m->speculative) |
1316 | VM_PAGE_QUEUES_REMOVE(m); | |
2d21ac55 A |
1317 | vm_page_unlock_queues(); |
1318 | } | |
1c79356b | 1319 | |
2d21ac55 A |
1320 | if (m->encrypted) { |
1321 | /* | |
1322 | * ENCRYPTED SWAP: | |
1323 | * the user needs access to a page that we | |
1324 | * encrypted before paging it out. | |
1325 | * Decrypt the page now. | |
1326 | * Keep it busy to prevent anyone from | |
1327 | * accessing it during the decryption. | |
1328 | */ | |
1329 | m->busy = TRUE; | |
1330 | vm_page_decrypt(m, 0); | |
1331 | assert(object == m->object); | |
1332 | assert(m->busy); | |
1333 | PAGE_WAKEUP_DONE(m); | |
1c79356b | 1334 | |
2d21ac55 A |
1335 | /* |
1336 | * Retry from the top, in case | |
1337 | * something changed while we were | |
1338 | * decrypting. | |
1339 | */ | |
1340 | continue; | |
1341 | } | |
1342 | ASSERT_PAGE_DECRYPTED(m); | |
1c79356b | 1343 | |
2d21ac55 A |
1344 | if (m->object->code_signed) { |
1345 | /* | |
1346 | * CODE SIGNING: | |
1347 | * We just paged in a page from a signed | |
1348 | * memory object but we don't need to | |
1349 | * validate it now. We'll validate it if | |
1350 | * when it gets mapped into a user address | |
1351 | * space for the first time or when the page | |
1352 | * gets copied to another object as a result | |
1353 | * of a copy-on-write. | |
1354 | */ | |
1c79356b | 1355 | } |
2d21ac55 | 1356 | |
1c79356b | 1357 | /* |
2d21ac55 A |
1358 | * We mark the page busy and leave it on |
1359 | * the pageout queues. If the pageout | |
1360 | * deamon comes across it, then it will | |
1361 | * remove the page from the queue, but not the object | |
1c79356b | 1362 | */ |
1c79356b A |
1363 | #if TRACEFAULTPAGE |
1364 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1365 | #endif | |
1c79356b A |
1366 | XPR(XPR_VM_FAULT, |
1367 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
b0d623f7 | 1368 | object, offset, m, 0, 0); |
1c79356b | 1369 | assert(!m->busy); |
1c79356b | 1370 | assert(!m->absent); |
2d21ac55 A |
1371 | |
1372 | m->busy = TRUE; | |
1c79356b A |
1373 | break; |
1374 | } | |
2d21ac55 | 1375 | |
1c79356b | 1376 | |
2d21ac55 A |
1377 | /* |
1378 | * we get here when there is no page present in the object at | |
1379 | * the offset we're interested in... we'll allocate a page | |
1380 | * at this point if the pager associated with | |
1381 | * this object can provide the data or we're the top object... | |
1382 | * object is locked; m == NULL | |
1383 | */ | |
39236c6e A |
1384 | if (must_be_resident) { |
1385 | if (fault_type == VM_PROT_NONE && | |
1386 | object == kernel_object) { | |
1387 | /* | |
1388 | * We've been called from vm_fault_unwire() | |
1389 | * while removing a map entry that was allocated | |
1390 | * with KMA_KOBJECT and KMA_VAONLY. This page | |
1391 | * is not present and there's nothing more to | |
1392 | * do here (nothing to unwire). | |
1393 | */ | |
1394 | vm_fault_cleanup(object, first_m); | |
1395 | thread_interrupt_level(interruptible_state); | |
1396 | ||
1397 | return VM_FAULT_MEMORY_ERROR; | |
1398 | } | |
1399 | ||
316670eb | 1400 | goto dont_look_for_page; |
39236c6e | 1401 | } |
316670eb | 1402 | |
39236c6e A |
1403 | #if !MACH_PAGEMAP |
1404 | data_supply = FALSE; | |
1405 | #endif /* !MACH_PAGEMAP */ | |
1406 | ||
1407 | look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply); | |
2d21ac55 | 1408 | |
1c79356b A |
1409 | #if TRACEFAULTPAGE |
1410 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
1411 | #endif | |
316670eb | 1412 | if (!look_for_page && object == first_object && !object->phys_contiguous) { |
1c79356b | 1413 | /* |
316670eb | 1414 | * Allocate a new page for this object/offset pair as a placeholder |
1c79356b | 1415 | */ |
2d21ac55 | 1416 | m = vm_page_grab(); |
1c79356b A |
1417 | #if TRACEFAULTPAGE |
1418 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1419 | #endif | |
1420 | if (m == VM_PAGE_NULL) { | |
2d21ac55 | 1421 | |
1c79356b | 1422 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1423 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1424 | |
1425 | return (VM_FAULT_MEMORY_SHORTAGE); | |
1c79356b | 1426 | } |
316670eb A |
1427 | |
1428 | if (fault_info && fault_info->batch_pmap_op == TRUE) { | |
1429 | vm_page_insert_internal(m, object, offset, FALSE, TRUE, TRUE); | |
1430 | } else { | |
1431 | vm_page_insert(m, object, offset); | |
1432 | } | |
1c79356b | 1433 | } |
316670eb | 1434 | if (look_for_page) { |
1c79356b | 1435 | kern_return_t rc; |
39236c6e | 1436 | int my_fault_type; |
1c79356b A |
1437 | |
1438 | /* | |
1439 | * If the memory manager is not ready, we | |
1440 | * cannot make requests. | |
1441 | */ | |
1442 | if (!object->pager_ready) { | |
1443 | #if TRACEFAULTPAGE | |
1444 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1445 | #endif | |
2d21ac55 A |
1446 | if (m != VM_PAGE_NULL) |
1447 | VM_PAGE_FREE(m); | |
1448 | ||
1c79356b A |
1449 | XPR(XPR_VM_FAULT, |
1450 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
b0d623f7 | 1451 | object, offset, 0, 0, 0); |
2d21ac55 A |
1452 | |
1453 | /* | |
1454 | * take an extra ref so object won't die | |
1455 | */ | |
1456 | vm_object_reference_locked(object); | |
1c79356b A |
1457 | vm_fault_cleanup(object, first_m); |
1458 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 1459 | |
1c79356b A |
1460 | vm_object_lock(object); |
1461 | assert(object->ref_count > 0); | |
2d21ac55 | 1462 | |
1c79356b | 1463 | if (!object->pager_ready) { |
2d21ac55 A |
1464 | wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); |
1465 | ||
1c79356b | 1466 | vm_object_unlock(object); |
9bccf70c A |
1467 | if (wait_result == THREAD_WAITING) |
1468 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b | 1469 | vm_object_deallocate(object); |
2d21ac55 | 1470 | |
1c79356b A |
1471 | goto backoff; |
1472 | } else { | |
1473 | vm_object_unlock(object); | |
1474 | vm_object_deallocate(object); | |
9bccf70c | 1475 | thread_interrupt_level(interruptible_state); |
1c79356b | 1476 | |
2d21ac55 | 1477 | return (VM_FAULT_RETRY); |
0b4e3aa0 | 1478 | } |
0b4e3aa0 | 1479 | } |
2d21ac55 | 1480 | if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { |
1c79356b | 1481 | /* |
2d21ac55 A |
1482 | * If there are too many outstanding page |
1483 | * requests pending on this external object, we | |
1484 | * wait for them to be resolved now. | |
1c79356b | 1485 | */ |
1c79356b | 1486 | #if TRACEFAULTPAGE |
2d21ac55 | 1487 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1488 | #endif |
2d21ac55 | 1489 | if (m != VM_PAGE_NULL) |
1c79356b | 1490 | VM_PAGE_FREE(m); |
1c79356b | 1491 | /* |
2d21ac55 | 1492 | * take an extra ref so object won't die |
1c79356b | 1493 | */ |
2d21ac55 | 1494 | vm_object_reference_locked(object); |
1c79356b | 1495 | |
1c79356b | 1496 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 1497 | |
1c79356b | 1498 | counter(c_vm_fault_page_block_backoff_kernel++); |
2d21ac55 | 1499 | |
1c79356b A |
1500 | vm_object_lock(object); |
1501 | assert(object->ref_count > 0); | |
2d21ac55 | 1502 | |
6d2010ae A |
1503 | if (object->paging_in_progress >= vm_object_pagein_throttle) { |
1504 | vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible); | |
2d21ac55 | 1505 | |
1c79356b | 1506 | vm_object_unlock(object); |
9bccf70c | 1507 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1508 | vm_object_deallocate(object); |
2d21ac55 | 1509 | |
1c79356b A |
1510 | goto backoff; |
1511 | } else { | |
1512 | vm_object_unlock(object); | |
1513 | vm_object_deallocate(object); | |
9bccf70c | 1514 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1515 | |
1516 | return (VM_FAULT_RETRY); | |
1c79356b A |
1517 | } |
1518 | } | |
fe8ab488 A |
1519 | if (object->internal && |
1520 | (COMPRESSED_PAGER_IS_ACTIVE | |
1521 | || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)) { | |
1522 | int compressed_count_delta; | |
39236c6e A |
1523 | |
1524 | if (m == VM_PAGE_NULL) { | |
1525 | /* | |
1526 | * Allocate a new page for this object/offset pair as a placeholder | |
1527 | */ | |
1528 | m = vm_page_grab(); | |
1529 | #if TRACEFAULTPAGE | |
1530 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1531 | #endif | |
1532 | if (m == VM_PAGE_NULL) { | |
1533 | ||
1534 | vm_fault_cleanup(object, first_m); | |
1535 | thread_interrupt_level(interruptible_state); | |
1536 | ||
1537 | return (VM_FAULT_MEMORY_SHORTAGE); | |
1538 | } | |
1539 | ||
1540 | m->absent = TRUE; | |
1541 | if (fault_info && fault_info->batch_pmap_op == TRUE) { | |
1542 | vm_page_insert_internal(m, object, offset, FALSE, TRUE, TRUE); | |
1543 | } else { | |
1544 | vm_page_insert(m, object, offset); | |
1545 | } | |
1546 | } | |
1547 | assert(m->busy); | |
1548 | ||
1549 | m->absent = TRUE; | |
1550 | pager = object->pager; | |
1551 | ||
fe8ab488 | 1552 | assert(object->paging_in_progress > 0); |
39236c6e A |
1553 | vm_object_unlock(object); |
1554 | ||
fe8ab488 A |
1555 | rc = vm_compressor_pager_get( |
1556 | pager, | |
1557 | offset + object->paging_offset, | |
1558 | m->phys_page, | |
1559 | &my_fault_type, | |
1560 | 0, | |
1561 | &compressed_count_delta); | |
39236c6e A |
1562 | |
1563 | vm_object_lock(object); | |
fe8ab488 A |
1564 | assert(object->paging_in_progress > 0); |
1565 | ||
1566 | vm_compressor_pager_count( | |
1567 | pager, | |
1568 | compressed_count_delta, | |
1569 | FALSE, /* shared_lock */ | |
1570 | object); | |
39236c6e A |
1571 | |
1572 | switch (rc) { | |
1573 | case KERN_SUCCESS: | |
1574 | m->absent = FALSE; | |
1575 | m->dirty = TRUE; | |
1576 | if ((m->object->wimg_bits & | |
1577 | VM_WIMG_MASK) != | |
1578 | VM_WIMG_USE_DEFAULT) { | |
1579 | /* | |
1580 | * If the page is not cacheable, | |
1581 | * we can't let its contents | |
1582 | * linger in the data cache | |
1583 | * after the decompression. | |
1584 | */ | |
1585 | pmap_sync_page_attributes_phys( | |
1586 | m->phys_page); | |
fe8ab488 | 1587 | } else { |
15129b1c | 1588 | m->written_by_kernel = TRUE; |
fe8ab488 A |
1589 | } |
1590 | ||
1591 | /* | |
1592 | * If the object is purgeable, its | |
1593 | * owner's purgeable ledgers have been | |
1594 | * updated in vm_page_insert() but the | |
1595 | * page was also accounted for in a | |
1596 | * "compressed purgeable" ledger, so | |
1597 | * update that now. | |
1598 | */ | |
1599 | if ((object->purgable != | |
1600 | VM_PURGABLE_DENY) && | |
1601 | (object->vo_purgeable_owner != | |
1602 | NULL)) { | |
1603 | /* | |
1604 | * One less compressed | |
1605 | * purgeable page. | |
1606 | */ | |
1607 | vm_purgeable_compressed_update( | |
1608 | object, | |
1609 | -1); | |
1610 | } | |
1611 | ||
39236c6e A |
1612 | break; |
1613 | case KERN_MEMORY_FAILURE: | |
1614 | m->unusual = TRUE; | |
1615 | m->error = TRUE; | |
1616 | m->absent = FALSE; | |
1617 | break; | |
1618 | case KERN_MEMORY_ERROR: | |
1619 | assert(m->absent); | |
1620 | break; | |
1621 | default: | |
fe8ab488 A |
1622 | panic("vm_fault_page(): unexpected " |
1623 | "error %d from " | |
1624 | "vm_compressor_pager_get()\n", | |
1625 | rc); | |
39236c6e A |
1626 | } |
1627 | PAGE_WAKEUP_DONE(m); | |
1628 | ||
1629 | rc = KERN_SUCCESS; | |
1630 | goto data_requested; | |
1631 | } | |
1632 | my_fault_type = DBG_PAGEIN_FAULT; | |
1633 | ||
2d21ac55 | 1634 | if (m != VM_PAGE_NULL) { |
316670eb A |
1635 | VM_PAGE_FREE(m); |
1636 | m = VM_PAGE_NULL; | |
0b4e3aa0 | 1637 | } |
1c79356b | 1638 | |
1c79356b A |
1639 | #if TRACEFAULTPAGE |
1640 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1641 | #endif | |
2d21ac55 | 1642 | |
1c79356b | 1643 | /* |
2d21ac55 A |
1644 | * It's possible someone called vm_object_destroy while we weren't |
1645 | * holding the object lock. If that has happened, then bail out | |
1646 | * here. | |
1c79356b | 1647 | */ |
2d21ac55 A |
1648 | |
1649 | pager = object->pager; | |
1650 | ||
1651 | if (pager == MEMORY_OBJECT_NULL) { | |
1652 | vm_fault_cleanup(object, first_m); | |
1653 | thread_interrupt_level(interruptible_state); | |
1654 | return VM_FAULT_MEMORY_ERROR; | |
1655 | } | |
1c79356b A |
1656 | |
1657 | /* | |
2d21ac55 A |
1658 | * We have an absent page in place for the faulting offset, |
1659 | * so we can release the object lock. | |
1c79356b A |
1660 | */ |
1661 | ||
2d21ac55 | 1662 | vm_object_unlock(object); |
1c79356b A |
1663 | |
1664 | /* | |
2d21ac55 A |
1665 | * If this object uses a copy_call strategy, |
1666 | * and we are interested in a copy of this object | |
1667 | * (having gotten here only by following a | |
1668 | * shadow chain), then tell the memory manager | |
1669 | * via a flag added to the desired_access | |
1670 | * parameter, so that it can detect a race | |
1671 | * between our walking down the shadow chain | |
1672 | * and its pushing pages up into a copy of | |
1673 | * the object that it manages. | |
1c79356b | 1674 | */ |
2d21ac55 | 1675 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) |
1c79356b | 1676 | wants_copy_flag = VM_PROT_WANTS_COPY; |
2d21ac55 | 1677 | else |
1c79356b | 1678 | wants_copy_flag = VM_PROT_NONE; |
1c79356b A |
1679 | |
1680 | XPR(XPR_VM_FAULT, | |
1681 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
b0d623f7 | 1682 | object, offset, m, |
1c79356b A |
1683 | access_required | wants_copy_flag, 0); |
1684 | ||
316670eb A |
1685 | if (object->copy == first_object) { |
1686 | /* | |
1687 | * if we issue the memory_object_data_request in | |
1688 | * this state, we are subject to a deadlock with | |
1689 | * the underlying filesystem if it is trying to | |
1690 | * shrink the file resulting in a push of pages | |
1691 | * into the copy object... that push will stall | |
1692 | * on the placeholder page, and if the pushing thread | |
1693 | * is holding a lock that is required on the pagein | |
1694 | * path (such as a truncate lock), we'll deadlock... | |
1695 | * to avoid this potential deadlock, we throw away | |
1696 | * our placeholder page before calling memory_object_data_request | |
1697 | * and force this thread to retry the vm_fault_page after | |
1698 | * we have issued the I/O. the second time through this path | |
1699 | * we will find the page already in the cache (presumably still | |
1700 | * busy waiting for the I/O to complete) and then complete | |
1701 | * the fault w/o having to go through memory_object_data_request again | |
1702 | */ | |
1703 | assert(first_m != VM_PAGE_NULL); | |
1704 | assert(first_m->object == first_object); | |
1705 | ||
1706 | vm_object_lock(first_object); | |
1707 | VM_PAGE_FREE(first_m); | |
1708 | vm_object_paging_end(first_object); | |
1709 | vm_object_unlock(first_object); | |
1710 | ||
1711 | first_m = VM_PAGE_NULL; | |
1712 | force_fault_retry = TRUE; | |
1713 | ||
1714 | vm_fault_page_forced_retry++; | |
1715 | } | |
1716 | ||
1717 | if (data_already_requested == TRUE) { | |
1718 | orig_behavior = fault_info->behavior; | |
1719 | orig_cluster_size = fault_info->cluster_size; | |
1720 | ||
1721 | fault_info->behavior = VM_BEHAVIOR_RANDOM; | |
1722 | fault_info->cluster_size = PAGE_SIZE; | |
1723 | } | |
2d21ac55 A |
1724 | /* |
1725 | * Call the memory manager to retrieve the data. | |
1726 | */ | |
1727 | rc = memory_object_data_request( | |
1728 | pager, | |
1729 | offset + object->paging_offset, | |
1730 | PAGE_SIZE, | |
1731 | access_required | wants_copy_flag, | |
1732 | (memory_object_fault_info_t)fault_info); | |
1c79356b | 1733 | |
316670eb A |
1734 | if (data_already_requested == TRUE) { |
1735 | fault_info->behavior = orig_behavior; | |
1736 | fault_info->cluster_size = orig_cluster_size; | |
1737 | } else | |
1738 | data_already_requested = TRUE; | |
1739 | ||
fe8ab488 | 1740 | DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); |
1c79356b A |
1741 | #if TRACEFAULTPAGE |
1742 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1743 | #endif | |
2d21ac55 A |
1744 | vm_object_lock(object); |
1745 | ||
39236c6e | 1746 | data_requested: |
1c79356b | 1747 | if (rc != KERN_SUCCESS) { |
2d21ac55 | 1748 | |
1c79356b | 1749 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1750 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1751 | |
1752 | return ((rc == MACH_SEND_INTERRUPTED) ? | |
1c79356b A |
1753 | VM_FAULT_INTERRUPTED : |
1754 | VM_FAULT_MEMORY_ERROR); | |
b0d623f7 A |
1755 | } else { |
1756 | clock_sec_t tv_sec; | |
1757 | clock_usec_t tv_usec; | |
39236c6e A |
1758 | |
1759 | if (my_fault_type == DBG_PAGEIN_FAULT) { | |
1760 | clock_get_system_microtime(&tv_sec, &tv_usec); | |
1761 | current_thread()->t_page_creation_time = tv_sec; | |
1762 | current_thread()->t_page_creation_count = 0; | |
1763 | } | |
1c79356b | 1764 | } |
6d2010ae | 1765 | if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) { |
2d21ac55 | 1766 | |
1c79356b | 1767 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1768 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1769 | |
1770 | return (VM_FAULT_INTERRUPTED); | |
1c79356b | 1771 | } |
316670eb A |
1772 | if (force_fault_retry == TRUE) { |
1773 | ||
1774 | vm_fault_cleanup(object, first_m); | |
1775 | thread_interrupt_level(interruptible_state); | |
1776 | ||
1777 | return (VM_FAULT_RETRY); | |
1778 | } | |
2d21ac55 | 1779 | if (m == VM_PAGE_NULL && object->phys_contiguous) { |
91447636 A |
1780 | /* |
1781 | * No page here means that the object we | |
1782 | * initially looked up was "physically | |
1783 | * contiguous" (i.e. device memory). However, | |
1784 | * with Virtual VRAM, the object might not | |
1785 | * be backed by that device memory anymore, | |
1786 | * so we're done here only if the object is | |
1787 | * still "phys_contiguous". | |
1788 | * Otherwise, if the object is no longer | |
1789 | * "phys_contiguous", we need to retry the | |
1790 | * page fault against the object's new backing | |
1791 | * store (different memory object). | |
1792 | */ | |
b0d623f7 A |
1793 | phys_contig_object: |
1794 | goto done; | |
91447636 | 1795 | } |
2d21ac55 A |
1796 | /* |
1797 | * potentially a pagein fault | |
1798 | * if we make it through the state checks | |
1799 | * above, than we'll count it as such | |
1800 | */ | |
39236c6e | 1801 | my_fault = my_fault_type; |
91447636 A |
1802 | |
1803 | /* | |
1804 | * Retry with same object/offset, since new data may | |
1805 | * be in a different page (i.e., m is meaningless at | |
1806 | * this point). | |
1807 | */ | |
1c79356b A |
1808 | continue; |
1809 | } | |
316670eb | 1810 | dont_look_for_page: |
1c79356b | 1811 | /* |
2d21ac55 A |
1812 | * We get here if the object has no pager, or an existence map |
1813 | * exists and indicates the page isn't present on the pager | |
1814 | * or we're unwiring a page. If a pager exists, but there | |
1815 | * is no existence map, then the m->absent case above handles | |
1816 | * the ZF case when the pager can't provide the page | |
1c79356b A |
1817 | */ |
1818 | #if TRACEFAULTPAGE | |
1819 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1820 | #endif | |
1821 | if (object == first_object) | |
1822 | first_m = m; | |
1823 | else | |
1824 | assert(m == VM_PAGE_NULL); | |
1825 | ||
1826 | XPR(XPR_VM_FAULT, | |
1827 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
b0d623f7 A |
1828 | object, offset, m, |
1829 | object->shadow, 0); | |
2d21ac55 | 1830 | |
1c79356b | 1831 | next_object = object->shadow; |
2d21ac55 | 1832 | |
1c79356b | 1833 | if (next_object == VM_OBJECT_NULL) { |
1c79356b | 1834 | /* |
2d21ac55 A |
1835 | * we've hit the bottom of the shadown chain, |
1836 | * fill the page in the top object with zeros. | |
1c79356b | 1837 | */ |
2d21ac55 | 1838 | assert(!must_be_resident); |
1c79356b A |
1839 | |
1840 | if (object != first_object) { | |
1841 | vm_object_paging_end(object); | |
1842 | vm_object_unlock(object); | |
1843 | ||
1844 | object = first_object; | |
1845 | offset = first_offset; | |
1846 | vm_object_lock(object); | |
1847 | } | |
1c79356b A |
1848 | m = first_m; |
1849 | assert(m->object == object); | |
1850 | first_m = VM_PAGE_NULL; | |
1851 | ||
55e303ae | 1852 | /* |
2d21ac55 A |
1853 | * check for any conditions that prevent |
1854 | * us from creating a new zero-fill page | |
1855 | * vm_fault_check will do all of the | |
1856 | * fault cleanup in the case of an error condition | |
1857 | * including resetting the thread_interrupt_level | |
55e303ae | 1858 | */ |
2d21ac55 | 1859 | error = vm_fault_check(object, m, first_m, interruptible_state); |
55e303ae | 1860 | |
2d21ac55 A |
1861 | if (error != VM_FAULT_SUCCESS) |
1862 | return (error); | |
55e303ae | 1863 | |
2d21ac55 A |
1864 | if (m == VM_PAGE_NULL) { |
1865 | m = vm_page_grab(); | |
1c79356b | 1866 | |
2d21ac55 A |
1867 | if (m == VM_PAGE_NULL) { |
1868 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1869 | thread_interrupt_level(interruptible_state); | |
55e303ae | 1870 | |
2d21ac55 A |
1871 | return (VM_FAULT_MEMORY_SHORTAGE); |
1872 | } | |
1873 | vm_page_insert(m, object, offset); | |
0b4e3aa0 | 1874 | } |
0b4c1975 A |
1875 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) |
1876 | m->absent = TRUE; | |
fe8ab488 A |
1877 | |
1878 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
1879 | ||
1c79356b | 1880 | break; |
2d21ac55 A |
1881 | |
1882 | } else { | |
1883 | /* | |
1884 | * Move on to the next object. Lock the next | |
1885 | * object before unlocking the current one. | |
1886 | */ | |
1c79356b A |
