]> git.saurik.com Git - apple/xnu.git/blame - osfmk/vm/vm_fault.c
xnu-1504.15.3.tar.gz
[apple/xnu.git] / osfmk / vm / vm_fault.c
CommitLineData
1c79356b 1/*
b0d623f7 2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 * File: vm_fault.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Page fault handling module.
63 */
1c79356b
A
64
65#include <mach_cluster_stats.h>
66#include <mach_pagemap.h>
67#include <mach_kdb.h>
2d21ac55 68#include <libkern/OSAtomic.h>
1c79356b 69
91447636 70#include <mach/mach_types.h>
1c79356b
A
71#include <mach/kern_return.h>
72#include <mach/message.h> /* for error codes */
91447636
A
73#include <mach/vm_param.h>
74#include <mach/vm_behavior.h>
75#include <mach/memory_object.h>
76 /* For memory_object_data_{request,unlock} */
2d21ac55 77#include <mach/sdt.h>
91447636
A
78
79#include <kern/kern_types.h>
1c79356b
A
80#include <kern/host_statistics.h>
81#include <kern/counters.h>
82#include <kern/task.h>
83#include <kern/thread.h>
84#include <kern/sched_prim.h>
85#include <kern/host.h>
86#include <kern/xpr.h>
91447636
A
87#include <kern/mach_param.h>
88#include <kern/macro_help.h>
89#include <kern/zalloc.h>
90#include <kern/misc_protos.h>
91
0b4e3aa0 92#include <ppc/proc_reg.h>
91447636
A
93
94#include <vm/vm_fault.h>
1c79356b
A
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
55e303ae 98#include <vm/vm_kern.h>
1c79356b
A
99#include <vm/pmap.h>
100#include <vm/vm_pageout.h>
91447636 101#include <vm/vm_protos.h>
2d21ac55
A
102#include <vm/vm_external.h>
103#include <vm/memory_object.h>
104#include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
1c79356b
A
105
106#include <sys/kdebug.h>
107
108#define VM_FAULT_CLASSIFY 0
1c79356b 109
2d21ac55 110#define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
1c79356b 111
2d21ac55 112int vm_object_pagein_throttle = 16;
1c79356b 113
b0d623f7
A
114/*
115 * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
116 * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
117 * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
118 * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
119 * keep the UI active so that the user has a chance to kill the offending task before the system
120 * completely hangs.
121 *
122 * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
123 * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
124 * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
125 * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
126 */
127
128boolean_t thread_is_io_throttled(void);
129
130uint64_t vm_hard_throttle_threshold;
131
132extern unsigned int dp_pages_free, dp_pages_reserve;
133
134#define NEED_TO_HARD_THROTTLE_THIS_TASK() (((dp_pages_free + dp_pages_reserve < 2000) && \
135 (get_task_resident_size(current_task()) > vm_hard_throttle_threshold) && \
136 (current_task() != kernel_task) && IP_VALID(memory_manager_default)) || \
137 (vm_page_free_count < vm_page_throttle_limit && thread_is_io_throttled() && \
138 (get_task_resident_size(current_task()) > vm_hard_throttle_threshold)))
139
140
141#define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */
142
143
2d21ac55 144extern int cs_debug;
1c79356b
A
145
146#if MACH_KDB
147extern struct db_watchpoint *db_watchpoint_list;
148#endif /* MACH_KDB */
149
b0d623f7 150boolean_t current_thread_aborted(void);
91447636 151
1c79356b
A
152/* Forward declarations of internal routines. */
153extern kern_return_t vm_fault_wire_fast(
154 vm_map_t map,
91447636 155 vm_map_offset_t va,
1c79356b 156 vm_map_entry_t entry,
9bccf70c 157 pmap_t pmap,
91447636 158 vm_map_offset_t pmap_addr);
1c79356b
A
159
160extern void vm_fault_continue(void);
161
162extern void vm_fault_copy_cleanup(
163 vm_page_t page,
164 vm_page_t top_page);
165
166extern void vm_fault_copy_dst_cleanup(
167 vm_page_t page);
168
169#if VM_FAULT_CLASSIFY
170extern void vm_fault_classify(vm_object_t object,
171 vm_object_offset_t offset,
172 vm_prot_t fault_type);
173
174extern void vm_fault_classify_init(void);
175#endif
176
d1ecb069 177unsigned long vm_pmap_enter_blocked = 0;
4a3eedf9
A
178
179unsigned long vm_cs_validates = 0;
180unsigned long vm_cs_revalidates = 0;
181unsigned long vm_cs_query_modified = 0;
182unsigned long vm_cs_validated_dirtied = 0;
593a1d5f 183#if CONFIG_ENFORCE_SIGNED_CODE
b0d623f7 184int cs_enforcement_disable=0;
593a1d5f 185#else
b0d623f7 186static const int cs_enforcement_disable=1;
593a1d5f
A
187#endif
188
1c79356b
A
189/*
190 * Routine: vm_fault_init
191 * Purpose:
192 * Initialize our private data structures.
193 */
194void
195vm_fault_init(void)
196{
593a1d5f
A
197#if !SECURE_KERNEL
198#if CONFIG_ENFORCE_SIGNED_CODE
b0d623f7
A
199 PE_parse_boot_argn("cs_enforcement_disable", &cs_enforcement_disable,
200 sizeof (cs_enforcement_disable));
593a1d5f
A
201#endif
202 PE_parse_boot_argn("cs_debug", &cs_debug, sizeof (cs_debug));
203#endif
b0d623f7
A
204
205 /*
206 * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
207 * computed as a percentage of available memory, and the percentage used is scaled inversely with
208 * the amount of memory. The pertange runs between 10% and 35%. We use 35% for small memory systems
209 * and reduce the value down to 10% for very large memory configurations. This helps give us a
210 * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
211 * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
212 */
213
214 vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100;
1c79356b
A
215}
216
217/*
218 * Routine: vm_fault_cleanup
219 * Purpose:
220 * Clean up the result of vm_fault_page.
221 * Results:
222 * The paging reference for "object" is released.
223 * "object" is unlocked.
224 * If "top_page" is not null, "top_page" is
225 * freed and the paging reference for the object
226 * containing it is released.
227 *
228 * In/out conditions:
229 * "object" must be locked.
230 */
231void
232vm_fault_cleanup(
233 register vm_object_t object,
234 register vm_page_t top_page)
235{
236 vm_object_paging_end(object);
237 vm_object_unlock(object);
238
239 if (top_page != VM_PAGE_NULL) {
2d21ac55
A
240 object = top_page->object;
241
242 vm_object_lock(object);
243 VM_PAGE_FREE(top_page);
244 vm_object_paging_end(object);
245 vm_object_unlock(object);
1c79356b
A
246 }
247}
248
249#if MACH_CLUSTER_STATS
250#define MAXCLUSTERPAGES 16
251struct {
252 unsigned long pages_in_cluster;
253 unsigned long pages_at_higher_offsets;
254 unsigned long pages_at_lower_offsets;
255} cluster_stats_in[MAXCLUSTERPAGES];
256#define CLUSTER_STAT(clause) clause
257#define CLUSTER_STAT_HIGHER(x) \
258 ((cluster_stats_in[(x)].pages_at_higher_offsets)++)
259#define CLUSTER_STAT_LOWER(x) \
260 ((cluster_stats_in[(x)].pages_at_lower_offsets)++)
261#define CLUSTER_STAT_CLUSTER(x) \
262 ((cluster_stats_in[(x)].pages_in_cluster)++)
263#else /* MACH_CLUSTER_STATS */
264#define CLUSTER_STAT(clause)
265#endif /* MACH_CLUSTER_STATS */
266
55e303ae
A
267#define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
268
269
270boolean_t vm_page_deactivate_behind = TRUE;
1c79356b 271/*
2d21ac55 272 * default sizes given VM_BEHAVIOR_DEFAULT reference behavior
1c79356b 273 */
b0d623f7
A
274#define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
275#define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
276 /* we use it to size an array on the stack */
277
278int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
55e303ae 279
2d21ac55
A
280#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
281
282/*
283 * vm_page_is_sequential
284 *
285 * Determine if sequential access is in progress
286 * in accordance with the behavior specified.
287 * Update state to indicate current access pattern.
288 *
289 * object must have at least the shared lock held
290 */
291static
292void
293vm_fault_is_sequential(
294 vm_object_t object,
295 vm_object_offset_t offset,
296 vm_behavior_t behavior)
297{
298 vm_object_offset_t last_alloc;
299 int sequential;
300 int orig_sequential;
301
302 last_alloc = object->last_alloc;
303 sequential = object->sequential;
304 orig_sequential = sequential;
305
306 switch (behavior) {
307 case VM_BEHAVIOR_RANDOM:
308 /*
309 * reset indicator of sequential behavior
310 */
311 sequential = 0;
312 break;
313
314 case VM_BEHAVIOR_SEQUENTIAL:
315 if (offset && last_alloc == offset - PAGE_SIZE_64) {
316 /*
317 * advance indicator of sequential behavior
318 */
319 if (sequential < MAX_SEQUENTIAL_RUN)
320 sequential += PAGE_SIZE;
321 } else {
322 /*
323 * reset indicator of sequential behavior
324 */
325 sequential = 0;
326 }
327 break;
328
329 case VM_BEHAVIOR_RSEQNTL:
330 if (last_alloc && last_alloc == offset + PAGE_SIZE_64) {
331 /*
332 * advance indicator of sequential behavior
333 */
334 if (sequential > -MAX_SEQUENTIAL_RUN)
335 sequential -= PAGE_SIZE;
336 } else {
337 /*
338 * reset indicator of sequential behavior
339 */
340 sequential = 0;
341 }
342 break;
343
344 case VM_BEHAVIOR_DEFAULT:
345 default:
346 if (offset && last_alloc == (offset - PAGE_SIZE_64)) {
347 /*
348 * advance indicator of sequential behavior
349 */
350 if (sequential < 0)
351 sequential = 0;
352 if (sequential < MAX_SEQUENTIAL_RUN)
353 sequential += PAGE_SIZE;
354
355 } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) {
356 /*
357 * advance indicator of sequential behavior
358 */
359 if (sequential > 0)
360 sequential = 0;
361 if (sequential > -MAX_SEQUENTIAL_RUN)
362 sequential -= PAGE_SIZE;
363 } else {
364 /*
365 * reset indicator of sequential behavior
366 */
367 sequential = 0;
368 }
369 break;
370 }
371 if (sequential != orig_sequential) {
372 if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) {
373 /*
374 * if someone else has already updated object->sequential
375 * don't bother trying to update it or object->last_alloc
376 */
377 return;
378 }
379 }
380 /*
381 * I'd like to do this with a OSCompareAndSwap64, but that
382 * doesn't exist for PPC... however, it shouldn't matter
383 * that much... last_alloc is maintained so that we can determine
384 * if a sequential access pattern is taking place... if only
385 * one thread is banging on this object, no problem with the unprotected
386 * update... if 2 or more threads are banging away, we run the risk of
387 * someone seeing a mangled update... however, in the face of multiple
388 * accesses, no sequential access pattern can develop anyway, so we
389 * haven't lost any real info.
390 */
391 object->last_alloc = offset;
392}
393
394
b0d623f7
A
395int vm_page_deactivate_behind_count = 0;
396
55e303ae 397/*
2d21ac55
A
398 * vm_page_deactivate_behind
399 *
400 * Determine if sequential access is in progress
401 * in accordance with the behavior specified. If
402 * so, compute a potential page to deactivate and
403 * deactivate it.
55e303ae 404 *
2d21ac55 405 * object must be locked.
55e303ae 406 *
2d21ac55 407 * return TRUE if we actually deactivate a page
55e303ae
A
408 */
409static
410boolean_t
411vm_fault_deactivate_behind(
91447636
A
412 vm_object_t object,
413 vm_object_offset_t offset,
414 vm_behavior_t behavior)
55e303ae 415{
b0d623f7
A
416 int n;
417 int pages_in_run = 0;
418 int max_pages_in_run = 0;
2d21ac55
A
419 int sequential_run;
420 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
b0d623f7
A
421 vm_object_offset_t run_offset = 0;
422 vm_object_offset_t pg_offset = 0;
423 vm_page_t m;
424 vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
55e303ae 425
b0d623f7 426 pages_in_run = 0;
55e303ae
A
427#if TRACEFAULTPAGE
428 dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
429#endif
430
2d21ac55 431 if (object == kernel_object || vm_page_deactivate_behind == FALSE) {
91447636
A
432 /*
433 * Do not deactivate pages from the kernel object: they
434 * are not intended to become pageable.
2d21ac55 435 * or we've disabled the deactivate behind mechanism
91447636
A
436 */
437 return FALSE;
438 }
2d21ac55
A
439 if ((sequential_run = object->sequential)) {
440 if (sequential_run < 0) {
441 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
442 sequential_run = 0 - sequential_run;
443 } else {
444 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
445 }
446 }
55e303ae
A
447 switch (behavior) {
448 case VM_BEHAVIOR_RANDOM:
55e303ae
A
449 break;
450 case VM_BEHAVIOR_SEQUENTIAL:
b0d623f7
A
451 if (sequential_run >= (int)PAGE_SIZE) {
452 run_offset = 0 - PAGE_SIZE_64;
453 max_pages_in_run = 1;
454 }
55e303ae
A
455 break;
456 case VM_BEHAVIOR_RSEQNTL:
b0d623f7
A
457 if (sequential_run >= (int)PAGE_SIZE) {
458 run_offset = PAGE_SIZE_64;
459 max_pages_in_run = 1;
460 }
55e303ae
A
461 break;
462 case VM_BEHAVIOR_DEFAULT:
463 default:
2d21ac55
A
464 { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64;
465
466 /*
467 * determine if the run of sequential accesss has been
468 * long enough on an object with default access behavior
469 * to consider it for deactivation
470 */
b0d623f7
A
471 if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
472 /*
473 * the comparisons between offset and behind are done
474 * in this kind of odd fashion in order to prevent wrap around
475 * at the end points
476 */
2d21ac55 477 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
b0d623f7
A
478 if (offset >= behind) {
479 run_offset = 0 - behind;
480 pg_offset = PAGE_SIZE_64;
481 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
482 }
2d21ac55 483 } else {
b0d623f7
A
484 if (offset < -behind) {
485 run_offset = behind;
486 pg_offset = 0 - PAGE_SIZE_64;
487 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
488 }
2d21ac55 489 }
55e303ae
A
490 }
491 break;
492 }
2d21ac55 493 }
b0d623f7
A
494 for (n = 0; n < max_pages_in_run; n++) {
495 m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
496
497 if (m && !m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
498 page_run[pages_in_run++] = m;
499 pmap_clear_reference(m->phys_page);
500 }
501 }
502 if (pages_in_run) {
503 vm_page_lockspin_queues();
504
505 for (n = 0; n < pages_in_run; n++) {
506
507 m = page_run[n];
508
509 vm_page_deactivate_internal(m, FALSE);
510
511 vm_page_deactivate_behind_count++;
55e303ae
A
512#if TRACEFAULTPAGE
513 dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
514#endif
515 }
b0d623f7
A
516 vm_page_unlock_queues();
517
518 return TRUE;
55e303ae
A
519 }
520 return FALSE;
521}
1c79356b 522
1c79356b 523
b0d623f7
A
524static boolean_t
525vm_page_throttled(void)
526{
527 clock_sec_t elapsed_sec;
528 clock_sec_t tv_sec;
529 clock_usec_t tv_usec;
530
531 thread_t thread = current_thread();
532
533 if (thread->options & TH_OPT_VMPRIV)
534 return (FALSE);
535
536 thread->t_page_creation_count++;
537
538 if (NEED_TO_HARD_THROTTLE_THIS_TASK())
539 return (TRUE);
540
541 if (vm_page_free_count < vm_page_throttle_limit &&
542 thread->t_page_creation_count > vm_page_creation_throttle) {
543
544 clock_get_system_microtime(&tv_sec, &tv_usec);
545
546 elapsed_sec = tv_sec - thread->t_page_creation_time;
547
548 if (elapsed_sec <= 6 || (thread->t_page_creation_count / elapsed_sec) >= (vm_page_creation_throttle / 6)) {
549
550 if (elapsed_sec >= 60) {
551 /*
552 * we'll reset our stats to give a well behaved app
553 * that was unlucky enough to accumulate a bunch of pages
554 * over a long period of time a chance to get out of
555 * the throttled state... we reset the counter and timestamp
556 * so that if it stays under the rate limit for the next second
557 * it will be back in our good graces... if it exceeds it, it
558 * will remain in the throttled state
559 */
560 thread->t_page_creation_time = tv_sec;
561 thread->t_page_creation_count = (vm_page_creation_throttle / 6) * 5;
562 }
563 ++vm_page_throttle_count;
564
565 return (TRUE);
566 }
567 thread->t_page_creation_time = tv_sec;
568 thread->t_page_creation_count = 0;
569 }
570 return (FALSE);
571}
572
573
2d21ac55
A
574/*
575 * check for various conditions that would
576 * prevent us from creating a ZF page...
577 * cleanup is based on being called from vm_fault_page
578 *
579 * object must be locked
580 * object == m->object
581 */
582static vm_fault_return_t
583vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state)
584{
b0d623f7
A
585 if (object->shadow_severed ||
586 VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
2d21ac55 587 /*
b0d623f7
A
588 * Either:
589 * 1. the shadow chain was severed,
590 * 2. the purgeable object is volatile or empty and is marked
591 * to fault on access while volatile.
592 * Just have to return an error at this point
2d21ac55
A
593 */
594 if (m != VM_PAGE_NULL)
595 VM_PAGE_FREE(m);
596 vm_fault_cleanup(object, first_m);
597
598 thread_interrupt_level(interruptible_state);
599
600 return (VM_FAULT_MEMORY_ERROR);
601 }
602 if (vm_backing_store_low) {
603 /*
604 * are we protecting the system from
605 * backing store exhaustion. If so
606 * sleep unless we are privileged.
607 */
608 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
609
610 if (m != VM_PAGE_NULL)
611 VM_PAGE_FREE(m);
612 vm_fault_cleanup(object, first_m);
613
614 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
615
616 thread_block(THREAD_CONTINUE_NULL);
617 thread_interrupt_level(interruptible_state);
618
619 return (VM_FAULT_RETRY);
620 }
621 }
b0d623f7 622 if (vm_page_throttled()) {
2d21ac55
A
623 /*
624 * we're throttling zero-fills...
625 * treat this as if we couldn't grab a page
626 */
627 if (m != VM_PAGE_NULL)
628 VM_PAGE_FREE(m);
629 vm_fault_cleanup(object, first_m);
630
b0d623f7
A
631 if (NEED_TO_HARD_THROTTLE_THIS_TASK()) {
632 delay(HARD_THROTTLE_DELAY);
633
634 if (current_thread_aborted()) {
635 thread_interrupt_level(interruptible_state);
636 return VM_FAULT_INTERRUPTED;
637 }
638 }
639
2d21ac55
A
640 thread_interrupt_level(interruptible_state);
641
642 return (VM_FAULT_MEMORY_SHORTAGE);
643 }
644 return (VM_FAULT_SUCCESS);
645}
646
647
648/*
649 * do the work to zero fill a page and
650 * inject it into the correct paging queue
651 *
652 * m->object must be locked
653 * page queue lock must NOT be held
654 */
655static int
656vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
657{
658 int my_fault = DBG_ZERO_FILL_FAULT;
659
660 /*
661 * This is is a zero-fill page fault...