1887 | if ((object != first_object) || must_be_resident) |
1888 | vm_object_paging_end(object); | |
2d21ac55 | 1889 | |
6d2010ae A |
1890 | offset += object->vo_shadow_offset; |
1891 | fault_info->lo_offset += object->vo_shadow_offset; | |
1892 | fault_info->hi_offset += object->vo_shadow_offset; | |
1c79356b | 1893 | access_required = VM_PROT_READ; |
2d21ac55 | 1894 | |
1c79356b A |
1895 | vm_object_lock(next_object); |
1896 | vm_object_unlock(object); | |
2d21ac55 | 1897 | |
1c79356b A |
1898 | object = next_object; |
1899 | vm_object_paging_begin(object); | |
1900 | } | |
1901 | } | |
1902 | ||
1903 | /* | |
1904 | * PAGE HAS BEEN FOUND. | |
1905 | * | |
1906 | * This page (m) is: | |
1907 | * busy, so that we can play with it; | |
1908 | * not absent, so that nobody else will fill it; | |
1909 | * possibly eligible for pageout; | |
1910 | * | |
1911 | * The top-level page (first_m) is: | |
1912 | * VM_PAGE_NULL if the page was found in the | |
1913 | * top-level object; | |
1914 | * busy, not absent, and ineligible for pageout. | |
1915 | * | |
1916 | * The current object (object) is locked. A paging | |
1917 | * reference is held for the current and top-level | |
1918 | * objects. | |
1919 | */ | |
1920 | ||
1921 | #if TRACEFAULTPAGE | |
1922 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1923 | #endif | |
1924 | #if EXTRA_ASSERTIONS | |
b0d623f7 A |
1925 | assert(m->busy && !m->absent); |
1926 | assert((first_m == VM_PAGE_NULL) || | |
1927 | (first_m->busy && !first_m->absent && | |
1928 | !first_m->active && !first_m->inactive)); | |
1c79356b A |
1929 | #endif /* EXTRA_ASSERTIONS */ |
1930 | ||
91447636 A |
1931 | /* |
1932 | * ENCRYPTED SWAP: | |
1933 | * If we found a page, we must have decrypted it before we | |
1934 | * get here... | |
1935 | */ | |
b0d623f7 | 1936 | ASSERT_PAGE_DECRYPTED(m); |
91447636 | 1937 | |
1c79356b | 1938 | XPR(XPR_VM_FAULT, |
2d21ac55 | 1939 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", |
b0d623f7 A |
1940 | object, offset, m, |
1941 | first_object, first_m); | |
2d21ac55 | 1942 | |
1c79356b | 1943 | /* |
2d21ac55 A |
1944 | * If the page is being written, but isn't |
1945 | * already owned by the top-level object, | |
1946 | * we have to copy it into a new page owned | |
1947 | * by the top-level object. | |
1c79356b | 1948 | */ |
b0d623f7 | 1949 | if (object != first_object) { |
1c79356b A |
1950 | |
1951 | #if TRACEFAULTPAGE | |
2d21ac55 | 1952 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
1c79356b A |
1953 | #endif |
1954 | if (fault_type & VM_PROT_WRITE) { | |
1955 | vm_page_t copy_m; | |
1956 | ||
2d21ac55 A |
1957 | /* |
1958 | * We only really need to copy if we | |
1959 | * want to write it. | |
1960 | */ | |
1c79356b A |
1961 | assert(!must_be_resident); |
1962 | ||
55e303ae A |
1963 | /* |
1964 | * are we protecting the system from | |
1965 | * backing store exhaustion. If so | |
1966 | * sleep unless we are privileged. | |
1967 | */ | |
2d21ac55 A |
1968 | if (vm_backing_store_low) { |
1969 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
55e303ae | 1970 | |
55e303ae A |
1971 | RELEASE_PAGE(m); |
1972 | vm_fault_cleanup(object, first_m); | |
2d21ac55 A |
1973 | |
1974 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
1975 | ||
91447636 | 1976 | thread_block(THREAD_CONTINUE_NULL); |
2d21ac55 A |
1977 | thread_interrupt_level(interruptible_state); |
1978 | ||
1979 | return (VM_FAULT_RETRY); | |
55e303ae A |
1980 | } |
1981 | } | |
1c79356b | 1982 | /* |
2d21ac55 A |
1983 | * If we try to collapse first_object at this |
1984 | * point, we may deadlock when we try to get | |
1985 | * the lock on an intermediate object (since we | |
1986 | * have the bottom object locked). We can't | |
1987 | * unlock the bottom object, because the page | |
1988 | * we found may move (by collapse) if we do. | |
1c79356b | 1989 | * |
2d21ac55 A |
1990 | * Instead, we first copy the page. Then, when |
1991 | * we have no more use for the bottom object, | |
1992 | * we unlock it and try to collapse. | |
1c79356b | 1993 | * |
2d21ac55 A |
1994 | * Note that we copy the page even if we didn't |
1995 | * need to... that's the breaks. | |
1c79356b A |
1996 | */ |
1997 | ||
1998 | /* | |
2d21ac55 | 1999 | * Allocate a page for the copy |
1c79356b A |
2000 | */ |
2001 | copy_m = vm_page_grab(); | |
2d21ac55 | 2002 | |
1c79356b A |
2003 | if (copy_m == VM_PAGE_NULL) { |
2004 | RELEASE_PAGE(m); | |
2d21ac55 | 2005 | |
1c79356b | 2006 | vm_fault_cleanup(object, first_m); |
9bccf70c | 2007 | thread_interrupt_level(interruptible_state); |
1c79356b | 2008 | |
2d21ac55 A |
2009 | return (VM_FAULT_MEMORY_SHORTAGE); |
2010 | } | |
1c79356b A |
2011 | XPR(XPR_VM_FAULT, |
2012 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
b0d623f7 A |
2013 | object, offset, |
2014 | m, copy_m, 0); | |
2d21ac55 | 2015 | |
1c79356b A |
2016 | vm_page_copy(m, copy_m); |
2017 | ||
2018 | /* | |
2d21ac55 A |
2019 | * If another map is truly sharing this |
2020 | * page with us, we have to flush all | |
2021 | * uses of the original page, since we | |
2022 | * can't distinguish those which want the | |
2023 | * original from those which need the | |
2024 | * new copy. | |
1c79356b | 2025 | * |
2d21ac55 A |
2026 | * XXXO If we know that only one map has |
2027 | * access to this page, then we could | |
2028 | * avoid the pmap_disconnect() call. | |
1c79356b | 2029 | */ |
2d21ac55 A |
2030 | if (m->pmapped) |
2031 | pmap_disconnect(m->phys_page); | |
1c79356b | 2032 | |
fe8ab488 A |
2033 | if (m->clustered) { |
2034 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
2035 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2036 | } | |
1c79356b | 2037 | assert(!m->cleaning); |
1c79356b A |
2038 | |
2039 | /* | |
2d21ac55 | 2040 | * We no longer need the old page or object. |
1c79356b | 2041 | */ |
39236c6e A |
2042 | RELEASE_PAGE(m); |
2043 | ||
1c79356b A |
2044 | vm_object_paging_end(object); |
2045 | vm_object_unlock(object); | |
2046 | ||
2d21ac55 A |
2047 | my_fault = DBG_COW_FAULT; |
2048 | VM_STAT_INCR(cow_faults); | |
2049 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
1c79356b | 2050 | current_task()->cow_faults++; |
2d21ac55 | 2051 | |
1c79356b A |
2052 | object = first_object; |
2053 | offset = first_offset; | |
2054 | ||
2055 | vm_object_lock(object); | |
2d21ac55 A |
2056 | /* |
2057 | * get rid of the place holder | |
2058 | * page that we soldered in earlier | |
2059 | */ | |
1c79356b A |
2060 | VM_PAGE_FREE(first_m); |
2061 | first_m = VM_PAGE_NULL; | |
2d21ac55 A |
2062 | |
2063 | /* | |
2064 | * and replace it with the | |
2065 | * page we just copied into | |
2066 | */ | |
1c79356b A |
2067 | assert(copy_m->busy); |
2068 | vm_page_insert(copy_m, object, offset); | |
316670eb | 2069 | SET_PAGE_DIRTY(copy_m, TRUE); |
1c79356b | 2070 | |
2d21ac55 | 2071 | m = copy_m; |
1c79356b | 2072 | /* |
2d21ac55 A |
2073 | * Now that we've gotten the copy out of the |
2074 | * way, let's try to collapse the top object. | |
2075 | * But we have to play ugly games with | |
2076 | * paging_in_progress to do that... | |
1c79356b | 2077 | */ |
1c79356b | 2078 | vm_object_paging_end(object); |
0c530ab8 | 2079 | vm_object_collapse(object, offset, TRUE); |
1c79356b A |
2080 | vm_object_paging_begin(object); |
2081 | ||
2d21ac55 | 2082 | } else |
1c79356b | 2083 | *protection &= (~VM_PROT_WRITE); |
1c79356b | 2084 | } |
1c79356b | 2085 | /* |
2d21ac55 A |
2086 | * Now check whether the page needs to be pushed into the |
2087 | * copy object. The use of asymmetric copy on write for | |
2088 | * shared temporary objects means that we may do two copies to | |
2089 | * satisfy the fault; one above to get the page from a | |
2090 | * shadowed object, and one here to push it into the copy. | |
1c79356b | 2091 | */ |
2d21ac55 | 2092 | try_failed_count = 0; |
1c79356b | 2093 | |
b0d623f7 | 2094 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL) { |
1c79356b A |
2095 | vm_object_offset_t copy_offset; |
2096 | vm_page_t copy_m; | |
2097 | ||
2098 | #if TRACEFAULTPAGE | |
2099 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
2100 | #endif | |
2101 | /* | |
2d21ac55 A |
2102 | * If the page is being written, but hasn't been |
2103 | * copied to the copy-object, we have to copy it there. | |
1c79356b | 2104 | */ |
1c79356b A |
2105 | if ((fault_type & VM_PROT_WRITE) == 0) { |
2106 | *protection &= ~VM_PROT_WRITE; | |
2107 | break; | |
2108 | } | |
2109 | ||
2110 | /* | |
2d21ac55 A |
2111 | * If the page was guaranteed to be resident, |
2112 | * we must have already performed the copy. | |
1c79356b | 2113 | */ |
1c79356b A |
2114 | if (must_be_resident) |
2115 | break; | |
2116 | ||
2117 | /* | |
2d21ac55 | 2118 | * Try to get the lock on the copy_object. |
1c79356b A |
2119 | */ |
2120 | if (!vm_object_lock_try(copy_object)) { | |
1c79356b | 2121 | |
2d21ac55 A |
2122 | vm_object_unlock(object); |
2123 | try_failed_count++; | |
1c79356b | 2124 | |
2d21ac55 | 2125 | mutex_pause(try_failed_count); /* wait a bit */ |
1c79356b | 2126 | vm_object_lock(object); |
2d21ac55 | 2127 | |
1c79356b A |
2128 | continue; |
2129 | } | |
2d21ac55 | 2130 | try_failed_count = 0; |
1c79356b A |
2131 | |
2132 | /* | |
2d21ac55 A |
2133 | * Make another reference to the copy-object, |
2134 | * to keep it from disappearing during the | |
2135 | * copy. | |
1c79356b | 2136 | */ |
2d21ac55 | 2137 | vm_object_reference_locked(copy_object); |
1c79356b A |
2138 | |
2139 | /* | |
2d21ac55 | 2140 | * Does the page exist in the copy? |
1c79356b | 2141 | */ |
6d2010ae | 2142 | copy_offset = first_offset - copy_object->vo_shadow_offset; |
2d21ac55 | 2143 | |
6d2010ae | 2144 | if (copy_object->vo_size <= copy_offset) |
1c79356b A |
2145 | /* |
2146 | * Copy object doesn't cover this page -- do nothing. | |
2147 | */ | |
2148 | ; | |
2d21ac55 A |
2149 | else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { |
2150 | /* | |
2151 | * Page currently exists in the copy object | |
2152 | */ | |
1c79356b A |
2153 | if (copy_m->busy) { |
2154 | /* | |
2d21ac55 A |
2155 | * If the page is being brought |
2156 | * in, wait for it and then retry. | |
1c79356b A |
2157 | */ |
2158 | RELEASE_PAGE(m); | |
2d21ac55 A |
2159 | |
2160 | /* | |
2161 | * take an extra ref so object won't die | |
2162 | */ | |
2163 | vm_object_reference_locked(copy_object); | |
1c79356b A |
2164 | vm_object_unlock(copy_object); |
2165 | vm_fault_cleanup(object, first_m); | |
2166 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 2167 | |
1c79356b A |
2168 | vm_object_lock(copy_object); |
2169 | assert(copy_object->ref_count > 0); | |
2170 | VM_OBJ_RES_DECR(copy_object); | |
2d21ac55 | 2171 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
2172 | copy_object->ref_count--; |
2173 | assert(copy_object->ref_count > 0); | |
2174 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
91447636 A |
2175 | /* |
2176 | * ENCRYPTED SWAP: | |
2177 | * it's OK if the "copy_m" page is encrypted, | |
2178 | * because we're not moving it nor handling its | |
2179 | * contents. | |
2180 | */ | |
1c79356b A |
2181 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { |
2182 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
2d21ac55 | 2183 | |
1c79356b | 2184 | vm_object_unlock(copy_object); |
9bccf70c | 2185 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 2186 | vm_object_deallocate(copy_object); |
2d21ac55 | 2187 | |
1c79356b A |
2188 | goto backoff; |
2189 | } else { | |
2190 | vm_object_unlock(copy_object); | |
2191 | vm_object_deallocate(copy_object); | |
9bccf70c | 2192 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
2193 | |
2194 | return (VM_FAULT_RETRY); | |
1c79356b A |
2195 | } |
2196 | } | |
2197 | } | |
2198 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
2199 | /* | |
2200 | * If PAGED_OUT is TRUE, then the page used to exist | |
2201 | * in the copy-object, and has already been paged out. | |
2202 | * We don't need to repeat this. If PAGED_OUT is | |
2203 | * FALSE, then either we don't know (!pager_created, | |
2204 | * for example) or it hasn't been paged out. | |
2205 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
2206 | * We must copy the page to the copy object. | |
2207 | */ | |
2208 | ||
2d21ac55 A |
2209 | if (vm_backing_store_low) { |
2210 | /* | |
2211 | * we are protecting the system from | |
2212 | * backing store exhaustion. If so | |
2213 | * sleep unless we are privileged. | |
2214 | */ | |
2215 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
2216 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
55e303ae | 2217 | |
55e303ae A |
2218 | RELEASE_PAGE(m); |
2219 | VM_OBJ_RES_DECR(copy_object); | |
2d21ac55 | 2220 | vm_object_lock_assert_exclusive(copy_object); |
55e303ae A |
2221 | copy_object->ref_count--; |
2222 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 2223 | |
55e303ae A |
2224 | vm_object_unlock(copy_object); |
2225 | vm_fault_cleanup(object, first_m); | |
91447636 | 2226 | thread_block(THREAD_CONTINUE_NULL); |
2d21ac55 A |
2227 | thread_interrupt_level(interruptible_state); |
2228 | ||
2229 | return (VM_FAULT_RETRY); | |
55e303ae A |
2230 | } |
2231 | } | |
1c79356b | 2232 | /* |
2d21ac55 | 2233 | * Allocate a page for the copy |
1c79356b A |
2234 | */ |
2235 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
2d21ac55 | 2236 | |
1c79356b A |
2237 | if (copy_m == VM_PAGE_NULL) { |
2238 | RELEASE_PAGE(m); | |
2d21ac55 | 2239 | |
1c79356b | 2240 | VM_OBJ_RES_DECR(copy_object); |
2d21ac55 | 2241 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
2242 | copy_object->ref_count--; |
2243 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 2244 | |
1c79356b A |
2245 | vm_object_unlock(copy_object); |
2246 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 2247 | thread_interrupt_level(interruptible_state); |
1c79356b | 2248 | |
2d21ac55 A |
2249 | return (VM_FAULT_MEMORY_SHORTAGE); |
2250 | } | |
1c79356b | 2251 | /* |
2d21ac55 | 2252 | * Must copy page into copy-object. |
1c79356b | 2253 | */ |
1c79356b A |
2254 | vm_page_copy(m, copy_m); |
2255 | ||
2256 | /* | |
2d21ac55 A |
2257 | * If the old page was in use by any users |
2258 | * of the copy-object, it must be removed | |
2259 | * from all pmaps. (We can't know which | |
2260 | * pmaps use it.) | |
1c79356b | 2261 | */ |
2d21ac55 A |
2262 | if (m->pmapped) |
2263 | pmap_disconnect(m->phys_page); | |
1c79356b | 2264 | |
fe8ab488 A |
2265 | if (m->clustered) { |
2266 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
2267 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2268 | } | |
1c79356b | 2269 | /* |
2d21ac55 A |
2270 | * If there's a pager, then immediately |
2271 | * page out this page, using the "initialize" | |
2272 | * option. Else, we use the copy. | |
1c79356b | 2273 | */ |
fe8ab488 | 2274 | if ((!copy_object->pager_ready) |
2d21ac55 A |
2275 | #if MACH_PAGEMAP |
2276 | || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT | |
1c79356b | 2277 | #endif |
39236c6e | 2278 | || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT |
2d21ac55 A |
2279 | ) { |
2280 | ||
2281 | vm_page_lockspin_queues(); | |
2282 | assert(!m->cleaning); | |
1c79356b A |
2283 | vm_page_activate(copy_m); |
2284 | vm_page_unlock_queues(); | |
2d21ac55 | 2285 | |
316670eb | 2286 | SET_PAGE_DIRTY(copy_m, TRUE); |
1c79356b | 2287 | PAGE_WAKEUP_DONE(copy_m); |
316670eb | 2288 | |
39236c6e A |
2289 | } else if (copy_object->internal && |
2290 | (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE)) { | |
316670eb A |
2291 | /* |
2292 | * For internal objects check with the pager to see | |
2293 | * if the page already exists in the backing store. | |
2294 | * If yes, then we can drop the copy page. If not, | |
2295 | * then we'll activate it, mark it dirty and keep it | |
2296 | * around. | |
2297 | */ | |
2298 | ||
2299 | kern_return_t kr = KERN_SUCCESS; | |
2300 | ||
2301 | memory_object_t copy_pager = copy_object->pager; | |
2302 | assert(copy_pager != MEMORY_OBJECT_NULL); | |
2303 | vm_object_paging_begin(copy_object); | |
2304 | ||
2305 | vm_object_unlock(copy_object); | |
2306 | ||
2307 | kr = memory_object_data_request( | |
2308 | copy_pager, | |
2309 | copy_offset + copy_object->paging_offset, | |
2310 | 0, /* Only query the pager. */ | |
2311 | VM_PROT_READ, | |
2312 | NULL); | |
2313 | ||
2314 | vm_object_lock(copy_object); | |
2315 | ||
2316 | vm_object_paging_end(copy_object); | |
2317 | ||
2318 | /* | |
2319 | * Since we dropped the copy_object's lock, | |
2320 | * check whether we'll have to deallocate | |
2321 | * the hard way. | |
2322 | */ | |
2323 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { | |
2324 | vm_object_unlock(copy_object); | |
2325 | vm_object_deallocate(copy_object); | |
2326 | vm_object_lock(object); | |
2327 | ||
2328 | continue; | |
2329 | } | |
2330 | if (kr == KERN_SUCCESS) { | |
2331 | /* | |
2332 | * The pager has the page. We don't want to overwrite | |
2333 | * that page by sending this one out to the backing store. | |
2334 | * So we drop the copy page. | |
2335 | */ | |
2336 | VM_PAGE_FREE(copy_m); | |
2337 | ||
2338 | } else { | |
2339 | /* | |
2340 | * The pager doesn't have the page. We'll keep this one | |
2341 | * around in the copy object. It might get sent out to | |
2342 | * the backing store under memory pressure. | |
2343 | */ | |
2344 | vm_page_lockspin_queues(); | |
2345 | assert(!m->cleaning); | |
2346 | vm_page_activate(copy_m); | |
2347 | vm_page_unlock_queues(); | |
2348 | ||
2349 | SET_PAGE_DIRTY(copy_m, TRUE); | |
2350 | PAGE_WAKEUP_DONE(copy_m); | |
2351 | } | |
2352 | } else { | |
2353 | ||
1c79356b | 2354 | assert(copy_m->busy == TRUE); |
2d21ac55 | 2355 | assert(!m->cleaning); |
1c79356b A |
2356 | |
2357 | /* | |
2d21ac55 | 2358 | * dirty is protected by the object lock |
1c79356b | 2359 | */ |
316670eb | 2360 | SET_PAGE_DIRTY(copy_m, TRUE); |
1c79356b | 2361 | |
2d21ac55 A |
2362 | /* |
2363 | * The page is already ready for pageout: | |
2364 | * not on pageout queues and busy. | |
2365 | * Unlock everything except the | |
2366 | * copy_object itself. | |
2367 | */ | |
1c79356b A |
2368 | vm_object_unlock(object); |
2369 | ||
2370 | /* | |
2d21ac55 A |
2371 | * Write the page to the copy-object, |
2372 | * flushing it from the kernel. | |
1c79356b | 2373 | */ |
1c79356b A |
2374 | vm_pageout_initialize_page(copy_m); |
2375 | ||
2376 | /* | |
2d21ac55 A |
2377 | * Since the pageout may have |
2378 | * temporarily dropped the | |
2379 | * copy_object's lock, we | |
2380 | * check whether we'll have | |
2381 | * to deallocate the hard way. | |
1c79356b | 2382 | */ |
2d21ac55 | 2383 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { |
1c79356b A |
2384 | vm_object_unlock(copy_object); |
2385 | vm_object_deallocate(copy_object); | |
2386 | vm_object_lock(object); | |
2d21ac55 | 2387 | |
1c79356b A |
2388 | continue; |
2389 | } | |
1c79356b | 2390 | /* |
2d21ac55 A |
2391 | * Pick back up the old object's |
2392 | * lock. [It is safe to do so, | |
2393 | * since it must be deeper in the | |
2394 | * object tree.] | |
1c79356b | 2395 | */ |
1c79356b A |
2396 | vm_object_lock(object); |
2397 | } | |
316670eb | 2398 | |
1c79356b | 2399 | /* |
2d21ac55 A |
2400 | * Because we're pushing a page upward |
2401 | * in the object tree, we must restart | |
2402 | * any faults that are waiting here. | |
2403 | * [Note that this is an expansion of | |
2404 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
2405 | * wait result]. Can't turn off the page's | |
2406 | * busy bit because we're not done with it. | |
1c79356b | 2407 | */ |
1c79356b A |
2408 | if (m->wanted) { |
2409 | m->wanted = FALSE; | |
2d21ac55 | 2410 | thread_wakeup_with_result((event_t) m, THREAD_RESTART); |
1c79356b A |
2411 | } |
2412 | } | |
1c79356b | 2413 | /* |
2d21ac55 A |
2414 | * The reference count on copy_object must be |
2415 | * at least 2: one for our extra reference, | |
2416 | * and at least one from the outside world | |
2417 | * (we checked that when we last locked | |
2418 | * copy_object). | |
1c79356b | 2419 | */ |
2d21ac55 | 2420 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
2421 | copy_object->ref_count--; |
2422 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 2423 | |
1c79356b A |
2424 | VM_OBJ_RES_DECR(copy_object); |
2425 | vm_object_unlock(copy_object); | |
2426 | ||
2427 | break; | |
2428 | } | |
b0d623f7 A |
2429 | |
2430 | done: | |
1c79356b A |
2431 | *result_page = m; |
2432 | *top_page = first_m; | |
2433 | ||
2434 | XPR(XPR_VM_FAULT, | |
2435 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
b0d623f7 | 2436 | object, offset, m, first_m, 0); |
1c79356b | 2437 | |
2d21ac55 | 2438 | if (m != VM_PAGE_NULL) { |
b0d623f7 | 2439 | retval = VM_FAULT_SUCCESS; |
fe8ab488 | 2440 | |
2d21ac55 | 2441 | if (my_fault == DBG_PAGEIN_FAULT) { |
55e303ae | 2442 | |
fe8ab488 | 2443 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2d21ac55 | 2444 | |
fe8ab488 | 2445 | if (m->object->internal) |
b0d623f7 | 2446 | my_fault = DBG_PAGEIND_FAULT; |
fe8ab488 | 2447 | else |
b0d623f7 | 2448 | my_fault = DBG_PAGEINV_FAULT; |
2d21ac55 A |
2449 | |
2450 | /* | |
2451 | * evaluate access pattern and update state | |
2452 | * vm_fault_deactivate_behind depends on the | |
2453 | * state being up to date | |
2454 | */ | |
2455 | vm_fault_is_sequential(object, offset, fault_info->behavior); | |
2456 | ||
2457 | vm_fault_deactivate_behind(object, offset, fault_info->behavior); | |
39236c6e A |
2458 | } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) { |
2459 | ||
2460 | VM_STAT_INCR(decompressions); | |
2d21ac55 A |
2461 | } |
2462 | if (type_of_fault) | |
2463 | *type_of_fault = my_fault; | |
b0d623f7 A |
2464 | } else { |
2465 | retval = VM_FAULT_SUCCESS_NO_VM_PAGE; | |
2466 | assert(first_m == VM_PAGE_NULL); | |
2467 | assert(object == first_object); | |
2468 | } | |
2d21ac55 | 2469 | |
55e303ae A |
2470 | thread_interrupt_level(interruptible_state); |
2471 | ||
1c79356b A |
2472 | #if TRACEFAULTPAGE |
2473 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
2474 | #endif | |
b0d623f7 | 2475 | return retval; |
1c79356b | 2476 | |
2d21ac55 | 2477 | backoff: |
9bccf70c | 2478 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 2479 | |
1c79356b | 2480 | if (wait_result == THREAD_INTERRUPTED) |
2d21ac55 A |
2481 | return (VM_FAULT_INTERRUPTED); |
2482 | return (VM_FAULT_RETRY); | |
1c79356b A |
2483 | |
2484 | #undef RELEASE_PAGE | |
2485 | } | |
2486 | ||
2d21ac55 A |
2487 | |
2488 | ||
593a1d5f A |
2489 | /* |
2490 | * CODE SIGNING: | |
2491 | * When soft faulting a page, we have to validate the page if: | |
2492 | * 1. the page is being mapped in user space | |
2493 | * 2. the page hasn't already been found to be "tainted" | |
2494 | * 3. the page belongs to a code-signed object | |
2495 | * 4. the page has not been validated yet or has been mapped for write. | |
2496 | */ | |
2497 | #define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \ | |
2498 | ((pmap) != kernel_pmap /*1*/ && \ | |
2499 | !(page)->cs_tainted /*2*/ && \ | |
2500 | (page)->object->code_signed /*3*/ && \ | |
2501 | (!(page)->cs_validated || (page)->wpmapped /*4*/)) | |
2502 | ||
2503 | ||
55e303ae | 2504 | /* |
2d21ac55 A |
2505 | * page queue lock must NOT be held |
2506 | * m->object must be locked | |
2507 | * | |
2508 | * NOTE: m->object could be locked "shared" only if we are called | |
2509 | * from vm_fault() as part of a soft fault. If so, we must be | |
2510 | * careful not to modify the VM object in any way that is not | |
2511 | * legal under a shared lock... | |
55e303ae | 2512 | */ |
15129b1c A |
2513 | extern int proc_selfpid(void); |
2514 | extern char *proc_name_address(void *p); | |
2d21ac55 A |
2515 | unsigned long cs_enter_tainted_rejected = 0; |
2516 | unsigned long cs_enter_tainted_accepted = 0; | |
2517 | kern_return_t | |
2518 | vm_fault_enter(vm_page_t m, | |
2519 | pmap_t pmap, | |
2520 | vm_map_offset_t vaddr, | |
2521 | vm_prot_t prot, | |
6d2010ae | 2522 | vm_prot_t fault_type, |
2d21ac55 A |
2523 | boolean_t wired, |
2524 | boolean_t change_wiring, | |
2525 | boolean_t no_cache, | |
6d2010ae | 2526 | boolean_t cs_bypass, |
fe8ab488 A |
2527 | __unused int user_tag, |
2528 | int pmap_options, | |
316670eb | 2529 | boolean_t *need_retry, |
2d21ac55 | 2530 | int *type_of_fault) |
55e303ae | 2531 | { |
d1ecb069 | 2532 | kern_return_t kr, pe_result; |
2d21ac55 | 2533 | boolean_t previously_pmapped = m->pmapped; |
b0d623f7 A |
2534 | boolean_t must_disconnect = 0; |
2535 | boolean_t map_is_switched, map_is_switch_protected; | |
39236c6e | 2536 | int cs_enforcement_enabled; |
b0d623f7 | 2537 | |
2d21ac55 A |
2538 | vm_object_lock_assert_held(m->object); |
2539 | #if DEBUG | |
b0d623f7 | 2540 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
2d21ac55 A |
2541 | #endif /* DEBUG */ |
2542 | ||
2543 | if (m->phys_page == vm_page_guard_addr) { | |
2544 | assert(m->fictitious); | |
2545 | return KERN_SUCCESS; | |
2546 | } | |
2547 | ||
6d2010ae | 2548 | if (*type_of_fault == DBG_ZERO_FILL_FAULT) { |
2d21ac55 | 2549 | |
6d2010ae A |
2550 | vm_object_lock_assert_exclusive(m->object); |
2551 | ||
2552 | } else if ((fault_type & VM_PROT_WRITE) == 0) { | |
2d21ac55 | 2553 | /* |
6d2010ae A |
2554 | * This is not a "write" fault, so we |
2555 | * might not have taken the object lock | |
2556 | * exclusively and we might not be able | |
2557 | * to update the "wpmapped" bit in | |
2558 | * vm_fault_enter(). | |
2559 | * Let's just grant read access to | |
2560 | * the page for now and we'll | |
2561 | * soft-fault again if we need write | |
2562 | * access later... | |
2d21ac55 | 2563 | */ |
6d2010ae | 2564 | prot &= ~VM_PROT_WRITE; |
fe8ab488 | 2565 | } |
6d2010ae | 2566 | if (m->pmapped == FALSE) { |
2d21ac55 | 2567 | |
fe8ab488 A |
2568 | if (m->clustered) { |
2569 | if (*type_of_fault == DBG_CACHE_HIT_FAULT) { | |
2570 | /* | |
2571 | * found it in the cache, but this | |
2572 | * is the first fault-in of the page (m->pmapped == FALSE) | |
2573 | * so it must have come in as part of | |
2574 | * a cluster... account 1 pagein against it | |
2575 | */ | |
2576 | if (m->object->internal) | |
2577 | *type_of_fault = DBG_PAGEIND_FAULT; | |
2578 | else | |
2579 | *type_of_fault = DBG_PAGEINV_FAULT; | |
2580 | ||
2581 | VM_PAGE_COUNT_AS_PAGEIN(m); | |
55e303ae | 2582 | } |
fe8ab488 | 2583 | VM_PAGE_CONSUME_CLUSTERED(m); |
2d21ac55 | 2584 | } |
6d2010ae | 2585 | } |
2d21ac55 A |
2586 | |
2587 | if (*type_of_fault != DBG_COW_FAULT) { | |
2588 | DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); | |
2589 | ||
2590 | if (pmap == kernel_pmap) { | |
2591 | DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL); | |
2592 | } | |
2593 | } | |
2594 | ||
b0d623f7 | 2595 | /* Validate code signature if necessary. */ |
593a1d5f A |
2596 | if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) { |
2597 | vm_object_lock_assert_exclusive(m->object); | |
2598 | ||
2599 | if (m->cs_validated) { | |
2600 | vm_cs_revalidates++; | |
2601 | } | |
2602 | ||
b0d623f7 A |
2603 | /* VM map is locked, so 1 ref will remain on VM object - |
2604 | * so no harm if vm_page_validate_cs drops the object lock */ | |
593a1d5f A |
2605 | vm_page_validate_cs(m); |
2606 | } | |
2607 | ||
b0d623f7 A |
2608 | #define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/) |
2609 | ||
2610 | map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) && | |
2611 | (pmap == vm_map_pmap(current_thread()->map))); | |
2612 | map_is_switch_protected = current_thread()->map->switch_protect; | |
2613 | ||
2614 | /* If the map is switched, and is switch-protected, we must protect | |
2615 | * some pages from being write-faulted: immutable pages because by | |
2616 | * definition they may not be written, and executable pages because that | |
2617 | * would provide a way to inject unsigned code. | |
2618 | * If the page is immutable, we can simply return. However, we can't | |
2619 | * immediately determine whether a page is executable anywhere. But, | |
2620 | * we can disconnect it everywhere and remove the executable protection | |
2621 | * from the current map. We do that below right before we do the | |
2622 | * PMAP_ENTER. | |
2623 | */ | |
39236c6e A |
2624 | cs_enforcement_enabled = cs_enforcement(NULL); |
2625 | ||
2626 | if(cs_enforcement_enabled && map_is_switched && | |
b0d623f7 A |
2627 | map_is_switch_protected && page_immutable(m, prot) && |
2628 | (prot & VM_PROT_WRITE)) | |
2629 | { | |
2630 | return KERN_CODESIGN_ERROR; | |
2631 | } | |
2632 | ||
2633 | /* A page could be tainted, or pose a risk of being tainted later. | |
2634 | * Check whether the receiving process wants it, and make it feel | |
2635 | * the consequences (that hapens in cs_invalid_page()). | |
2636 | * For CS Enforcement, two other conditions will | |
2637 | * cause that page to be tainted as well: | |
2638 | * - pmapping an unsigned page executable - this means unsigned code; | |
2639 | * - writeable mapping of a validated page - the content of that page | |
2640 | * can be changed without the kernel noticing, therefore unsigned | |
2641 | * code can be created | |
2642 | */ | |
2643 | if (m->cs_tainted || | |
39236c6e | 2644 | ((cs_enforcement_enabled && !cs_bypass ) && |
b0d623f7 A |
2645 | (/* The page is unsigned and wants to be executable */ |
2646 | (!m->cs_validated && (prot & VM_PROT_EXECUTE)) || | |
2647 | /* The page should be immutable, but is in danger of being modified | |
2648 | * This is the case where we want policy from the code directory - | |
2649 | * is the page immutable or not? For now we have to assume that | |
2650 | * code pages will be immutable, data pages not. | |
2651 | * We'll assume a page is a code page if it has a code directory | |
2652 | * and we fault for execution. | |
2653 | * That is good enough since if we faulted the code page for | |
2654 | * writing in another map before, it is wpmapped; if we fault | |
2655 | * it for writing in this map later it will also be faulted for executing | |
2656 | * at the same time; and if we fault for writing in another map | |
2657 | * later, we will disconnect it from this pmap so we'll notice | |
2658 | * the change. | |
2659 | */ | |
2660 | (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped)) | |
2661 | )) | |
2662 | ) | |
2663 | { | |
2664 | /* We will have a tainted page. Have to handle the special case | |
2665 | * of a switched map now. If the map is not switched, standard | |
2666 | * procedure applies - call cs_invalid_page(). | |
2667 | * If the map is switched, the real owner is invalid already. | |
2668 | * There is no point in invalidating the switching process since | |
2669 | * it will not be executing from the map. So we don't call | |
2670 | * cs_invalid_page() in that case. */ | |
2671 | boolean_t reject_page; | |
2672 | if(map_is_switched) { | |
2673 | assert(pmap==vm_map_pmap(current_thread()->map)); | |
2674 | assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE)); | |
2675 | reject_page = FALSE; | |
2676 | } else { | |
39236c6e A |
2677 | if (cs_debug > 5) |
2678 | printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s slid: %s prot: 0x%x\n", | |
2679 | m->object->code_signed ? "yes" : "no", | |
2680 | m->cs_validated ? "yes" : "no", | |
2681 | m->cs_tainted ? "yes" : "no", | |
2682 | m->wpmapped ? "yes" : "no", | |
2683 | m->slid ? "yes" : "no", | |
2684 | (int)prot); | |
b0d623f7 A |
2685 | reject_page = cs_invalid_page((addr64_t) vaddr); |
2686 | } | |
2687 | ||
2688 | if (reject_page) { | |
fe8ab488 | 2689 | /* reject the invalid page: abort the page fault */ |
15129b1c A |
2690 | int pid; |
2691 | const char *procname; | |
2692 | task_t task; | |
2693 | vm_object_t file_object, shadow; | |
2694 | vm_object_offset_t file_offset; | |
2695 | char *pathname, *filename; | |
2696 | vm_size_t pathname_len, filename_len; | |
2697 | boolean_t truncated_path; | |
2698 | #define __PATH_MAX 1024 | |
2699 | struct timespec mtime, cs_mtime; | |
2700 | ||
b0d623f7 A |
2701 | kr = KERN_CODESIGN_ERROR; |
2702 | cs_enter_tainted_rejected++; | |
15129b1c A |
2703 | |
2704 | /* get process name and pid */ | |
2705 | procname = "?"; | |
2706 | task = current_task(); | |
2707 | pid = proc_selfpid(); | |
2708 | if (task->bsd_info != NULL) | |
2709 | procname = proc_name_address(task->bsd_info); | |
2710 | ||
2711 | /* get file's VM object */ | |
2712 | file_object = m->object; | |
2713 | file_offset = m->offset; | |
2714 | for (shadow = file_object->shadow; | |
2715 | shadow != VM_OBJECT_NULL; | |
2716 | shadow = file_object->shadow) { | |
2717 | vm_object_lock_shared(shadow); | |
2718 | if (file_object != m->object) { | |
2719 | vm_object_unlock(file_object); | |
2720 | } | |
2721 | file_offset += file_object->vo_shadow_offset; | |
2722 | file_object = shadow; | |
2723 | } | |
2724 | ||
2725 | mtime.tv_sec = 0; | |
2726 | mtime.tv_nsec = 0; | |
2727 | cs_mtime.tv_sec = 0; | |
2728 | cs_mtime.tv_nsec = 0; | |
2729 | ||
2730 | /* get file's pathname and/or filename */ | |
2731 | pathname = NULL; | |
2732 | filename = NULL; | |
2733 | pathname_len = 0; | |
2734 | filename_len = 0; | |
2735 | truncated_path = FALSE; | |
2736 | if (file_object->pager == NULL) { | |
2737 | /* no pager -> no file -> no pathname */ | |
2738 | pathname = (char *) "<nil>"; | |
2739 | } else { | |
2740 | pathname = (char *)kalloc(__PATH_MAX * 2); | |
2741 | if (pathname) { | |
fe8ab488 | 2742 | pathname[0] = '\0'; |
15129b1c A |
2743 | pathname_len = __PATH_MAX; |
2744 | filename = pathname + pathname_len; | |
2745 | filename_len = __PATH_MAX; | |
2746 | } | |
2747 | vnode_pager_get_object_name(file_object->pager, | |
2748 | pathname, | |
2749 | pathname_len, | |
2750 | filename, | |
2751 | filename_len, | |
2752 | &truncated_path); | |
2753 | vnode_pager_get_object_mtime(file_object->pager, | |
2754 | &mtime, | |
2755 | &cs_mtime); | |
2756 | } | |
2757 | printf("CODE SIGNING: process %d[%s]: " | |
2758 | "rejecting invalid page at address 0x%llx " | |
2759 | "from offset 0x%llx in file \"%s%s%s\" " | |
2760 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " | |
2761 | "(signed:%d validated:%d tainted:%d " | |
2762 | "wpmapped:%d slid:%d)\n", | |
2763 | pid, procname, (addr64_t) vaddr, | |
2764 | file_offset, | |
fe8ab488 | 2765 | (pathname ? pathname : ""), |
15129b1c A |
2766 | (truncated_path ? "/.../" : ""), |
2767 | (truncated_path ? filename : ""), | |
2768 | cs_mtime.tv_sec, cs_mtime.tv_nsec, | |
2769 | ((cs_mtime.tv_sec == mtime.tv_sec && | |
2770 | cs_mtime.tv_nsec == mtime.tv_nsec) | |
2771 | ? "==" | |
2772 | : "!="), | |
2773 | mtime.tv_sec, mtime.tv_nsec, | |
2774 | m->object->code_signed, | |
2775 | m->cs_validated, | |
2776 | m->cs_tainted, | |
2777 | m->wpmapped, | |
2778 | m->slid); | |
2779 | if (file_object != m->object) { | |
2780 | vm_object_unlock(file_object); | |
2781 | } | |
2782 | if (pathname_len != 0) { | |
2783 | kfree(pathname, __PATH_MAX * 2); | |
2784 | pathname = NULL; | |
2785 | filename = NULL; | |
2786 | } | |
b0d623f7 | 2787 | } else { |
fe8ab488 | 2788 | /* proceed with the invalid page */ |
b0d623f7 | 2789 | kr = KERN_SUCCESS; |
fe8ab488 A |
2790 | if (!m->cs_validated) { |
2791 | /* | |
2792 | * This page has not been validated, so it | |
2793 | * must not belong to a code-signed object | |
2794 | * and should not be forcefully considered | |
2795 | * as tainted. | |
2796 | * We're just concerned about it here because | |
2797 | * we've been asked to "execute" it but that | |
2798 | * does not mean that it should cause other | |
2799 | * accesses to fail. | |
2800 | * This happens when a debugger sets a | |
2801 | * breakpoint and we then execute code in | |
2802 | * that page. Marking the page as "tainted" | |
2803 | * would cause any inspection tool ("leaks", | |
2804 | * "vmmap", "CrashReporter", ...) to get killed | |
2805 | * due to code-signing violation on that page, | |
2806 | * even though they're just reading it and not | |
2807 | * executing from it. | |
2808 | */ | |
2809 | assert(!m->object->code_signed); | |
2810 | } else { | |
2811 | /* | |
2812 | * Page might have been tainted before or not; | |
2813 | * now it definitively is. If the page wasn't | |
2814 | * tainted, we must disconnect it from all | |
2815 | * pmaps later, to force existing mappings | |
2816 | * through that code path for re-consideration | |
2817 | * of the validity of that page. | |
2818 | */ | |
2819 | must_disconnect = !m->cs_tainted; | |
2820 | m->cs_tainted = TRUE; | |
2821 | } | |
b0d623f7 | 2822 | cs_enter_tainted_accepted++; |
2d21ac55 | 2823 | } |
15129b1c A |
2824 | if (kr != KERN_SUCCESS) { |
2825 | if (cs_debug) { | |
2826 | printf("CODESIGNING: vm_fault_enter(0x%llx): " | |
fe8ab488 A |
2827 | "*** INVALID PAGE ***\n", |
2828 | (long long)vaddr); | |
15129b1c | 2829 | } |
39236c6e | 2830 | #if !SECURE_KERNEL |
15129b1c | 2831 | if (cs_enforcement_panic) { |
39236c6e A |
2832 | panic("CODESIGNING: panicking on invalid page\n"); |
2833 | } | |
2834 | #endif | |
2d21ac55 | 2835 | } |
b0d623f7 | 2836 | |
2d21ac55 A |
2837 | } else { |
2838 | /* proceed with the valid page */ | |
2839 | kr = KERN_SUCCESS; | |
2840 | } | |
2841 | ||
39236c6e A |
2842 | boolean_t page_queues_locked = FALSE; |
2843 | #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \ | |
2844 | MACRO_BEGIN \ | |
2845 | if (! page_queues_locked) { \ | |
2846 | page_queues_locked = TRUE; \ | |
2847 | vm_page_lockspin_queues(); \ | |
2848 | } \ | |
2849 | MACRO_END | |
2850 | #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \ | |
2851 | MACRO_BEGIN \ | |
2852 | if (page_queues_locked) { \ | |
2853 | page_queues_locked = FALSE; \ | |
2854 | vm_page_unlock_queues(); \ | |
2855 | } \ | |
2856 | MACRO_END | |
2857 | ||
2858 | /* | |
2859 | * Hold queues lock to manipulate | |
2860 | * the page queues. Change wiring | |
2861 | * case is obvious. | |
2862 | */ | |
2863 | assert(m->compressor || m->object != compressor_object); | |
2864 | if (m->compressor) { | |
2865 | /* | |
2866 | * Compressor pages are neither wired | |
2867 | * nor pageable and should never change. | |
2868 | */ | |
2869 | assert(m->object == compressor_object); | |
2870 | } else if (change_wiring) { | |
2871 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); | |
2872 | ||
2873 | if (wired) { | |
2874 | if (kr == KERN_SUCCESS) { | |
2875 | vm_page_wire(m); | |
2876 | } | |
2877 | } else { | |
2878 | vm_page_unwire(m, TRUE); | |
2879 | } | |
2880 | /* we keep the page queues lock, if we need it later */ | |
2881 | ||
2882 | } else { | |
2883 | if (kr != KERN_SUCCESS) { | |
2884 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); | |
2885 | vm_page_deactivate(m); | |
2886 | /* we keep the page queues lock, if we need it later */ | |
2887 | } else if (((!m->active && !m->inactive) || | |
2888 | m->clean_queue || | |
2889 | no_cache) && | |
2890 | !VM_PAGE_WIRED(m) && !m->throttled) { | |
2891 | ||
2892 | if (vm_page_local_q && | |
2893 | !no_cache && | |
2894 | (*type_of_fault == DBG_COW_FAULT || | |
2895 | *type_of_fault == DBG_ZERO_FILL_FAULT) ) { | |
2896 | struct vpl *lq; | |
2897 | uint32_t lid; | |
2898 | ||
2899 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); | |
2900 | vm_object_lock_assert_exclusive(m->object); | |
2901 | ||
2902 | /* | |
2903 | * we got a local queue to stuff this | |
2904 | * new page on... | |
2905 | * its safe to manipulate local and | |
2906 | * local_id at this point since we're | |
2907 | * behind an exclusive object lock and | |
2908 | * the page is not on any global queue. | |
2909 | * | |
2910 | * we'll use the current cpu number to | |
2911 | * select the queue note that we don't | |
2912 | * need to disable preemption... we're | |
2913 | * going to behind the local queue's | |
2914 | * lock to do the real work | |
2915 | */ | |
2916 | lid = cpu_number(); | |
2917 | ||
2918 | lq = &vm_page_local_q[lid].vpl_un.vpl; | |
2919 | ||
2920 | VPL_LOCK(&lq->vpl_lock); | |
2921 | ||
2922 | queue_enter(&lq->vpl_queue, m, | |
2923 | vm_page_t, pageq); | |
2924 | m->local = TRUE; | |
2925 | m->local_id = lid; | |
2926 | lq->vpl_count++; | |
2927 | ||
2928 | if (m->object->internal) | |
2929 | lq->vpl_internal_count++; | |
2930 | else | |
2931 | lq->vpl_external_count++; | |
2932 | ||
2933 | VPL_UNLOCK(&lq->vpl_lock); | |
2934 | ||
2935 | if (lq->vpl_count > vm_page_local_q_soft_limit) | |
2936 | { | |
2937 | /* | |
2938 | * we're beyond the soft limit | |
2939 | * for the local queue | |
2940 | * vm_page_reactivate_local will | |
2941 | * 'try' to take the global page | |
2942 | * queue lock... if it can't | |
2943 | * that's ok... we'll let the | |
2944 | * queue continue to grow up | |
2945 | * to the hard limit... at that | |
2946 | * point we'll wait for the | |
2947 | * lock... once we've got the | |
2948 | * lock, we'll transfer all of | |
2949 | * the pages from the local | |
2950 | * queue to the global active | |
2951 | * queue | |
2952 | */ | |
2953 | vm_page_reactivate_local(lid, FALSE, FALSE); | |
2954 | } | |
2955 | } else { | |
2956 | ||
2957 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); | |
2958 | ||
2959 | /* | |
2960 | * test again now that we hold the | |
2961 | * page queue lock | |
2962 | */ | |
2963 | if (!VM_PAGE_WIRED(m)) { | |
2964 | if (m->clean_queue) { | |
2965 | VM_PAGE_QUEUES_REMOVE(m); | |
2966 | ||
2967 | vm_pageout_cleaned_reactivated++; | |
2968 | vm_pageout_cleaned_fault_reactivated++; | |
2969 | } | |
2970 | ||
2971 | if ((!m->active && | |
2972 | !m->inactive) || | |
2973 | no_cache) { | |
2974 | /* | |
2975 | * If this is a no_cache mapping | |
2976 | * and the page has never been | |
2977 | * mapped before or was | |
2978 | * previously a no_cache page, | |
2979 | * then we want to leave pages | |
2980 | * in the speculative state so | |
2981 | * that they can be readily | |
2982 | * recycled if free memory runs | |
2983 | * low. Otherwise the page is | |
2984 | * activated as normal. | |
2985 | */ | |
2986 | ||
2987 | if (no_cache && | |
2988 | (!previously_pmapped || | |
2989 | m->no_cache)) { | |
2990 | m->no_cache = TRUE; | |
2991 | ||
2992 | if (!m->speculative) | |
2993 | vm_page_speculate(m, FALSE); | |
2994 | ||
2995 | } else if (!m->active && | |
2996 | !m->inactive) { | |
2997 | ||
2998 | vm_page_activate(m); | |
2999 | } | |
3000 | } | |
3001 | } | |
3002 | /* we keep the page queues lock, if we need it later */ | |
3003 | } | |
3004 | } | |
3005 | } | |
39236c6e A |
3006 | /* we're done with the page queues lock, if we ever took it */ |
3007 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); | |
3008 | ||
3009 | ||
b0d623f7 A |
3010 | /* If we have a KERN_SUCCESS from the previous checks, we either have |