662 *
663 * Checking the page lock is a waste of
664 * time; this page was absent, so
665 * it can't be page locked by a pager.
666 *
667 * we also consider it undefined
668 * with respect to instruction
669 * execution. i.e. it is the responsibility
670 * of higher layers to call for an instruction
671 * sync after changing the contents and before
672 * sending a program into this area. We
673 * choose this approach for performance
674 */
675 m->pmapped = TRUE;
676
677 m->cs_validated = FALSE;
678 m->cs_tainted = FALSE;
679
680 if (no_zero_fill == TRUE)
681 my_fault = DBG_NZF_PAGE_FAULT;
682 else {
683 vm_page_zero_fill(m);
684
685 VM_STAT_INCR(zero_fill_count);
686 DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
687 }
688 assert(!m->laundry);
689 assert(m->object != kernel_object);
690 //assert(m->pageq.next == NULL && m->pageq.prev == NULL);
691
692 if (!IP_VALID(memory_manager_default) &&
693 (m->object->purgable == VM_PURGABLE_DENY ||
cf7d32b8
A
694 m->object->purgable == VM_PURGABLE_NONVOLATILE ||
695 m->object->purgable == VM_PURGABLE_VOLATILE )) {
b0d623f7 696 vm_page_lockspin_queues();
2d21ac55
A
697
698 queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
699 m->throttled = TRUE;
700 vm_page_throttled_count++;
701
702 vm_page_unlock_queues();
703 } else {
b0d623f7 704 if (current_thread()->t_page_creation_count > vm_page_creation_throttle) {
2d21ac55 705 m->zero_fill = TRUE;
b0d623f7 706 VM_ZF_COUNT_INCR();
2d21ac55
A
707 }
708 }
709 return (my_fault);
710}
711
712
1c79356b
A
713/*
714 * Routine: vm_fault_page
715 * Purpose:
716 * Find the resident page for the virtual memory
717 * specified by the given virtual memory object
718 * and offset.
719 * Additional arguments:
720 * The required permissions for the page is given
721 * in "fault_type". Desired permissions are included
2d21ac55
A
722 * in "protection".
723 * fault_info is passed along to determine pagein cluster
724 * limits... it contains the expected reference pattern,
725 * cluster size if available, etc...
1c79356b
A
726 *
727 * If the desired page is known to be resident (for
728 * example, because it was previously wired down), asserting
729 * the "unwiring" parameter will speed the search.
730 *
731 * If the operation can be interrupted (by thread_abort
732 * or thread_terminate), then the "interruptible"
733 * parameter should be asserted.
734 *
735 * Results:
736 * The page containing the proper data is returned
737 * in "result_page".
738 *
739 * In/out conditions:
740 * The source object must be locked and referenced,
741 * and must donate one paging reference. The reference
742 * is not affected. The paging reference and lock are
743 * consumed.
744 *
745 * If the call succeeds, the object in which "result_page"
746 * resides is left locked and holding a paging reference.
747 * If this is not the original object, a busy page in the
748 * original object is returned in "top_page", to prevent other
749 * callers from pursuing this same data, along with a paging
750 * reference for the original object. The "top_page" should
751 * be destroyed when this guarantee is no longer required.
752 * The "result_page" is also left busy. It is not removed
753 * from the pageout queues.
b0d623f7
A
754 * Special Case:
755 * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
756 * fault succeeded but there's no VM page (i.e. the VM object
757 * does not actually hold VM pages, but device memory or
758 * large pages). The object is still locked and we still hold a
759 * paging_in_progress reference.
1c79356b 760 */
b0d623f7 761unsigned int vm_fault_page_blocked_access = 0;
1c79356b
A
762
763vm_fault_return_t
764vm_fault_page(
765 /* Arguments: */
766 vm_object_t first_object, /* Object to begin search */
767 vm_object_offset_t first_offset, /* Offset into object */
768 vm_prot_t fault_type, /* What access is requested */
769 boolean_t must_be_resident,/* Must page be resident? */
1c79356b
A
770 /* Modifies in place: */
771 vm_prot_t *protection, /* Protection for mapping */
772 /* Returns: */
773 vm_page_t *result_page, /* Page found, if successful */
774 vm_page_t *top_page, /* Page in top object, if
775 * not result_page. */
776 int *type_of_fault, /* if non-null, fill in with type of fault
777 * COW, zero-fill, etc... returned in trace point */
778 /* More arguments: */
779 kern_return_t *error_code, /* code if page is in error */
780 boolean_t no_zero_fill, /* don't zero fill absent pages */
2d21ac55 781#if MACH_PAGEMAP
0b4e3aa0 782 boolean_t data_supply, /* treat as data_supply if
1c79356b
A
783 * it is a write fault and a full
784 * page is provided */
2d21ac55
A
785#else
786 __unused boolean_t data_supply,
787#endif
788 vm_object_fault_info_t fault_info)
1c79356b 789{
1c79356b 790 vm_page_t m;
1c79356b 791 vm_object_t object;
1c79356b
A
792 vm_object_offset_t offset;
793 vm_page_t first_m;
794 vm_object_t next_object;
795 vm_object_t copy_object;
796 boolean_t look_for_page;
797 vm_prot_t access_required = fault_type;
798 vm_prot_t wants_copy_flag;
1c79356b
A
799 CLUSTER_STAT(int pages_at_higher_offsets;)
800 CLUSTER_STAT(int pages_at_lower_offsets;)
2d21ac55 801 kern_return_t wait_result;
1c79356b 802 boolean_t interruptible_state;
2d21ac55
A
803 vm_fault_return_t error;
804 int my_fault;
805 uint32_t try_failed_count;
806 int interruptible; /* how may fault be interrupted? */
807 memory_object_t pager;
b0d623f7 808 vm_fault_return_t retval;
1c79356b 809
1c79356b
A
810/*
811 * MACH page map - an optional optimization where a bit map is maintained
812 * by the VM subsystem for internal objects to indicate which pages of
813 * the object currently reside on backing store. This existence map
814 * duplicates information maintained by the vnode pager. It is
815 * created at the time of the first pageout against the object, i.e.
816 * at the same time pager for the object is created. The optimization
817 * is designed to eliminate pager interaction overhead, if it is
818 * 'known' that the page does not exist on backing store.
819 *
2d21ac55 820 * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
1c79356b 821 * either marked as paged out in the existence map for the object or no
2d21ac55 822 * existence map exists for the object. MUST_ASK_PAGER() is one of the
1c79356b
A
823 * criteria in the decision to invoke the pager. It is also used as one
824 * of the criteria to terminate the scan for adjacent pages in a clustered
2d21ac55 825 * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for
1c79356b
A
826 * permanent objects. Note also that if the pager for an internal object
827 * has not been created, the pager is not invoked regardless of the value
2d21ac55 828 * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object
1c79356b
A
829 * for which a pager has been created.
830 *
831 * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
832 * is marked as paged out in the existence map for the object. PAGED_OUT()
833 * PAGED_OUT() is used to determine if a page has already been pushed
834 * into a copy object in order to avoid a redundant page out operation.
835 */
2d21ac55
A
836#if MACH_PAGEMAP
837#define MUST_ASK_PAGER(o, f) (vm_external_state_get((o)->existence_map, (f)) \
1c79356b
A
838 != VM_EXTERNAL_STATE_ABSENT)
839#define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \
840 == VM_EXTERNAL_STATE_EXISTS)
2d21ac55
A
841#else
842#define MUST_ASK_PAGER(o, f) (TRUE)
843#define PAGED_OUT(o, f) (FALSE)
844#endif
1c79356b
A
845
846/*
847 * Recovery actions
848 */
1c79356b
A
849#define RELEASE_PAGE(m) \
850 MACRO_BEGIN \
b0d623f7
A
851 PAGE_WAKEUP_DONE(m); \
852 if (!m->active && !m->inactive && !m->throttled) { \
853 vm_page_lockspin_queues(); \
854 if (!m->active && !m->inactive && !m->throttled) \
855 vm_page_activate(m); \
856 vm_page_unlock_queues(); \
857 } \
1c79356b
A
858 MACRO_END
859
860#if TRACEFAULTPAGE
861 dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
862#endif
863
864
1c79356b
A
865#if MACH_KDB
866 /*
867 * If there are watchpoints set, then
868 * we don't want to give away write permission
869 * on a read fault. Make the task write fault,
870 * so that the watchpoint code notices the access.
871 */
872 if (db_watchpoint_list) {
873 /*
874 * If we aren't asking for write permission,
875 * then don't give it away. We're using write
876 * faults to set the dirty bit.
877 */
878 if (!(fault_type & VM_PROT_WRITE))
879 *protection &= ~VM_PROT_WRITE;
880 }
1c79356b 881#endif /* MACH_KDB */
1c79356b 882
2d21ac55 883 interruptible = fault_info->interruptible;
9bccf70c 884 interruptible_state = thread_interrupt_level(interruptible);
1c79356b
A
885
886 /*
887 * INVARIANTS (through entire routine):
888 *
889 * 1) At all times, we must either have the object
890 * lock or a busy page in some object to prevent
891 * some other thread from trying to bring in
892 * the same page.
893 *
894 * Note that we cannot hold any locks during the
895 * pager access or when waiting for memory, so
896 * we use a busy page then.
897 *
1c79356b
A
898 * 2) To prevent another thread from racing us down the
899 * shadow chain and entering a new page in the top
900 * object before we do, we must keep a busy page in
901 * the top object while following the shadow chain.
902 *
903 * 3) We must increment paging_in_progress on any object
2d21ac55
A
904 * for which we have a busy page before dropping
905 * the object lock
1c79356b
A
906 *
907 * 4) We leave busy pages on the pageout queues.
908 * If the pageout daemon comes across a busy page,
909 * it will remove the page from the pageout queues.
910 */
911
1c79356b
A
912 object = first_object;
913 offset = first_offset;
914 first_m = VM_PAGE_NULL;
915 access_required = fault_type;
916
2d21ac55 917
1c79356b
A
918 XPR(XPR_VM_FAULT,
919 "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
b0d623f7 920 object, offset, fault_type, *protection, 0);
1c79356b
A
921
922 /*
2d21ac55 923 * default type of fault
1c79356b 924 */
2d21ac55 925 my_fault = DBG_CACHE_HIT_FAULT;
1c79356b
A
926
927 while (TRUE) {
928#if TRACEFAULTPAGE
929 dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
930#endif
931 if (!object->alive) {
2d21ac55
A
932 /*
933 * object is no longer valid
934 * clean up and return error
935 */
1c79356b 936 vm_fault_cleanup(object, first_m);
9bccf70c 937 thread_interrupt_level(interruptible_state);
2d21ac55
A
938
939 return (VM_FAULT_MEMORY_ERROR);
1c79356b 940 }
2d21ac55 941
b0d623f7
A
942 if (!object->pager_created && object->phys_contiguous) {
943 /*
944 * A physically-contiguous object without a pager:
945 * must be a "large page" object. We do not deal
946 * with VM pages for this object.
947 */
948 m = VM_PAGE_NULL;
949 goto phys_contig_object;
950 }
951
952 if (object->blocked_access) {
953 /*
954 * Access to this VM object has been blocked.
955 * Replace our "paging_in_progress" reference with
956 * a "activity_in_progress" reference and wait for
957 * access to be unblocked.
958 */
959 vm_object_activity_begin(object);
960 vm_object_paging_end(object);
961 while (object->blocked_access) {
962 vm_object_sleep(object,
963 VM_OBJECT_EVENT_UNBLOCKED,
964 THREAD_UNINT);
965 }
966 vm_fault_page_blocked_access++;
967 vm_object_paging_begin(object);
968 vm_object_activity_end(object);
969 }
970
2d21ac55
A
971 /*
972 * See whether the page at 'offset' is resident
973 */
1c79356b
A
974 m = vm_page_lookup(object, offset);
975#if TRACEFAULTPAGE
976 dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
977#endif
978 if (m != VM_PAGE_NULL) {
1c79356b
A
979
980 if (m->busy) {
2d21ac55
A
981 /*
982 * The page is being brought in,
983 * wait for it and then retry.
984 *
985 * A possible optimization: if the page
986 * is known to be resident, we can ignore
987 * pages that are absent (regardless of
988 * whether they're busy).
989 */
1c79356b
A
990#if TRACEFAULTPAGE
991 dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
992#endif
9bccf70c 993 wait_result = PAGE_SLEEP(object, m, interruptible);
1c79356b
A
994 XPR(XPR_VM_FAULT,
995 "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
b0d623f7
A
996 object, offset,
997 m, 0, 0);
1c79356b 998 counter(c_vm_fault_page_block_busy_kernel++);
1c79356b 999
1c79356b
A
1000 if (wait_result != THREAD_AWAKENED) {
1001 vm_fault_cleanup(object, first_m);
9bccf70c 1002 thread_interrupt_level(interruptible_state);
2d21ac55 1003
1c79356b 1004 if (wait_result == THREAD_RESTART)
2d21ac55 1005 return (VM_FAULT_RETRY);
1c79356b 1006 else
2d21ac55 1007 return (VM_FAULT_INTERRUPTED);
1c79356b
A
1008 }
1009 continue;
1010 }
1011
2d21ac55 1012 if (m->phys_page == vm_page_guard_addr) {
91447636 1013 /*
2d21ac55 1014 * Guard page: off limits !
91447636 1015 */
2d21ac55
A
1016 if (fault_type == VM_PROT_NONE) {
1017 /*
1018 * The fault is not requesting any
1019 * access to the guard page, so it must
1020 * be just to wire or unwire it.
1021 * Let's pretend it succeeded...
1022 */
1023 m->busy = TRUE;
1024 *result_page = m;
1025 assert(first_m == VM_PAGE_NULL);
1026 *top_page = first_m;
1027 if (type_of_fault)
1028 *type_of_fault = DBG_GUARD_FAULT;
1029 return VM_FAULT_SUCCESS;
1030 } else {
1031 /*
1032 * The fault requests access to the
1033 * guard page: let's deny that !
1034 */
1035 vm_fault_cleanup(object, first_m);
1036 thread_interrupt_level(interruptible_state);
1037 return VM_FAULT_MEMORY_ERROR;
1038 }
91447636 1039 }
1c79356b
A
1040
1041 if (m->error) {
2d21ac55
A
1042 /*
1043 * The page is in error, give up now.
1044 */
1c79356b
A
1045#if TRACEFAULTPAGE
1046 dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
1047#endif
1048 if (error_code)
2d21ac55 1049 *error_code = KERN_MEMORY_ERROR;
1c79356b 1050 VM_PAGE_FREE(m);
2d21ac55 1051
1c79356b 1052 vm_fault_cleanup(object, first_m);
9bccf70c 1053 thread_interrupt_level(interruptible_state);
1c79356b 1054
2d21ac55
A
1055 return (VM_FAULT_MEMORY_ERROR);
1056 }
1c79356b 1057 if (m->restart) {
2d21ac55
A
1058 /*
1059 * The pager wants us to restart
1060 * at the top of the chain,
1061 * typically because it has moved the
1062 * page to another pager, then do so.
1063 */
1c79356b
A
1064#if TRACEFAULTPAGE
1065 dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1066#endif
1067 VM_PAGE_FREE(m);
2d21ac55 1068
1c79356b 1069 vm_fault_cleanup(object, first_m);
9bccf70c 1070 thread_interrupt_level(interruptible_state);
1c79356b 1071
2d21ac55
A
1072 return (VM_FAULT_RETRY);
1073 }
1c79356b 1074 if (m->absent) {
2d21ac55
A
1075 /*
1076 * The page isn't busy, but is absent,
1077 * therefore it's deemed "unavailable".
1078 *
1c79356b
A
1079 * Remove the non-existent page (unless it's
1080 * in the top object) and move on down to the
1081 * next object (if there is one).
1082 */
1083#if TRACEFAULTPAGE
1084 dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
1085#endif
1c79356b 1086 next_object = object->shadow;
1c79356b 1087
2d21ac55 1088 if (next_object == VM_OBJECT_NULL) {
1c79356b
A
1089 /*
1090 * Absent page at bottom of shadow
1091 * chain; zero fill the page we left
2d21ac55
A
1092 * busy in the first object, and free
1093 * the absent page.
1c79356b 1094 */
2d21ac55 1095 assert(!must_be_resident);
55e303ae
A
1096
1097 /*
2d21ac55
A
1098 * check for any conditions that prevent
1099 * us from creating a new zero-fill page
1100 * vm_fault_check will do all of the
1101 * fault cleanup in the case of an error condition
1102 * including resetting the thread_interrupt_level
55e303ae 1103 */
2d21ac55 1104 error = vm_fault_check(object, m, first_m, interruptible_state);
55e303ae 1105
2d21ac55
A
1106 if (error != VM_FAULT_SUCCESS)
1107 return (error);
55e303ae 1108
1c79356b 1109 XPR(XPR_VM_FAULT,
2d21ac55 1110 "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
b0d623f7
A
1111 object, offset,
1112 m,
1113 first_object, 0);
2d21ac55 1114
1c79356b 1115 if (object != first_object) {
2d21ac55
A
1116 /*
1117 * free the absent page we just found
1118 */
1c79356b 1119 VM_PAGE_FREE(m);
2d21ac55
A
1120
1121 /*
1122 * drop reference and lock on current object
1123 */
1c79356b
A
1124 vm_object_paging_end(object);
1125 vm_object_unlock(object);
2d21ac55
A
1126
1127 /*
1128 * grab the original page we
1129 * 'soldered' in place and
1130 * retake lock on 'first_object'
1131 */
1c79356b
A
1132 m = first_m;
1133 first_m = VM_PAGE_NULL;
1c79356b 1134
2d21ac55
A
1135 object = first_object;
1136 offset = first_offset;
0b4e3aa0 1137
1c79356b 1138 vm_object_lock(object);
9bccf70c 1139 } else {
2d21ac55
A
1140 /*
1141 * we're going to use the absent page we just found
1142 * so convert it to a 'busy' page
1143 */
1144 m->absent = FALSE;
1145 m->busy = TRUE;
0b4e3aa0 1146 }
2d21ac55
A
1147 /*
1148 * zero-fill the page and put it on
1149 * the correct paging queue
1150 */
1151 my_fault = vm_fault_zero_page(m, no_zero_fill);
1152
0b4c1975
A
1153 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1154 m->absent = TRUE;
1c79356b
A
1155 break;
1156 } else {
2d21ac55 1157 if (must_be_resident)
1c79356b 1158 vm_object_paging_end(object);
2d21ac55 1159 else if (object != first_object) {
1c79356b
A
1160 vm_object_paging_end(object);
1161 VM_PAGE_FREE(m);
1162 } else {
1163 first_m = m;
1164 m->absent = FALSE;
1c79356b
A
1165 m->busy = TRUE;
1166
2d21ac55 1167 vm_page_lockspin_queues();
1c79356b
A
1168 VM_PAGE_QUEUES_REMOVE(m);
1169 vm_page_unlock_queues();
1170 }
1171 XPR(XPR_VM_FAULT,
1172 "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
b0d623f7
A
1173 object, offset,
1174 next_object,
1c79356b 1175 offset+object->shadow_offset,0);
2d21ac55 1176
1c79356b 1177 offset += object->shadow_offset;
2d21ac55
A
1178 fault_info->lo_offset += object->shadow_offset;
1179 fault_info->hi_offset += object->shadow_offset;
1c79356b 1180 access_required = VM_PROT_READ;
2d21ac55 1181
1c79356b
A
1182 vm_object_lock(next_object);
1183 vm_object_unlock(object);
1184 object = next_object;
1185 vm_object_paging_begin(object);
2d21ac55
A
1186
1187 /*
1188 * reset to default type of fault
1189 */
1190 my_fault = DBG_CACHE_HIT_FAULT;
1191
1c79356b
A
1192 continue;
1193 }
1194 }
1c79356b 1195 if ((m->cleaning)
2d21ac55
A
1196 && ((object != first_object) || (object->copy != VM_OBJECT_NULL))
1197 && (fault_type & VM_PROT_WRITE)) {
1c79356b
A
1198 /*
1199 * This is a copy-on-write fault that will
1200 * cause us to revoke access to this page, but
1201 * this page is in the process of being cleaned
1202 * in a clustered pageout. We must wait until
1203 * the cleaning operation completes before
1204 * revoking access to the original page,
1205 * otherwise we might attempt to remove a
1206 * wired mapping.