3011 | * a good page, or a tainted page that has been accepted by the process. | |
3012 | * In both cases the page will be entered into the pmap. | |
3013 | * If the page is writeable, we need to disconnect it from other pmaps | |
3014 | * now so those processes can take note. | |
3015 | */ | |
2d21ac55 | 3016 | if (kr == KERN_SUCCESS) { |
fe8ab488 | 3017 | |
2d21ac55 A |
3018 | /* |
3019 | * NOTE: we may only hold the vm_object lock SHARED | |
fe8ab488 A |
3020 | * at this point, so we need the phys_page lock to |
3021 | * properly serialize updating the pmapped and | |
3022 | * xpmapped bits | |
2d21ac55 | 3023 | */ |
fe8ab488 A |
3024 | if ((prot & VM_PROT_EXECUTE) && !m->xpmapped) { |
3025 | ||
3026 | pmap_lock_phys_page(m->phys_page); | |
3027 | /* | |
3028 | * go ahead and take the opportunity | |
3029 | * to set 'pmapped' here so that we don't | |
3030 | * need to grab this lock a 2nd time | |
3031 | * just below | |
3032 | */ | |
3033 | m->pmapped = TRUE; | |
3034 | ||
3035 | if (!m->xpmapped) { | |
3036 | ||
3037 | m->xpmapped = TRUE; | |
3038 | ||
3039 | pmap_unlock_phys_page(m->phys_page); | |
3040 | ||
3041 | if (!m->object->internal) | |
3042 | OSAddAtomic(1, &vm_page_xpmapped_external_count); | |
3043 | ||
3044 | if ((COMPRESSED_PAGER_IS_ACTIVE) && | |
3045 | m->object->internal && | |
3046 | m->object->pager != NULL) { | |
3047 | /* | |
3048 | * This page could have been | |
3049 | * uncompressed by the | |
3050 | * compressor pager and its | |
3051 | * contents might be only in | |
3052 | * the data cache. | |
3053 | * Since it's being mapped for | |
3054 | * "execute" for the fist time, | |
3055 | * make sure the icache is in | |
3056 | * sync. | |
3057 | */ | |
3058 | pmap_sync_page_data_phys(m->phys_page); | |
3059 | } | |
3060 | } else | |
3061 | pmap_unlock_phys_page(m->phys_page); | |
3062 | } else { | |
3063 | if (m->pmapped == FALSE) { | |
3064 | pmap_lock_phys_page(m->phys_page); | |
3065 | m->pmapped = TRUE; | |
3066 | pmap_unlock_phys_page(m->phys_page); | |
3067 | } | |
3068 | } | |
3069 | if (vm_page_is_slideable(m)) { | |
6d2010ae | 3070 | boolean_t was_busy = m->busy; |
39236c6e A |
3071 | |
3072 | vm_object_lock_assert_exclusive(m->object); | |
3073 | ||
6d2010ae A |
3074 | m->busy = TRUE; |
3075 | kr = vm_page_slide(m, 0); | |
3076 | assert(m->busy); | |
3077 | if(!was_busy) { | |
3078 | PAGE_WAKEUP_DONE(m); | |
3079 | } | |
3080 | if (kr != KERN_SUCCESS) { | |
3081 | /* | |
3082 | * This page has not been slid correctly, | |
3083 | * do not do the pmap_enter() ! | |
3084 | * Let vm_fault_enter() return the error | |
3085 | * so the caller can fail the fault. | |
3086 | */ | |
3087 | goto after_the_pmap_enter; | |
3088 | } | |
3089 | } | |
3090 | ||
3091 | if (fault_type & VM_PROT_WRITE) { | |
3092 | ||
3093 | if (m->wpmapped == FALSE) { | |
3094 | vm_object_lock_assert_exclusive(m->object); | |
3095 | ||
3096 | m->wpmapped = TRUE; | |
3097 | } | |
3098 | if (must_disconnect) { | |
3099 | /* | |
3100 | * We can only get here | |
3101 | * because of the CSE logic | |
3102 | */ | |
39236c6e | 3103 | assert(cs_enforcement_enabled); |
b0d623f7 | 3104 | pmap_disconnect(m->phys_page); |
6d2010ae A |
3105 | /* |
3106 | * If we are faulting for a write, we can clear | |
b0d623f7 A |
3107 | * the execute bit - that will ensure the page is |
3108 | * checked again before being executable, which | |
3109 | * protects against a map switch. | |
3110 | * This only happens the first time the page | |
3111 | * gets tainted, so we won't get stuck here | |
6d2010ae A |
3112 | * to make an already writeable page executable. |
3113 | */ | |
3114 | if (!cs_bypass){ | |
3115 | prot &= ~VM_PROT_EXECUTE; | |
3116 | } | |
b0d623f7 | 3117 | } |
4a3eedf9 | 3118 | } |
d1ecb069 A |
3119 | |
3120 | /* Prevent a deadlock by not | |
3121 | * holding the object lock if we need to wait for a page in | |
3122 | * pmap_enter() - <rdar://problem/7138958> */ | |
316670eb | 3123 | PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, 0, |
fe8ab488 A |
3124 | wired, |
3125 | pmap_options | PMAP_OPTIONS_NOWAIT, | |
3126 | pe_result); | |
d1ecb069 A |
3127 | |
3128 | if(pe_result == KERN_RESOURCE_SHORTAGE) { | |
316670eb A |
3129 | |
3130 | if (need_retry) { | |
3131 | /* | |
3132 | * this will be non-null in the case where we hold the lock | |
3133 | * on the top-object in this chain... we can't just drop | |
3134 | * the lock on the object we're inserting the page into | |
3135 | * and recall the PMAP_ENTER since we can still cause | |
3136 | * a deadlock if one of the critical paths tries to | |
3137 | * acquire the lock on the top-object and we're blocked | |
3138 | * in PMAP_ENTER waiting for memory... our only recourse | |
3139 | * is to deal with it at a higher level where we can | |
3140 | * drop both locks. | |
3141 | */ | |
3142 | *need_retry = TRUE; | |
3143 | vm_pmap_enter_retried++; | |
3144 | goto after_the_pmap_enter; | |
3145 | } | |
d1ecb069 | 3146 | /* The nonblocking version of pmap_enter did not succeed. |
316670eb A |
3147 | * and we don't need to drop other locks and retry |
3148 | * at the level above us, so | |
3149 | * use the blocking version instead. Requires marking | |
d1ecb069 A |
3150 | * the page busy and unlocking the object */ |
3151 | boolean_t was_busy = m->busy; | |
39236c6e A |
3152 | |
3153 | vm_object_lock_assert_exclusive(m->object); | |
3154 | ||
d1ecb069 A |
3155 | m->busy = TRUE; |
3156 | vm_object_unlock(m->object); | |
3157 | ||
fe8ab488 A |
3158 | PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, |
3159 | 0, wired, | |
3160 | pmap_options, pe_result); | |
316670eb | 3161 | |
d1ecb069 A |
3162 | /* Take the object lock again. */ |
3163 | vm_object_lock(m->object); | |
3164 | ||
3165 | /* If the page was busy, someone else will wake it up. | |
3166 | * Otherwise, we have to do it now. */ | |
3167 | assert(m->busy); | |
3168 | if(!was_busy) { | |
3169 | PAGE_WAKEUP_DONE(m); | |
3170 | } | |
3171 | vm_pmap_enter_blocked++; | |
3172 | } | |
2d21ac55 A |
3173 | } |
3174 | ||
6d2010ae | 3175 | after_the_pmap_enter: |
2d21ac55 | 3176 | return kr; |
55e303ae A |
3177 | } |
3178 | ||
fe8ab488 A |
3179 | void |
3180 | vm_pre_fault(vm_map_offset_t vaddr) | |
3181 | { | |
3182 | if (pmap_find_phys(current_map()->pmap, vaddr) == 0) { | |
3183 | ||
3184 | vm_fault(current_map(), /* map */ | |
3185 | vaddr, /* vaddr */ | |
3186 | VM_PROT_READ, /* fault_type */ | |
3187 | FALSE, /* change_wiring */ | |
3188 | THREAD_UNINT, /* interruptible */ | |
3189 | NULL, /* caller_pmap */ | |
3190 | 0 /* caller_pmap_addr */); | |
3191 | } | |
3192 | } | |
3193 | ||
2d21ac55 | 3194 | |
1c79356b A |
3195 | /* |
3196 | * Routine: vm_fault | |
3197 | * Purpose: | |
3198 | * Handle page faults, including pseudo-faults | |
3199 | * used to change the wiring status of pages. | |
3200 | * Returns: | |
3201 | * Explicit continuations have been removed. | |
3202 | * Implementation: | |
3203 | * vm_fault and vm_fault_page save mucho state | |
3204 | * in the moral equivalent of a closure. The state | |
3205 | * structure is allocated when first entering vm_fault | |
3206 | * and deallocated when leaving vm_fault. | |
3207 | */ | |
3208 | ||
91447636 A |
3209 | extern int _map_enter_debug; |
3210 | ||
2d21ac55 A |
3211 | unsigned long vm_fault_collapse_total = 0; |
3212 | unsigned long vm_fault_collapse_skipped = 0; | |
3213 | ||
39236c6e | 3214 | |
1c79356b A |
3215 | kern_return_t |
3216 | vm_fault( | |
3217 | vm_map_t map, | |
91447636 | 3218 | vm_map_offset_t vaddr, |
1c79356b A |
3219 | vm_prot_t fault_type, |
3220 | boolean_t change_wiring, | |
9bccf70c A |
3221 | int interruptible, |
3222 | pmap_t caller_pmap, | |
91447636 | 3223 | vm_map_offset_t caller_pmap_addr) |
fe8ab488 A |
3224 | { |
3225 | return vm_fault_internal(map, vaddr, fault_type, change_wiring, | |
3226 | interruptible, caller_pmap, caller_pmap_addr, | |
3227 | NULL); | |
3228 | } | |
3229 | ||
3230 | kern_return_t | |
3231 | vm_fault_internal( | |
3232 | vm_map_t map, | |
3233 | vm_map_offset_t vaddr, | |
3234 | vm_prot_t fault_type, | |
3235 | boolean_t change_wiring, | |
3236 | int interruptible, | |
3237 | pmap_t caller_pmap, | |
3238 | vm_map_offset_t caller_pmap_addr, | |
3239 | ppnum_t *physpage_p) | |
1c79356b A |
3240 | { |
3241 | vm_map_version_t version; /* Map version for verificiation */ | |
3242 | boolean_t wired; /* Should mapping be wired down? */ | |
3243 | vm_object_t object; /* Top-level object */ | |
3244 | vm_object_offset_t offset; /* Top-level offset */ | |
3245 | vm_prot_t prot; /* Protection for mapping */ | |
1c79356b A |
3246 | vm_object_t old_copy_object; /* Saved copy object */ |
3247 | vm_page_t result_page; /* Result of vm_fault_page */ | |
3248 | vm_page_t top_page; /* Placeholder page */ | |
3249 | kern_return_t kr; | |
3250 | ||
1c79356b | 3251 | vm_page_t m; /* Fast access to result_page */ |
2d21ac55 | 3252 | kern_return_t error_code; |
1c79356b | 3253 | vm_object_t cur_object; |
1c79356b A |
3254 | vm_object_offset_t cur_offset; |
3255 | vm_page_t cur_m; | |
3256 | vm_object_t new_object; | |
3257 | int type_of_fault; | |
2d21ac55 A |
3258 | pmap_t pmap; |
3259 | boolean_t interruptible_state; | |
91447636 | 3260 | vm_map_t real_map = map; |
1c79356b | 3261 | vm_map_t original_map = map; |
0c530ab8 | 3262 | vm_prot_t original_fault_type; |
2d21ac55 A |
3263 | struct vm_object_fault_info fault_info; |
3264 | boolean_t need_collapse = FALSE; | |
316670eb | 3265 | boolean_t need_retry = FALSE; |
39236c6e | 3266 | boolean_t *need_retry_ptr = NULL; |
2d21ac55 A |
3267 | int object_lock_type = 0; |
3268 | int cur_object_lock_type; | |
c910b4d9 | 3269 | vm_object_t top_object = VM_OBJECT_NULL; |
6d2010ae | 3270 | int throttle_delay; |
fe8ab488 | 3271 | int compressed_count_delta; |
1c79356b | 3272 | |
de355530 | 3273 | |
316670eb A |
3274 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3275 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, | |
39236c6e A |
3276 | ((uint64_t)vaddr >> 32), |
3277 | vaddr, | |
6d2010ae | 3278 | (map == kernel_map), |
1c79356b A |
3279 | 0, |
3280 | 0); | |
3281 | ||
0c530ab8 | 3282 | if (get_preemption_level() != 0) { |
316670eb A |
3283 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3284 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, | |
39236c6e A |
3285 | ((uint64_t)vaddr >> 32), |
3286 | vaddr, | |
0c530ab8 A |
3287 | KERN_FAILURE, |
3288 | 0, | |
3289 | 0); | |
3290 | ||
3291 | return (KERN_FAILURE); | |
9bccf70c | 3292 | } |
b0d623f7 | 3293 | |
9bccf70c | 3294 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b | 3295 | |
2d21ac55 A |
3296 | VM_STAT_INCR(faults); |
3297 | current_task()->faults++; | |
3298 | original_fault_type = fault_type; | |
3299 | ||
3300 | if (fault_type & VM_PROT_WRITE) | |
3301 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3302 | else | |
3303 | object_lock_type = OBJECT_LOCK_SHARED; | |
3304 | ||
3305 | cur_object_lock_type = OBJECT_LOCK_SHARED; | |
3306 | ||
3307 | RetryFault: | |
1c79356b A |
3308 | /* |
3309 | * assume we will hit a page in the cache | |
3310 | * otherwise, explicitly override with | |
3311 | * the real fault type once we determine it | |
3312 | */ | |
3313 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
3314 | ||
1c79356b A |
3315 | /* |
3316 | * Find the backing store object and offset into | |
3317 | * it to begin the search. | |
3318 | */ | |
0c530ab8 | 3319 | fault_type = original_fault_type; |
1c79356b A |
3320 | map = original_map; |
3321 | vm_map_lock_read(map); | |
1c79356b | 3322 | |
2d21ac55 A |
3323 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, |
3324 | object_lock_type, &version, | |
3325 | &object, &offset, &prot, &wired, | |
3326 | &fault_info, | |
3327 | &real_map); | |
1c79356b A |
3328 | |
3329 | if (kr != KERN_SUCCESS) { | |
3330 | vm_map_unlock_read(map); | |
3331 | goto done; | |
3332 | } | |
2d21ac55 A |
3333 | pmap = real_map->pmap; |
3334 | fault_info.interruptible = interruptible; | |
b0d623f7 | 3335 | fault_info.stealth = FALSE; |
6d2010ae | 3336 | fault_info.io_sync = FALSE; |
0b4c1975 | 3337 | fault_info.mark_zf_absent = FALSE; |
316670eb | 3338 | fault_info.batch_pmap_op = FALSE; |
1c79356b A |
3339 | |
3340 | /* | |
2d21ac55 A |
3341 | * If the page is wired, we must fault for the current protection |
3342 | * value, to avoid further faults. | |
1c79356b | 3343 | */ |
2d21ac55 | 3344 | if (wired) { |
1c79356b | 3345 | fault_type = prot | VM_PROT_WRITE; |
2d21ac55 A |
3346 | /* |
3347 | * since we're treating this fault as a 'write' | |
3348 | * we must hold the top object lock exclusively | |
3349 | */ | |
3350 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
3351 | ||
3352 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3353 | ||
3354 | if (vm_object_lock_upgrade(object) == FALSE) { | |
3355 | /* | |
3356 | * couldn't upgrade, so explictly | |
3357 | * take the lock exclusively | |
3358 | */ | |
3359 | vm_object_lock(object); | |
3360 | } | |
3361 | } | |
3362 | } | |
1c79356b A |
3363 | |
3364 | #if VM_FAULT_CLASSIFY | |
3365 | /* | |
3366 | * Temporary data gathering code | |
3367 | */ | |
3368 | vm_fault_classify(object, offset, fault_type); | |
3369 | #endif | |
3370 | /* | |
3371 | * Fast fault code. The basic idea is to do as much as | |
3372 | * possible while holding the map lock and object locks. | |
3373 | * Busy pages are not used until the object lock has to | |
3374 | * be dropped to do something (copy, zero fill, pmap enter). | |
3375 | * Similarly, paging references aren't acquired until that | |
3376 | * point, and object references aren't used. | |
3377 | * | |
3378 | * If we can figure out what to do | |
3379 | * (zero fill, copy on write, pmap enter) while holding | |
3380 | * the locks, then it gets done. Otherwise, we give up, | |
3381 | * and use the original fault path (which doesn't hold | |
3382 | * the map lock, and relies on busy pages). | |
3383 | * The give up cases include: | |
3384 | * - Have to talk to pager. | |
3385 | * - Page is busy, absent or in error. | |
3386 | * - Pager has locked out desired access. | |
3387 | * - Fault needs to be restarted. | |
3388 | * - Have to push page into copy object. | |
3389 | * | |
3390 | * The code is an infinite loop that moves one level down | |
3391 | * the shadow chain each time. cur_object and cur_offset | |
3392 | * refer to the current object being examined. object and offset | |
3393 | * are the original object from the map. The loop is at the | |
3394 | * top level if and only if object and cur_object are the same. | |
3395 | * | |
3396 | * Invariants: Map lock is held throughout. Lock is held on | |
3397 | * original object and cur_object (if different) when | |
3398 | * continuing or exiting loop. | |
3399 | * | |
3400 | */ | |
3401 | ||
3402 | ||
3403 | /* | |
2d21ac55 A |
3404 | * If this page is to be inserted in a copy delay object |
3405 | * for writing, and if the object has a copy, then the | |
3406 | * copy delay strategy is implemented in the slow fault page. | |
1c79356b | 3407 | */ |
2d21ac55 A |
3408 | if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && |
3409 | object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) | |
3410 | goto handle_copy_delay; | |
3411 | ||
1c79356b A |
3412 | cur_object = object; |
3413 | cur_offset = offset; | |
3414 | ||
3415 | while (TRUE) { | |
b0d623f7 A |
3416 | if (!cur_object->pager_created && |
3417 | cur_object->phys_contiguous) /* superpage */ | |
3418 | break; | |
3419 | ||
3420 | if (cur_object->blocked_access) { | |
3421 | /* | |
3422 | * Access to this VM object has been blocked. | |
3423 | * Let the slow path handle it. | |
3424 | */ | |
3425 | break; | |
3426 | } | |
3427 | ||
1c79356b | 3428 | m = vm_page_lookup(cur_object, cur_offset); |
2d21ac55 | 3429 | |
1c79356b | 3430 | if (m != VM_PAGE_NULL) { |
55e303ae | 3431 | if (m->busy) { |
143cc14e A |
3432 | wait_result_t result; |
3433 | ||
2d21ac55 A |
3434 | /* |
3435 | * in order to do the PAGE_ASSERT_WAIT, we must | |
3436 | * have object that 'm' belongs to locked exclusively | |
3437 | */ | |
3438 | if (object != cur_object) { | |
143cc14e | 3439 | |
2d21ac55 A |
3440 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
3441 | ||
3442 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3443 | ||
3444 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
3445 | /* | |
3446 | * couldn't upgrade so go do a full retry | |
39236c6e A |
3447 | * immediately since we can no longer be |
3448 | * certain about cur_object (since we | |
3449 | * don't hold a reference on it)... | |
3450 | * first drop the top object lock | |
2d21ac55 | 3451 | */ |
39236c6e A |
3452 | vm_object_unlock(object); |
3453 | ||
2d21ac55 A |
3454 | vm_map_unlock_read(map); |
3455 | if (real_map != map) | |
3456 | vm_map_unlock(real_map); | |
3457 | ||
3458 | goto RetryFault; | |
3459 | } | |
3460 | } | |
3461 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
3462 | ||
3463 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3464 | ||
3465 | if (vm_object_lock_upgrade(object) == FALSE) { | |
3466 | /* | |
3467 | * couldn't upgrade, so explictly take the lock | |
3468 | * exclusively and go relookup the page since we | |
3469 | * will have dropped the object lock and | |
3470 | * a different thread could have inserted | |
3471 | * a page at this offset | |
3472 | * no need for a full retry since we're | |
3473 | * at the top level of the object chain | |
3474 | */ | |
3475 | vm_object_lock(object); | |
3476 | ||
3477 | continue; | |
3478 | } | |
3479 | } | |
39236c6e A |
3480 | if (m->pageout_queue && m->object->internal && COMPRESSED_PAGER_IS_ACTIVE) { |
3481 | /* | |
3482 | * m->busy == TRUE and the object is locked exclusively | |
3483 | * if m->pageout_queue == TRUE after we acquire the | |
3484 | * queues lock, we are guaranteed that it is stable on | |
3485 | * the pageout queue and therefore reclaimable | |
3486 | * | |
3487 | * NOTE: this is only true for the internal pageout queue | |
3488 | * in the compressor world | |
3489 | */ | |
3490 | vm_page_lock_queues(); | |
3491 | ||
3492 | if (m->pageout_queue) { | |
3493 | vm_pageout_throttle_up(m); | |
3494 | vm_page_unlock_queues(); | |
3495 | ||
3496 | PAGE_WAKEUP_DONE(m); | |
3497 | goto reclaimed_from_pageout; | |
3498 | } | |
3499 | vm_page_unlock_queues(); | |
3500 | } | |
3501 | if (object != cur_object) | |
3502 | vm_object_unlock(object); | |
3503 | ||
143cc14e | 3504 | vm_map_unlock_read(map); |
91447636 A |
3505 | if (real_map != map) |
3506 | vm_map_unlock(real_map); | |
143cc14e | 3507 | |
143cc14e | 3508 | result = PAGE_ASSERT_WAIT(m, interruptible); |
1c79356b | 3509 | |
143cc14e A |
3510 | vm_object_unlock(cur_object); |
3511 | ||
3512 | if (result == THREAD_WAITING) { | |
3513 | result = thread_block(THREAD_CONTINUE_NULL); | |
3514 | ||
3515 | counter(c_vm_fault_page_block_busy_kernel++); | |
3516 | } | |
3517 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) | |
3518 | goto RetryFault; | |
3519 | ||
3520 | kr = KERN_ABORTED; | |
3521 | goto done; | |
3522 | } | |
39236c6e | 3523 | reclaimed_from_pageout: |
316670eb A |
3524 | if (m->laundry) { |
3525 | if (object != cur_object) { | |
3526 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
3527 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3528 | ||
3529 | vm_object_unlock(object); | |
3530 | vm_object_unlock(cur_object); | |
3531 | ||
3532 | vm_map_unlock_read(map); | |
3533 | if (real_map != map) | |
3534 | vm_map_unlock(real_map); | |
3535 | ||
3536 | goto RetryFault; | |
3537 | } | |
3538 | ||
3539 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
3540 | ||
3541 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3542 | ||
3543 | if (vm_object_lock_upgrade(object) == FALSE) { | |
3544 | /* | |
3545 | * couldn't upgrade, so explictly take the lock | |
3546 | * exclusively and go relookup the page since we | |
3547 | * will have dropped the object lock and | |
3548 | * a different thread could have inserted | |
3549 | * a page at this offset | |
3550 | * no need for a full retry since we're | |
3551 | * at the top level of the object chain | |
3552 | */ | |
3553 | vm_object_lock(object); | |
3554 | ||
3555 | continue; | |
3556 | } | |
3557 | } | |
3558 | m->pageout = FALSE; | |
3559 | ||
3560 | vm_pageout_steal_laundry(m, FALSE); | |
3561 | } | |
3562 | ||
2d21ac55 A |
3563 | if (m->phys_page == vm_page_guard_addr) { |
3564 | /* | |
3565 | * Guard page: let the slow path deal with it | |
3566 | */ | |
3567 | break; | |
3568 | } | |
3569 | if (m->unusual && (m->error || m->restart || m->private || m->absent)) { | |
143cc14e | 3570 | /* |
2d21ac55 | 3571 | * Unusual case... let the slow path deal with it |
1c79356b A |
3572 | */ |
3573 | break; | |
3574 | } | |
b0d623f7 A |
3575 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m->object)) { |
3576 | if (object != cur_object) | |
3577 | vm_object_unlock(object); | |
3578 | vm_map_unlock_read(map); | |
3579 | if (real_map != map) | |
3580 | vm_map_unlock(real_map); | |
3581 | vm_object_unlock(cur_object); | |
3582 | kr = KERN_MEMORY_ERROR; | |
3583 | goto done; | |
3584 | } | |
3585 | ||
91447636 A |
3586 | if (m->encrypted) { |
3587 | /* | |
3588 | * ENCRYPTED SWAP: | |
3589 | * We've soft-faulted (because it's not in the page | |