1207 */
1208#if TRACEFAULTPAGE
1209 dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */
1210#endif
1211 XPR(XPR_VM_FAULT,
1212 "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
b0d623f7
A
1213 object, offset,
1214 m, 0, 0);
2d21ac55
A
1215 /*
1216 * take an extra ref so that object won't die
1217 */
1218 vm_object_reference_locked(object);
1219
1c79356b 1220 vm_fault_cleanup(object, first_m);
2d21ac55 1221
1c79356b
A
1222 counter(c_vm_fault_page_block_backoff_kernel++);
1223 vm_object_lock(object);
1224 assert(object->ref_count > 0);
2d21ac55 1225
1c79356b 1226 m = vm_page_lookup(object, offset);
2d21ac55 1227
1c79356b
A
1228 if (m != VM_PAGE_NULL && m->cleaning) {
1229 PAGE_ASSERT_WAIT(m, interruptible);
2d21ac55 1230
1c79356b 1231 vm_object_unlock(object);
9bccf70c 1232 wait_result = thread_block(THREAD_CONTINUE_NULL);
1c79356b 1233 vm_object_deallocate(object);
2d21ac55 1234
1c79356b
A
1235 goto backoff;
1236 } else {
1237 vm_object_unlock(object);
2d21ac55 1238
1c79356b 1239 vm_object_deallocate(object);
9bccf70c 1240 thread_interrupt_level(interruptible_state);
2d21ac55
A
1241
1242 return (VM_FAULT_RETRY);
1c79356b
A
1243 }
1244 }
b0d623f7
A
1245 if (type_of_fault == NULL && m->speculative &&
1246 !(fault_info != NULL && fault_info->stealth)) {
2d21ac55
A
1247 /*
1248 * If we were passed a non-NULL pointer for
1249 * "type_of_fault", than we came from
1250 * vm_fault... we'll let it deal with
1251 * this condition, since it
1252 * needs to see m->speculative to correctly
1253 * account the pageins, otherwise...
1254 * take it off the speculative queue, we'll
1255 * let the caller of vm_fault_page deal
1256 * with getting it onto the correct queue
b0d623f7
A
1257 *
1258 * If the caller specified in fault_info that
1259 * it wants a "stealth" fault, we also leave
1260 * the page in the speculative queue.
2d21ac55
A
1261 */
1262 vm_page_lockspin_queues();
1263 VM_PAGE_QUEUES_REMOVE(m);
1264 vm_page_unlock_queues();
1265 }
1c79356b 1266
2d21ac55
A
1267 if (m->encrypted) {
1268 /*
1269 * ENCRYPTED SWAP:
1270 * the user needs access to a page that we
1271 * encrypted before paging it out.
1272 * Decrypt the page now.
1273 * Keep it busy to prevent anyone from
1274 * accessing it during the decryption.
1275 */
1276 m->busy = TRUE;
1277 vm_page_decrypt(m, 0);
1278 assert(object == m->object);
1279 assert(m->busy);
1280 PAGE_WAKEUP_DONE(m);
1c79356b 1281
2d21ac55
A
1282 /*
1283 * Retry from the top, in case
1284 * something changed while we were
1285 * decrypting.
1286 */
1287 continue;
1288 }
1289 ASSERT_PAGE_DECRYPTED(m);
1c79356b 1290
2d21ac55
A
1291 if (m->object->code_signed) {
1292 /*
1293 * CODE SIGNING:
1294 * We just paged in a page from a signed
1295 * memory object but we don't need to
1296 * validate it now. We'll validate it if
1297 * when it gets mapped into a user address
1298 * space for the first time or when the page
1299 * gets copied to another object as a result
1300 * of a copy-on-write.
1301 */
1c79356b 1302 }
2d21ac55 1303
1c79356b 1304 /*
2d21ac55
A
1305 * We mark the page busy and leave it on
1306 * the pageout queues. If the pageout
1307 * deamon comes across it, then it will
1308 * remove the page from the queue, but not the object
1c79356b 1309 */
1c79356b
A
1310#if TRACEFAULTPAGE
1311 dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1312#endif
1c79356b
A
1313 XPR(XPR_VM_FAULT,
1314 "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
b0d623f7 1315 object, offset, m, 0, 0);
1c79356b 1316 assert(!m->busy);
1c79356b 1317 assert(!m->absent);
2d21ac55
A
1318
1319 m->busy = TRUE;
1c79356b
A
1320 break;
1321 }
2d21ac55 1322
1c79356b 1323
2d21ac55
A
1324 /*
1325 * we get here when there is no page present in the object at
1326 * the offset we're interested in... we'll allocate a page
1327 * at this point if the pager associated with
1328 * this object can provide the data or we're the top object...
1329 * object is locked; m == NULL
1330 */
1331 look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset) == TRUE) && !data_supply);
1332
1c79356b
A
1333#if TRACEFAULTPAGE
1334 dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
1335#endif
2d21ac55 1336 if ((look_for_page || (object == first_object)) && !must_be_resident && !object->phys_contiguous) {
1c79356b 1337 /*
2d21ac55 1338 * Allocate a new page for this object/offset pair
1c79356b 1339 */
2d21ac55 1340 m = vm_page_grab();
1c79356b
A
1341#if TRACEFAULTPAGE
1342 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1343#endif
1344 if (m == VM_PAGE_NULL) {
2d21ac55 1345
1c79356b 1346 vm_fault_cleanup(object, first_m);
9bccf70c 1347 thread_interrupt_level(interruptible_state);
2d21ac55
A
1348
1349 return (VM_FAULT_MEMORY_SHORTAGE);
1c79356b
A
1350 }
1351 vm_page_insert(m, object, offset);
1352 }
2d21ac55 1353 if (look_for_page && !must_be_resident) {
1c79356b
A
1354 kern_return_t rc;
1355
1356 /*
1357 * If the memory manager is not ready, we
1358 * cannot make requests.
1359 */
1360 if (!object->pager_ready) {
1361#if TRACEFAULTPAGE
1362 dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1363#endif
2d21ac55
A
1364 if (m != VM_PAGE_NULL)
1365 VM_PAGE_FREE(m);
1366
1c79356b
A
1367 XPR(XPR_VM_FAULT,
1368 "vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
b0d623f7 1369 object, offset, 0, 0, 0);
2d21ac55
A
1370
1371 /*
1372 * take an extra ref so object won't die
1373 */
1374 vm_object_reference_locked(object);
1c79356b
A
1375 vm_fault_cleanup(object, first_m);
1376 counter(c_vm_fault_page_block_backoff_kernel++);
2d21ac55 1377
1c79356b
A
1378 vm_object_lock(object);
1379 assert(object->ref_count > 0);
2d21ac55 1380
1c79356b 1381 if (!object->pager_ready) {
2d21ac55
A
1382 wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible);
1383
1c79356b 1384 vm_object_unlock(object);
9bccf70c
A
1385 if (wait_result == THREAD_WAITING)
1386 wait_result = thread_block(THREAD_CONTINUE_NULL);
1c79356b 1387 vm_object_deallocate(object);
2d21ac55 1388
1c79356b
A
1389 goto backoff;
1390 } else {
1391 vm_object_unlock(object);
1392 vm_object_deallocate(object);
9bccf70c 1393 thread_interrupt_level(interruptible_state);
1c79356b 1394
2d21ac55 1395 return (VM_FAULT_RETRY);
0b4e3aa0 1396 }
0b4e3aa0 1397 }
2d21ac55 1398 if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) {
1c79356b 1399 /*
2d21ac55
A
1400 * If there are too many outstanding page
1401 * requests pending on this external object, we
1402 * wait for them to be resolved now.
1c79356b 1403 */
1c79356b 1404#if TRACEFAULTPAGE
2d21ac55 1405 dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1c79356b 1406#endif
2d21ac55 1407 if (m != VM_PAGE_NULL)
1c79356b 1408 VM_PAGE_FREE(m);
1c79356b 1409 /*
2d21ac55 1410 * take an extra ref so object won't die
1c79356b 1411 */
2d21ac55 1412 vm_object_reference_locked(object);
1c79356b 1413
1c79356b 1414 vm_fault_cleanup(object, first_m);
2d21ac55 1415
1c79356b 1416 counter(c_vm_fault_page_block_backoff_kernel++);
2d21ac55 1417
1c79356b
A
1418 vm_object_lock(object);
1419 assert(object->ref_count > 0);
2d21ac55
A
1420
1421 if (object->paging_in_progress > vm_object_pagein_throttle) {
1422 vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS, interruptible);
1423
1c79356b 1424 vm_object_unlock(object);
9bccf70c 1425 wait_result = thread_block(THREAD_CONTINUE_NULL);
1c79356b 1426 vm_object_deallocate(object);
2d21ac55 1427
1c79356b
A
1428 goto backoff;
1429 } else {
1430 vm_object_unlock(object);
1431 vm_object_deallocate(object);
9bccf70c 1432 thread_interrupt_level(interruptible_state);
2d21ac55
A
1433
1434 return (VM_FAULT_RETRY);
1c79356b
A
1435 }
1436 }
2d21ac55
A
1437 if (m != VM_PAGE_NULL) {
1438 /*
1439 * Indicate that the page is waiting for data
1440 * from the memory manager.
1441 */
1442 m->list_req_pending = TRUE;
0b4e3aa0 1443 m->absent = TRUE;
0b4e3aa0 1444 }
1c79356b 1445
1c79356b
A
1446#if TRACEFAULTPAGE
1447 dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
1448#endif
2d21ac55 1449
1c79356b 1450 /*
2d21ac55
A
1451 * It's possible someone called vm_object_destroy while we weren't
1452 * holding the object lock. If that has happened, then bail out
1453 * here.
1c79356b 1454 */
2d21ac55
A
1455
1456 pager = object->pager;
1457
1458 if (pager == MEMORY_OBJECT_NULL) {
1459 vm_fault_cleanup(object, first_m);
1460 thread_interrupt_level(interruptible_state);
1461 return VM_FAULT_MEMORY_ERROR;
1462 }
1c79356b
A
1463
1464 /*
2d21ac55
A
1465 * We have an absent page in place for the faulting offset,
1466 * so we can release the object lock.
1c79356b
A
1467 */
1468
2d21ac55 1469 vm_object_unlock(object);
1c79356b
A
1470
1471 /*
2d21ac55
A
1472 * If this object uses a copy_call strategy,
1473 * and we are interested in a copy of this object
1474 * (having gotten here only by following a
1475 * shadow chain), then tell the memory manager
1476 * via a flag added to the desired_access
1477 * parameter, so that it can detect a race
1478 * between our walking down the shadow chain
1479 * and its pushing pages up into a copy of
1480 * the object that it manages.
1c79356b 1481 */
2d21ac55 1482 if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object)
1c79356b 1483 wants_copy_flag = VM_PROT_WANTS_COPY;
2d21ac55 1484 else
1c79356b 1485 wants_copy_flag = VM_PROT_NONE;
1c79356b
A
1486
1487 XPR(XPR_VM_FAULT,
1488 "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
b0d623f7 1489 object, offset, m,
1c79356b
A
1490 access_required | wants_copy_flag, 0);
1491
2d21ac55
A
1492 /*
1493 * Call the memory manager to retrieve the data.
1494 */
1495 rc = memory_object_data_request(
1496 pager,
1497 offset + object->paging_offset,
1498 PAGE_SIZE,
1499 access_required | wants_copy_flag,
1500 (memory_object_fault_info_t)fault_info);
1c79356b
A
1501
1502#if TRACEFAULTPAGE
1503 dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
1504#endif
2d21ac55
A
1505 vm_object_lock(object);
1506
1c79356b 1507 if (rc != KERN_SUCCESS) {
2d21ac55 1508
1c79356b 1509 vm_fault_cleanup(object, first_m);
9bccf70c 1510 thread_interrupt_level(interruptible_state);
2d21ac55
A
1511
1512 return ((rc == MACH_SEND_INTERRUPTED) ?
1c79356b
A
1513 VM_FAULT_INTERRUPTED :
1514 VM_FAULT_MEMORY_ERROR);
b0d623f7
A
1515 } else {
1516 clock_sec_t tv_sec;
1517 clock_usec_t tv_usec;
1518
1519 clock_get_system_microtime(&tv_sec, &tv_usec);
1520 current_thread()->t_page_creation_time = tv_sec;
1521 current_thread()->t_page_creation_count = 0;
1c79356b 1522 }
2d21ac55
A
1523 if ((interruptible != THREAD_UNINT) && (current_thread()->sched_mode & TH_MODE_ABORT)) {
1524
1c79356b 1525 vm_fault_cleanup(object, first_m);
9bccf70c 1526 thread_interrupt_level(interruptible_state);
2d21ac55
A
1527
1528 return (VM_FAULT_INTERRUPTED);
1c79356b 1529 }
2d21ac55 1530 if (m == VM_PAGE_NULL && object->phys_contiguous) {
91447636
A
1531 /*
1532 * No page here means that the object we
1533 * initially looked up was "physically
1534 * contiguous" (i.e. device memory). However,
1535 * with Virtual VRAM, the object might not
1536 * be backed by that device memory anymore,
1537 * so we're done here only if the object is
1538 * still "phys_contiguous".
1539 * Otherwise, if the object is no longer
1540 * "phys_contiguous", we need to retry the
1541 * page fault against the object's new backing
1542 * store (different memory object).
1543 */
b0d623f7
A
1544 phys_contig_object:
1545 goto done;
91447636 1546 }
2d21ac55
A
1547 /*
1548 * potentially a pagein fault
1549 * if we make it through the state checks
1550 * above, than we'll count it as such
1551 */
1552 my_fault = DBG_PAGEIN_FAULT;
91447636
A
1553
1554 /*
1555 * Retry with same object/offset, since new data may
1556 * be in a different page (i.e., m is meaningless at
1557 * this point).
1558 */
1c79356b
A
1559 continue;
1560 }
1561
1562 /*
2d21ac55
A
1563 * We get here if the object has no pager, or an existence map
1564 * exists and indicates the page isn't present on the pager
1565 * or we're unwiring a page. If a pager exists, but there
1566 * is no existence map, then the m->absent case above handles
1567 * the ZF case when the pager can't provide the page
1c79356b
A
1568 */
1569#if TRACEFAULTPAGE
1570 dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1571#endif
1572 if (object == first_object)
1573 first_m = m;
1574 else
1575 assert(m == VM_PAGE_NULL);
1576
1577 XPR(XPR_VM_FAULT,
1578 "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
b0d623f7
A
1579 object, offset, m,
1580 object->shadow, 0);
2d21ac55 1581
1c79356b 1582 next_object = object->shadow;
2d21ac55 1583
1c79356b 1584 if (next_object == VM_OBJECT_NULL) {
1c79356b 1585 /*
2d21ac55
A
1586 * we've hit the bottom of the shadown chain,
1587 * fill the page in the top object with zeros.
1c79356b 1588 */
2d21ac55 1589 assert(!must_be_resident);
1c79356b
A
1590
1591 if (object != first_object) {
1592 vm_object_paging_end(object);
1593 vm_object_unlock(object);
1594
1595 object = first_object;
1596 offset = first_offset;
1597 vm_object_lock(object);
1598 }
1c79356b
A
1599 m = first_m;
1600 assert(m->object == object);
1601 first_m = VM_PAGE_NULL;
1602
55e303ae 1603 /*
2d21ac55
A
1604 * check for any conditions that prevent
1605 * us from creating a new zero-fill page
1606 * vm_fault_check will do all of the
1607 * fault cleanup in the case of an error condition
1608 * including resetting the thread_interrupt_level
55e303ae 1609 */
2d21ac55 1610 error = vm_fault_check(object, m, first_m, interruptible_state);
55e303ae 1611
2d21ac55
A
1612 if (error != VM_FAULT_SUCCESS)
1613 return (error);
55e303ae 1614
2d21ac55
A
1615 if (m == VM_PAGE_NULL) {
1616 m = vm_page_grab();
1c79356b 1617
2d21ac55
A
1618 if (m == VM_PAGE_NULL) {
1619 vm_fault_cleanup(object, VM_PAGE_NULL);
1620 thread_interrupt_level(interruptible_state);
55e303ae 1621
2d21ac55
A
1622 return (VM_FAULT_MEMORY_SHORTAGE);
1623 }
1624 vm_page_insert(m, object, offset);
0b4e3aa0 1625 }
2d21ac55
A
1626 my_fault = vm_fault_zero_page(m, no_zero_fill);
1627
0b4c1975
A
1628 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1629 m->absent = TRUE;
1c79356b 1630 break;
2d21ac55
A
1631
1632 } else {
1633 /*
1634 * Move on to the next object. Lock the next
1635 * object before unlocking the current one.
1636 */
1c79356b
A
1637 if ((object != first_object) || must_be_resident)
1638 vm_object_paging_end(object);
2d21ac55 1639
1c79356b 1640 offset += object->shadow_offset;
2d21ac55
A
1641 fault_info->lo_offset += object->shadow_offset;
1642 fault_info->hi_offset += object->shadow_offset;
1c79356b 1643 access_required = VM_PROT_READ;
2d21ac55 1644
1c79356b
A
1645 vm_object_lock(next_object);
1646 vm_object_unlock(object);
2d21ac55 1647
1c79356b
A
1648 object = next_object;
1649 vm_object_paging_begin(object);
1650 }
1651 }
1652
1653 /*
1654 * PAGE HAS BEEN FOUND.
1655 *
1656 * This page (m) is:
1657 * busy, so that we can play with it;
1658 * not absent, so that nobody else will fill it;
1659 * possibly eligible for pageout;
1660 *
1661 * The top-level page (first_m) is:
1662 * VM_PAGE_NULL if the page was found in the
1663 * top-level object;
1664 * busy, not absent, and ineligible for pageout.
1665 *
1666 * The current object (object) is locked. A paging
1667 * reference is held for the current and top-level
1668 * objects.
1669 */
1670
1671#if TRACEFAULTPAGE
1672 dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1673#endif
1674#if EXTRA_ASSERTIONS
b0d623f7
A
1675 assert(m->busy && !m->absent);
1676 assert((first_m == VM_PAGE_NULL) ||
1677 (first_m->busy && !first_m->absent &&
1678 !first_m->active && !first_m->inactive));
1c79356b
A
1679#endif /* EXTRA_ASSERTIONS */
1680
91447636
A
1681 /*
1682 * ENCRYPTED SWAP:
1683 * If we found a page, we must have decrypted it before we
1684 * get here...
1685 */
b0d623f7 1686 ASSERT_PAGE_DECRYPTED(m);
91447636 1687
1c79356b 1688 XPR(XPR_VM_FAULT,
2d21ac55 1689 "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
b0d623f7
A
1690 object, offset, m,
1691 first_object, first_m);
2d21ac55 1692
1c79356b 1693 /*
2d21ac55
A
1694 * If the page is being written, but isn't
1695 * already owned by the top-level object,
1696 * we have to copy it into a new page owned
1697 * by the top-level object.
1c79356b 1698 */
b0d623f7 1699 if (object != first_object) {
1c79356b
A
1700
1701#if TRACEFAULTPAGE
2d21ac55 1702 dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
1c79356b
A
1703#endif
1704 if (fault_type & VM_PROT_WRITE) {
1705 vm_page_t copy_m;
1706
2d21ac55
A
1707 /*
1708 * We only really need to copy if we
1709 * want to write it.
1710 */
1c79356b
A
1711 assert(!must_be_resident);
1712
55e303ae
A
1713 /*
1714 * are we protecting the system from
1715 * backing store exhaustion. If so
1716 * sleep unless we are privileged.
1717 */
2d21ac55
A
1718 if (vm_backing_store_low) {
1719 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
55e303ae 1720
55e303ae
A
1721 RELEASE_PAGE(m);
1722 vm_fault_cleanup(object, first_m);
2d21ac55
A
1723
1724 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
1725
91447636 1726 thread_block(THREAD_CONTINUE_NULL);
2d21ac55
A
1727 thread_interrupt_level(interruptible_state);
1728
1729 return (VM_FAULT_RETRY);
55e303ae
A
1730 }
1731 }
1c79356b 1732 /*
2d21ac55
A
1733 * If we try to collapse first_object at this
1734 * point, we may deadlock when we try to get
1735 * the lock on an intermediate object (since we
1736 * have the bottom object locked). We can't
1737 * unlock the bottom object, because the page
1738 * we found may move (by collapse) if we do.
1c79356b 1739 *
2d21ac55
A
1740 * Instead, we first copy the page. Then, when
1741 * we have no more use for the bottom object,
1742 * we unlock it and try to collapse.
1c79356b 1743 *
2d21ac55
A
1744 * Note that we copy the page even if we didn't
1745 * need to... that's the breaks.
1c79356b
A
1746 */
1747
1748 /*
2d21ac55 1749 * Allocate a page for the copy
1c79356b
A
1750 */
1751 copy_m = vm_page_grab();
2d21ac55 1752
1c79356b
A
1753 if (copy_m == VM_PAGE_NULL) {
1754 RELEASE_PAGE(m);
2d21ac55 1755
1c79356b 1756 vm_fault_cleanup(object, first_m);
9bccf70c 1757 thread_interrupt_level(interruptible_state);
1c79356b 1758
2d21ac55
A
1759 return (VM_FAULT_MEMORY_SHORTAGE);
1760 }
1c79356b
A
1761 XPR(XPR_VM_FAULT,
1762 "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
b0d623f7
A
1763 object, offset,
1764 m, copy_m, 0);
2d21ac55 1765
1c79356b
A
1766 vm_page_copy(m, copy_m);
1767
1768 /*
2d21ac55
A
1769 * If another map is truly sharing this
1770 * page with us, we have to flush all
1771 * uses of the original page, since we
1772 * can't distinguish those which want the
1773 * original from those which need the
1774 * new copy.
1c79356b 1775 *
2d21ac55
A
1776 * XXXO If we know that only one map has
1777 * access to this page, then we could
1778 * avoid the pmap_disconnect() call.
1c79356b 1779 */
2d21ac55
A
1780 if (m->pmapped)
1781 pmap_disconnect(m->phys_page);
1c79356b 1782
1c79356b 1783 assert(!m->cleaning);
1c79356b
A
1784
1785 /*
2d21ac55 1786 * We no longer need the old page or object.
1c79356b 1787 */
1c79356b
A
1788 PAGE_WAKEUP_DONE(m);
1789 vm_object_paging_end(object);
1790 vm_object_unlock(object);
1791
2d21ac55
A
1792 my_fault = DBG_COW_FAULT;
1793 VM_STAT_INCR(cow_faults);
1794 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
1c79356b 1795 current_task()->cow_faults++;
2d21ac55 1796
1c79356b
A
1797 object = first_object;
1798 offset = first_offset;
1799
1800 vm_object_lock(object);
2d21ac55
A
1801 /*
1802 * get rid of the place holder
1803 * page that we soldered in earlier
1804 */
1c79356b
A
1805 VM_PAGE_FREE(first_m);
1806 first_m = VM_PAGE_NULL;
2d21ac55
A
1807
1808 /*
1809 * and replace it with the
1810 * page we just copied into
1811 */
1c79356b
A
1812 assert(copy_m->busy);
1813 vm_page_insert(copy_m, object, offset);
2d21ac55 1814 copy_m->dirty = TRUE;
1c79356b 1815
2d21ac55 1816 m = copy_m;
1c79356b 1817 /*
2d21ac55
A
1818 * Now that we've gotten the copy out of the
1819 * way, let's try to collapse the top object.
1820 * But we have to play ugly games with
1821 * paging_in_progress to do that...
1c79356b 1822 */
1c79356b 1823 vm_object_paging_end(object);
0c530ab8 1824 vm_object_collapse(object, offset, TRUE);
1c79356b
A
1825 vm_object_paging_begin(object);
1826
2d21ac55 1827 } else
1c79356b 1828 *protection &= (~VM_PROT_WRITE);
1c79356b 1829 }
1c79356b 1830 /*
2d21ac55
A
1831 * Now check whether the page needs to be pushed into the
1832 * copy object. The use of asymmetric copy on write for
1833 * shared temporary objects means that we may do two copies to
1834 * satisfy the fault; one above to get the page from a
1835 * shadowed object, and one here to push it into the copy.
1c79356b 1836 */
2d21ac55 1837 try_failed_count = 0;
1c79356b 1838
b0d623f7 1839 while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
1c79356b
A
1840 vm_object_offset_t copy_offset;
1841 vm_page_t copy_m;
1842
1843#if TRACEFAULTPAGE
1844 dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
1845#endif
1846 /*
2d21ac55
A
1847 * If the page is being written, but hasn't been
1848 * copied to the copy-object, we have to copy it there.
1c79356b 1849 */
1c79356b
A
1850 if ((fault_type & VM_PROT_WRITE) == 0) {
1851 *protection &= ~VM_PROT_WRITE;
1852 break;
1853 }
1854
1855 /*
2d21ac55
A
1856 * If the page was guaranteed to be resident,
1857 * we must have already performed the copy.
1c79356b 1858 */
1c79356b
A
1859 if (must_be_resident)
1860 break;
1861
1862 /*
2d21ac55 1863 * Try to get the lock on the copy_object.
1c79356b
A
1864 */
1865 if (!vm_object_lock_try(copy_object)) {
1c79356b 1866
2d21ac55
A
1867 vm_object_unlock(object);
1868 try_failed_count++;
1c79356b 1869
2d21ac55 1870 mutex_pause(try_failed_count); /* wait a bit */
1c79356b 1871 vm_object_lock(object);
2d21ac55 1872
1c79356b
A
1873 continue;
1874 }
2d21ac55 1875 try_failed_count = 0;
1c79356b
A
1876
1877 /*
2d21ac55
A
1878 * Make another reference to the copy-object,
1879 * to keep it from disappearing during the
1880 * copy.
1c79356b 1881 */
2d21ac55 1882 vm_object_reference_locked(copy_object);
1c79356b
A
1883
1884 /*
2d21ac55 1885 * Does the page exist in the copy?
1c79356b
A
1886 */
1887 copy_offset = first_offset - copy_object->shadow_offset;
2d21ac55 1888
1c79356b
A
1889 if (copy_object->size <= copy_offset)
1890 /*
1891 * Copy object doesn't cover this page -- do nothing.
1892 */
1893 ;
2d21ac55
A
1894 else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
1895 /*
1896 * Page currently exists in the copy object
1897 */
1c79356b
A
1898 if (copy_m->busy) {
1899 /*
2d21ac55
A
1900 * If the page is being brought
1901 * in, wait for it and then retry.
1c79356b
A
1902 */
1903 RELEASE_PAGE(m);
2d21ac55
A
1904
1905 /*
1906 * take an extra ref so object won't die
1907 */
1908 vm_object_reference_locked(copy_object);
1c79356b
A
1909 vm_object_unlock(copy_object);
1910 vm_fault_cleanup(object, first_m);
1911 counter(c_vm_fault_page_block_backoff_kernel++);
2d21ac55 1912
1c79356b
A
1913 vm_object_lock(copy_object);
1914 assert(copy_object->ref_count > 0);
1915 VM_OBJ_RES_DECR(copy_object);
2d21ac55 1916 vm_object_lock_assert_exclusive(copy_object);
1c79356b
A
1917 copy_object->ref_count--;
1918 assert(copy_object->ref_count > 0);
1919 copy_m = vm_page_lookup(copy_object, copy_offset);
91447636
A
1920 /*
1921 * ENCRYPTED SWAP:
1922 * it's OK if the "copy_m" page is encrypted,
1923 * because we're not moving it nor handling its
1924 * contents.
1925 */
1c79356b
A
1926 if (copy_m != VM_PAGE_NULL && copy_m->busy) {
1927 PAGE_ASSERT_WAIT(copy_m, interruptible);
2d21ac55 1928
1c79356b 1929 vm_object_unlock(copy_object);
9bccf70c 1930 wait_result = thread_block(THREAD_CONTINUE_NULL);
1c79356b 1931 vm_object_deallocate(copy_object);
2d21ac55 1932
1c79356b
A
1933 goto backoff;
1934 } else {
1935 vm_object_unlock(copy_object);
1936 vm_object_deallocate(copy_object);
9bccf70c 1937 thread_interrupt_level(interruptible_state);
2d21ac55
A
1938
1939 return (VM_FAULT_RETRY);
1c79356b
A
1940 }
1941 }
1942 }
1943 else if (!PAGED_OUT(copy_object, copy_offset)) {
1944 /*
1945 * If PAGED_OUT is TRUE, then the page used to exist
1946 * in the copy-object, and has already been paged out.
1947 * We don't need to repeat this. If PAGED_OUT is
1948 * FALSE, then either we don't know (!pager_created,
1949 * for example) or it hasn't been paged out.
1950 * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT)
1951 * We must copy the page to the copy object.
1952 */
1953
2d21ac55
A
1954 if (vm_backing_store_low) {
1955 /*
1956 * we are protecting the system from
1957 * backing store exhaustion. If so
1958 * sleep unless we are privileged.
1959 */
1960 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
1961 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
55e303ae 1962
55e303ae
A
1963 RELEASE_PAGE(m);
1964 VM_OBJ_RES_DECR(copy_object);
2d21ac55 1965 vm_object_lock_assert_exclusive(copy_object);
55e303ae
A
1966 copy_object->ref_count--;
1967 assert(copy_object->ref_count > 0);
2d21ac55 1968
55e303ae
A
1969 vm_object_unlock(copy_object);
1970 vm_fault_cleanup(object, first_m);
91447636 1971 thread_block(THREAD_CONTINUE_NULL);
2d21ac55
A
1972 thread_interrupt_level(interruptible_state);
1973
1974 return (VM_FAULT_RETRY);
55e303ae
A
1975 }
1976 }
1c79356b 1977 /*
2d21ac55 1978 * Allocate a page for the copy
1c79356b
A
1979 */
1980 copy_m = vm_page_alloc(copy_object, copy_offset);
2d21ac55 1981
1c79356b
A
1982 if (copy_m == VM_PAGE_NULL) {
1983 RELEASE_PAGE(m);
2d21ac55 1984
1c79356b 1985 VM_OBJ_RES_DECR(copy_object);
2d21ac55 1986 vm_object_lock_assert_exclusive(copy_object);
1c79356b
A
1987 copy_object->ref_count--;
1988 assert(copy_object->ref_count > 0);
2d21ac55 1989
1c79356b
A
1990 vm_object_unlock(copy_object);
1991 vm_fault_cleanup(object, first_m);
9bccf70c 1992 thread_interrupt_level(interruptible_state);
1c79356b 1993
2d21ac55
A
1994 return (VM_FAULT_MEMORY_SHORTAGE);
1995 }
1c79356b 1996 /*
2d21ac55 1997 * Must copy page into copy-object.
1c79356b 1998 */
1c79356b
A
1999 vm_page_copy(m, copy_m);
2000
2001 /*
2d21ac55
A
2002 * If the old page was in use by any users
2003 * of the copy-object, it must be removed
2004 * from all pmaps. (We can't know which
2005 * pmaps use it.)
1c79356b 2006 */
2d21ac55
A
2007 if (m->pmapped)
2008 pmap_disconnect(m->phys_page);
1c79356b
A
2009
2010 /*
2d21ac55
A
2011 * If there's a pager, then immediately
2012 * page out this page, using the "initialize"
2013 * option. Else, we use the copy.
1c79356b 2014 */
2d21ac55
A
2015 if ((!copy_object->pager_created)
2016#if MACH_PAGEMAP
2017 || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT
1c79356b 2018#endif
2d21ac55
A
2019 ) {
2020
2021 vm_page_lockspin_queues();
2022 assert(!m->cleaning);
1c79356b
A
2023 vm_page_activate(copy_m);
2024 vm_page_unlock_queues();
2d21ac55
A
2025
2026 copy_m->dirty = TRUE;
1c79356b
A
2027 PAGE_WAKEUP_DONE(copy_m);
2028 }
2029 else {
2030 assert(copy_m->busy == TRUE);
2d21ac55 2031 assert(!m->cleaning);
1c79356b
A
2032
2033 /*
2d21ac55 2034 * dirty is protected by the object lock
1c79356b 2035 */
2d21ac55 2036 copy_m->dirty = TRUE;
1c79356b 2037
2d21ac55
A
2038 /*
2039 * The page is already ready for pageout:
2040 * not on pageout queues and busy.
2041 * Unlock everything except the
2042 * copy_object itself.
2043 */
1c79356b
A
2044 vm_object_unlock(object);
2045
2046 /*
2d21ac55
A
2047 * Write the page to the copy-object,
2048 * flushing it from the kernel.
1c79356b 2049 */
1c79356b
A
2050 vm_pageout_initialize_page(copy_m);
2051
2052 /*
2d21ac55
A
2053 * Since the pageout may have
2054 * temporarily dropped the
2055 * copy_object's lock, we
2056 * check whether we'll have
2057 * to deallocate the hard way.
1c79356b 2058 */
2d21ac55 2059 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
1c79356b
A
2060 vm_object_unlock(copy_object);
2061 vm_object_deallocate(copy_object);
2062 vm_object_lock(object);
2d21ac55 2063
1c79356b
A
2064 continue;
2065 }
1c79356b 2066 /*
2d21ac55
A
2067 * Pick back up the old object's
2068 * lock. [It is safe to do so,
2069 * since it must be deeper in the
2070 * object tree.]
1c79356b 2071 */
1c79356b
A
2072 vm_object_lock(object);
2073 }
1c79356b 2074 /*
2d21ac55
A
2075 * Because we're pushing a page upward
2076 * in the object tree, we must restart
2077 * any faults that are waiting here.
2078 * [Note that this is an expansion of
2079 * PAGE_WAKEUP that uses the THREAD_RESTART
2080 * wait result]. Can't turn off the page's
2081 * busy bit because we're not done with it.
1c79356b 2082 */
1c79356b
A
2083 if (m->wanted) {
2084 m->wanted = FALSE;
2d21ac55 2085 thread_wakeup_with_result((event_t) m, THREAD_RESTART);
1c79356b
A
2086 }
2087 }
1c79356b 2088 /*
2d21ac55
A
2089 * The reference count on copy_object must be
2090 * at least 2: one for our extra reference,
2091 * and at least one from the outside world
2092 * (we checked that when we last locked
2093 * copy_object).
1c79356b 2094 */
2d21ac55 2095 vm_object_lock_assert_exclusive(copy_object);
1c79356b
A
2096 copy_object->ref_count--;
2097 assert(copy_object->ref_count > 0);
2d21ac55 2098
1c79356b
A
2099 VM_OBJ_RES_DECR(copy_object);
2100 vm_object_unlock(copy_object);
2101
2102 break;
2103 }
b0d623f7
A
2104
2105done:
1c79356b
A
2106 *result_page = m;
2107 *top_page = first_m;
2108
2109 XPR(XPR_VM_FAULT,
2110 "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
b0d623f7 2111 object, offset, m, first_m, 0);
1c79356b 2112
2d21ac55 2113 if (m != VM_PAGE_NULL) {
b0d623f7 2114 retval = VM_FAULT_SUCCESS;
2d21ac55 2115 if (my_fault == DBG_PAGEIN_FAULT) {
55e303ae 2116
2d21ac55
A
2117 VM_STAT_INCR(pageins);
2118 DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
2119 DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
2120 current_task()->pageins++;
2121
2122 if (m->object->internal) {
2123 DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
b0d623f7 2124 my_fault = DBG_PAGEIND_FAULT;
2d21ac55
A
2125 } else {
2126 DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
b0d623f7 2127 my_fault = DBG_PAGEINV_FAULT;
2d21ac55
A
2128 }
2129
2130 /*
2131 * evaluate access pattern and update state
2132 * vm_fault_deactivate_behind depends on the
2133 * state being up to date
2134 */
2135 vm_fault_is_sequential(object, offset, fault_info->behavior);
2136
2137 vm_fault_deactivate_behind(object, offset, fault_info->behavior);
2138 }
2139 if (type_of_fault)
2140 *type_of_fault = my_fault;
b0d623f7
A
2141 } else {
2142 retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
2143 assert(first_m == VM_PAGE_NULL);
2144 assert(object == first_object);
2145 }
2d21ac55 2146
55e303ae
A
2147 thread_interrupt_level(interruptible_state);
2148
1c79356b
A
2149#if TRACEFAULTPAGE
2150 dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
2151#endif
b0d623f7 2152 return retval;
1c79356b 2153
2d21ac55 2154backoff:
9bccf70c 2155 thread_interrupt_level(interruptible_state);
2d21ac55 2156
1c79356b 2157 if (wait_result == THREAD_INTERRUPTED)
2d21ac55
A
2158 return (VM_FAULT_INTERRUPTED);
2159 return (VM_FAULT_RETRY);
1c79356b
A
2160
2161#undef RELEASE_PAGE
2162}
2163
2d21ac55
A
2164
2165
593a1d5f
A
2166/*
2167 * CODE SIGNING:
2168 * When soft faulting a page, we have to validate the page if:
2169 * 1. the page is being mapped in user space
2170 * 2. the page hasn't already been found to be "tainted"
2171 * 3. the page belongs to a code-signed object
2172 * 4. the page has not been validated yet or has been mapped for write.
2173 */
2174#define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \
2175 ((pmap) != kernel_pmap /*1*/ && \
2176 !(page)->cs_tainted /*2*/ && \
2177 (page)->object->code_signed /*3*/ && \
2178 (!(page)->cs_validated || (page)->wpmapped /*4*/))
2179
2180
55e303ae 2181/*
2d21ac55
A
2182 * page queue lock must NOT be held
2183 * m->object must be locked
2184 *
2185 * NOTE: m->object could be locked "shared" only if we are called
2186 * from vm_fault() as part of a soft fault. If so, we must be
2187 * careful not to modify the VM object in any way that is not
2188 * legal under a shared lock...