3590 | * table) on an encrypted page. | |
2d21ac55 | 3591 | * Keep the page "busy" so that no one messes with |
91447636 A |
3592 | * it during the decryption. |
3593 | * Release the extra locks we're holding, keep only | |
3594 | * the page's VM object lock. | |
2d21ac55 A |
3595 | * |
3596 | * in order to set 'busy' on 'm', we must | |
3597 | * have object that 'm' belongs to locked exclusively | |
91447636 | 3598 | */ |
2d21ac55 | 3599 | if (object != cur_object) { |
91447636 | 3600 | vm_object_unlock(object); |
2d21ac55 A |
3601 | |
3602 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
3603 | ||
3604 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3605 | ||
3606 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
3607 | /* | |
3608 | * couldn't upgrade so go do a full retry | |
3609 | * immediately since we've already dropped | |
3610 | * the top object lock associated with this page | |
3611 | * and the current one got dropped due to the | |
3612 | * failed upgrade... the state is no longer valid | |
3613 | */ | |
3614 | vm_map_unlock_read(map); | |
3615 | if (real_map != map) | |
3616 | vm_map_unlock(real_map); | |
3617 | ||
3618 | goto RetryFault; | |
3619 | } | |
3620 | } | |
3621 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
3622 | ||
3623 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3624 | ||
3625 | if (vm_object_lock_upgrade(object) == FALSE) { | |
3626 | /* | |
3627 | * couldn't upgrade, so explictly take the lock | |
3628 | * exclusively and go relookup the page since we | |
3629 | * will have dropped the object lock and | |
3630 | * a different thread could have inserted | |
3631 | * a page at this offset | |
3632 | * no need for a full retry since we're | |
3633 | * at the top level of the object chain | |
3634 | */ | |
3635 | vm_object_lock(object); | |
3636 | ||
3637 | continue; | |
3638 | } | |
91447636 | 3639 | } |
2d21ac55 A |
3640 | m->busy = TRUE; |
3641 | ||
91447636 A |
3642 | vm_map_unlock_read(map); |
3643 | if (real_map != map) | |
3644 | vm_map_unlock(real_map); | |
3645 | ||
3646 | vm_page_decrypt(m, 0); | |
3647 | ||
3648 | assert(m->busy); | |
3649 | PAGE_WAKEUP_DONE(m); | |
91447636 | 3650 | |
2d21ac55 | 3651 | vm_object_unlock(cur_object); |
91447636 A |
3652 | /* |
3653 | * Retry from the top, in case anything | |
3654 | * changed while we were decrypting... | |
3655 | */ | |
3656 | goto RetryFault; | |
3657 | } | |
3658 | ASSERT_PAGE_DECRYPTED(m); | |
3659 | ||
6d2010ae A |
3660 | if(vm_page_is_slideable(m)) { |
3661 | /* | |
3662 | * We might need to slide this page, and so, | |
3663 | * we want to hold the VM object exclusively. | |
3664 | */ | |
3665 | if (object != cur_object) { | |
3666 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
3667 | vm_object_unlock(object); | |
3668 | vm_object_unlock(cur_object); | |
3669 | ||
3670 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3671 | ||
3672 | vm_map_unlock_read(map); | |
3673 | if (real_map != map) | |
3674 | vm_map_unlock(real_map); | |
3675 | ||
3676 | goto RetryFault; | |
3677 | } | |
3678 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
3679 | ||
3680 | vm_object_unlock(object); | |
3681 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3682 | vm_map_unlock_read(map); | |
3683 | goto RetryFault; | |
3684 | } | |
3685 | } | |
3686 | ||
fe8ab488 A |
3687 | if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m) || |
3688 | (physpage_p != NULL && (prot & VM_PROT_WRITE))) { | |
6d2010ae | 3689 | upgrade_for_validation: |
2d21ac55 | 3690 | /* |
4a3eedf9 | 3691 | * We might need to validate this page |
2d21ac55 A |
3692 | * against its code signature, so we |
3693 | * want to hold the VM object exclusively. | |
3694 | */ | |
3695 | if (object != cur_object) { | |
3696 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
3697 | vm_object_unlock(object); | |
3698 | vm_object_unlock(cur_object); | |
3699 | ||
3700 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3701 | ||
3702 | vm_map_unlock_read(map); | |
3703 | if (real_map != map) | |
3704 | vm_map_unlock(real_map); | |
3705 | ||
3706 | goto RetryFault; | |
3707 | } | |
3708 | ||
3709 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
3710 | ||
3711 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
3712 | ||
3713 | if (vm_object_lock_upgrade(object) == FALSE) { | |
3714 | /* | |
3715 | * couldn't upgrade, so explictly take the lock | |
3716 | * exclusively and go relookup the page since we | |
3717 | * will have dropped the object lock and | |
3718 | * a different thread could have inserted | |
3719 | * a page at this offset | |
3720 | * no need for a full retry since we're | |
3721 | * at the top level of the object chain | |
3722 | */ | |
3723 | vm_object_lock(object); | |
3724 | ||
3725 | continue; | |
3726 | } | |
3727 | } | |
3728 | } | |
1c79356b A |
3729 | /* |
3730 | * Two cases of map in faults: | |
3731 | * - At top level w/o copy object. | |
3732 | * - Read fault anywhere. | |
3733 | * --> must disallow write. | |
3734 | */ | |
3735 | ||
4a3eedf9 | 3736 | if (object == cur_object && object->copy == VM_OBJECT_NULL) { |
6d2010ae | 3737 | |
2d21ac55 | 3738 | goto FastPmapEnter; |
4a3eedf9 | 3739 | } |
1c79356b A |
3740 | |
3741 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
3742 | ||
1c79356b | 3743 | if (object != cur_object) { |
c910b4d9 A |
3744 | /* |
3745 | * We still need to hold the top object | |
3746 | * lock here to prevent a race between | |
3747 | * a read fault (taking only "shared" | |
3748 | * locks) and a write fault (taking | |
3749 | * an "exclusive" lock on the top | |
3750 | * object. | |
3751 | * Otherwise, as soon as we release the | |
3752 | * top lock, the write fault could | |
3753 | * proceed and actually complete before | |
3754 | * the read fault, and the copied page's | |
3755 | * translation could then be overwritten | |
3756 | * by the read fault's translation for | |
3757 | * the original page. | |
3758 | * | |
3759 | * Let's just record what the top object | |
3760 | * is and we'll release it later. | |
2d21ac55 | 3761 | */ |
c910b4d9 | 3762 | top_object = object; |
2d21ac55 A |
3763 | |
3764 | /* | |
3765 | * switch to the object that has the new page | |
3766 | */ | |
1c79356b | 3767 | object = cur_object; |
2d21ac55 | 3768 | object_lock_type = cur_object_lock_type; |
1c79356b | 3769 | } |
1c79356b A |
3770 | FastPmapEnter: |
3771 | /* | |
2d21ac55 A |
3772 | * prepare for the pmap_enter... |
3773 | * object and map are both locked | |
3774 | * m contains valid data | |
3775 | * object == m->object | |
3776 | * cur_object == NULL or it's been unlocked | |
3777 | * no paging references on either object or cur_object | |
1c79356b | 3778 | */ |
39236c6e A |
3779 | if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) |
3780 | need_retry_ptr = &need_retry; | |
3781 | else | |
3782 | need_retry_ptr = NULL; | |
3783 | ||
2d21ac55 A |
3784 | if (caller_pmap) { |
3785 | kr = vm_fault_enter(m, | |
3786 | caller_pmap, | |
3787 | caller_pmap_addr, | |
3788 | prot, | |
6d2010ae | 3789 | fault_type, |
2d21ac55 A |
3790 | wired, |
3791 | change_wiring, | |
3792 | fault_info.no_cache, | |
6d2010ae | 3793 | fault_info.cs_bypass, |
fe8ab488 A |
3794 | fault_info.user_tag, |
3795 | fault_info.pmap_options, | |
39236c6e | 3796 | need_retry_ptr, |
2d21ac55 | 3797 | &type_of_fault); |
9bccf70c | 3798 | } else { |
2d21ac55 A |
3799 | kr = vm_fault_enter(m, |
3800 | pmap, | |
3801 | vaddr, | |
3802 | prot, | |
6d2010ae | 3803 | fault_type, |
2d21ac55 A |
3804 | wired, |
3805 | change_wiring, | |
3806 | fault_info.no_cache, | |
6d2010ae | 3807 | fault_info.cs_bypass, |
fe8ab488 A |
3808 | fault_info.user_tag, |
3809 | fault_info.pmap_options, | |
39236c6e | 3810 | need_retry_ptr, |
2d21ac55 | 3811 | &type_of_fault); |
9bccf70c | 3812 | } |
0b4e3aa0 | 3813 | |
fe8ab488 A |
3814 | if (kr == KERN_SUCCESS && |
3815 | physpage_p != NULL) { | |
3816 | /* for vm_map_wire_and_extract() */ | |
3817 | *physpage_p = m->phys_page; | |
3818 | if (prot & VM_PROT_WRITE) { | |
3819 | vm_object_lock_assert_exclusive( | |
3820 | m->object); | |
3821 | m->dirty = TRUE; | |
3822 | } | |
3823 | } | |
3824 | ||
c910b4d9 A |
3825 | if (top_object != VM_OBJECT_NULL) { |
3826 | /* | |
3827 | * It's safe to drop the top object | |
3828 | * now that we've done our | |
3829 | * vm_fault_enter(). Any other fault | |
3830 | * in progress for that virtual | |
3831 | * address will either find our page | |
3832 | * and translation or put in a new page | |
3833 | * and translation. | |
3834 | */ | |
3835 | vm_object_unlock(top_object); | |
3836 | top_object = VM_OBJECT_NULL; | |
3837 | } | |
3838 | ||
2d21ac55 A |
3839 | if (need_collapse == TRUE) |
3840 | vm_object_collapse(object, offset, TRUE); | |
6d2010ae | 3841 | |
316670eb A |
3842 | if (need_retry == FALSE && |
3843 | (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) { | |
2d21ac55 A |
3844 | /* |
3845 | * evaluate access pattern and update state | |
3846 | * vm_fault_deactivate_behind depends on the | |
3847 | * state being up to date | |
3848 | */ | |
3849 | vm_fault_is_sequential(object, cur_offset, fault_info.behavior); | |
0c530ab8 | 3850 | |
2d21ac55 | 3851 | vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior); |
1c79356b | 3852 | } |
1c79356b | 3853 | /* |
2d21ac55 | 3854 | * That's it, clean up and return. |
1c79356b | 3855 | */ |
2d21ac55 A |
3856 | if (m->busy) |
3857 | PAGE_WAKEUP_DONE(m); | |
6601e61a | 3858 | |
1c79356b | 3859 | vm_object_unlock(object); |
143cc14e | 3860 | |
1c79356b | 3861 | vm_map_unlock_read(map); |
2d21ac55 | 3862 | if (real_map != map) |
91447636 | 3863 | vm_map_unlock(real_map); |
1c79356b | 3864 | |
316670eb A |
3865 | if (need_retry == TRUE) { |
3866 | /* | |
3867 | * vm_fault_enter couldn't complete the PMAP_ENTER... | |
3868 | * at this point we don't hold any locks so it's safe | |
3869 | * to ask the pmap layer to expand the page table to | |
3870 | * accommodate this mapping... once expanded, we'll | |
3871 | * re-drive the fault which should result in vm_fault_enter | |
3872 | * being able to successfully enter the mapping this time around | |
3873 | */ | |
fe8ab488 A |
3874 | (void)pmap_enter_options( |
3875 | pmap, vaddr, 0, 0, 0, 0, 0, | |
3876 | PMAP_OPTIONS_NOENTER, NULL); | |
316670eb A |
3877 | |
3878 | need_retry = FALSE; | |
3879 | goto RetryFault; | |
3880 | } | |
2d21ac55 | 3881 | goto done; |
1c79356b | 3882 | } |
1c79356b | 3883 | /* |
2d21ac55 | 3884 | * COPY ON WRITE FAULT |
b0d623f7 A |
3885 | */ |
3886 | assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); | |
3887 | ||
6d2010ae | 3888 | if ((throttle_delay = vm_page_throttled())) { |
b0d623f7 A |
3889 | /* |
3890 | * drop all of our locks... | |
3891 | * wait until the free queue is | |
3892 | * pumped back up and then | |
3893 | * redrive the fault | |
3894 | */ | |
3895 | if (object != cur_object) | |
3896 | vm_object_unlock(cur_object); | |
3897 | vm_object_unlock(object); | |
3898 | vm_map_unlock_read(map); | |
3899 | if (real_map != map) | |
3900 | vm_map_unlock(real_map); | |
3901 | ||
6d2010ae A |
3902 | VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
3903 | ||
3904 | delay(throttle_delay); | |
b0d623f7 A |
3905 | |
3906 | if (!current_thread_aborted() && vm_page_wait((change_wiring) ? | |
3907 | THREAD_UNINT : | |
3908 | THREAD_ABORTSAFE)) | |
3909 | goto RetryFault; | |
3910 | kr = KERN_ABORTED; | |
3911 | goto done; | |
3912 | } | |
3913 | /* | |
2d21ac55 A |
3914 | * If objects match, then |
3915 | * object->copy must not be NULL (else control | |
3916 | * would be in previous code block), and we | |
3917 | * have a potential push into the copy object | |
3918 | * with which we can't cope with here. | |
1c79356b | 3919 | */ |
2d21ac55 A |
3920 | if (cur_object == object) { |
3921 | /* | |
3922 | * must take the slow path to | |
3923 | * deal with the copy push | |
3924 | */ | |
1c79356b | 3925 | break; |
2d21ac55 | 3926 | } |
6d2010ae | 3927 | |
1c79356b | 3928 | /* |
2d21ac55 A |
3929 | * This is now a shadow based copy on write |
3930 | * fault -- it requires a copy up the shadow | |
3931 | * chain. | |
6d2010ae A |
3932 | */ |
3933 | ||
3934 | if ((cur_object_lock_type == OBJECT_LOCK_SHARED) && | |
3935 | VM_FAULT_NEED_CS_VALIDATION(NULL, m)) { | |
3936 | goto upgrade_for_validation; | |
3937 | } | |
3938 | ||
3939 | /* | |
2d21ac55 A |
3940 | * Allocate a page in the original top level |
3941 | * object. Give up if allocate fails. Also | |
3942 | * need to remember current page, as it's the | |
3943 | * source of the copy. | |
1c79356b | 3944 | * |
2d21ac55 A |
3945 | * at this point we hold locks on both |
3946 | * object and cur_object... no need to take | |
3947 | * paging refs or mark pages BUSY since | |
3948 | * we don't drop either object lock until | |
3949 | * the page has been copied and inserted | |
1c79356b A |
3950 | */ |
3951 | cur_m = m; | |
3952 | m = vm_page_grab(); | |
2d21ac55 | 3953 | |
1c79356b | 3954 | if (m == VM_PAGE_NULL) { |
2d21ac55 A |
3955 | /* |
3956 | * no free page currently available... | |
3957 | * must take the slow path | |
3958 | */ | |
1c79356b A |
3959 | break; |
3960 | } | |
1c79356b | 3961 | /* |
2d21ac55 | 3962 | * Now do the copy. Mark the source page busy... |
1c79356b A |
3963 | * |
3964 | * NOTE: This code holds the map lock across | |
3965 | * the page copy. | |
3966 | */ | |
1c79356b A |
3967 | vm_page_copy(cur_m, m); |
3968 | vm_page_insert(m, object, offset); | |
316670eb | 3969 | SET_PAGE_DIRTY(m, FALSE); |
1c79356b A |
3970 | |
3971 | /* | |
2d21ac55 | 3972 | * Now cope with the source page and object |
1c79356b | 3973 | */ |
2d21ac55 A |
3974 | if (object->ref_count > 1 && cur_m->pmapped) |
3975 | pmap_disconnect(cur_m->phys_page); | |
fe8ab488 A |
3976 | |
3977 | if (cur_m->clustered) { | |
3978 | VM_PAGE_COUNT_AS_PAGEIN(cur_m); | |
3979 | VM_PAGE_CONSUME_CLUSTERED(cur_m); | |
3980 | } | |
2d21ac55 | 3981 | need_collapse = TRUE; |
1c79356b | 3982 | |
2d21ac55 A |
3983 | if (!cur_object->internal && |
3984 | cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
3985 | /* | |
3986 | * The object from which we've just | |
3987 | * copied a page is most probably backed | |
3988 | * by a vnode. We don't want to waste too | |
3989 | * much time trying to collapse the VM objects | |
3990 | * and create a bottleneck when several tasks | |
3991 | * map the same file. | |
3992 | */ | |
3993 | if (cur_object->copy == object) { | |
3994 | /* | |
3995 | * Shared mapping or no COW yet. | |
3996 | * We can never collapse a copy | |
3997 | * object into its backing object. | |
3998 | */ | |
3999 | need_collapse = FALSE; | |
4000 | } else if (cur_object->copy == object->shadow && | |
4001 | object->shadow->resident_page_count == 0) { | |
4002 | /* | |
4003 | * Shared mapping after a COW occurred. | |
4004 | */ | |
4005 | need_collapse = FALSE; | |
4006 | } | |
4007 | } | |
1c79356b A |
4008 | vm_object_unlock(cur_object); |
4009 | ||
2d21ac55 A |
4010 | if (need_collapse == FALSE) |
4011 | vm_fault_collapse_skipped++; | |
4012 | vm_fault_collapse_total++; | |
4013 | ||
4014 | type_of_fault = DBG_COW_FAULT; | |
4015 | VM_STAT_INCR(cow_faults); | |
4016 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
4017 | current_task()->cow_faults++; | |
1c79356b A |
4018 | |
4019 | goto FastPmapEnter; | |
1c79356b | 4020 | |
2d21ac55 | 4021 | } else { |
1c79356b | 4022 | /* |
2d21ac55 | 4023 | * No page at cur_object, cur_offset... m == NULL |
1c79356b | 4024 | */ |
1c79356b | 4025 | if (cur_object->pager_created) { |
39236c6e A |
4026 | int compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; |
4027 | ||
4028 | if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) { | |
4029 | int my_fault_type; | |
4030 | int c_flags = C_DONT_BLOCK; | |
4031 | boolean_t insert_cur_object = FALSE; | |
4032 | ||
2d21ac55 A |
4033 | /* |
4034 | * May have to talk to a pager... | |
39236c6e A |
4035 | * if so, take the slow path by |
4036 | * doing a 'break' from the while (TRUE) loop | |
4037 | * | |
4038 | * external_state will only be set to VM_EXTERNAL_STATE_EXISTS | |
4039 | * if the compressor is active and the page exists there | |
2d21ac55 | 4040 | */ |
39236c6e A |
4041 | if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) |
4042 | break; | |
4043 | ||
4044 | if (map == kernel_map || real_map == kernel_map) { | |
4045 | /* | |
4046 | * can't call into the compressor with the kernel_map | |
4047 | * lock held, since the compressor may try to operate | |
4048 | * on the kernel map in order to return an empty c_segment | |
4049 | */ | |
4050 | break; | |
4051 | } | |
4052 | if (object != cur_object) { | |
4053 | if (fault_type & VM_PROT_WRITE) | |
4054 | c_flags |= C_KEEP; | |
4055 | else | |
4056 | insert_cur_object = TRUE; | |
4057 | } | |
4058 | if (insert_cur_object == TRUE) { | |
4059 | ||
4060 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
4061 | ||
4062 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4063 | ||
4064 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
4065 | /* | |
4066 | * couldn't upgrade so go do a full retry | |
4067 | * immediately since we can no longer be | |
4068 | * certain about cur_object (since we | |
4069 | * don't hold a reference on it)... | |
4070 | * first drop the top object lock | |
4071 | */ | |
4072 | vm_object_unlock(object); | |
4073 | ||
4074 | vm_map_unlock_read(map); | |
4075 | if (real_map != map) | |
4076 | vm_map_unlock(real_map); | |
4077 | ||
4078 | goto RetryFault; | |
4079 | } | |
4080 | } | |
4081 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
4082 | ||
4083 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4084 | ||
4085 | if (object != cur_object) { | |
4086 | /* | |
4087 | * we can't go for the upgrade on the top | |
4088 | * lock since the upgrade may block waiting | |
4089 | * for readers to drain... since we hold | |
4090 | * cur_object locked at this point, waiting | |
4091 | * for the readers to drain would represent | |
4092 | * a lock order inversion since the lock order | |
4093 | * for objects is the reference order in the | |
4094 | * shadown chain | |
4095 | */ | |
4096 | vm_object_unlock(object); | |
4097 | vm_object_unlock(cur_object); | |
4098 | ||
4099 | vm_map_unlock_read(map); | |
4100 | if (real_map != map) | |
4101 | vm_map_unlock(real_map); | |
4102 | ||
4103 | goto RetryFault; | |
4104 | } | |
4105 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4106 | /* | |
4107 | * couldn't upgrade, so explictly take the lock | |
4108 | * exclusively and go relookup the page since we | |
4109 | * will have dropped the object lock and | |
4110 | * a different thread could have inserted | |
4111 | * a page at this offset | |
4112 | * no need for a full retry since we're | |
4113 | * at the top level of the object chain | |
4114 | */ | |
4115 | vm_object_lock(object); | |
4116 | ||
4117 | continue; | |
4118 | } | |
4119 | } | |
4120 | m = vm_page_grab(); | |
4121 | ||
4122 | if (m == VM_PAGE_NULL) { | |
4123 | /* | |
4124 | * no free page currently available... | |
4125 | * must take the slow path | |
4126 | */ | |
4127 | break; | |
4128 | } | |
fe8ab488 A |
4129 | |
4130 | /* | |
4131 | * The object is and remains locked | |
4132 | * so no need to take a | |
4133 | * "paging_in_progress" reference. | |
4134 | */ | |
4135 | boolean_t shared_lock; | |
4136 | if ((object == cur_object && | |
4137 | object_lock_type == OBJECT_LOCK_EXCLUSIVE) || | |
4138 | (object != cur_object && | |
4139 | cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) { | |
4140 | shared_lock = FALSE; | |
4141 | } else { | |
4142 | shared_lock = TRUE; | |
4143 | } | |
4144 | ||
4145 | kr = vm_compressor_pager_get( | |
4146 | cur_object->pager, | |
4147 | (cur_offset + | |
4148 | cur_object->paging_offset), | |
4149 | m->phys_page, | |
4150 | &my_fault_type, | |
4151 | c_flags, | |
4152 | &compressed_count_delta); | |
4153 | ||
4154 | vm_compressor_pager_count( | |
4155 | cur_object->pager, | |
4156 | compressed_count_delta, | |
4157 | shared_lock, | |
4158 | cur_object); | |
4159 | ||
4160 | if (kr != KERN_SUCCESS) { | |
39236c6e A |
4161 | vm_page_release(m); |
4162 | break; | |
4163 | } | |
4164 | m->dirty = TRUE; | |
4165 | ||
fe8ab488 A |
4166 | /* |
4167 | * If the object is purgeable, its | |
4168 | * owner's purgeable ledgers will be | |
4169 | * updated in vm_page_insert() but the | |
4170 | * page was also accounted for in a | |
4171 | * "compressed purgeable" ledger, so | |
4172 | * update that now. | |
4173 | */ | |
4174 | if (object != cur_object && | |
4175 | !insert_cur_object) { | |
4176 | /* | |
4177 | * We're not going to insert | |
4178 | * the decompressed page into | |
4179 | * the object it came from. | |
4180 | * | |
4181 | * We're dealing with a | |
4182 | * copy-on-write fault on | |
4183 | * "object". | |
4184 | * We're going to decompress | |
4185 | * the page directly into the | |
4186 | * target "object" while | |
4187 | * keepin the compressed | |
4188 | * page for "cur_object", so | |
4189 | * no ledger update in that | |
4190 | * case. | |
4191 | */ | |
4192 | } else if ((cur_object->purgable == | |
4193 | VM_PURGABLE_DENY) || | |
4194 | (cur_object->vo_purgeable_owner == | |
4195 | NULL)) { | |
4196 | /* | |
4197 | * "cur_object" is not purgeable | |