55e303ae 2189 */
2d21ac55
A
2190unsigned long cs_enter_tainted_rejected = 0;
2191unsigned long cs_enter_tainted_accepted = 0;
2192kern_return_t
2193vm_fault_enter(vm_page_t m,
2194 pmap_t pmap,
2195 vm_map_offset_t vaddr,
2196 vm_prot_t prot,
2197 boolean_t wired,
2198 boolean_t change_wiring,
2199 boolean_t no_cache,
2200 int *type_of_fault)
55e303ae 2201{
2d21ac55 2202 unsigned int cache_attr;
d1ecb069 2203 kern_return_t kr, pe_result;
2d21ac55 2204 boolean_t previously_pmapped = m->pmapped;
b0d623f7
A
2205 boolean_t must_disconnect = 0;
2206 boolean_t map_is_switched, map_is_switch_protected;
2207
2d21ac55
A
2208 vm_object_lock_assert_held(m->object);
2209#if DEBUG
b0d623f7 2210 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
2d21ac55
A
2211#endif /* DEBUG */
2212
2213 if (m->phys_page == vm_page_guard_addr) {
2214 assert(m->fictitious);
2215 return KERN_SUCCESS;
2216 }
2217
2218 cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK;
2219
2d21ac55
A
2220 if (m->pmapped == FALSE) {
2221 /*
2222 * This is the first time this page is being
2223 * mapped in an address space (pmapped == FALSE).
2224 *
2225 * Part of that page may still be in the data cache
2226 * and not flushed to memory. In case we end up
2227 * accessing that page via the instruction cache,
2228 * we need to ensure that the 2 caches are in sync.
2229 */
2230 pmap_sync_page_data_phys(m->phys_page);
2231
2232 if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) {
2233 /*
2234 * found it in the cache, but this
2235 * is the first fault-in of the page (m->pmapped == FALSE)
2236 * so it must have come in as part of
2237 * a cluster... account 1 pagein against it
2238 */
2239 VM_STAT_INCR(pageins);
2240 DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
2241
2242 if (m->object->internal) {
2243 DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
b0d623f7 2244 *type_of_fault = DBG_PAGEIND_FAULT;
2d21ac55
A
2245 } else {
2246 DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
b0d623f7 2247 *type_of_fault = DBG_PAGEINV_FAULT;
55e303ae 2248 }
2d21ac55
A
2249
2250 current_task()->pageins++;
2d21ac55
A
2251 }
2252 VM_PAGE_CONSUME_CLUSTERED(m);
2253
2254 } else if (cache_attr != VM_WIMG_DEFAULT)
2255 pmap_sync_page_attributes_phys(m->phys_page);
2256
2257 if (*type_of_fault != DBG_COW_FAULT) {
2258 DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
2259
2260 if (pmap == kernel_pmap) {
2261 DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL);
2262 }
2263 }
2264
b0d623f7 2265 /* Validate code signature if necessary. */
593a1d5f
A
2266 if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) {
2267 vm_object_lock_assert_exclusive(m->object);
2268
2269 if (m->cs_validated) {
2270 vm_cs_revalidates++;
2271 }
2272
b0d623f7
A
2273 /* VM map is locked, so 1 ref will remain on VM object -
2274 * so no harm if vm_page_validate_cs drops the object lock */
593a1d5f
A
2275 vm_page_validate_cs(m);
2276 }
2277
b0d623f7
A
2278#define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/)
2279
2280 map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
2281 (pmap == vm_map_pmap(current_thread()->map)));
2282 map_is_switch_protected = current_thread()->map->switch_protect;
2283
2284 /* If the map is switched, and is switch-protected, we must protect
2285 * some pages from being write-faulted: immutable pages because by
2286 * definition they may not be written, and executable pages because that
2287 * would provide a way to inject unsigned code.
2288 * If the page is immutable, we can simply return. However, we can't
2289 * immediately determine whether a page is executable anywhere. But,
2290 * we can disconnect it everywhere and remove the executable protection
2291 * from the current map. We do that below right before we do the
2292 * PMAP_ENTER.
2293 */
2294 if(!cs_enforcement_disable && map_is_switched &&
2295 map_is_switch_protected && page_immutable(m, prot) &&
2296 (prot & VM_PROT_WRITE))
2297 {
2298 return KERN_CODESIGN_ERROR;
2299 }
2300
2301 /* A page could be tainted, or pose a risk of being tainted later.
2302 * Check whether the receiving process wants it, and make it feel
2303 * the consequences (that hapens in cs_invalid_page()).
2304 * For CS Enforcement, two other conditions will
2305 * cause that page to be tainted as well:
2306 * - pmapping an unsigned page executable - this means unsigned code;
2307 * - writeable mapping of a validated page - the content of that page
2308 * can be changed without the kernel noticing, therefore unsigned
2309 * code can be created
2310 */
2311 if (m->cs_tainted ||
2312 ( !cs_enforcement_disable &&
2313 (/* The page is unsigned and wants to be executable */
2314 (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
2315 /* The page should be immutable, but is in danger of being modified
2316 * This is the case where we want policy from the code directory -
2317 * is the page immutable or not? For now we have to assume that
2318 * code pages will be immutable, data pages not.
2319 * We'll assume a page is a code page if it has a code directory
2320 * and we fault for execution.
2321 * That is good enough since if we faulted the code page for
2322 * writing in another map before, it is wpmapped; if we fault
2323 * it for writing in this map later it will also be faulted for executing
2324 * at the same time; and if we fault for writing in another map
2325 * later, we will disconnect it from this pmap so we'll notice
2326 * the change.
2327 */
2328 (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
2329 ))
2330 )
2331 {
2332 /* We will have a tainted page. Have to handle the special case
2333 * of a switched map now. If the map is not switched, standard
2334 * procedure applies - call cs_invalid_page().
2335 * If the map is switched, the real owner is invalid already.
2336 * There is no point in invalidating the switching process since
2337 * it will not be executing from the map. So we don't call
2338 * cs_invalid_page() in that case. */
2339 boolean_t reject_page;
2340 if(map_is_switched) {
2341 assert(pmap==vm_map_pmap(current_thread()->map));
2342 assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
2343 reject_page = FALSE;
2344 } else {
2345 reject_page = cs_invalid_page((addr64_t) vaddr);
2346 }
2347
2348 if (reject_page) {
2349 /* reject the tainted page: abort the page fault */
2350 kr = KERN_CODESIGN_ERROR;
2351 cs_enter_tainted_rejected++;
2352 } else {
2353 /* proceed with the tainted page */
2354 kr = KERN_SUCCESS;
2355 /* Page might have been tainted before or not; now it
2356 * definitively is. If the page wasn't tainted, we must
2357 * disconnect it from all pmaps later. */
b7266188 2358 must_disconnect = !m->cs_tainted;
b0d623f7
A
2359 m->cs_tainted = TRUE;
2360 cs_enter_tainted_accepted++;
2d21ac55
A
2361 }
2362 if (cs_debug || kr != KERN_SUCCESS) {
2363 printf("CODESIGNING: vm_fault_enter(0x%llx): "
593a1d5f 2364 "page %p obj %p off 0x%llx *** INVALID PAGE ***\n",
2d21ac55
A
2365 (long long)vaddr, m, m->object, m->offset);
2366 }
b0d623f7 2367
2d21ac55
A
2368 } else {
2369 /* proceed with the valid page */
2370 kr = KERN_SUCCESS;
2371 }
2372
b0d623f7
A
2373 /* If we have a KERN_SUCCESS from the previous checks, we either have
2374 * a good page, or a tainted page that has been accepted by the process.
2375 * In both cases the page will be entered into the pmap.
2376 * If the page is writeable, we need to disconnect it from other pmaps
2377 * now so those processes can take note.
2378 */
2d21ac55
A
2379 if (kr == KERN_SUCCESS) {
2380 /*
2381 * NOTE: we may only hold the vm_object lock SHARED
2382 * at this point, but the update of pmapped is ok
2383 * since this is the ONLY bit updated behind the SHARED
2384 * lock... however, we need to figure out how to do an atomic
2385 * update on a bit field to make this less fragile... right
593a1d5f 2386 * now I don't know how to coerce 'C' to give me the offset info
2d21ac55
A
2387 * that's needed for an AtomicCompareAndSwap
2388 */
2389 m->pmapped = TRUE;
4a3eedf9
A
2390 if (prot & VM_PROT_WRITE) {
2391 vm_object_lock_assert_exclusive(m->object);
2392 m->wpmapped = TRUE;
b0d623f7
A
2393 if(must_disconnect) {
2394 /* We can only get here
2395 * because of the CSE logic */
2396 assert(cs_enforcement_disable == FALSE);
2397 pmap_disconnect(m->phys_page);
2398 /* If we are faulting for a write, we can clear
2399 * the execute bit - that will ensure the page is
2400 * checked again before being executable, which
2401 * protects against a map switch.
2402 * This only happens the first time the page
2403 * gets tainted, so we won't get stuck here
2404 * to make an already writeable page executable. */
2405 prot &= ~VM_PROT_EXECUTE;
2406 }
4a3eedf9 2407 }
d1ecb069
A
2408
2409 /* Prevent a deadlock by not
2410 * holding the object lock if we need to wait for a page in
2411 * pmap_enter() - <rdar://problem/7138958> */
2412 PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, cache_attr,
2413 wired, PMAP_OPTIONS_NOWAIT, pe_result);
2414
2415 if(pe_result == KERN_RESOURCE_SHORTAGE) {
2416 /* The nonblocking version of pmap_enter did not succeed.
2417 * Use the blocking version instead. Requires marking
2418 * the page busy and unlocking the object */
2419 boolean_t was_busy = m->busy;
2420 m->busy = TRUE;
2421 vm_object_unlock(m->object);
2422
2423 PMAP_ENTER(pmap, vaddr, m, prot, cache_attr, wired);
2424
2425 /* Take the object lock again. */
2426 vm_object_lock(m->object);
2427
2428 /* If the page was busy, someone else will wake it up.
2429 * Otherwise, we have to do it now. */
2430 assert(m->busy);
2431 if(!was_busy) {
2432 PAGE_WAKEUP_DONE(m);
2433 }
2434 vm_pmap_enter_blocked++;
2435 }
2d21ac55
A
2436 }
2437
2438 /*
2439 * Hold queues lock to manipulate
2440 * the page queues. Change wiring
2441 * case is obvious.
2442 */
2443 if (change_wiring) {
2444 vm_page_lockspin_queues();
2445
2446 if (wired) {
2447 if (kr == KERN_SUCCESS) {
2448 vm_page_wire(m);
55e303ae 2449 }
2d21ac55 2450 } else {
0b4c1975 2451 vm_page_unwire(m, TRUE);
2d21ac55
A
2452 }
2453 vm_page_unlock_queues();
2454
2455 } else {
2456 if (kr != KERN_SUCCESS) {
b0d623f7 2457 vm_page_lockspin_queues();
2d21ac55
A
2458 vm_page_deactivate(m);
2459 vm_page_unlock_queues();
2460 } else {
b0d623f7
A
2461 if (((!m->active && !m->inactive) || no_cache) && !VM_PAGE_WIRED(m) && !m->throttled) {
2462
2463 if ( vm_page_local_q && !no_cache && (*type_of_fault == DBG_COW_FAULT || *type_of_fault == DBG_ZERO_FILL_FAULT) ) {
2464 struct vpl *lq;
2465 uint32_t lid;
2466
2467 /*
2468 * we got a local queue to stuff this new page on...
2469 * its safe to manipulate local and local_id at this point
2470 * since we're behind an exclusive object lock and the
2471 * page is not on any global queue.
2472 *
2473 * we'll use the current cpu number to select the queue
2474 * note that we don't need to disable preemption... we're
2475 * going to behind the local queue's lock to do the real
2476 * work
2477 */
2478 lid = cpu_number();
2479
2480 lq = &vm_page_local_q[lid].vpl_un.vpl;
2481
2482 VPL_LOCK(&lq->vpl_lock);
2483
2484 queue_enter(&lq->vpl_queue, m, vm_page_t, pageq);
2485 m->local = TRUE;
2486 m->local_id = lid;
2487 lq->vpl_count++;
2488
2489 VPL_UNLOCK(&lq->vpl_lock);
2490
2491 if (lq->vpl_count > vm_page_local_q_soft_limit) {
2492 /*
2493 * we're beyond the soft limit for the local queue
2494 * vm_page_reactivate_local will 'try' to take
2495 * the global page queue lock... if it can't that's
2496 * ok... we'll let the queue continue to grow up
2497 * to the hard limit... at that point we'll wait
2498 * for the lock... once we've got the lock, we'll
2499 * transfer all of the pages from the local queue
2500 * to the global active queue
2501 */
2502 vm_page_reactivate_local(lid, FALSE, FALSE);
2503 }
2504 return kr;
2505 }
2506
2d21ac55
A
2507 vm_page_lockspin_queues();
2508 /*
2509 * test again now that we hold the page queue lock
2510 */
b0d623f7 2511 if (((!m->active && !m->inactive) || no_cache) && !VM_PAGE_WIRED(m)) {
2d21ac55
A
2512
2513 /*
2514 * If this is a no_cache mapping and the page has never been
2515 * mapped before or was previously a no_cache page, then we
2516 * want to leave pages in the speculative state so that they
2517 * can be readily recycled if free memory runs low. Otherwise
2518 * the page is activated as normal.
2519 */
2520
2521 if (no_cache && (!previously_pmapped || m->no_cache)) {
2522 m->no_cache = TRUE;
2523
2524 if (m->active || m->inactive)
2525 VM_PAGE_QUEUES_REMOVE(m);
2526
2527 if (!m->speculative)
2528 vm_page_speculate(m, TRUE);
2529
2530 } else if (!m->active && !m->inactive)
2531 vm_page_activate(m);
2532
2533 }
2534
2535 vm_page_unlock_queues();
55e303ae 2536 }
55e303ae
A
2537 }
2538 }
2d21ac55 2539 return kr;
55e303ae
A
2540}
2541
2d21ac55 2542
1c79356b
A
2543/*
2544 * Routine: vm_fault
2545 * Purpose:
2546 * Handle page faults, including pseudo-faults
2547 * used to change the wiring status of pages.
2548 * Returns:
2549 * Explicit continuations have been removed.
2550 * Implementation:
2551 * vm_fault and vm_fault_page save mucho state
2552 * in the moral equivalent of a closure. The state
2553 * structure is allocated when first entering vm_fault
2554 * and deallocated when leaving vm_fault.
2555 */
2556
91447636
A
2557extern int _map_enter_debug;
2558
2d21ac55
A
2559unsigned long vm_fault_collapse_total = 0;
2560unsigned long vm_fault_collapse_skipped = 0;
2561
1c79356b
A
2562kern_return_t
2563vm_fault(
2564 vm_map_t map,
91447636 2565 vm_map_offset_t vaddr,
1c79356b
A
2566 vm_prot_t fault_type,
2567 boolean_t change_wiring,
9bccf70c
A
2568 int interruptible,
2569 pmap_t caller_pmap,
91447636 2570 vm_map_offset_t caller_pmap_addr)
1c79356b
A
2571{
2572 vm_map_version_t version; /* Map version for verificiation */
2573 boolean_t wired; /* Should mapping be wired down? */
2574 vm_object_t object; /* Top-level object */
2575 vm_object_offset_t offset; /* Top-level offset */
2576 vm_prot_t prot; /* Protection for mapping */
1c79356b
A
2577 vm_object_t old_copy_object; /* Saved copy object */
2578 vm_page_t result_page; /* Result of vm_fault_page */
2579 vm_page_t top_page; /* Placeholder page */
2580 kern_return_t kr;
2581
1c79356b 2582 vm_page_t m; /* Fast access to result_page */
2d21ac55 2583 kern_return_t error_code;
1c79356b 2584 vm_object_t cur_object;
1c79356b
A
2585 vm_object_offset_t cur_offset;
2586 vm_page_t cur_m;
2587 vm_object_t new_object;
2588 int type_of_fault;
2d21ac55
A
2589 pmap_t pmap;
2590 boolean_t interruptible_state;
91447636 2591 vm_map_t real_map = map;
1c79356b 2592 vm_map_t original_map = map;
0c530ab8 2593 vm_prot_t original_fault_type;
2d21ac55
A
2594 struct vm_object_fault_info fault_info;
2595 boolean_t need_collapse = FALSE;
2596 int object_lock_type = 0;
2597 int cur_object_lock_type;
c910b4d9 2598 vm_object_t top_object = VM_OBJECT_NULL;
1c79356b 2599
de355530 2600
2d21ac55
A
2601 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
2602 (int)((uint64_t)vaddr >> 32),
2603 (int)vaddr,
1c79356b
A
2604 0,
2605 0,
2606 0);
2607
0c530ab8 2608 if (get_preemption_level() != 0) {
2d21ac55
A
2609 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
2610 (int)((uint64_t)vaddr >> 32),
2611 (int)vaddr,
0c530ab8
A
2612 KERN_FAILURE,
2613 0,
2614 0);
2615
2616 return (KERN_FAILURE);
9bccf70c 2617 }
b0d623f7 2618
9bccf70c 2619 interruptible_state = thread_interrupt_level(interruptible);
1c79356b 2620
2d21ac55
A
2621 VM_STAT_INCR(faults);
2622 current_task()->faults++;
2623 original_fault_type = fault_type;
2624
2625 if (fault_type & VM_PROT_WRITE)
2626 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2627 else
2628 object_lock_type = OBJECT_LOCK_SHARED;
2629
2630 cur_object_lock_type = OBJECT_LOCK_SHARED;
2631
2632RetryFault:
1c79356b
A
2633 /*
2634 * assume we will hit a page in the cache
2635 * otherwise, explicitly override with
2636 * the real fault type once we determine it
2637 */
2638 type_of_fault = DBG_CACHE_HIT_FAULT;
2639
1c79356b
A
2640 /*
2641 * Find the backing store object and offset into
2642 * it to begin the search.
2643 */
0c530ab8 2644 fault_type = original_fault_type;
1c79356b
A
2645 map = original_map;
2646 vm_map_lock_read(map);
1c79356b 2647
2d21ac55
A
2648 kr = vm_map_lookup_locked(&map, vaddr, fault_type,
2649 object_lock_type, &version,
2650 &object, &offset, &prot, &wired,
2651 &fault_info,
2652 &real_map);
1c79356b
A
2653
2654 if (kr != KERN_SUCCESS) {
2655 vm_map_unlock_read(map);
2656 goto done;
2657 }
2d21ac55
A
2658 pmap = real_map->pmap;
2659 fault_info.interruptible = interruptible;
b0d623f7 2660 fault_info.stealth = FALSE;
0b4c1975 2661 fault_info.mark_zf_absent = FALSE;
1c79356b
A
2662
2663 /*
2d21ac55
A
2664 * If the page is wired, we must fault for the current protection
2665 * value, to avoid further faults.
1c79356b 2666 */
2d21ac55 2667 if (wired) {
1c79356b 2668 fault_type = prot | VM_PROT_WRITE;
2d21ac55
A
2669 /*
2670 * since we're treating this fault as a 'write'
2671 * we must hold the top object lock exclusively
2672 */
2673 if (object_lock_type == OBJECT_LOCK_SHARED) {
2674
2675 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2676
2677 if (vm_object_lock_upgrade(object) == FALSE) {
2678 /*
2679 * couldn't upgrade, so explictly
2680 * take the lock exclusively
2681 */
2682 vm_object_lock(object);
2683 }
2684 }
2685 }
1c79356b
A
2686
2687#if VM_FAULT_CLASSIFY
2688 /*
2689 * Temporary data gathering code
2690 */
2691 vm_fault_classify(object, offset, fault_type);
2692#endif
2693 /*
2694 * Fast fault code. The basic idea is to do as much as
2695 * possible while holding the map lock and object locks.
2696 * Busy pages are not used until the object lock has to
2697 * be dropped to do something (copy, zero fill, pmap enter).
2698 * Similarly, paging references aren't acquired until that
2699 * point, and object references aren't used.
2700 *
2701 * If we can figure out what to do
2702 * (zero fill, copy on write, pmap enter) while holding
2703 * the locks, then it gets done. Otherwise, we give up,
2704 * and use the original fault path (which doesn't hold
2705 * the map lock, and relies on busy pages).
2706 * The give up cases include:
2707 * - Have to talk to pager.
2708 * - Page is busy, absent or in error.
2709 * - Pager has locked out desired access.
2710 * - Fault needs to be restarted.
2711 * - Have to push page into copy object.
2712 *
2713 * The code is an infinite loop that moves one level down
2714 * the shadow chain each time. cur_object and cur_offset
2715 * refer to the current object being examined. object and offset
2716 * are the original object from the map. The loop is at the
2717 * top level if and only if object and cur_object are the same.
2718 *
2719 * Invariants: Map lock is held throughout. Lock is held on
2720 * original object and cur_object (if different) when
2721 * continuing or exiting loop.
2722 *
2723 */
2724
2725
2726 /*
2d21ac55
A
2727 * If this page is to be inserted in a copy delay object
2728 * for writing, and if the object has a copy, then the
2729 * copy delay strategy is implemented in the slow fault page.
1c79356b 2730 */
2d21ac55
A
2731 if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
2732 object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE))
2733 goto handle_copy_delay;
2734
1c79356b
A
2735 cur_object = object;
2736 cur_offset = offset;
2737
2738 while (TRUE) {
b0d623f7
A
2739 if (!cur_object->pager_created &&
2740 cur_object->phys_contiguous) /* superpage */
2741 break;
2742
2743 if (cur_object->blocked_access) {
2744 /*
2745 * Access to this VM object has been blocked.
2746 * Let the slow path handle it.
2747 */
2748 break;
2749 }
2750
1c79356b 2751 m = vm_page_lookup(cur_object, cur_offset);
2d21ac55 2752
1c79356b 2753 if (m != VM_PAGE_NULL) {
55e303ae 2754 if (m->busy) {
143cc14e
A
2755 wait_result_t result;
2756
2d21ac55
A
2757 /*
2758 * in order to do the PAGE_ASSERT_WAIT, we must
2759 * have object that 'm' belongs to locked exclusively
2760 */
2761 if (object != cur_object) {
143cc14e
A
2762 vm_object_unlock(object);
2763
2d21ac55
A
2764 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
2765
2766 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2767
2768 if (vm_object_lock_upgrade(cur_object) == FALSE) {
2769 /*
2770 * couldn't upgrade so go do a full retry
2771 * immediately since we've already dropped
2772 * the top object lock associated with this page
2773 * and the current one got dropped due to the
2774 * failed upgrade... the state is no longer valid
2775 */
2776 vm_map_unlock_read(map);
2777 if (real_map != map)
2778 vm_map_unlock(real_map);
2779
2780 goto RetryFault;
2781 }
2782 }
2783 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
2784
2785 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2786
2787 if (vm_object_lock_upgrade(object) == FALSE) {
2788 /*
2789 * couldn't upgrade, so explictly take the lock
2790 * exclusively and go relookup the page since we
2791 * will have dropped the object lock and
2792 * a different thread could have inserted
2793 * a page at this offset
2794 * no need for a full retry since we're
2795 * at the top level of the object chain
2796 */
2797 vm_object_lock(object);
2798
2799 continue;
2800 }
2801 }
143cc14e 2802 vm_map_unlock_read(map);
91447636
A
2803 if (real_map != map)
2804 vm_map_unlock(real_map);
143cc14e 2805
143cc14e 2806 result = PAGE_ASSERT_WAIT(m, interruptible);
1c79356b 2807
143cc14e
A
2808 vm_object_unlock(cur_object);
2809
2810 if (result == THREAD_WAITING) {
2811 result = thread_block(THREAD_CONTINUE_NULL);
2812
2813 counter(c_vm_fault_page_block_busy_kernel++);
2814 }
2815 if (result == THREAD_AWAKENED || result == THREAD_RESTART)
2816 goto RetryFault;
2817
2818 kr = KERN_ABORTED;
2819 goto done;
2820 }
2d21ac55
A
2821 if (m->phys_page == vm_page_guard_addr) {
2822 /*
2823 * Guard page: let the slow path deal with it
2824 */
2825 break;
2826 }
2827 if (m->unusual && (m->error || m->restart || m->private || m->absent)) {
143cc14e 2828 /*
2d21ac55 2829 * Unusual case... let the slow path deal with it
1c79356b
A
2830 */
2831 break;
2832 }
b0d623f7
A
2833 if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m->object)) {
2834 if (object != cur_object)
2835 vm_object_unlock(object);
2836 vm_map_unlock_read(map);
2837 if (real_map != map)
2838 vm_map_unlock(real_map);
2839 vm_object_unlock(cur_object);
2840 kr = KERN_MEMORY_ERROR;
2841 goto done;
2842 }
2843
91447636
A
2844 if (m->encrypted) {
2845 /*
2846 * ENCRYPTED SWAP:
2847 * We've soft-faulted (because it's not in the page
2848 * table) on an encrypted page.
2d21ac55 2849 * Keep the page "busy" so that no one messes with
91447636
A
2850 * it during the decryption.
2851 * Release the extra locks we're holding, keep only
2852 * the page's VM object lock.
2d21ac55
A
2853 *
2854 * in order to set 'busy' on 'm', we must
2855 * have object that 'm' belongs to locked exclusively
91447636 2856 */
2d21ac55 2857 if (object != cur_object) {
91447636 2858 vm_object_unlock(object);
2d21ac55
A
2859
2860 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
2861
2862 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2863
2864 if (vm_object_lock_upgrade(cur_object) == FALSE) {
2865 /*
2866 * couldn't upgrade so go do a full retry
2867 * immediately since we've already dropped
2868 * the top object lock associated with this page
2869 * and the current one got dropped due to the
2870 * failed upgrade... the state is no longer valid
2871 */
2872 vm_map_unlock_read(map);
2873 if (real_map != map)
2874 vm_map_unlock(real_map);
2875
2876 goto RetryFault;
2877 }
2878 }
2879 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
2880
2881 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2882
2883 if (vm_object_lock_upgrade(object) == FALSE) {
2884 /*
2885 * couldn't upgrade, so explictly take the lock
2886 * exclusively and go relookup the page since we
2887 * will have dropped the object lock and
2888 * a different thread could have inserted
2889 * a page at this offset
2890 * no need for a full retry since we're
2891 * at the top level of the object chain
2892 */
2893 vm_object_lock(object);
2894
2895 continue;
2896 }
91447636 2897 }
2d21ac55
A
2898 m->busy = TRUE;
2899
91447636
A
2900 vm_map_unlock_read(map);
2901 if (real_map != map)
2902 vm_map_unlock(real_map);
2903
2904 vm_page_decrypt(m, 0);
2905
2906 assert(m->busy);
2907 PAGE_WAKEUP_DONE(m);
91447636 2908
2d21ac55 2909 vm_object_unlock(cur_object);
91447636
A
2910 /*
2911 * Retry from the top, in case anything
2912 * changed while we were decrypting...
2913 */
2914 goto RetryFault;
2915 }
2916 ASSERT_PAGE_DECRYPTED(m);
2917
593a1d5f 2918 if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m)) {
2d21ac55 2919 /*
4a3eedf9 2920 * We might need to validate this page
2d21ac55
A
2921 * against its code signature, so we
2922 * want to hold the VM object exclusively.
2923 */
2924 if (object != cur_object) {
2925 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
2926 vm_object_unlock(object);
2927 vm_object_unlock(cur_object);
2928
2929 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2930
2931 vm_map_unlock_read(map);
2932 if (real_map != map)
2933 vm_map_unlock(real_map);
2934
2935 goto RetryFault;
2936 }
2937
2938 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
2939
2940 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
2941
2942 if (vm_object_lock_upgrade(object) == FALSE) {
2943 /*
2944 * couldn't upgrade, so explictly take the lock
2945 * exclusively and go relookup the page since we
2946 * will have dropped the object lock and
2947 * a different thread could have inserted
2948 * a page at this offset
2949 * no need for a full retry since we're
2950 * at the top level of the object chain
2951 */
2952 vm_object_lock(object);
2953
2954 continue;
2955 }
2956 }
2957 }
1c79356b
A
2958 /*
2959 * Two cases of map in faults:
2960 * - At top level w/o copy object.
2961 * - Read fault anywhere.
2962 * --> must disallow write.
2963 */
2964
4a3eedf9
A
2965 if (object == cur_object && object->copy == VM_OBJECT_NULL) {
2966 if ((fault_type & VM_PROT_WRITE) == 0) {
2967 /*
2968 * This is not a "write" fault, so we
2969 * might not have taken the object lock
2970 * exclusively and we might not be able
2971 * to update the "wpmapped" bit in
2972 * vm_fault_enter().
2973 * Let's just grant read access to
2974 * the page for now and we'll
2975 * soft-fault again if we need write
2976 * access later...
2977 */
2978 prot &= ~VM_PROT_WRITE;
2979 }
2d21ac55 2980 goto FastPmapEnter;
4a3eedf9 2981 }
1c79356b
A
2982
2983 if ((fault_type & VM_PROT_WRITE) == 0) {
2984
2985 prot &= ~VM_PROT_WRITE;
2986
1c79356b 2987 if (object != cur_object) {
c910b4d9
A
2988 /*
2989 * We still need to hold the top object
2990 * lock here to prevent a race between
2991 * a read fault (taking only "shared"
2992 * locks) and a write fault (taking
2993 * an "exclusive" lock on the top
2994 * object.
2995 * Otherwise, as soon as we release the
2996 * top lock, the write fault could
2997 * proceed and actually complete before
2998 * the read fault, and the copied page's
2999 * translation could then be overwritten
3000 * by the read fault's translation for
3001 * the original page.
3002 *
3003 * Let's just record what the top object
3004 * is and we'll release it later.
2d21ac55 3005 */
c910b4d9 3006 top_object = object;
2d21ac55
A
3007
3008 /*
3009 * switch to the object that has the new page
3010 */
1c79356b 3011 object = cur_object;
2d21ac55 3012 object_lock_type = cur_object_lock_type;
1c79356b 3013 }
1c79356b
A
3014FastPmapEnter:
3015 /*
2d21ac55
A
3016 * prepare for the pmap_enter...
3017 * object and map are both locked
3018 * m contains valid data
3019 * object == m->object
3020 * cur_object == NULL or it's been unlocked
3021 * no paging references on either object or cur_object
1c79356b 3022 */
1c79356b 3023#if MACH_KDB
2d21ac55 3024 if (db_watchpoint_list && (fault_type & VM_PROT_WRITE) == 0)
1c79356b 3025 prot &= ~VM_PROT_WRITE;
2d21ac55
A
3026#endif
3027 if (caller_pmap) {
3028 kr = vm_fault_enter(m,
3029 caller_pmap,
3030 caller_pmap_addr,
3031 prot,
3032 wired,
3033 change_wiring,
3034 fault_info.no_cache,
3035 &type_of_fault);
9bccf70c 3036 } else {
2d21ac55
A
3037 kr = vm_fault_enter(m,
3038 pmap,
3039 vaddr,
3040 prot,
3041 wired,
3042 change_wiring,
3043 fault_info.no_cache,
3044 &type_of_fault);
9bccf70c 3045 }
0b4e3aa0 3046
c910b4d9
A
3047 if (top_object != VM_OBJECT_NULL) {
3048 /*
3049 * It's safe to drop the top object
3050 * now that we've done our
3051 * vm_fault_enter(). Any other fault
3052 * in progress for that virtual
3053 * address will either find our page
3054 * and translation or put in a new page
3055 * and translation.
3056 */
3057 vm_object_unlock(top_object);
3058 top_object = VM_OBJECT_NULL;
3059 }
3060
2d21ac55
A
3061 if (need_collapse == TRUE)
3062 vm_object_collapse(object, offset, TRUE);
0c530ab8 3063
b0d623f7 3064 if (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT) {
2d21ac55
A
3065 /*
3066 * evaluate access pattern and update state
3067 * vm_fault_deactivate_behind depends on the
3068 * state being up to date
3069 */
3070 vm_fault_is_sequential(object, cur_offset, fault_info.behavior);
0c530ab8 3071
2d21ac55 3072 vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior);
1c79356b 3073 }
1c79356b 3074 /*
2d21ac55 3075 * That's it, clean up and return.
1c79356b 3076 */
2d21ac55
A
3077 if (m->busy)
3078 PAGE_WAKEUP_DONE(m);
6601e61a 3079
1c79356b 3080 vm_object_unlock(object);
143cc14e 3081
1c79356b 3082 vm_map_unlock_read(map);
2d21ac55 3083 if (real_map != map)
91447636 3084 vm_map_unlock(real_map);
1c79356b 3085
2d21ac55 3086 goto done;
1c79356b 3087 }
1c79356b 3088 /*
2d21ac55 3089 * COPY ON WRITE FAULT
b0d623f7
A
3090 */
3091 assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
3092
3093 if (vm_page_throttled()) {
3094 /*
3095 * drop all of our locks...
3096 * wait until the free queue is
3097 * pumped back up and then
3098 * redrive the fault
3099 */
3100 if (object != cur_object)
3101 vm_object_unlock(cur_object);
3102 vm_object_unlock(object);
3103 vm_map_unlock_read(map);
3104 if (real_map != map)
3105 vm_map_unlock(real_map);
3106
3107 if (NEED_TO_HARD_THROTTLE_THIS_TASK())
3108 delay(HARD_THROTTLE_DELAY);
3109
3110 if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
3111 THREAD_UNINT :
3112 THREAD_ABORTSAFE))
3113 goto RetryFault;
3114 kr = KERN_ABORTED;
3115 goto done;
3116 }
3117 /*
2d21ac55
A
3118 * If objects match, then
3119 * object->copy must not be NULL (else control
3120 * would be in previous code block), and we
3121 * have a potential push into the copy object
3122 * with which we can't cope with here.
1c79356b 3123 */
2d21ac55
A
3124 if (cur_object == object) {
3125 /*
3126 * must take the slow path to
3127 * deal with the copy push
3128 */
1c79356b 3129 break;
2d21ac55 3130 }
1c79356b 3131 /*
2d21ac55
A
3132 * This is now a shadow based copy on write
3133 * fault -- it requires a copy up the shadow
3134 * chain.
3135 *
3136 * Allocate a page in the original top level
3137 * object. Give up if allocate fails. Also
3138 * need to remember current page, as it's the
3139 * source of the copy.
1c79356b 3140 *
2d21ac55
A
3141 * at this point we hold locks on both
3142 * object and cur_object... no need to take
3143 * paging refs or mark pages BUSY since
3144 * we don't drop either object lock until
3145 * the page has been copied and inserted
1c79356b
A
3146 */
3147 cur_m = m;
3148 m = vm_page_grab();
2d21ac55 3149
1c79356b 3150 if (m == VM_PAGE_NULL) {
2d21ac55
A
3151 /*
3152 * no free page currently available...
3153 * must take the slow path
3154 */
1c79356b
A
3155 break;
3156 }
1c79356b 3157 /*
2d21ac55 3158 * Now do the copy. Mark the source page busy...
1c79356b
A
3159 *
3160 * NOTE: This code holds the map lock across
3161 * the page copy.
3162 */
1c79356b
A
3163 vm_page_copy(cur_m, m);
3164 vm_page_insert(m, object, offset);
2d21ac55 3165 m->dirty = TRUE;
1c79356b
A
3166
3167 /*
2d21ac55 3168 * Now cope with the source page and object
1c79356b 3169 */
2d21ac55
A
3170 if (object->ref_count > 1 && cur_m->pmapped)
3171 pmap_disconnect(cur_m->phys_page);
1c79356b 3172
2d21ac55 3173 need_collapse = TRUE;
1c79356b 3174
2d21ac55
A
3175 if (!cur_object->internal &&
3176 cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
3177 /*
3178 * The object from which we've just
3179 * copied a page is most probably backed
3180 * by a vnode. We don't want to waste too
3181 * much time trying to collapse the VM objects
3182 * and create a bottleneck when several tasks
3183 * map the same file.
3184 */
3185 if (cur_object->copy == object) {
3186 /*
3187 * Shared mapping or no COW yet.
3188 * We can never collapse a copy
3189 * object into its backing object.
3190 */
3191 need_collapse = FALSE;
3192 } else if (cur_object->copy == object->shadow &&
3193 object->shadow->resident_page_count == 0) {
3194 /*
3195 * Shared mapping after a COW occurred.
3196 */
3197 need_collapse = FALSE;
3198 }
3199 }
1c79356b
A
3200 vm_object_unlock(cur_object);
3201
2d21ac55
A
3202 if (need_collapse == FALSE)
3203 vm_fault_collapse_skipped++;
3204 vm_fault_collapse_total++;
3205
3206 type_of_fault = DBG_COW_FAULT;
3207 VM_STAT_INCR(cow_faults);
3208 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
3209 current_task()->cow_faults++;
1c79356b
A
3210
3211 goto FastPmapEnter;
1c79356b 3212
2d21ac55 3213 } else {
1c79356b 3214 /*
2d21ac55 3215 * No page at cur_object, cur_offset... m == NULL
1c79356b 3216 */
1c79356b 3217 if (cur_object->pager_created) {
2d21ac55
A
3218 if (MUST_ASK_PAGER(cur_object, cur_offset) == TRUE) {
3219 /*
3220 * May have to talk to a pager...
3221 * take the slow path.
3222 */
3223 break;
3224 }
1c79356b 3225 /*
2d21ac55
A
3226 * existence map present and indicates
3227 * that the pager doesn't have this page
1c79356b 3228 */
1c79356b 3229 }
1c79356b 3230 if (cur_object->shadow == VM_OBJECT_NULL) {
2d21ac55
A
3231 /*
3232 * Zero fill fault. Page gets
3233 * inserted into the original object.
3234 */
b0d623f7
A
3235 if (cur_object->shadow_severed ||
3236 VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object))
3237 {
2d21ac55
A
3238 if (object != cur_object)
3239 vm_object_unlock(cur_object);
1c79356b 3240 vm_object_unlock(object);
2d21ac55 3241
1c79356b 3242 vm_map_unlock_read(map);
2d21ac55 3243 if (real_map != map)
91447636 3244 vm_map_unlock(real_map);
1c79356b 3245
2d21ac55
A
3246 kr = KERN_MEMORY_ERROR;
3247 goto done;
3248 }
b0d623f7 3249 if (vm_page_throttled()) {
2d21ac55
A
3250 /*
3251 * drop all of our locks...
3252 * wait until the free queue is
3253 * pumped back up and then
3254 * redrive the fault
3255 */
3256 if (object != cur_object)
3257 vm_object_unlock(cur_object);
3258 vm_object_unlock(object);
3259 vm_map_unlock_read(map);
3260 if (real_map != map)
3261 vm_map_unlock(real_map);
9bccf70c 3262
b0d623f7
A
3263 if (NEED_TO_HARD_THROTTLE_THIS_TASK())
3264 delay(HARD_THROTTLE_DELAY);
3265
3266 if (!current_thread_aborted() && vm_page_wait((change_wiring) ?