4198 | * or is not owned, so no | |
4199 | * purgeable ledgers to update. | |
4200 | */ | |
4201 | } else { | |
4202 | /* | |
4203 | * One less compressed | |
4204 | * purgeable page for | |
4205 | * cur_object's owner. | |
4206 | */ | |
4207 | vm_purgeable_compressed_update( | |
4208 | cur_object, | |
4209 | -1); | |
4210 | } | |
4211 | ||
4212 | if (insert_cur_object) { | |
39236c6e | 4213 | vm_page_insert(m, cur_object, cur_offset); |
fe8ab488 | 4214 | } else { |
39236c6e | 4215 | vm_page_insert(m, object, offset); |
fe8ab488 | 4216 | } |
39236c6e A |
4217 | |
4218 | if ((m->object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) { | |
4219 | /* | |
4220 | * If the page is not cacheable, | |
4221 | * we can't let its contents | |
4222 | * linger in the data cache | |
4223 | * after the decompression. | |
4224 | */ | |
4225 | pmap_sync_page_attributes_phys(m->phys_page); | |
4226 | } | |
fe8ab488 | 4227 | |
39236c6e A |
4228 | type_of_fault = my_fault_type; |
4229 | ||
4230 | VM_STAT_INCR(decompressions); | |
4231 | ||
4232 | if (cur_object != object) { | |
4233 | if (insert_cur_object) { | |
4234 | top_object = object; | |
4235 | /* | |
4236 | * switch to the object that has the new page | |
4237 | */ | |
4238 | object = cur_object; | |
4239 | object_lock_type = cur_object_lock_type; | |
4240 | } else { | |
4241 | vm_object_unlock(cur_object); | |
4242 | cur_object = object; | |
4243 | } | |
4244 | } | |
4245 | goto FastPmapEnter; | |
2d21ac55 | 4246 | } |
1c79356b | 4247 | /* |
2d21ac55 A |
4248 | * existence map present and indicates |
4249 | * that the pager doesn't have this page | |
1c79356b | 4250 | */ |
1c79356b | 4251 | } |
1c79356b | 4252 | if (cur_object->shadow == VM_OBJECT_NULL) { |
2d21ac55 A |
4253 | /* |
4254 | * Zero fill fault. Page gets | |
4255 | * inserted into the original object. | |
4256 | */ | |
b0d623f7 A |
4257 | if (cur_object->shadow_severed || |
4258 | VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object)) | |
4259 | { | |
2d21ac55 A |
4260 | if (object != cur_object) |
4261 | vm_object_unlock(cur_object); | |
1c79356b | 4262 | vm_object_unlock(object); |
2d21ac55 | 4263 | |
1c79356b | 4264 | vm_map_unlock_read(map); |
2d21ac55 | 4265 | if (real_map != map) |
91447636 | 4266 | vm_map_unlock(real_map); |
1c79356b | 4267 | |
2d21ac55 A |
4268 | kr = KERN_MEMORY_ERROR; |
4269 | goto done; | |
4270 | } | |
6d2010ae | 4271 | if ((throttle_delay = vm_page_throttled())) { |
2d21ac55 A |
4272 | /* |
4273 | * drop all of our locks... | |
4274 | * wait until the free queue is | |
4275 | * pumped back up and then | |
4276 | * redrive the fault | |
4277 | */ | |
4278 | if (object != cur_object) | |
4279 | vm_object_unlock(cur_object); | |
4280 | vm_object_unlock(object); | |
4281 | vm_map_unlock_read(map); | |
4282 | if (real_map != map) | |
4283 | vm_map_unlock(real_map); | |
9bccf70c | 4284 | |
6d2010ae A |
4285 | VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
4286 | ||
4287 | delay(throttle_delay); | |
b0d623f7 A |
4288 | |
4289 | if (!current_thread_aborted() && vm_page_wait((change_wiring) ? | |
2d21ac55 A |
4290 | THREAD_UNINT : |
4291 | THREAD_ABORTSAFE)) | |
4292 | goto RetryFault; | |
2d21ac55 A |
4293 | kr = KERN_ABORTED; |
4294 | goto done; | |
4295 | } | |
4296 | if (vm_backing_store_low) { | |
4297 | /* | |
4298 | * we are protecting the system from | |
4299 | * backing store exhaustion... | |
4300 | * must take the slow path if we're | |
4301 | * not privileged | |
4302 | */ | |
4303 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) | |
4304 | break; | |
1c79356b | 4305 | } |
2d21ac55 A |
4306 | if (cur_object != object) { |
4307 | vm_object_unlock(cur_object); | |
1c79356b | 4308 | |
2d21ac55 | 4309 | cur_object = object; |
55e303ae | 4310 | } |
2d21ac55 | 4311 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
55e303ae | 4312 | |
2d21ac55 A |
4313 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4314 | ||
4315 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4316 | /* | |
4317 | * couldn't upgrade so do a full retry on the fault | |
4318 | * since we dropped the object lock which | |
4319 | * could allow another thread to insert | |
4320 | * a page at this offset | |
4321 | */ | |
4322 | vm_map_unlock_read(map); | |
4323 | if (real_map != map) | |
4324 | vm_map_unlock(real_map); | |
4325 | ||
4326 | goto RetryFault; | |
4327 | } | |
1c79356b A |
4328 | } |
4329 | m = vm_page_alloc(object, offset); | |
2d21ac55 | 4330 | |
1c79356b | 4331 | if (m == VM_PAGE_NULL) { |
2d21ac55 A |
4332 | /* |
4333 | * no free page currently available... | |
4334 | * must take the slow path | |
4335 | */ | |
1c79356b A |
4336 | break; |
4337 | } | |
1c79356b | 4338 | |
1c79356b | 4339 | /* |
2d21ac55 A |
4340 | * Now zero fill page... |
4341 | * the page is probably going to | |
4342 | * be written soon, so don't bother | |
4343 | * to clear the modified bit | |
1c79356b | 4344 | * |
2d21ac55 A |
4345 | * NOTE: This code holds the map |
4346 | * lock across the zero fill. | |
1c79356b | 4347 | */ |
2d21ac55 | 4348 | type_of_fault = vm_fault_zero_page(m, map->no_zero_fill); |
143cc14e | 4349 | |
1c79356b A |
4350 | goto FastPmapEnter; |
4351 | } | |
1c79356b | 4352 | /* |
2d21ac55 | 4353 | * On to the next level in the shadow chain |
1c79356b | 4354 | */ |
6d2010ae | 4355 | cur_offset += cur_object->vo_shadow_offset; |
1c79356b | 4356 | new_object = cur_object->shadow; |
2d21ac55 A |
4357 | |
4358 | /* | |
4359 | * take the new_object's lock with the indicated state | |
4360 | */ | |
4361 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) | |
4362 | vm_object_lock_shared(new_object); | |
4363 | else | |
4364 | vm_object_lock(new_object); | |
4365 | ||
1c79356b A |
4366 | if (cur_object != object) |
4367 | vm_object_unlock(cur_object); | |
2d21ac55 | 4368 | |
1c79356b A |
4369 | cur_object = new_object; |
4370 | ||
4371 | continue; | |
4372 | } | |
4373 | } | |
1c79356b | 4374 | /* |
2d21ac55 A |
4375 | * Cleanup from fast fault failure. Drop any object |
4376 | * lock other than original and drop map lock. | |
1c79356b | 4377 | */ |
1c79356b A |
4378 | if (object != cur_object) |
4379 | vm_object_unlock(cur_object); | |
2d21ac55 A |
4380 | |
4381 | /* | |
4382 | * must own the object lock exclusively at this point | |
4383 | */ | |
4384 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
4385 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
4386 | ||
4387 | if (vm_object_lock_upgrade(object) == FALSE) { | |
4388 | /* | |
4389 | * couldn't upgrade, so explictly | |
4390 | * take the lock exclusively | |
4391 | * no need to retry the fault at this | |
4392 | * point since "vm_fault_page" will | |
4393 | * completely re-evaluate the state | |
4394 | */ | |
4395 | vm_object_lock(object); | |
4396 | } | |
1c79356b | 4397 | } |
143cc14e | 4398 | |
2d21ac55 A |
4399 | handle_copy_delay: |
4400 | vm_map_unlock_read(map); | |
4401 | if (real_map != map) | |
91447636 | 4402 | vm_map_unlock(real_map); |
1c79356b A |
4403 | |
4404 | /* | |
2d21ac55 A |
4405 | * Make a reference to this object to |
4406 | * prevent its disposal while we are messing with | |
4407 | * it. Once we have the reference, the map is free | |
4408 | * to be diddled. Since objects reference their | |
4409 | * shadows (and copies), they will stay around as well. | |
1c79356b | 4410 | */ |
2d21ac55 | 4411 | vm_object_reference_locked(object); |
1c79356b A |
4412 | vm_object_paging_begin(object); |
4413 | ||
4414 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
55e303ae | 4415 | |
2d21ac55 | 4416 | error_code = 0; |
55e303ae | 4417 | |
39236c6e | 4418 | result_page = VM_PAGE_NULL; |
1c79356b A |
4419 | kr = vm_fault_page(object, offset, fault_type, |
4420 | (change_wiring && !wired), | |
39236c6e | 4421 | FALSE, /* page not looked up */ |
1c79356b A |
4422 | &prot, &result_page, &top_page, |
4423 | &type_of_fault, | |
2d21ac55 A |
4424 | &error_code, map->no_zero_fill, |
4425 | FALSE, &fault_info); | |
1c79356b A |
4426 | |
4427 | /* | |
2d21ac55 A |
4428 | * if kr != VM_FAULT_SUCCESS, then the paging reference |
4429 | * has been dropped and the object unlocked... the ref_count | |
4430 | * is still held | |
4431 | * | |
4432 | * if kr == VM_FAULT_SUCCESS, then the paging reference | |
4433 | * is still held along with the ref_count on the original object | |
4434 | * | |
b0d623f7 | 4435 | * the object is returned locked with a paging reference |
2d21ac55 A |
4436 | * |
4437 | * if top_page != NULL, then it's BUSY and the | |
4438 | * object it belongs to has a paging reference | |
4439 | * but is returned unlocked | |
1c79356b | 4440 | */ |
b0d623f7 A |
4441 | if (kr != VM_FAULT_SUCCESS && |
4442 | kr != VM_FAULT_SUCCESS_NO_VM_PAGE) { | |
2d21ac55 A |
4443 | /* |
4444 | * we didn't succeed, lose the object reference immediately. | |
4445 | */ | |
1c79356b A |
4446 | vm_object_deallocate(object); |
4447 | ||
2d21ac55 A |
4448 | /* |
4449 | * See why we failed, and take corrective action. | |
4450 | */ | |
4451 | switch (kr) { | |
1c79356b A |
4452 | case VM_FAULT_MEMORY_SHORTAGE: |
4453 | if (vm_page_wait((change_wiring) ? | |
4454 | THREAD_UNINT : | |
4455 | THREAD_ABORTSAFE)) | |
4456 | goto RetryFault; | |
2d21ac55 A |
4457 | /* |
4458 | * fall thru | |
4459 | */ | |
1c79356b A |
4460 | case VM_FAULT_INTERRUPTED: |
4461 | kr = KERN_ABORTED; | |
4462 | goto done; | |
4463 | case VM_FAULT_RETRY: | |
4464 | goto RetryFault; | |
1c79356b A |
4465 | case VM_FAULT_MEMORY_ERROR: |
4466 | if (error_code) | |
4467 | kr = error_code; | |
4468 | else | |
4469 | kr = KERN_MEMORY_ERROR; | |
4470 | goto done; | |
b0d623f7 A |
4471 | default: |
4472 | panic("vm_fault: unexpected error 0x%x from " | |
4473 | "vm_fault_page()\n", kr); | |
2d21ac55 | 4474 | } |
1c79356b | 4475 | } |
1c79356b A |
4476 | m = result_page; |
4477 | ||
2d21ac55 | 4478 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 A |
4479 | assert((change_wiring && !wired) ? |
4480 | (top_page == VM_PAGE_NULL) : | |
4481 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
4482 | } | |
1c79356b A |
4483 | |
4484 | /* | |
2d21ac55 A |
4485 | * What to do with the resulting page from vm_fault_page |
4486 | * if it doesn't get entered into the physical map: | |
1c79356b | 4487 | */ |
1c79356b A |
4488 | #define RELEASE_PAGE(m) \ |
4489 | MACRO_BEGIN \ | |
4490 | PAGE_WAKEUP_DONE(m); \ | |
b0d623f7 A |
4491 | if (!m->active && !m->inactive && !m->throttled) { \ |
4492 | vm_page_lockspin_queues(); \ | |
4493 | if (!m->active && !m->inactive && !m->throttled) \ | |
4494 | vm_page_activate(m); \ | |
4495 | vm_page_unlock_queues(); \ | |
4496 | } \ | |
1c79356b A |
4497 | MACRO_END |
4498 | ||
4499 | /* | |
2d21ac55 A |
4500 | * We must verify that the maps have not changed |
4501 | * since our last lookup. | |
1c79356b | 4502 | */ |
2d21ac55 | 4503 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 | 4504 | old_copy_object = m->object->copy; |
0b4e3aa0 | 4505 | vm_object_unlock(m->object); |
b0d623f7 | 4506 | } else { |
0b4e3aa0 | 4507 | old_copy_object = VM_OBJECT_NULL; |
b0d623f7 A |
4508 | vm_object_unlock(object); |
4509 | } | |
2d21ac55 A |
4510 | |
4511 | /* | |
4512 | * no object locks are held at this point | |
4513 | */ | |
1c79356b A |
4514 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
4515 | vm_object_t retry_object; | |
4516 | vm_object_offset_t retry_offset; | |
4517 | vm_prot_t retry_prot; | |
4518 | ||
4519 | /* | |
2d21ac55 A |
4520 | * To avoid trying to write_lock the map while another |
4521 | * thread has it read_locked (in vm_map_pageable), we | |
4522 | * do not try for write permission. If the page is | |
4523 | * still writable, we will get write permission. If it | |
4524 | * is not, or has been marked needs_copy, we enter the | |
4525 | * mapping without write permission, and will merely | |
4526 | * take another fault. | |
1c79356b A |
4527 | */ |
4528 | map = original_map; | |
4529 | vm_map_lock_read(map); | |
2d21ac55 | 4530 | |
1c79356b | 4531 | kr = vm_map_lookup_locked(&map, vaddr, |
2d21ac55 A |
4532 | fault_type & ~VM_PROT_WRITE, |
4533 | OBJECT_LOCK_EXCLUSIVE, &version, | |
4534 | &retry_object, &retry_offset, &retry_prot, | |
4535 | &wired, | |
4536 | &fault_info, | |
4537 | &real_map); | |
91447636 | 4538 | pmap = real_map->pmap; |
1c79356b A |
4539 | |
4540 | if (kr != KERN_SUCCESS) { | |
4541 | vm_map_unlock_read(map); | |
2d21ac55 A |
4542 | |
4543 | if (m != VM_PAGE_NULL) { | |
4544 | /* | |
4545 | * retake the lock so that | |
4546 | * we can drop the paging reference | |
4547 | * in vm_fault_cleanup and do the | |
4548 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
4549 | */ | |
0b4e3aa0 | 4550 | vm_object_lock(m->object); |
2d21ac55 | 4551 | |
0b4e3aa0 | 4552 | RELEASE_PAGE(m); |
2d21ac55 A |
4553 | |
4554 | vm_fault_cleanup(m->object, top_page); | |
0b4e3aa0 | 4555 | } else { |
2d21ac55 A |
4556 | /* |
4557 | * retake the lock so that | |
4558 | * we can drop the paging reference | |
4559 | * in vm_fault_cleanup | |
4560 | */ | |
4561 | vm_object_lock(object); | |
4562 | ||
4563 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 4564 | } |
2d21ac55 A |
4565 | vm_object_deallocate(object); |
4566 | ||
1c79356b A |
4567 | goto done; |
4568 | } | |
1c79356b | 4569 | vm_object_unlock(retry_object); |
1c79356b | 4570 | |
2d21ac55 A |
4571 | if ((retry_object != object) || (retry_offset != offset)) { |
4572 | ||
1c79356b | 4573 | vm_map_unlock_read(map); |
2d21ac55 | 4574 | if (real_map != map) |
91447636 | 4575 | vm_map_unlock(real_map); |
2d21ac55 A |
4576 | |
4577 | if (m != VM_PAGE_NULL) { | |
4578 | /* | |
4579 | * retake the lock so that | |
4580 | * we can drop the paging reference | |
4581 | * in vm_fault_cleanup and do the | |
4582 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
4583 | */ | |
4584 | vm_object_lock(m->object); | |
4585 | ||
0b4e3aa0 | 4586 | RELEASE_PAGE(m); |
2d21ac55 A |
4587 | |
4588 | vm_fault_cleanup(m->object, top_page); | |
0b4e3aa0 | 4589 | } else { |
2d21ac55 A |
4590 | /* |
4591 | * retake the lock so that | |
4592 | * we can drop the paging reference | |
4593 | * in vm_fault_cleanup | |
4594 | */ | |
4595 | vm_object_lock(object); | |
4596 | ||
4597 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 4598 | } |
2d21ac55 A |
4599 | vm_object_deallocate(object); |
4600 | ||
1c79356b A |
4601 | goto RetryFault; |
4602 | } | |
1c79356b | 4603 | /* |
2d21ac55 A |
4604 | * Check whether the protection has changed or the object |
4605 | * has been copied while we left the map unlocked. | |
1c79356b A |
4606 | */ |
4607 | prot &= retry_prot; | |
0b4e3aa0 | 4608 | } |
2d21ac55 | 4609 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 | 4610 | vm_object_lock(m->object); |
1c79356b | 4611 | |
2d21ac55 A |
4612 | if (m->object->copy != old_copy_object) { |
4613 | /* | |
4614 | * The copy object changed while the top-level object | |
4615 | * was unlocked, so take away write permission. | |
4616 | */ | |
0b4e3aa0 | 4617 | prot &= ~VM_PROT_WRITE; |
2d21ac55 A |
4618 | } |
4619 | } else | |
4620 | vm_object_lock(object); | |
1c79356b A |
4621 | |
4622 | /* | |
2d21ac55 A |
4623 | * If we want to wire down this page, but no longer have |
4624 | * adequate permissions, we must start all over. | |
1c79356b | 4625 | */ |
2d21ac55 | 4626 | if (wired && (fault_type != (prot | VM_PROT_WRITE))) { |
1c79356b | 4627 | |
1c79356b | 4628 | vm_map_verify_done(map, &version); |
2d21ac55 | 4629 | if (real_map != map) |
91447636 | 4630 | vm_map_unlock(real_map); |
1c79356b | 4631 | |
2d21ac55 A |
4632 | if (m != VM_PAGE_NULL) { |
4633 | RELEASE_PAGE(m); | |
91447636 | 4634 | |
2d21ac55 A |
4635 | vm_fault_cleanup(m->object, top_page); |
4636 | } else | |
4637 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 4638 | |
2d21ac55 | 4639 | vm_object_deallocate(object); |
55e303ae | 4640 | |
2d21ac55 A |
4641 | goto RetryFault; |
4642 | } | |
4643 | if (m != VM_PAGE_NULL) { | |
55e303ae | 4644 | /* |
2d21ac55 A |
4645 | * Put this page into the physical map. |
4646 | * We had to do the unlock above because pmap_enter | |
4647 | * may cause other faults. The page may be on | |
4648 | * the pageout queues. If the pageout daemon comes | |
4649 | * across the page, it will remove it from the queues. | |
55e303ae | 4650 | */ |
2d21ac55 A |
4651 | if (caller_pmap) { |
4652 | kr = vm_fault_enter(m, | |
4653 | caller_pmap, | |
4654 | caller_pmap_addr, | |
4655 | prot, | |
6d2010ae | 4656 | fault_type, |
2d21ac55 A |
4657 | wired, |
4658 | change_wiring, | |
4659 | fault_info.no_cache, | |
6d2010ae | 4660 | fault_info.cs_bypass, |
fe8ab488 A |
4661 | fault_info.user_tag, |
4662 | fault_info.pmap_options, | |
316670eb | 4663 | NULL, |
2d21ac55 A |
4664 | &type_of_fault); |
4665 | } else { | |
4666 | kr = vm_fault_enter(m, | |
4667 | pmap, | |
4668 | vaddr, | |
4669 | prot, | |
6d2010ae | 4670 | fault_type, |
2d21ac55 A |
4671 | wired, |
4672 | change_wiring, | |
4673 | fault_info.no_cache, | |
6d2010ae | 4674 | fault_info.cs_bypass, |
fe8ab488 A |
4675 | fault_info.user_tag, |
4676 | fault_info.pmap_options, | |
316670eb | 4677 | NULL, |
2d21ac55 A |
4678 | &type_of_fault); |
4679 | } | |
4680 | if (kr != KERN_SUCCESS) { | |
4681 | /* abort this page fault */ | |
4682 | vm_map_verify_done(map, &version); | |
4683 | if (real_map != map) | |
4684 | vm_map_unlock(real_map); | |
4685 | PAGE_WAKEUP_DONE(m); | |
4686 | vm_fault_cleanup(m->object, top_page); | |
4687 | vm_object_deallocate(object); | |
4688 | goto done; | |
0b4e3aa0 | 4689 | } |
fe8ab488 A |
4690 | if (physpage_p != NULL) { |
4691 | /* for vm_map_wire_and_extract() */ | |
4692 | *physpage_p = m->phys_page; | |
4693 | if (prot & VM_PROT_WRITE) { | |
4694 | vm_object_lock_assert_exclusive(m->object); | |
4695 | m->dirty = TRUE; | |
4696 | } | |
4697 | } | |
0b4e3aa0 A |
4698 | } else { |
4699 | ||
9bccf70c | 4700 | vm_map_entry_t entry; |
91447636 A |
4701 | vm_map_offset_t laddr; |
4702 | vm_map_offset_t ldelta, hdelta; | |
143cc14e | 4703 | |
0b4e3aa0 A |
4704 | /* |
4705 | * do a pmap block mapping from the physical address | |
4706 | * in the object | |
4707 | */ | |
9bccf70c | 4708 | |
2d21ac55 | 4709 | #ifdef ppc |
55e303ae A |
4710 | /* While we do not worry about execution protection in */ |
4711 | /* general, certian pages may have instruction execution */ | |
4712 | /* disallowed. We will check here, and if not allowed */ | |
4713 | /* to execute, we return with a protection failure. */ | |
9bccf70c | 4714 | |
2d21ac55 | 4715 | if ((fault_type & VM_PROT_EXECUTE) && |
6d2010ae | 4716 | (!pmap_eligible_for_execute((ppnum_t)(object->vo_shadow_offset >> 12)))) { |
9bccf70c | 4717 | |
9bccf70c | 4718 | vm_map_verify_done(map, &version); |
2d21ac55 A |
4719 | |
4720 | if (real_map != map) | |
91447636 | 4721 | vm_map_unlock(real_map); |
2d21ac55 | 4722 | |
9bccf70c A |
4723 | vm_fault_cleanup(object, top_page); |
4724 | vm_object_deallocate(object); | |
2d21ac55 | 4725 | |
9bccf70c A |
4726 | kr = KERN_PROTECTION_FAILURE; |
4727 | goto done; | |
0b4e3aa0 | 4728 | } |
2d21ac55 | 4729 | #endif /* ppc */ |
1c79356b | 4730 | |
2d21ac55 | 4731 | if (real_map != map) |
91447636 | 4732 | vm_map_unlock(real_map); |
2d21ac55 | 4733 | |
9bccf70c A |
4734 | if (original_map != map) { |
4735 | vm_map_unlock_read(map); | |
4736 | vm_map_lock_read(original_map); | |
4737 | map = original_map; | |
4738 | } | |
91447636 | 4739 | real_map = map; |
9bccf70c A |
4740 | |
4741 | laddr = vaddr; | |
4742 | hdelta = 0xFFFFF000; | |
4743 | ldelta = 0xFFFFF000; | |
4744 | ||
2d21ac55 A |
4745 | while (vm_map_lookup_entry(map, laddr, &entry)) { |
4746 | if (ldelta > (laddr - entry->vme_start)) | |
9bccf70c | 4747 | ldelta = laddr - entry->vme_start; |
2d21ac55 | 4748 | if (hdelta > (entry->vme_end - laddr)) |
9bccf70c | 4749 | hdelta = entry->vme_end - laddr; |
2d21ac55 | 4750 | if (entry->is_sub_map) { |
9bccf70c A |
4751 | |
4752 | laddr = (laddr - entry->vme_start) | |
4753 | + entry->offset; | |
4754 | vm_map_lock_read(entry->object.sub_map); | |
2d21ac55 A |
4755 | |
4756 | if (map != real_map) | |
9bccf70c | 4757 | vm_map_unlock_read(map); |
2d21ac55 | 4758 | if (entry->use_pmap) { |
91447636 A |
4759 | vm_map_unlock_read(real_map); |
4760 | real_map = entry->object.sub_map; | |
9bccf70c A |
4761 | } |
4762 | map = entry->object.sub_map; | |
4763 | ||
4764 | } else { | |
4765 | break; | |
4766 | } | |
4767 | } | |
4768 | ||
2d21ac55 | 4769 | if (vm_map_lookup_entry(map, laddr, &entry) && |
fe8ab488 A |
4770 | (entry->object.vm_object != NULL) && |
4771 | (entry->object.vm_object == object)) { | |
2d21ac55 | 4772 | |
b0d623f7 | 4773 | int superpage = (!object->pager_created && object->phys_contiguous)? VM_MEM_SUPERPAGE : 0; |
fe8ab488 A |
4774 | |
4775 | if (superpage && physpage_p) { | |
4776 | /* for vm_map_wire_and_extract() */ | |
4777 | *physpage_p = (ppnum_t) ((((vm_map_offset_t) entry->object.vm_object->vo_shadow_offset) | |
4778 | + entry->offset | |
4779 | + (laddr - entry->vme_start)) | |
4780 | >> PAGE_SHIFT); | |
4781 | } | |
4782 | ||
2d21ac55 A |
4783 | if (caller_pmap) { |
4784 | /* | |
4785 | * Set up a block mapped area | |
4786 | */ | |
fe8ab488 | 4787 | assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); |
2d21ac55 A |
4788 | pmap_map_block(caller_pmap, |
4789 | (addr64_t)(caller_pmap_addr - ldelta), | |