2d21ac55
A
3267 THREAD_UNINT :
3268 THREAD_ABORTSAFE))
3269 goto RetryFault;
2d21ac55
A
3270 kr = KERN_ABORTED;
3271 goto done;
3272 }
3273 if (vm_backing_store_low) {
3274 /*
3275 * we are protecting the system from
3276 * backing store exhaustion...
3277 * must take the slow path if we're
3278 * not privileged
3279 */
3280 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV))
3281 break;
1c79356b 3282 }
2d21ac55
A
3283 if (cur_object != object) {
3284 vm_object_unlock(cur_object);
1c79356b 3285
2d21ac55 3286 cur_object = object;
55e303ae 3287 }
2d21ac55 3288 if (object_lock_type == OBJECT_LOCK_SHARED) {
55e303ae 3289
2d21ac55
A
3290 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3291
3292 if (vm_object_lock_upgrade(object) == FALSE) {
3293 /*
3294 * couldn't upgrade so do a full retry on the fault
3295 * since we dropped the object lock which
3296 * could allow another thread to insert
3297 * a page at this offset
3298 */
3299 vm_map_unlock_read(map);
3300 if (real_map != map)
3301 vm_map_unlock(real_map);
3302
3303 goto RetryFault;
3304 }
1c79356b
A
3305 }
3306 m = vm_page_alloc(object, offset);
2d21ac55 3307
1c79356b 3308 if (m == VM_PAGE_NULL) {
2d21ac55
A
3309 /*
3310 * no free page currently available...
3311 * must take the slow path
3312 */
1c79356b
A
3313 break;
3314 }
1c79356b 3315
1c79356b 3316 /*
2d21ac55
A
3317 * Now zero fill page...
3318 * the page is probably going to
3319 * be written soon, so don't bother
3320 * to clear the modified bit
1c79356b 3321 *
2d21ac55
A
3322 * NOTE: This code holds the map
3323 * lock across the zero fill.
1c79356b 3324 */
2d21ac55 3325 type_of_fault = vm_fault_zero_page(m, map->no_zero_fill);
143cc14e 3326
1c79356b
A
3327 goto FastPmapEnter;
3328 }
1c79356b 3329 /*
2d21ac55 3330 * On to the next level in the shadow chain
1c79356b 3331 */
1c79356b
A
3332 cur_offset += cur_object->shadow_offset;
3333 new_object = cur_object->shadow;
2d21ac55
A
3334
3335 /*
3336 * take the new_object's lock with the indicated state
3337 */
3338 if (cur_object_lock_type == OBJECT_LOCK_SHARED)
3339 vm_object_lock_shared(new_object);
3340 else
3341 vm_object_lock(new_object);
3342
1c79356b
A
3343 if (cur_object != object)
3344 vm_object_unlock(cur_object);
2d21ac55 3345
1c79356b
A
3346 cur_object = new_object;
3347
3348 continue;
3349 }
3350 }
1c79356b 3351 /*
2d21ac55
A
3352 * Cleanup from fast fault failure. Drop any object
3353 * lock other than original and drop map lock.
1c79356b 3354 */
1c79356b
A
3355 if (object != cur_object)
3356 vm_object_unlock(cur_object);
2d21ac55
A
3357
3358 /*
3359 * must own the object lock exclusively at this point
3360 */
3361 if (object_lock_type == OBJECT_LOCK_SHARED) {
3362 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3363
3364 if (vm_object_lock_upgrade(object) == FALSE) {
3365 /*
3366 * couldn't upgrade, so explictly
3367 * take the lock exclusively
3368 * no need to retry the fault at this
3369 * point since "vm_fault_page" will
3370 * completely re-evaluate the state
3371 */
3372 vm_object_lock(object);
3373 }
1c79356b 3374 }
143cc14e 3375
2d21ac55
A
3376handle_copy_delay:
3377 vm_map_unlock_read(map);
3378 if (real_map != map)
91447636 3379 vm_map_unlock(real_map);
1c79356b
A
3380
3381 /*
2d21ac55
A
3382 * Make a reference to this object to
3383 * prevent its disposal while we are messing with
3384 * it. Once we have the reference, the map is free
3385 * to be diddled. Since objects reference their
3386 * shadows (and copies), they will stay around as well.
1c79356b 3387 */
2d21ac55 3388 vm_object_reference_locked(object);
1c79356b
A
3389 vm_object_paging_begin(object);
3390
3391 XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0);
55e303ae 3392
2d21ac55 3393 error_code = 0;
55e303ae 3394
1c79356b
A
3395 kr = vm_fault_page(object, offset, fault_type,
3396 (change_wiring && !wired),
1c79356b
A
3397 &prot, &result_page, &top_page,
3398 &type_of_fault,
2d21ac55
A
3399 &error_code, map->no_zero_fill,
3400 FALSE, &fault_info);
1c79356b
A
3401
3402 /*
2d21ac55
A
3403 * if kr != VM_FAULT_SUCCESS, then the paging reference
3404 * has been dropped and the object unlocked... the ref_count
3405 * is still held
3406 *
3407 * if kr == VM_FAULT_SUCCESS, then the paging reference
3408 * is still held along with the ref_count on the original object
3409 *
b0d623f7 3410 * the object is returned locked with a paging reference
2d21ac55
A
3411 *
3412 * if top_page != NULL, then it's BUSY and the
3413 * object it belongs to has a paging reference
3414 * but is returned unlocked
1c79356b 3415 */
b0d623f7
A
3416 if (kr != VM_FAULT_SUCCESS &&
3417 kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
2d21ac55
A
3418 /*
3419 * we didn't succeed, lose the object reference immediately.
3420 */
1c79356b
A
3421 vm_object_deallocate(object);
3422
2d21ac55
A
3423 /*
3424 * See why we failed, and take corrective action.
3425 */
3426 switch (kr) {
1c79356b
A
3427 case VM_FAULT_MEMORY_SHORTAGE:
3428 if (vm_page_wait((change_wiring) ?
3429 THREAD_UNINT :
3430 THREAD_ABORTSAFE))
3431 goto RetryFault;
2d21ac55
A
3432 /*
3433 * fall thru
3434 */
1c79356b
A
3435 case VM_FAULT_INTERRUPTED:
3436 kr = KERN_ABORTED;
3437 goto done;
3438 case VM_FAULT_RETRY:
3439 goto RetryFault;
1c79356b
A
3440 case VM_FAULT_MEMORY_ERROR:
3441 if (error_code)
3442 kr = error_code;
3443 else
3444 kr = KERN_MEMORY_ERROR;
3445 goto done;
b0d623f7
A
3446 default:
3447 panic("vm_fault: unexpected error 0x%x from "
3448 "vm_fault_page()\n", kr);
2d21ac55 3449 }
1c79356b 3450 }
1c79356b
A
3451 m = result_page;
3452
2d21ac55 3453 if (m != VM_PAGE_NULL) {
0b4e3aa0
A
3454 assert((change_wiring && !wired) ?
3455 (top_page == VM_PAGE_NULL) :
3456 ((top_page == VM_PAGE_NULL) == (m->object == object)));
3457 }
1c79356b
A
3458
3459 /*
2d21ac55
A
3460 * What to do with the resulting page from vm_fault_page
3461 * if it doesn't get entered into the physical map:
1c79356b 3462 */
1c79356b
A
3463#define RELEASE_PAGE(m) \
3464 MACRO_BEGIN \
3465 PAGE_WAKEUP_DONE(m); \
b0d623f7
A
3466 if (!m->active && !m->inactive && !m->throttled) { \
3467 vm_page_lockspin_queues(); \
3468 if (!m->active && !m->inactive && !m->throttled) \
3469 vm_page_activate(m); \
3470 vm_page_unlock_queues(); \
3471 } \
1c79356b
A
3472 MACRO_END
3473
3474 /*
2d21ac55
A
3475 * We must verify that the maps have not changed
3476 * since our last lookup.
1c79356b 3477 */
2d21ac55 3478 if (m != VM_PAGE_NULL) {
0b4e3aa0 3479 old_copy_object = m->object->copy;
0b4e3aa0 3480 vm_object_unlock(m->object);
b0d623f7 3481 } else {
0b4e3aa0 3482 old_copy_object = VM_OBJECT_NULL;
b0d623f7
A
3483 vm_object_unlock(object);
3484 }
2d21ac55
A
3485
3486 /*
3487 * no object locks are held at this point
3488 */
1c79356b
A
3489 if ((map != original_map) || !vm_map_verify(map, &version)) {
3490 vm_object_t retry_object;
3491 vm_object_offset_t retry_offset;
3492 vm_prot_t retry_prot;
3493
3494 /*
2d21ac55
A
3495 * To avoid trying to write_lock the map while another
3496 * thread has it read_locked (in vm_map_pageable), we
3497 * do not try for write permission. If the page is
3498 * still writable, we will get write permission. If it
3499 * is not, or has been marked needs_copy, we enter the
3500 * mapping without write permission, and will merely
3501 * take another fault.
1c79356b
A
3502 */
3503 map = original_map;
3504 vm_map_lock_read(map);
2d21ac55 3505
1c79356b 3506 kr = vm_map_lookup_locked(&map, vaddr,
2d21ac55
A
3507 fault_type & ~VM_PROT_WRITE,
3508 OBJECT_LOCK_EXCLUSIVE, &version,
3509 &retry_object, &retry_offset, &retry_prot,
3510 &wired,
3511 &fault_info,
3512 &real_map);
91447636 3513 pmap = real_map->pmap;
1c79356b
A
3514
3515 if (kr != KERN_SUCCESS) {
3516 vm_map_unlock_read(map);
2d21ac55
A
3517
3518 if (m != VM_PAGE_NULL) {
3519 /*
3520 * retake the lock so that
3521 * we can drop the paging reference
3522 * in vm_fault_cleanup and do the
3523 * PAGE_WAKEUP_DONE in RELEASE_PAGE
3524 */
0b4e3aa0 3525 vm_object_lock(m->object);
2d21ac55 3526
0b4e3aa0 3527 RELEASE_PAGE(m);
2d21ac55
A
3528
3529 vm_fault_cleanup(m->object, top_page);
0b4e3aa0 3530 } else {
2d21ac55
A
3531 /*
3532 * retake the lock so that
3533 * we can drop the paging reference
3534 * in vm_fault_cleanup
3535 */
3536 vm_object_lock(object);
3537
3538 vm_fault_cleanup(object, top_page);
0b4e3aa0 3539 }
2d21ac55
A
3540 vm_object_deallocate(object);
3541
1c79356b
A
3542 goto done;
3543 }
1c79356b 3544 vm_object_unlock(retry_object);
1c79356b 3545
2d21ac55
A
3546 if ((retry_object != object) || (retry_offset != offset)) {
3547
1c79356b 3548 vm_map_unlock_read(map);
2d21ac55 3549 if (real_map != map)
91447636 3550 vm_map_unlock(real_map);
2d21ac55
A
3551
3552 if (m != VM_PAGE_NULL) {
3553 /*
3554 * retake the lock so that
3555 * we can drop the paging reference
3556 * in vm_fault_cleanup and do the
3557 * PAGE_WAKEUP_DONE in RELEASE_PAGE
3558 */
3559 vm_object_lock(m->object);
3560
0b4e3aa0 3561 RELEASE_PAGE(m);
2d21ac55
A
3562
3563 vm_fault_cleanup(m->object, top_page);
0b4e3aa0 3564 } else {
2d21ac55
A
3565 /*
3566 * retake the lock so that
3567 * we can drop the paging reference
3568 * in vm_fault_cleanup
3569 */
3570 vm_object_lock(object);
3571
3572 vm_fault_cleanup(object, top_page);
0b4e3aa0 3573 }
2d21ac55
A
3574 vm_object_deallocate(object);
3575
1c79356b
A
3576 goto RetryFault;
3577 }
1c79356b 3578 /*
2d21ac55
A
3579 * Check whether the protection has changed or the object
3580 * has been copied while we left the map unlocked.
1c79356b
A
3581 */
3582 prot &= retry_prot;
0b4e3aa0 3583 }
2d21ac55 3584 if (m != VM_PAGE_NULL) {
0b4e3aa0 3585 vm_object_lock(m->object);
1c79356b 3586
2d21ac55
A
3587 if (m->object->copy != old_copy_object) {
3588 /*
3589 * The copy object changed while the top-level object
3590 * was unlocked, so take away write permission.
3591 */
0b4e3aa0 3592 prot &= ~VM_PROT_WRITE;
2d21ac55
A
3593 }
3594 } else
3595 vm_object_lock(object);
1c79356b
A
3596
3597 /*
2d21ac55
A
3598 * If we want to wire down this page, but no longer have
3599 * adequate permissions, we must start all over.
1c79356b 3600 */
2d21ac55 3601 if (wired && (fault_type != (prot | VM_PROT_WRITE))) {
1c79356b 3602
1c79356b 3603 vm_map_verify_done(map, &version);
2d21ac55 3604 if (real_map != map)
91447636 3605 vm_map_unlock(real_map);
1c79356b 3606
2d21ac55
A
3607 if (m != VM_PAGE_NULL) {
3608 RELEASE_PAGE(m);
91447636 3609
2d21ac55
A
3610 vm_fault_cleanup(m->object, top_page);
3611 } else
3612 vm_fault_cleanup(object, top_page);
0b4e3aa0 3613
2d21ac55 3614 vm_object_deallocate(object);
55e303ae 3615
2d21ac55
A
3616 goto RetryFault;
3617 }
3618 if (m != VM_PAGE_NULL) {
55e303ae 3619 /*
2d21ac55
A
3620 * Put this page into the physical map.
3621 * We had to do the unlock above because pmap_enter
3622 * may cause other faults. The page may be on
3623 * the pageout queues. If the pageout daemon comes
3624 * across the page, it will remove it from the queues.
55e303ae 3625 */
2d21ac55
A
3626 if (caller_pmap) {
3627 kr = vm_fault_enter(m,
3628 caller_pmap,
3629 caller_pmap_addr,
3630 prot,
3631 wired,
3632 change_wiring,
3633 fault_info.no_cache,
3634 &type_of_fault);
3635 } else {
3636 kr = vm_fault_enter(m,
3637 pmap,
3638 vaddr,
3639 prot,
3640 wired,
3641 change_wiring,
3642 fault_info.no_cache,
3643 &type_of_fault);
3644 }
3645 if (kr != KERN_SUCCESS) {
3646 /* abort this page fault */
3647 vm_map_verify_done(map, &version);
3648 if (real_map != map)
3649 vm_map_unlock(real_map);
3650 PAGE_WAKEUP_DONE(m);
3651 vm_fault_cleanup(m->object, top_page);
3652 vm_object_deallocate(object);
3653 goto done;
0b4e3aa0
A
3654 }
3655 } else {
3656
9bccf70c 3657 vm_map_entry_t entry;
91447636
A
3658 vm_map_offset_t laddr;
3659 vm_map_offset_t ldelta, hdelta;
143cc14e 3660
0b4e3aa0
A
3661 /*
3662 * do a pmap block mapping from the physical address
3663 * in the object
3664 */
9bccf70c 3665
2d21ac55 3666#ifdef ppc
55e303ae
A
3667 /* While we do not worry about execution protection in */
3668 /* general, certian pages may have instruction execution */
3669 /* disallowed. We will check here, and if not allowed */
3670 /* to execute, we return with a protection failure. */
9bccf70c 3671
2d21ac55
A
3672 if ((fault_type & VM_PROT_EXECUTE) &&
3673 (!pmap_eligible_for_execute((ppnum_t)(object->shadow_offset >> 12)))) {
9bccf70c 3674
9bccf70c 3675 vm_map_verify_done(map, &version);
2d21ac55
A
3676
3677 if (real_map != map)
91447636 3678 vm_map_unlock(real_map);
2d21ac55 3679
9bccf70c
A
3680 vm_fault_cleanup(object, top_page);
3681 vm_object_deallocate(object);
2d21ac55 3682
9bccf70c
A
3683 kr = KERN_PROTECTION_FAILURE;
3684 goto done;
0b4e3aa0 3685 }
2d21ac55 3686#endif /* ppc */
1c79356b 3687
2d21ac55 3688 if (real_map != map)
91447636 3689 vm_map_unlock(real_map);
2d21ac55 3690
9bccf70c
A
3691 if (original_map != map) {
3692 vm_map_unlock_read(map);
3693 vm_map_lock_read(original_map);
3694 map = original_map;
3695 }
91447636 3696 real_map = map;
9bccf70c
A
3697
3698 laddr = vaddr;
3699 hdelta = 0xFFFFF000;
3700 ldelta = 0xFFFFF000;
3701
2d21ac55
A
3702 while (vm_map_lookup_entry(map, laddr, &entry)) {
3703 if (ldelta > (laddr - entry->vme_start))
9bccf70c 3704 ldelta = laddr - entry->vme_start;
2d21ac55 3705 if (hdelta > (entry->vme_end - laddr))
9bccf70c 3706 hdelta = entry->vme_end - laddr;
2d21ac55 3707 if (entry->is_sub_map) {
9bccf70c
A
3708
3709 laddr = (laddr - entry->vme_start)
3710 + entry->offset;
3711 vm_map_lock_read(entry->object.sub_map);
2d21ac55
A
3712
3713 if (map != real_map)
9bccf70c 3714 vm_map_unlock_read(map);
2d21ac55 3715 if (entry->use_pmap) {
91447636
A
3716 vm_map_unlock_read(real_map);
3717 real_map = entry->object.sub_map;
9bccf70c
A
3718 }
3719 map = entry->object.sub_map;
3720
3721 } else {
3722 break;
3723 }
3724 }
3725
2d21ac55
A
3726 if (vm_map_lookup_entry(map, laddr, &entry) &&
3727 (entry->object.vm_object != NULL) &&
3728 (entry->object.vm_object == object)) {
3729
b0d623f7 3730 int superpage = (!object->pager_created && object->phys_contiguous)? VM_MEM_SUPERPAGE : 0;
2d21ac55
A
3731 if (caller_pmap) {
3732 /*
3733 * Set up a block mapped area
3734 */
b0d623f7 3735 assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
2d21ac55
A
3736 pmap_map_block(caller_pmap,
3737 (addr64_t)(caller_pmap_addr - ldelta),
b0d623f7
A
3738 (ppnum_t)((((vm_map_offset_t) (entry->object.vm_object->shadow_offset)) +
3739 entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
3740 (uint32_t)((ldelta + hdelta) >> 12), prot,
3741 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
55e303ae 3742 } else {
2d21ac55
A
3743 /*
3744 * Set up a block mapped area
3745 */
b0d623f7 3746 assert((uint32_t)((ldelta + hdelta) >> 12) == ((ldelta + hdelta) >> 12));
2d21ac55
A
3747 pmap_map_block(real_map->pmap,
3748 (addr64_t)(vaddr - ldelta),
b0d623f7
A
3749 (ppnum_t)((((vm_map_offset_t)(entry->object.vm_object->shadow_offset)) +
3750 entry->offset + (laddr - entry->vme_start) - ldelta) >> 12),
3751 (uint32_t)((ldelta + hdelta) >> 12), prot,
3752 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
9bccf70c
A
3753 }
3754 }
0b4e3aa0 3755 }
1c79356b
A
3756
3757 /*
2d21ac55 3758 * Unlock everything, and return
1c79356b 3759 */
1c79356b 3760 vm_map_verify_done(map, &version);
2d21ac55 3761 if (real_map != map)
91447636 3762 vm_map_unlock(real_map);
2d21ac55
A
3763
3764 if (m != VM_PAGE_NULL) {
0b4e3aa0 3765 PAGE_WAKEUP_DONE(m);
1c79356b 3766
2d21ac55
A
3767 vm_fault_cleanup(m->object, top_page);
3768 } else
3769 vm_fault_cleanup(object, top_page);
1c79356b 3770
2d21ac55
A
3771 vm_object_deallocate(object);
3772
3773#undef RELEASE_PAGE
91447636 3774
2d21ac55
A
3775 kr = KERN_SUCCESS;
3776done:
9bccf70c 3777 thread_interrupt_level(interruptible_state);
1c79356b 3778
2d21ac55
A
3779 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
3780 (int)((uint64_t)vaddr >> 32),
3781 (int)vaddr,
1c79356b 3782 kr,
2d21ac55 3783 type_of_fault,
1c79356b 3784 0);
143cc14e 3785
2d21ac55 3786 return (kr);
1c79356b
A
3787}
3788
3789/*
3790 * vm_fault_wire:
3791 *
3792 * Wire down a range of virtual addresses in a map.