6d2010ae | 4790 | (ppnum_t)((((vm_map_offset_t) (entry->object.vm_object->vo_shadow_offset)) + |
fe8ab488 A |
4791 | entry->offset + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), |
4792 | (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, | |
b0d623f7 | 4793 | (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); |
55e303ae | 4794 | } else { |
2d21ac55 A |
4795 | /* |
4796 | * Set up a block mapped area | |
4797 | */ | |
fe8ab488 | 4798 | assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT)); |
2d21ac55 A |
4799 | pmap_map_block(real_map->pmap, |
4800 | (addr64_t)(vaddr - ldelta), | |
6d2010ae | 4801 | (ppnum_t)((((vm_map_offset_t)(entry->object.vm_object->vo_shadow_offset)) + |
fe8ab488 A |
4802 | entry->offset + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT), |
4803 | (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot, | |
b0d623f7 | 4804 | (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0); |
9bccf70c A |
4805 | } |
4806 | } | |
0b4e3aa0 | 4807 | } |
1c79356b A |
4808 | |
4809 | /* | |
2d21ac55 | 4810 | * Unlock everything, and return |
1c79356b | 4811 | */ |
1c79356b | 4812 | vm_map_verify_done(map, &version); |
2d21ac55 | 4813 | if (real_map != map) |
91447636 | 4814 | vm_map_unlock(real_map); |
2d21ac55 A |
4815 | |
4816 | if (m != VM_PAGE_NULL) { | |
0b4e3aa0 | 4817 | PAGE_WAKEUP_DONE(m); |
1c79356b | 4818 | |
2d21ac55 A |
4819 | vm_fault_cleanup(m->object, top_page); |
4820 | } else | |
4821 | vm_fault_cleanup(object, top_page); | |
1c79356b | 4822 | |
2d21ac55 A |
4823 | vm_object_deallocate(object); |
4824 | ||
4825 | #undef RELEASE_PAGE | |
91447636 | 4826 | |
2d21ac55 A |
4827 | kr = KERN_SUCCESS; |
4828 | done: | |
9bccf70c | 4829 | thread_interrupt_level(interruptible_state); |
1c79356b | 4830 | |
39236c6e A |
4831 | /* |
4832 | * Only throttle on faults which cause a pagein. | |
4833 | */ | |
4834 | if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) { | |
4835 | throttle_lowpri_io(1); | |
4836 | } | |
99c3a104 | 4837 | |
316670eb A |
4838 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
4839 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, | |
39236c6e A |
4840 | ((uint64_t)vaddr >> 32), |
4841 | vaddr, | |
1c79356b | 4842 | kr, |
2d21ac55 | 4843 | type_of_fault, |
1c79356b | 4844 | 0); |
143cc14e | 4845 | |
2d21ac55 | 4846 | return (kr); |
1c79356b A |
4847 | } |
4848 | ||
4849 | /* | |
4850 | * vm_fault_wire: | |
4851 | * | |
4852 | * Wire down a range of virtual addresses in a map. | |
4853 | */ | |
4854 | kern_return_t | |
4855 | vm_fault_wire( | |
4856 | vm_map_t map, | |
4857 | vm_map_entry_t entry, | |
9bccf70c | 4858 | pmap_t pmap, |
fe8ab488 A |
4859 | vm_map_offset_t pmap_addr, |
4860 | ppnum_t *physpage_p) | |
1c79356b A |
4861 | { |
4862 | ||
91447636 A |
4863 | register vm_map_offset_t va; |
4864 | register vm_map_offset_t end_addr = entry->vme_end; | |
1c79356b A |
4865 | register kern_return_t rc; |
4866 | ||
4867 | assert(entry->in_transition); | |
4868 | ||
9bccf70c | 4869 | if ((entry->object.vm_object != NULL) && |
fe8ab488 A |
4870 | !entry->is_sub_map && |
4871 | entry->object.vm_object->phys_contiguous) { | |
9bccf70c A |
4872 | return KERN_SUCCESS; |
4873 | } | |
4874 | ||
1c79356b A |
4875 | /* |
4876 | * Inform the physical mapping system that the | |
4877 | * range of addresses may not fault, so that | |
4878 | * page tables and such can be locked down as well. | |
4879 | */ | |
4880 | ||
9bccf70c A |
4881 | pmap_pageable(pmap, pmap_addr, |
4882 | pmap_addr + (end_addr - entry->vme_start), FALSE); | |
1c79356b A |
4883 | |
4884 | /* | |
4885 | * We simulate a fault to get the page and enter it | |
4886 | * in the physical map. | |
4887 | */ | |
4888 | ||
4889 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
fe8ab488 A |
4890 | rc = vm_fault_wire_fast(map, va, entry, pmap, |
4891 | pmap_addr + (va - entry->vme_start), | |
4892 | physpage_p); | |
4893 | if (rc != KERN_SUCCESS) { | |
4894 | rc = vm_fault_internal(map, va, VM_PROT_NONE, TRUE, | |
4895 | ((pmap == kernel_pmap) | |
4896 | ? THREAD_UNINT | |
4897 | : THREAD_ABORTSAFE), | |
4898 | pmap, | |
4899 | (pmap_addr + | |
4900 | (va - entry->vme_start)), | |
4901 | physpage_p); | |
2d21ac55 | 4902 | DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); |
1c79356b A |
4903 | } |
4904 | ||
4905 | if (rc != KERN_SUCCESS) { | |
4906 | struct vm_map_entry tmp_entry = *entry; | |
4907 | ||
4908 | /* unwire wired pages */ | |
4909 | tmp_entry.vme_end = va; | |
9bccf70c A |
4910 | vm_fault_unwire(map, |
4911 | &tmp_entry, FALSE, pmap, pmap_addr); | |
1c79356b A |
4912 | |
4913 | return rc; | |
4914 | } | |
4915 | } | |
4916 | return KERN_SUCCESS; | |
4917 | } | |
4918 | ||
4919 | /* | |
4920 | * vm_fault_unwire: | |
4921 | * | |
4922 | * Unwire a range of virtual addresses in a map. | |
4923 | */ | |
4924 | void | |
4925 | vm_fault_unwire( | |
4926 | vm_map_t map, | |
4927 | vm_map_entry_t entry, | |
4928 | boolean_t deallocate, | |
9bccf70c | 4929 | pmap_t pmap, |
91447636 | 4930 | vm_map_offset_t pmap_addr) |
1c79356b | 4931 | { |
91447636 A |
4932 | register vm_map_offset_t va; |
4933 | register vm_map_offset_t end_addr = entry->vme_end; | |
1c79356b | 4934 | vm_object_t object; |
2d21ac55 | 4935 | struct vm_object_fault_info fault_info; |
1c79356b A |
4936 | |
4937 | object = (entry->is_sub_map) | |
4938 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
4939 | ||
2d21ac55 A |
4940 | /* |
4941 | * If it's marked phys_contiguous, then vm_fault_wire() didn't actually | |
4942 | * do anything since such memory is wired by default. So we don't have | |
4943 | * anything to undo here. | |
4944 | */ | |
4945 | ||
4946 | if (object != VM_OBJECT_NULL && object->phys_contiguous) | |
4947 | return; | |
4948 | ||
4949 | fault_info.interruptible = THREAD_UNINT; | |
4950 | fault_info.behavior = entry->behavior; | |
4951 | fault_info.user_tag = entry->alias; | |
fe8ab488 A |
4952 | fault_info.pmap_options = 0; |
4953 | if (entry->iokit_acct || | |
4954 | (!entry->is_sub_map && !entry->use_pmap)) { | |
4955 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; | |
4956 | } | |
2d21ac55 A |
4957 | fault_info.lo_offset = entry->offset; |
4958 | fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset; | |
4959 | fault_info.no_cache = entry->no_cache; | |
b0d623f7 | 4960 | fault_info.stealth = TRUE; |
6d2010ae A |
4961 | fault_info.io_sync = FALSE; |
4962 | fault_info.cs_bypass = FALSE; | |
0b4c1975 | 4963 | fault_info.mark_zf_absent = FALSE; |
316670eb | 4964 | fault_info.batch_pmap_op = FALSE; |
2d21ac55 | 4965 | |
1c79356b A |
4966 | /* |
4967 | * Since the pages are wired down, we must be able to | |
4968 | * get their mappings from the physical map system. | |
4969 | */ | |
4970 | ||
4971 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
1c79356b A |
4972 | |
4973 | if (object == VM_OBJECT_NULL) { | |
593a1d5f A |
4974 | if (pmap) { |
4975 | pmap_change_wiring(pmap, | |
4976 | pmap_addr + (va - entry->vme_start), FALSE); | |
4977 | } | |
9bccf70c A |
4978 | (void) vm_fault(map, va, VM_PROT_NONE, |
4979 | TRUE, THREAD_UNINT, pmap, pmap_addr); | |
1c79356b A |
4980 | } else { |
4981 | vm_prot_t prot; | |
4982 | vm_page_t result_page; | |
4983 | vm_page_t top_page; | |
4984 | vm_object_t result_object; | |
4985 | vm_fault_return_t result; | |
4986 | ||
b0d623f7 A |
4987 | if (end_addr - va > (vm_size_t) -1) { |
4988 | /* 32-bit overflow */ | |
4989 | fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE); | |
4990 | } else { | |
4991 | fault_info.cluster_size = (vm_size_t) (end_addr - va); | |
4992 | assert(fault_info.cluster_size == end_addr - va); | |
4993 | } | |
2d21ac55 | 4994 | |
1c79356b A |
4995 | do { |
4996 | prot = VM_PROT_NONE; | |
4997 | ||
4998 | vm_object_lock(object); | |
4999 | vm_object_paging_begin(object); | |
5000 | XPR(XPR_VM_FAULT, | |
5001 | "vm_fault_unwire -> vm_fault_page\n", | |
5002 | 0,0,0,0,0); | |
39236c6e | 5003 | result_page = VM_PAGE_NULL; |
2d21ac55 A |
5004 | result = vm_fault_page( |
5005 | object, | |
5006 | entry->offset + (va - entry->vme_start), | |
5007 | VM_PROT_NONE, TRUE, | |
39236c6e | 5008 | FALSE, /* page not looked up */ |
2d21ac55 A |
5009 | &prot, &result_page, &top_page, |
5010 | (int *)0, | |
5011 | NULL, map->no_zero_fill, | |
5012 | FALSE, &fault_info); | |
1c79356b A |
5013 | } while (result == VM_FAULT_RETRY); |
5014 | ||
2d21ac55 A |
5015 | /* |
5016 | * If this was a mapping to a file on a device that has been forcibly | |
5017 | * unmounted, then we won't get a page back from vm_fault_page(). Just | |
5018 | * move on to the next one in case the remaining pages are mapped from | |
5019 | * different objects. During a forced unmount, the object is terminated | |
5020 | * so the alive flag will be false if this happens. A forced unmount will | |
5021 | * will occur when an external disk is unplugged before the user does an | |
5022 | * eject, so we don't want to panic in that situation. | |
5023 | */ | |
5024 | ||
5025 | if (result == VM_FAULT_MEMORY_ERROR && !object->alive) | |
5026 | continue; | |
5027 | ||
39236c6e A |
5028 | if (result == VM_FAULT_MEMORY_ERROR && |
5029 | object == kernel_object) { | |
5030 | /* | |
5031 | * This must have been allocated with | |
5032 | * KMA_KOBJECT and KMA_VAONLY and there's | |
5033 | * no physical page at this offset. | |
5034 | * We're done (no page to free). | |
5035 | */ | |
5036 | assert(deallocate); | |
5037 | continue; | |
5038 | } | |
5039 | ||
1c79356b A |
5040 | if (result != VM_FAULT_SUCCESS) |
5041 | panic("vm_fault_unwire: failure"); | |
5042 | ||
5043 | result_object = result_page->object; | |
2d21ac55 | 5044 | |
1c79356b | 5045 | if (deallocate) { |
2d21ac55 A |
5046 | assert(result_page->phys_page != |
5047 | vm_page_fictitious_addr); | |
91447636 | 5048 | pmap_disconnect(result_page->phys_page); |
1c79356b A |
5049 | VM_PAGE_FREE(result_page); |
5050 | } else { | |
6d2010ae A |
5051 | if ((pmap) && (result_page->phys_page != vm_page_guard_addr)) |
5052 | pmap_change_wiring(pmap, | |
5053 | pmap_addr + (va - entry->vme_start), FALSE); | |
5054 | ||
5055 | ||
b0d623f7 A |
5056 | if (VM_PAGE_WIRED(result_page)) { |
5057 | vm_page_lockspin_queues(); | |
0b4c1975 | 5058 | vm_page_unwire(result_page, TRUE); |
b0d623f7 A |
5059 | vm_page_unlock_queues(); |
5060 | } | |
5061 | if(entry->zero_wired_pages) { | |
5062 | pmap_zero_page(result_page->phys_page); | |
5063 | entry->zero_wired_pages = FALSE; | |
5064 | } | |
5065 | ||
1c79356b A |
5066 | PAGE_WAKEUP_DONE(result_page); |
5067 | } | |
1c79356b A |
5068 | vm_fault_cleanup(result_object, top_page); |
5069 | } | |
5070 | } | |
5071 | ||
5072 | /* | |
5073 | * Inform the physical mapping system that the range | |
5074 | * of addresses may fault, so that page tables and | |
5075 | * such may be unwired themselves. | |
5076 | */ | |
5077 | ||
9bccf70c A |
5078 | pmap_pageable(pmap, pmap_addr, |
5079 | pmap_addr + (end_addr - entry->vme_start), TRUE); | |
1c79356b A |
5080 | |
5081 | } | |
5082 | ||
5083 | /* | |
5084 | * vm_fault_wire_fast: | |
5085 | * | |
5086 | * Handle common case of a wire down page fault at the given address. | |
5087 | * If successful, the page is inserted into the associated physical map. | |
5088 | * The map entry is passed in to avoid the overhead of a map lookup. | |
5089 | * | |
5090 | * NOTE: the given address should be truncated to the | |
5091 | * proper page address. | |
5092 | * | |
5093 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
5094 | * a standard error specifying why the fault is fatal is returned. | |
5095 | * | |
5096 | * The map in question must be referenced, and remains so. | |
5097 | * Caller has a read lock on the map. | |
5098 | * | |
5099 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
5100 | * other than the common case will return KERN_FAILURE, and the caller | |
5101 | * is expected to call vm_fault(). | |
5102 | */ | |
5103 | kern_return_t | |
5104 | vm_fault_wire_fast( | |
91447636 A |
5105 | __unused vm_map_t map, |
5106 | vm_map_offset_t va, | |
1c79356b | 5107 | vm_map_entry_t entry, |
fe8ab488 A |
5108 | pmap_t pmap, |
5109 | vm_map_offset_t pmap_addr, | |
5110 | ppnum_t *physpage_p) | |
1c79356b A |
5111 | { |
5112 | vm_object_t object; | |
5113 | vm_object_offset_t offset; | |
5114 | register vm_page_t m; | |
5115 | vm_prot_t prot; | |
91447636 | 5116 | thread_t thread = current_thread(); |
2d21ac55 A |
5117 | int type_of_fault; |
5118 | kern_return_t kr; | |
1c79356b | 5119 | |
2d21ac55 | 5120 | VM_STAT_INCR(faults); |
1c79356b | 5121 | |
91447636 A |
5122 | if (thread != THREAD_NULL && thread->task != TASK_NULL) |
5123 | thread->task->faults++; | |
1c79356b A |
5124 | |
5125 | /* | |
5126 | * Recovery actions | |
5127 | */ | |
5128 | ||
5129 | #undef RELEASE_PAGE | |
5130 | #define RELEASE_PAGE(m) { \ | |
5131 | PAGE_WAKEUP_DONE(m); \ | |
2d21ac55 | 5132 | vm_page_lockspin_queues(); \ |
0b4c1975 | 5133 | vm_page_unwire(m, TRUE); \ |
1c79356b A |
5134 | vm_page_unlock_queues(); \ |
5135 | } | |
5136 | ||
5137 | ||
5138 | #undef UNLOCK_THINGS | |
5139 | #define UNLOCK_THINGS { \ | |
ff6e181a A |
5140 | vm_object_paging_end(object); \ |
5141 | vm_object_unlock(object); \ | |
1c79356b A |
5142 | } |
5143 | ||
5144 | #undef UNLOCK_AND_DEALLOCATE | |
5145 | #define UNLOCK_AND_DEALLOCATE { \ | |
5146 | UNLOCK_THINGS; \ | |
5147 | vm_object_deallocate(object); \ | |
5148 | } | |
5149 | /* | |
5150 | * Give up and have caller do things the hard way. | |
5151 | */ | |
5152 | ||
5153 | #define GIVE_UP { \ | |
5154 | UNLOCK_AND_DEALLOCATE; \ | |
5155 | return(KERN_FAILURE); \ | |
5156 | } | |
5157 | ||
5158 | ||
5159 | /* | |
5160 | * If this entry is not directly to a vm_object, bail out. | |
5161 | */ | |
fe8ab488 A |
5162 | if (entry->is_sub_map) { |
5163 | assert(physpage_p == NULL); | |
1c79356b | 5164 | return(KERN_FAILURE); |
fe8ab488 | 5165 | } |
1c79356b A |
5166 | |
5167 | /* | |
5168 | * Find the backing store object and offset into it. | |
5169 | */ | |
5170 | ||
5171 | object = entry->object.vm_object; | |
5172 | offset = (va - entry->vme_start) + entry->offset; | |
5173 | prot = entry->protection; | |
5174 | ||
5175 | /* | |
5176 | * Make a reference to this object to prevent its | |
5177 | * disposal while we are messing with it. | |
5178 | */ | |
5179 | ||
5180 | vm_object_lock(object); | |
2d21ac55 | 5181 | vm_object_reference_locked(object); |
ff6e181a | 5182 | vm_object_paging_begin(object); |
1c79356b A |
5183 | |
5184 | /* | |
5185 | * INVARIANTS (through entire routine): | |
5186 | * | |
5187 | * 1) At all times, we must either have the object | |
5188 | * lock or a busy page in some object to prevent | |
5189 | * some other thread from trying to bring in | |
5190 | * the same page. | |
5191 | * | |
5192 | * 2) Once we have a busy page, we must remove it from | |
5193 | * the pageout queues, so that the pageout daemon | |
5194 | * will not grab it away. | |
5195 | * | |
5196 | */ | |
5197 | ||
5198 | /* | |
5199 | * Look for page in top-level object. If it's not there or | |
5200 | * there's something going on, give up. | |
91447636 A |
5201 | * ENCRYPTED SWAP: use the slow fault path, since we'll need to |
5202 | * decrypt the page before wiring it down. | |
1c79356b A |
5203 | */ |
5204 | m = vm_page_lookup(object, offset); | |
91447636 | 5205 | if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) || |
2d21ac55 | 5206 | (m->unusual && ( m->error || m->restart || m->absent))) { |
1c79356b A |
5207 | |
5208 | GIVE_UP; | |
5209 | } | |
91447636 | 5210 | ASSERT_PAGE_DECRYPTED(m); |
1c79356b | 5211 | |
2d21ac55 A |
5212 | if (m->fictitious && |
5213 | m->phys_page == vm_page_guard_addr) { | |
5214 | /* | |
5215 | * Guard pages are fictitious pages and are never | |
5216 | * entered into a pmap, so let's say it's been wired... | |
5217 | */ | |
5218 | kr = KERN_SUCCESS; | |
5219 | goto done; | |
5220 | } | |
5221 | ||
1c79356b A |
5222 | /* |
5223 | * Wire the page down now. All bail outs beyond this | |
5224 | * point must unwire the page. | |
5225 | */ | |
5226 | ||
2d21ac55 | 5227 | vm_page_lockspin_queues(); |
1c79356b A |
5228 | vm_page_wire(m); |
5229 | vm_page_unlock_queues(); | |
5230 | ||
5231 | /* | |
5232 | * Mark page busy for other threads. | |
5233 | */ | |
5234 | assert(!m->busy); | |
5235 | m->busy = TRUE; | |
5236 | assert(!m->absent); | |
5237 | ||
5238 | /* | |
5239 | * Give up if the page is being written and there's a copy object | |
5240 | */ | |
5241 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
5242 | RELEASE_PAGE(m); | |
5243 | GIVE_UP; | |
5244 | } | |
5245 | ||
5246 | /* | |
5247 | * Put this page into the physical map. | |
1c79356b | 5248 | */ |
2d21ac55 A |
5249 | type_of_fault = DBG_CACHE_HIT_FAULT; |
5250 | kr = vm_fault_enter(m, | |
5251 | pmap, | |
5252 | pmap_addr, | |
5253 | prot, | |
6d2010ae | 5254 | prot, |
2d21ac55 A |
5255 | TRUE, |
5256 | FALSE, | |
5257 | FALSE, | |
6d2010ae | 5258 | FALSE, |
fe8ab488 A |
5259 | entry->alias, |
5260 | ((entry->iokit_acct || | |
5261 | (!entry->is_sub_map && !entry->use_pmap)) | |
5262 | ? PMAP_OPTIONS_ALT_ACCT | |
5263 | : 0), | |
316670eb | 5264 | NULL, |
2d21ac55 A |
5265 | &type_of_fault); |
5266 | ||
5267 | done: | |
1c79356b A |
5268 | /* |
5269 | * Unlock everything, and return | |
5270 | */ | |
5271 | ||
fe8ab488 A |
5272 | if (physpage_p) { |
5273 | /* for vm_map_wire_and_extract() */ | |
5274 | if (kr == KERN_SUCCESS) { | |
5275 | *physpage_p = m->phys_page; | |
5276 | if (prot & VM_PROT_WRITE) { | |
5277 | vm_object_lock_assert_exclusive(m->object); | |
5278 | m->dirty = TRUE; | |
5279 | } | |
5280 | } else { | |
5281 | *physpage_p = 0; | |
5282 | } | |
5283 | } | |
5284 | ||
1c79356b A |
5285 | PAGE_WAKEUP_DONE(m); |
5286 | UNLOCK_AND_DEALLOCATE; | |
5287 | ||
2d21ac55 | 5288 | return kr; |
1c79356b A |
5289 | |
5290 | } | |
5291 | ||
5292 | /* | |
5293 | * Routine: vm_fault_copy_cleanup | |
5294 | * Purpose: | |
5295 | * Release a page used by vm_fault_copy. | |
5296 | */ | |
5297 | ||
5298 | void | |
5299 | vm_fault_copy_cleanup( | |
5300 | vm_page_t page, | |
5301 | vm_page_t top_page) | |
5302 | { | |
5303 | vm_object_t object = page->object; | |
5304 | ||
5305 | vm_object_lock(object); | |
5306 | PAGE_WAKEUP_DONE(page); | |
b0d623f7 A |
5307 | if (!page->active && !page->inactive && !page->throttled) { |
5308 | vm_page_lockspin_queues(); | |
5309 | if (!page->active && !page->inactive && !page->throttled) | |
5310 | vm_page_activate(page); | |
5311 | vm_page_unlock_queues(); | |
5312 | } | |
1c79356b A |
5313 | vm_fault_cleanup(object, top_page); |
5314 | } | |
5315 | ||
5316 | void | |
5317 | vm_fault_copy_dst_cleanup( | |
5318 | vm_page_t page) | |
5319 | { | |
5320 | vm_object_t object; | |
5321 | ||
5322 | if (page != VM_PAGE_NULL) { | |
5323 | object = page->object; | |
5324 | vm_object_lock(object); | |
2d21ac55 | 5325 | vm_page_lockspin_queues(); |
0b4c1975 | 5326 | vm_page_unwire(page, TRUE); |
1c79356b A |
5327 | vm_page_unlock_queues(); |
5328 | vm_object_paging_end(object); | |
5329 | vm_object_unlock(object); | |
5330 | } | |
5331 | } | |
5332 | ||
5333 | /* | |
5334 | * Routine: vm_fault_copy | |
5335 | * | |
5336 | * Purpose: | |
5337 | * Copy pages from one virtual memory object to another -- | |
5338 | * neither the source nor destination pages need be resident. | |
5339 | * | |
5340 | * Before actually copying a page, the version associated with | |
5341 | * the destination address map wil be verified. | |
5342 | * | |
5343 | * In/out conditions: | |
5344 | * The caller must hold a reference, but not a lock, to | |
5345 | * each of the source and destination objects and to the | |
5346 | * destination map. | |
5347 | * | |
5348 | * Results: | |
5349 | * Returns KERN_SUCCESS if no errors were encountered in | |
5350 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
5351 | * the operation was interrupted (only possible if the | |
5352 | * "interruptible" argument is asserted). Other return values | |
5353 | * indicate a permanent error in copying the data. | |
5354 | * | |
5355 | * The actual amount of data copied will be returned in the | |
5356 | * "copy_size" argument. In the event that the destination map | |
5357 | * verification failed, this amount may be less than the amount | |
5358 | * requested. | |
5359 | */ | |
5360 | kern_return_t | |
5361 | vm_fault_copy( | |
5362 | vm_object_t src_object, | |
5363 | vm_object_offset_t src_offset, | |
91447636 | 5364 | vm_map_size_t *copy_size, /* INOUT */ |
1c79356b A |
5365 | vm_object_t dst_object, |
5366 | vm_object_offset_t dst_offset, | |
5367 | vm_map_t dst_map, | |
5368 | vm_map_version_t *dst_version, | |
5369 | int interruptible) | |
5370 | { | |
5371 | vm_page_t result_page; | |
5372 | ||
5373 | vm_page_t src_page; | |
5374 | vm_page_t src_top_page; | |
5375 | vm_prot_t src_prot; | |
5376 | ||
5377 | vm_page_t dst_page; | |
5378 | vm_page_t dst_top_page; | |
5379 | vm_prot_t dst_prot; | |
5380 | ||
91447636 | 5381 | vm_map_size_t amount_left; |
1c79356b A |
5382 | vm_object_t old_copy_object; |
5383 | kern_return_t error = 0; | |
b0d623f7 | 5384 | vm_fault_return_t result; |
1c79356b | 5385 | |
91447636 | 5386 | vm_map_size_t part_size; |
2d21ac55 A |
5387 | struct vm_object_fault_info fault_info_src; |
5388 | struct vm_object_fault_info fault_info_dst; | |
1c79356b A |
5389 | |
5390 | /* | |
5391 | * In order not to confuse the clustered pageins, align | |
5392 | * the different offsets on a page boundary. | |
5393 | */ | |
1c79356b A |
5394 | |
5395 | #define RETURN(x) \ | |
5396 | MACRO_BEGIN \ | |
91447636 | 5397 | *copy_size -= amount_left; \ |
1c79356b A |
5398 | MACRO_RETURN(x); \ |
5399 | MACRO_END | |
5400 | ||
91447636 | 5401 | amount_left = *copy_size; |
2d21ac55 A |
5402 | |
5403 | fault_info_src.interruptible = interruptible; | |
5404 | fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
5405 | fault_info_src.user_tag = 0; | |
fe8ab488 | 5406 | fault_info_src.pmap_options = 0; |
2d21ac55 A |
5407 | fault_info_src.lo_offset = vm_object_trunc_page(src_offset); |
5408 | fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; | |
5409 | fault_info_src.no_cache = FALSE; | |
b0d623f7 | 5410 | fault_info_src.stealth = TRUE; |
6d2010ae A |
5411 | fault_info_src.io_sync = FALSE; |
5412 | fault_info_src.cs_bypass = FALSE; | |
0b4c1975 | 5413 | fault_info_src.mark_zf_absent = FALSE; |
316670eb | 5414 | fault_info_src.batch_pmap_op = FALSE; |
2d21ac55 A |
5415 | |
5416 | fault_info_dst.interruptible = interruptible; | |
5417 | fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
5418 | fault_info_dst.user_tag = 0; | |
fe8ab488 | 5419 | fault_info_dst.pmap_options = 0; |
2d21ac55 A |
5420 | fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); |
5421 | fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; | |
5422 | fault_info_dst.no_cache = FALSE; | |
b0d623f7 | 5423 | fault_info_dst.stealth = TRUE; |
6d2010ae A |
5424 | fault_info_dst.io_sync = FALSE; |
5425 | fault_info_dst.cs_bypass = FALSE; | |
0b4c1975 | 5426 | fault_info_dst.mark_zf_absent = FALSE; |
316670eb | 5427 | fault_info_dst.batch_pmap_op = FALSE; |
2d21ac55 | 5428 | |
1c79356b A |
5429 | do { /* while (amount_left > 0) */ |
5430 | /* | |
5431 | * There may be a deadlock if both source and destination | |
5432 | * pages are the same. To avoid this deadlock, the copy must | |
5433 | * start by getting the destination page in order to apply | |
5434 | * COW semantics if any. | |
5435 | */ | |
5436 | ||
5437 | RetryDestinationFault: ; | |
5438 | ||
5439 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
5440 | ||
5441 | vm_object_lock(dst_object); | |
5442 | vm_object_paging_begin(dst_object); | |
5443 | ||
b0d623f7 A |
5444 | if (amount_left > (vm_size_t) -1) { |
5445 | /* 32-bit overflow */ | |
5446 | fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE); | |
5447 | } else { | |
5448 | fault_info_dst.cluster_size = (vm_size_t) amount_left; | |
5449 | assert(fault_info_dst.cluster_size == amount_left); | |
5450 | } | |
2d21ac55 | 5451 | |
1c79356b | 5452 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); |
39236c6e | 5453 | dst_page = VM_PAGE_NULL; |
b0d623f7 A |
5454 | result = vm_fault_page(dst_object, |
5455 | vm_object_trunc_page(dst_offset), | |
5456 | VM_PROT_WRITE|VM_PROT_READ, | |
5457 | FALSE, | |
39236c6e | 5458 | FALSE, /* page not looked up */ |
b0d623f7 A |
5459 | &dst_prot, &dst_page, &dst_top_page, |
5460 | (int *)0, | |
5461 | &error, | |
5462 | dst_map->no_zero_fill, | |
5463 | FALSE, &fault_info_dst); | |
5464 | switch (result) { | |
1c79356b A |
5465 | case VM_FAULT_SUCCESS: |
5466 | break; | |
5467 | case VM_FAULT_RETRY: | |
5468 | goto RetryDestinationFault; | |
5469 | case VM_FAULT_MEMORY_SHORTAGE: | |
5470 | if (vm_page_wait(interruptible)) | |
5471 | goto RetryDestinationFault; | |
5472 | /* fall thru */ | |
5473 | case VM_FAULT_INTERRUPTED: | |
5474 | RETURN(MACH_SEND_INTERRUPTED); | |
b0d623f7 A |
5475 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
5476 | /* success but no VM page: fail the copy */ | |
5477 | vm_object_paging_end(dst_object); | |
5478 | vm_object_unlock(dst_object); | |
5479 | /*FALLTHROUGH*/ | |
1c79356b A |
5480 | case VM_FAULT_MEMORY_ERROR: |
5481 | if (error) | |
5482 | return (error); | |
5483 | else | |
5484 | return(KERN_MEMORY_ERROR); | |
b0d623f7 A |
5485 | default: |
5486 | panic("vm_fault_copy: unexpected error 0x%x from " | |
5487 | "vm_fault_page()\n", result); | |
1c79356b A |
5488 | } |
5489 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
5490 | ||
5491 | old_copy_object = dst_page->object->copy; | |
5492 | ||
5493 | /* | |
5494 | * There exists the possiblity that the source and | |
5495 | * destination page are the same. But we can't | |
5496 | * easily determine that now. If they are the | |
5497 | * same, the call to vm_fault_page() for the | |
5498 | * destination page will deadlock. To prevent this we | |
5499 | * wire the page so we can drop busy without having | |
5500 | * the page daemon steal the page. We clean up the | |
5501 | * top page but keep the paging reference on the object | |
5502 | * holding the dest page so it doesn't go away. | |
5503 | */ | |
5504 | ||
2d21ac55 | 5505 | vm_page_lockspin_queues(); |
1c79356b A |
5506 | vm_page_wire(dst_page); |
5507 | vm_page_unlock_queues(); | |
5508 | PAGE_WAKEUP_DONE(dst_page); | |
5509 | vm_object_unlock(dst_page->object); | |
5510 | ||
5511 | if (dst_top_page != VM_PAGE_NULL) { | |
5512 | vm_object_lock(dst_object); | |
5513 | VM_PAGE_FREE(dst_top_page); | |
5514 | vm_object_paging_end(dst_object); | |
5515 | vm_object_unlock(dst_object); | |
5516 | } | |
5517 | ||
5518 | RetrySourceFault: ; | |
5519 | ||
5520 | if (src_object == VM_OBJECT_NULL) { | |
5521 | /* | |
5522 | * No source object. We will just | |
5523 | * zero-fill the page in dst_object. | |
5524 | */ | |
5525 | src_page = VM_PAGE_NULL; | |
e3027f41 | 5526 | result_page = VM_PAGE_NULL; |
1c79356b A |
5527 | } else { |
5528 | vm_object_lock(src_object); | |
5529 | src_page = vm_page_lookup(src_object, | |
91447636 | 5530 | vm_object_trunc_page(src_offset)); |
e3027f41 | 5531 | if (src_page == dst_page) { |
1c79356b | 5532 | src_prot = dst_prot; |
e3027f41 A |
5533 | result_page = VM_PAGE_NULL; |
5534 | } else { | |
1c79356b A |
5535 | src_prot = VM_PROT_READ; |
5536 | vm_object_paging_begin(src_object); | |
5537 | ||
b0d623f7 A |
5538 | if (amount_left > (vm_size_t) -1) { |
5539 | /* 32-bit overflow */ | |
5540 | fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE); | |
5541 | } else { | |
5542 | fault_info_src.cluster_size = (vm_size_t) amount_left; | |
5543 | assert(fault_info_src.cluster_size == amount_left); | |
5544 | } | |
2d21ac55 | 5545 | |
1c79356b A |
5546 | XPR(XPR_VM_FAULT, |
5547 | "vm_fault_copy(2) -> vm_fault_page\n", | |
5548 | 0,0,0,0,0); | |
39236c6e | 5549 | result_page = VM_PAGE_NULL; |
b0d623f7 A |
5550 | result = vm_fault_page( |
5551 | src_object, | |
5552 | vm_object_trunc_page(src_offset), | |
5553 | VM_PROT_READ, FALSE, | |
39236c6e | 5554 | FALSE, /* page not looked up */ |
b0d623f7 A |
5555 | &src_prot, |
5556 | &result_page, &src_top_page, | |
5557 | (int *)0, &error, FALSE, | |
5558 | FALSE, &fault_info_src); | |
5559 | ||
5560 | switch (result) { | |
1c79356b A |
5561 | case VM_FAULT_SUCCESS: |
5562 | break; | |
5563 | case VM_FAULT_RETRY: | |
5564 | goto RetrySourceFault; | |
5565 | case VM_FAULT_MEMORY_SHORTAGE: | |
5566 | if (vm_page_wait(interruptible)) | |
5567 | goto RetrySourceFault; | |
5568 | /* fall thru */ | |
5569 | case VM_FAULT_INTERRUPTED: | |
5570 | vm_fault_copy_dst_cleanup(dst_page); | |
5571 | RETURN(MACH_SEND_INTERRUPTED); | |
b0d623f7 A |
5572 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
5573 | /* success but no VM page: fail */ | |
5574 | vm_object_paging_end(src_object); | |
5575 | vm_object_unlock(src_object); | |
5576 | /*FALLTHROUGH*/ | |
1c79356b A |
5577 | case VM_FAULT_MEMORY_ERROR: |
5578 | vm_fault_copy_dst_cleanup(dst_page); | |
5579 | if (error) | |
5580 | return (error); | |
5581 | else | |
5582 | return(KERN_MEMORY_ERROR); | |
b0d623f7 A |
5583 | default: |
5584 | panic("vm_fault_copy(2): unexpected " | |
5585 | "error 0x%x from " | |
5586 | "vm_fault_page()\n", result); | |
1c79356b A |
5587 | } |
5588 | ||
1c79356b A |
5589 | |
5590 | assert((src_top_page == VM_PAGE_NULL) == | |
e3027f41 | 5591 | (result_page->object == src_object)); |
1c79356b A |
5592 | } |
5593 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
e3027f41 | 5594 | vm_object_unlock(result_page->object); |
1c79356b A |
5595 | } |
5596 | ||
5597 | if (!vm_map_verify(dst_map, dst_version)) { | |
e3027f41 A |
5598 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
5599 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
5600 | vm_fault_copy_dst_cleanup(dst_page); |
5601 | break; | |
5602 | } | |
5603 | ||
5604 | vm_object_lock(dst_page->object); | |
5605 | ||
5606 | if (dst_page->object->copy != old_copy_object) { | |
5607 | vm_object_unlock(dst_page->object); | |
5608 | vm_map_verify_done(dst_map, dst_version); | |
e3027f41 A |
5609 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
5610 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
5611 | vm_fault_copy_dst_cleanup(dst_page); |
5612 | break; | |
5613 | } | |
5614 | vm_object_unlock(dst_page->object); | |
5615 | ||
5616 | /* | |
5617 | * Copy the page, and note that it is dirty | |
5618 | * immediately. | |
5619 | */ | |
5620 | ||
5621 | if (!page_aligned(src_offset) || | |
5622 | !page_aligned(dst_offset) || | |
5623 | !page_aligned(amount_left)) { | |
5624 | ||
5625 | vm_object_offset_t src_po, | |
5626 | dst_po; | |
5627 | ||
91447636 A |
5628 | src_po = src_offset - vm_object_trunc_page(src_offset); |
5629 | dst_po = dst_offset - vm_object_trunc_page(dst_offset); | |
1c79356b A |
5630 | |
5631 | if (dst_po > src_po) { | |
5632 | part_size = PAGE_SIZE - dst_po; | |
5633 | } else { | |
5634 | part_size = PAGE_SIZE - src_po; | |
5635 | } | |
5636 | if (part_size > (amount_left)){ | |
5637 | part_size = amount_left; | |
5638 | } | |
5639 | ||
e3027f41 | 5640 | if (result_page == VM_PAGE_NULL) { |
b0d623f7 A |
5641 | assert((vm_offset_t) dst_po == dst_po); |
5642 | assert((vm_size_t) part_size == part_size); | |
1c79356b | 5643 | vm_page_part_zero_fill(dst_page, |
b0d623f7 A |
5644 | (vm_offset_t) dst_po, |
5645 | (vm_size_t) part_size); | |
1c79356b | 5646 | } else { |
b0d623f7 A |
5647 | assert((vm_offset_t) src_po == src_po); |
5648 | assert((vm_offset_t) dst_po == dst_po); | |
5649 | assert((vm_size_t) part_size == part_size); | |
5650 | vm_page_part_copy(result_page, | |
5651 | (vm_offset_t) src_po, | |
5652 | dst_page, | |
5653 | (vm_offset_t) dst_po, | |
5654 | (vm_size_t)part_size); | |
1c79356b A |
5655 | if(!dst_page->dirty){ |
5656 | vm_object_lock(dst_object); | |
316670eb | 5657 | SET_PAGE_DIRTY(dst_page, TRUE); |
1c79356b A |
5658 | vm_object_unlock(dst_page->object); |
5659 | } | |
5660 | ||
5661 | } | |
5662 | } else { | |
5663 | part_size = PAGE_SIZE; | |
5664 | ||
e3027f41 | 5665 | if (result_page == VM_PAGE_NULL) |
1c79356b A |
5666 | vm_page_zero_fill(dst_page); |
5667 | else{ | |
316670eb | 5668 | vm_object_lock(result_page->object); |
e3027f41 | 5669 | vm_page_copy(result_page, dst_page); |
316670eb A |
5670 | vm_object_unlock(result_page->object); |
5671 | ||
1c79356b A |
5672 | if(!dst_page->dirty){ |
5673 | vm_object_lock(dst_object); | |
316670eb | 5674 | SET_PAGE_DIRTY(dst_page, TRUE); |
1c79356b A |
5675 | vm_object_unlock(dst_page->object); |
5676 | } | |
5677 | } | |
5678 | ||
5679 | } | |
5680 | ||
5681 | /* | |
5682 | * Unlock everything, and return | |
5683 | */ | |
5684 | ||
5685 | vm_map_verify_done(dst_map, dst_version); | |
5686 | ||
e3027f41 A |
5687 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
5688 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
5689 | vm_fault_copy_dst_cleanup(dst_page); |
5690 | ||
5691 | amount_left -= part_size; | |
5692 | src_offset += part_size; | |
5693 | dst_offset += part_size; | |
5694 | } while (amount_left > 0); | |
5695 | ||
5696 | RETURN(KERN_SUCCESS); | |
5697 | #undef RETURN | |
5698 | ||
5699 | /*NOTREACHED*/ | |
5700 | } | |
5701 | ||
1c79356b A |
5702 | #if VM_FAULT_CLASSIFY |
5703 | /* | |
5704 | * Temporary statistics gathering support. | |
5705 | */ | |
5706 | ||
5707 | /* | |
5708 | * Statistics arrays: | |
5709 | */ | |
5710 | #define VM_FAULT_TYPES_MAX 5 | |
5711 | #define VM_FAULT_LEVEL_MAX 8 | |
5712 | ||
5713 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
5714 | ||
5715 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
5716 | #define VM_FAULT_TYPE_MAP_IN 1 | |
5717 | #define VM_FAULT_TYPE_PAGER 2 | |
5718 | #define VM_FAULT_TYPE_COPY 3 | |
5719 | #define VM_FAULT_TYPE_OTHER 4 | |
5720 | ||
5721 | ||
5722 | void | |
5723 | vm_fault_classify(vm_object_t object, | |
5724 | vm_object_offset_t offset, | |
5725 | vm_prot_t fault_type) | |
5726 | { | |
5727 | int type, level = 0; | |
5728 | vm_page_t m; | |
5729 | ||
5730 | while (TRUE) { | |
5731 | m = vm_page_lookup(object, offset); | |
5732 | if (m != VM_PAGE_NULL) { | |
2d21ac55 | 5733 | if (m->busy || m->error || m->restart || m->absent) { |
1c79356b A |
5734 | type = VM_FAULT_TYPE_OTHER; |
5735 | break; | |
5736 | } | |
5737 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
5738 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
5739 | type = VM_FAULT_TYPE_MAP_IN; | |
5740 | break; | |
5741 | } | |
5742 | type = VM_FAULT_TYPE_COPY; | |
5743 | break; | |
5744 | } | |
5745 | else { | |
5746 | if (object->pager_created) { | |
5747 | type = VM_FAULT_TYPE_PAGER; | |
5748 | break; | |
5749 | } | |
5750 | if (object->shadow == VM_OBJECT_NULL) { | |
5751 | type = VM_FAULT_TYPE_ZERO_FILL; | |
5752 | break; | |
5753 | } | |
5754 | ||
6d2010ae | 5755 | offset += object->vo_shadow_offset; |
1c79356b A |
5756 | object = object->shadow; |
5757 | level++; | |
5758 | continue; | |
5759 | } | |
5760 | } | |
5761 | ||
5762 | if (level > VM_FAULT_LEVEL_MAX) | |
5763 | level = VM_FAULT_LEVEL_MAX; | |
5764 | ||
5765 | vm_fault_stats[type][level] += 1; | |
5766 | ||
5767 | return; | |
5768 | } | |
5769 | ||
5770 | /* cleanup routine to call from debugger */ | |
5771 | ||
5772 | void | |
5773 | vm_fault_classify_init(void) | |
5774 | { | |
5775 | int type, level; | |
5776 | ||
5777 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
5778 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
5779 | vm_fault_stats[type][level] = 0; | |
5780 | } | |
5781 | } | |
5782 | ||
5783 | return; | |
5784 | } | |
5785 | #endif /* VM_FAULT_CLASSIFY */ | |
2d21ac55 A |
5786 | |
5787 | ||
593a1d5f A |
5788 | void |
5789 | vm_page_validate_cs_mapped( | |
5790 | vm_page_t page, | |
5791 | const void *kaddr) | |
5792 | { | |
5793 | vm_object_t object; | |
5794 | vm_object_offset_t offset; | |
5795 | kern_return_t kr; | |
5796 | memory_object_t pager; | |
5797 | void *blobs; | |
5798 | boolean_t validated, tainted; | |
5799 | ||
5800 | assert(page->busy); | |
5801 | vm_object_lock_assert_exclusive(page->object); | |
5802 | ||
5803 | if (!cs_validation) { | |
5804 | return; | |
5805 | } | |
5806 | ||
5807 | if (page->wpmapped && !page->cs_tainted) { | |
5808 | /* | |
5809 | * This page was mapped for "write" access sometime in the | |
5810 | * past and could still be modifiable in the future. | |
5811 | * Consider it tainted. | |
5812 | * [ If the page was already found to be "tainted", no | |
5813 | * need to re-validate. ] | |
5814 | */ | |
5815 | page->cs_validated = TRUE; | |
5816 | page->cs_tainted = TRUE; | |
5817 | if (cs_debug) { | |
5818 | printf("CODESIGNING: vm_page_validate_cs: " | |
5819 | "page %p obj %p off 0x%llx " | |
5820 | "was modified\n", | |
5821 | page, page->object, page->offset); | |
5822 | } | |
5823 | vm_cs_validated_dirtied++; | |
5824 | } | |
5825 | ||
5826 | if (page->cs_validated) { | |
5827 | return; | |
5828 | } | |
5829 | ||
5830 | vm_cs_validates++; | |
5831 | ||
5832 | object = page->object; | |
5833 | assert(object->code_signed); | |
5834 | offset = page->offset; | |
5835 | ||
5836 | if (!object->alive || object->terminating || object->pager == NULL) { | |
5837 | /* | |
5838 | * The object is terminating and we don't have its pager | |
5839 | * so we can't validate the data... | |
5840 | */ | |
5841 | return; | |
5842 | } | |
5843 | /* | |
5844 | * Since we get here to validate a page that was brought in by | |
5845 | * the pager, we know that this pager is all setup and ready | |
5846 | * by now. | |
5847 | */ | |
5848 | assert(!object->internal); | |
5849 | assert(object->pager != NULL); | |
5850 | assert(object->pager_ready); | |
5851 | ||
5852 | pager = object->pager; | |
b0d623f7 | 5853 | assert(object->paging_in_progress); |
593a1d5f A |
5854 | kr = vnode_pager_get_object_cs_blobs(pager, &blobs); |
5855 | if (kr != KERN_SUCCESS) { | |
5856 | blobs = NULL; | |
5857 | } | |
5858 | ||
5859 | /* verify the SHA1 hash for this page */ | |
5860 | validated = cs_validate_page(blobs, | |
316670eb | 5861 | pager, |
593a1d5f A |
5862 | offset + object->paging_offset, |
5863 | (const void *)kaddr, | |
5864 | &tainted); | |
5865 | ||
5866 | page->cs_validated = validated; | |
5867 | if (validated) { | |
5868 | page->cs_tainted = tainted; | |
5869 | } | |
5870 | } | |
5871 | ||
2d21ac55 A |
5872 | void |
5873 | vm_page_validate_cs( | |
5874 | vm_page_t page) | |
5875 | { | |
5876 | vm_object_t object; | |
5877 | vm_object_offset_t offset; | |
5878 | vm_map_offset_t koffset; | |
5879 | vm_map_size_t ksize; | |
5880 | vm_offset_t kaddr; | |
5881 | kern_return_t kr; | |
2d21ac55 | 5882 | boolean_t busy_page; |
39236c6e | 5883 | boolean_t need_unmap; |
2d21ac55 | 5884 | |
4a3eedf9 | 5885 | vm_object_lock_assert_held(page->object); |
2d21ac55 A |
5886 | |
5887 | if (!cs_validation) { | |
5888 | return; | |
5889 | } | |
5890 | ||
593a1d5f | 5891 | if (page->wpmapped && !page->cs_tainted) { |
4a3eedf9 A |
5892 | vm_object_lock_assert_exclusive(page->object); |
5893 | ||
5894 | /* | |
593a1d5f A |
5895 | * This page was mapped for "write" access sometime in the |
5896 | * past and could still be modifiable in the future. | |
5897 | * Consider it tainted. | |
5898 | * [ If the page was already found to be "tainted", no | |
5899 | * need to re-validate. ] | |
4a3eedf9 | 5900 | */ |
593a1d5f A |
5901 | page->cs_validated = TRUE; |
5902 | page->cs_tainted = TRUE; | |
5903 | if (cs_debug) { | |
5904 | printf("CODESIGNING: vm_page_validate_cs: " | |
5905 | "page %p obj %p off 0x%llx " | |
5906 | "was modified\n", | |
5907 | page, page->object, page->offset); | |
4a3eedf9 | 5908 | } |
593a1d5f | 5909 | vm_cs_validated_dirtied++; |
4a3eedf9 A |
5910 | } |
5911 | ||
5912 | if (page->cs_validated) { | |
5913 | return; | |
5914 | } | |
5915 | ||
fe8ab488 | 5916 | if (page->slid) { |
15129b1c A |
5917 | panic("vm_page_validate_cs(%p): page is slid\n", page); |
5918 | } | |
5919 | assert(!page->slid); | |
5920 | ||
6d2010ae A |
5921 | #if CHECK_CS_VALIDATION_BITMAP |
5922 | if ( vnode_pager_cs_check_validation_bitmap( page->object->pager, trunc_page(page->offset + page->object->paging_offset), CS_BITMAP_CHECK ) == KERN_SUCCESS) { | |
5923 | page->cs_validated = TRUE; | |
5924 | page->cs_tainted = FALSE; | |
5925 | vm_cs_bitmap_validated++; | |
5926 | return; | |
5927 | } | |
5928 | #endif | |
4a3eedf9 A |
5929 | vm_object_lock_assert_exclusive(page->object); |
5930 | ||
2d21ac55 A |
5931 | object = page->object; |
5932 | assert(object->code_signed); | |
5933 | offset = page->offset; | |
5934 | ||
5935 | busy_page = page->busy; | |
5936 | if (!busy_page) { | |
5937 | /* keep page busy while we map (and unlock) the VM object */ | |
5938 | page->busy = TRUE; | |
5939 | } | |
5940 | ||
5941 | /* | |
5942 | * Take a paging reference on the VM object | |
5943 | * to protect it from collapse or bypass, | |
5944 | * and keep it from disappearing too. | |
5945 | */ | |
5946 | vm_object_paging_begin(object); | |
5947 | ||
5948 | /* map the page in the kernel address space */ | |
2d21ac55 | 5949 | ksize = PAGE_SIZE_64; |
39236c6e A |
5950 | koffset = 0; |
5951 | need_unmap = FALSE; | |
5952 | kr = vm_paging_map_object(page, | |
2d21ac55 A |
5953 | object, |
5954 | offset, | |
593a1d5f | 5955 | VM_PROT_READ, |
39236c6e A |
5956 | FALSE, /* can't unlock object ! */ |
5957 | &ksize, | |
5958 | &koffset, | |
5959 | &need_unmap); | |
2d21ac55 A |
5960 | if (kr != KERN_SUCCESS) { |
5961 | panic("vm_page_validate_cs: could not map page: 0x%x\n", kr); | |
5962 | } | |
5963 | kaddr = CAST_DOWN(vm_offset_t, koffset); | |
5964 | ||
593a1d5f A |
5965 | /* validate the mapped page */ |
5966 | vm_page_validate_cs_mapped(page, (const void *) kaddr); | |
2d21ac55 | 5967 | |
6d2010ae A |
5968 | #if CHECK_CS_VALIDATION_BITMAP |
5969 | if ( page->cs_validated == TRUE && page->cs_tainted == FALSE ) { | |
5970 | vnode_pager_cs_check_validation_bitmap( object->pager, trunc_page( offset + object->paging_offset), CS_BITMAP_SET ); | |
5971 | } | |
5972 | #endif | |
2d21ac55 A |
5973 | assert(page->busy); |
5974 | assert(object == page->object); | |
5975 | vm_object_lock_assert_exclusive(object); | |
5976 | ||
2d21ac55 A |
5977 | if (!busy_page) { |
5978 | PAGE_WAKEUP_DONE(page); | |
5979 | } | |
39236c6e | 5980 | if (need_unmap) { |
2d21ac55 A |
5981 | /* unmap the map from the kernel address space */ |
5982 | vm_paging_unmap_object(object, koffset, koffset + ksize); | |
5983 | koffset = 0; | |
5984 | ksize = 0; | |
5985 | kaddr = 0; | |
5986 | } | |
5987 | vm_object_paging_end(object); | |
5988 | } |