3793 */
3794kern_return_t
3795vm_fault_wire(
3796 vm_map_t map,
3797 vm_map_entry_t entry,
9bccf70c 3798 pmap_t pmap,
91447636 3799 vm_map_offset_t pmap_addr)
1c79356b
A
3800{
3801
91447636
A
3802 register vm_map_offset_t va;
3803 register vm_map_offset_t end_addr = entry->vme_end;
1c79356b
A
3804 register kern_return_t rc;
3805
3806 assert(entry->in_transition);
3807
9bccf70c
A
3808 if ((entry->object.vm_object != NULL) &&
3809 !entry->is_sub_map &&
3810 entry->object.vm_object->phys_contiguous) {
3811 return KERN_SUCCESS;
3812 }
3813
1c79356b
A
3814 /*
3815 * Inform the physical mapping system that the
3816 * range of addresses may not fault, so that
3817 * page tables and such can be locked down as well.
3818 */
3819
9bccf70c
A
3820 pmap_pageable(pmap, pmap_addr,
3821 pmap_addr + (end_addr - entry->vme_start), FALSE);
1c79356b
A
3822
3823 /*
3824 * We simulate a fault to get the page and enter it
3825 * in the physical map.
3826 */
3827
3828 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
3829 if ((rc = vm_fault_wire_fast(
9bccf70c
A
3830 map, va, entry, pmap,
3831 pmap_addr + (va - entry->vme_start)
3832 )) != KERN_SUCCESS) {
1c79356b 3833 rc = vm_fault(map, va, VM_PROT_NONE, TRUE,
9bccf70c
A
3834 (pmap == kernel_pmap) ?
3835 THREAD_UNINT : THREAD_ABORTSAFE,
3836 pmap, pmap_addr + (va - entry->vme_start));
2d21ac55 3837 DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
1c79356b
A
3838 }
3839
3840 if (rc != KERN_SUCCESS) {
3841 struct vm_map_entry tmp_entry = *entry;
3842
3843 /* unwire wired pages */
3844 tmp_entry.vme_end = va;
9bccf70c
A
3845 vm_fault_unwire(map,
3846 &tmp_entry, FALSE, pmap, pmap_addr);
1c79356b
A
3847
3848 return rc;
3849 }
3850 }
3851 return KERN_SUCCESS;
3852}
3853
3854/*
3855 * vm_fault_unwire:
3856 *
3857 * Unwire a range of virtual addresses in a map.
3858 */
3859void
3860vm_fault_unwire(
3861 vm_map_t map,
3862 vm_map_entry_t entry,
3863 boolean_t deallocate,
9bccf70c 3864 pmap_t pmap,
91447636 3865 vm_map_offset_t pmap_addr)
1c79356b 3866{
91447636
A
3867 register vm_map_offset_t va;
3868 register vm_map_offset_t end_addr = entry->vme_end;
1c79356b 3869 vm_object_t object;
2d21ac55 3870 struct vm_object_fault_info fault_info;
1c79356b
A
3871
3872 object = (entry->is_sub_map)
3873 ? VM_OBJECT_NULL : entry->object.vm_object;
3874
2d21ac55
A
3875 /*
3876 * If it's marked phys_contiguous, then vm_fault_wire() didn't actually
3877 * do anything since such memory is wired by default. So we don't have
3878 * anything to undo here.
3879 */
3880
3881 if (object != VM_OBJECT_NULL && object->phys_contiguous)
3882 return;
3883
3884 fault_info.interruptible = THREAD_UNINT;
3885 fault_info.behavior = entry->behavior;
3886 fault_info.user_tag = entry->alias;
3887 fault_info.lo_offset = entry->offset;
3888 fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset;
3889 fault_info.no_cache = entry->no_cache;
b0d623f7 3890 fault_info.stealth = TRUE;
0b4c1975 3891 fault_info.mark_zf_absent = FALSE;
2d21ac55 3892
1c79356b
A
3893 /*
3894 * Since the pages are wired down, we must be able to
3895 * get their mappings from the physical map system.
3896 */
3897
3898 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
1c79356b
A
3899
3900 if (object == VM_OBJECT_NULL) {
593a1d5f
A
3901 if (pmap) {
3902 pmap_change_wiring(pmap,
3903 pmap_addr + (va - entry->vme_start), FALSE);
3904 }
9bccf70c
A
3905 (void) vm_fault(map, va, VM_PROT_NONE,
3906 TRUE, THREAD_UNINT, pmap, pmap_addr);
1c79356b
A
3907 } else {
3908 vm_prot_t prot;
3909 vm_page_t result_page;
3910 vm_page_t top_page;
3911 vm_object_t result_object;
3912 vm_fault_return_t result;
3913
b0d623f7
A
3914 if (end_addr - va > (vm_size_t) -1) {
3915 /* 32-bit overflow */
3916 fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
3917 } else {
3918 fault_info.cluster_size = (vm_size_t) (end_addr - va);
3919 assert(fault_info.cluster_size == end_addr - va);
3920 }
2d21ac55 3921
1c79356b
A
3922 do {
3923 prot = VM_PROT_NONE;
3924
3925 vm_object_lock(object);
3926 vm_object_paging_begin(object);
3927 XPR(XPR_VM_FAULT,
3928 "vm_fault_unwire -> vm_fault_page\n",
3929 0,0,0,0,0);
2d21ac55
A
3930 result = vm_fault_page(
3931 object,
3932 entry->offset + (va - entry->vme_start),
3933 VM_PROT_NONE, TRUE,
3934 &prot, &result_page, &top_page,
3935 (int *)0,
3936 NULL, map->no_zero_fill,
3937 FALSE, &fault_info);
1c79356b
A
3938 } while (result == VM_FAULT_RETRY);
3939
2d21ac55
A
3940 /*
3941 * If this was a mapping to a file on a device that has been forcibly
3942 * unmounted, then we won't get a page back from vm_fault_page(). Just
3943 * move on to the next one in case the remaining pages are mapped from
3944 * different objects. During a forced unmount, the object is terminated
3945 * so the alive flag will be false if this happens. A forced unmount will
3946 * will occur when an external disk is unplugged before the user does an
3947 * eject, so we don't want to panic in that situation.
3948 */
3949
3950 if (result == VM_FAULT_MEMORY_ERROR && !object->alive)
3951 continue;
3952
1c79356b
A
3953 if (result != VM_FAULT_SUCCESS)
3954 panic("vm_fault_unwire: failure");
3955
3956 result_object = result_page->object;
2d21ac55 3957
593a1d5f
A
3958 if ((pmap) && (result_page->phys_page != vm_page_guard_addr)) {
3959 pmap_change_wiring(pmap,
3960 pmap_addr + (va - entry->vme_start), FALSE);
3961 }
1c79356b 3962 if (deallocate) {
2d21ac55
A
3963 assert(result_page->phys_page !=
3964 vm_page_fictitious_addr);
91447636 3965 pmap_disconnect(result_page->phys_page);
1c79356b
A
3966 VM_PAGE_FREE(result_page);
3967 } else {
b0d623f7
A
3968 if (VM_PAGE_WIRED(result_page)) {
3969 vm_page_lockspin_queues();
0b4c1975 3970 vm_page_unwire(result_page, TRUE);
b0d623f7
A
3971 vm_page_unlock_queues();
3972 }
3973 if(entry->zero_wired_pages) {
3974 pmap_zero_page(result_page->phys_page);
3975 entry->zero_wired_pages = FALSE;
3976 }
3977
1c79356b
A
3978 PAGE_WAKEUP_DONE(result_page);
3979 }
1c79356b
A
3980 vm_fault_cleanup(result_object, top_page);
3981 }
3982 }
3983
3984 /*
3985 * Inform the physical mapping system that the range
3986 * of addresses may fault, so that page tables and
3987 * such may be unwired themselves.
3988 */
3989
9bccf70c
A
3990 pmap_pageable(pmap, pmap_addr,
3991 pmap_addr + (end_addr - entry->vme_start), TRUE);
1c79356b
A
3992
3993}
3994
3995/*
3996 * vm_fault_wire_fast:
3997 *
3998 * Handle common case of a wire down page fault at the given address.
3999 * If successful, the page is inserted into the associated physical map.
4000 * The map entry is passed in to avoid the overhead of a map lookup.
4001 *
4002 * NOTE: the given address should be truncated to the
4003 * proper page address.
4004 *
4005 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
4006 * a standard error specifying why the fault is fatal is returned.
4007 *
4008 * The map in question must be referenced, and remains so.
4009 * Caller has a read lock on the map.
4010 *
4011 * This is a stripped version of vm_fault() for wiring pages. Anything
4012 * other than the common case will return KERN_FAILURE, and the caller
4013 * is expected to call vm_fault().
4014 */
4015kern_return_t
4016vm_fault_wire_fast(
91447636
A
4017 __unused vm_map_t map,
4018 vm_map_offset_t va,
1c79356b 4019 vm_map_entry_t entry,
91447636
A
4020 pmap_t pmap,
4021 vm_map_offset_t pmap_addr)
1c79356b
A
4022{
4023 vm_object_t object;
4024 vm_object_offset_t offset;
4025 register vm_page_t m;
4026 vm_prot_t prot;
91447636 4027 thread_t thread = current_thread();
2d21ac55
A
4028 int type_of_fault;
4029 kern_return_t kr;
1c79356b 4030
2d21ac55 4031 VM_STAT_INCR(faults);
1c79356b 4032
91447636
A
4033 if (thread != THREAD_NULL && thread->task != TASK_NULL)
4034 thread->task->faults++;
1c79356b
A
4035
4036/*
4037 * Recovery actions
4038 */
4039
4040#undef RELEASE_PAGE
4041#define RELEASE_PAGE(m) { \
4042 PAGE_WAKEUP_DONE(m); \
2d21ac55 4043 vm_page_lockspin_queues(); \
0b4c1975 4044 vm_page_unwire(m, TRUE); \
1c79356b
A
4045 vm_page_unlock_queues(); \
4046}
4047
4048
4049#undef UNLOCK_THINGS
4050#define UNLOCK_THINGS { \
ff6e181a
A
4051 vm_object_paging_end(object); \
4052 vm_object_unlock(object); \
1c79356b
A
4053}
4054
4055#undef UNLOCK_AND_DEALLOCATE
4056#define UNLOCK_AND_DEALLOCATE { \
4057 UNLOCK_THINGS; \
4058 vm_object_deallocate(object); \
4059}
4060/*
4061 * Give up and have caller do things the hard way.
4062 */
4063
4064#define GIVE_UP { \
4065 UNLOCK_AND_DEALLOCATE; \
4066 return(KERN_FAILURE); \
4067}
4068
4069
4070 /*
4071 * If this entry is not directly to a vm_object, bail out.
4072 */
4073 if (entry->is_sub_map)
4074 return(KERN_FAILURE);
4075
4076 /*
4077 * Find the backing store object and offset into it.
4078 */
4079
4080 object = entry->object.vm_object;
4081 offset = (va - entry->vme_start) + entry->offset;
4082 prot = entry->protection;
4083
4084 /*
4085 * Make a reference to this object to prevent its
4086 * disposal while we are messing with it.
4087 */
4088
4089 vm_object_lock(object);
2d21ac55 4090 vm_object_reference_locked(object);
ff6e181a 4091 vm_object_paging_begin(object);
1c79356b
A
4092
4093 /*
4094 * INVARIANTS (through entire routine):
4095 *
4096 * 1) At all times, we must either have the object
4097 * lock or a busy page in some object to prevent
4098 * some other thread from trying to bring in
4099 * the same page.
4100 *
4101 * 2) Once we have a busy page, we must remove it from
4102 * the pageout queues, so that the pageout daemon
4103 * will not grab it away.
4104 *
4105 */
4106
4107 /*
4108 * Look for page in top-level object. If it's not there or
4109 * there's something going on, give up.
91447636
A
4110 * ENCRYPTED SWAP: use the slow fault path, since we'll need to
4111 * decrypt the page before wiring it down.
1c79356b
A
4112 */
4113 m = vm_page_lookup(object, offset);
91447636 4114 if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) ||
2d21ac55 4115 (m->unusual && ( m->error || m->restart || m->absent))) {
1c79356b
A
4116
4117 GIVE_UP;
4118 }
91447636 4119 ASSERT_PAGE_DECRYPTED(m);
1c79356b 4120
2d21ac55
A
4121 if (m->fictitious &&
4122 m->phys_page == vm_page_guard_addr) {
4123 /*
4124 * Guard pages are fictitious pages and are never
4125 * entered into a pmap, so let's say it's been wired...
4126 */
4127 kr = KERN_SUCCESS;
4128 goto done;
4129 }
4130
1c79356b
A
4131 /*
4132 * Wire the page down now. All bail outs beyond this
4133 * point must unwire the page.
4134 */
4135
2d21ac55 4136 vm_page_lockspin_queues();
1c79356b
A
4137 vm_page_wire(m);
4138 vm_page_unlock_queues();
4139
4140 /*
4141 * Mark page busy for other threads.
4142 */
4143 assert(!m->busy);
4144 m->busy = TRUE;
4145 assert(!m->absent);
4146
4147 /*
4148 * Give up if the page is being written and there's a copy object
4149 */
4150 if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
4151 RELEASE_PAGE(m);
4152 GIVE_UP;
4153 }
4154
4155 /*
4156 * Put this page into the physical map.
1c79356b 4157 */
2d21ac55
A
4158 type_of_fault = DBG_CACHE_HIT_FAULT;
4159 kr = vm_fault_enter(m,
4160 pmap,
4161 pmap_addr,
4162 prot,
4163 TRUE,
4164 FALSE,
4165 FALSE,
4166 &type_of_fault);
4167
4168done:
1c79356b
A
4169 /*
4170 * Unlock everything, and return
4171 */
4172
4173 PAGE_WAKEUP_DONE(m);
4174 UNLOCK_AND_DEALLOCATE;
4175
2d21ac55 4176 return kr;
1c79356b
A
4177
4178}
4179
4180/*
4181 * Routine: vm_fault_copy_cleanup
4182 * Purpose:
4183 * Release a page used by vm_fault_copy.
4184 */
4185
4186void
4187vm_fault_copy_cleanup(
4188 vm_page_t page,
4189 vm_page_t top_page)
4190{
4191 vm_object_t object = page->object;
4192
4193 vm_object_lock(object);
4194 PAGE_WAKEUP_DONE(page);
b0d623f7
A
4195 if (!page->active && !page->inactive && !page->throttled) {
4196 vm_page_lockspin_queues();
4197 if (!page->active && !page->inactive && !page->throttled)
4198 vm_page_activate(page);
4199 vm_page_unlock_queues();
4200 }
1c79356b
A
4201 vm_fault_cleanup(object, top_page);
4202}
4203
4204void
4205vm_fault_copy_dst_cleanup(
4206 vm_page_t page)
4207{
4208 vm_object_t object;
4209
4210 if (page != VM_PAGE_NULL) {
4211 object = page->object;
4212 vm_object_lock(object);
2d21ac55 4213 vm_page_lockspin_queues();
0b4c1975 4214 vm_page_unwire(page, TRUE);
1c79356b
A
4215 vm_page_unlock_queues();
4216 vm_object_paging_end(object);
4217 vm_object_unlock(object);
4218 }
4219}
4220
4221/*
4222 * Routine: vm_fault_copy
4223 *
4224 * Purpose:
4225 * Copy pages from one virtual memory object to another --
4226 * neither the source nor destination pages need be resident.
4227 *
4228 * Before actually copying a page, the version associated with
4229 * the destination address map wil be verified.
4230 *
4231 * In/out conditions:
4232 * The caller must hold a reference, but not a lock, to
4233 * each of the source and destination objects and to the
4234 * destination map.
4235 *
4236 * Results:
4237 * Returns KERN_SUCCESS if no errors were encountered in
4238 * reading or writing the data. Returns KERN_INTERRUPTED if
4239 * the operation was interrupted (only possible if the
4240 * "interruptible" argument is asserted). Other return values
4241 * indicate a permanent error in copying the data.
4242 *
4243 * The actual amount of data copied will be returned in the
4244 * "copy_size" argument. In the event that the destination map
4245 * verification failed, this amount may be less than the amount
4246 * requested.
4247 */
4248kern_return_t
4249vm_fault_copy(
4250 vm_object_t src_object,
4251 vm_object_offset_t src_offset,
91447636 4252 vm_map_size_t *copy_size, /* INOUT */
1c79356b
A
4253 vm_object_t dst_object,
4254 vm_object_offset_t dst_offset,
4255 vm_map_t dst_map,
4256 vm_map_version_t *dst_version,
4257 int interruptible)
4258{
4259 vm_page_t result_page;
4260
4261 vm_page_t src_page;
4262 vm_page_t src_top_page;
4263 vm_prot_t src_prot;
4264
4265 vm_page_t dst_page;
4266 vm_page_t dst_top_page;
4267 vm_prot_t dst_prot;
4268
91447636 4269 vm_map_size_t amount_left;
1c79356b
A
4270 vm_object_t old_copy_object;
4271 kern_return_t error = 0;
b0d623f7 4272 vm_fault_return_t result;
1c79356b 4273
91447636 4274 vm_map_size_t part_size;
2d21ac55
A
4275 struct vm_object_fault_info fault_info_src;
4276 struct vm_object_fault_info fault_info_dst;
1c79356b
A
4277
4278 /*
4279 * In order not to confuse the clustered pageins, align
4280 * the different offsets on a page boundary.
4281 */
1c79356b
A
4282
4283#define RETURN(x) \
4284 MACRO_BEGIN \
91447636 4285 *copy_size -= amount_left; \
1c79356b
A
4286 MACRO_RETURN(x); \
4287 MACRO_END
4288
91447636 4289 amount_left = *copy_size;
2d21ac55
A
4290
4291 fault_info_src.interruptible = interruptible;
4292 fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
4293 fault_info_src.user_tag = 0;
4294 fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
4295 fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
4296 fault_info_src.no_cache = FALSE;
b0d623f7 4297 fault_info_src.stealth = TRUE;
0b4c1975 4298 fault_info_src.mark_zf_absent = FALSE;
2d21ac55
A
4299
4300 fault_info_dst.interruptible = interruptible;
4301 fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
4302 fault_info_dst.user_tag = 0;
4303 fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
4304 fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
4305 fault_info_dst.no_cache = FALSE;
b0d623f7 4306 fault_info_dst.stealth = TRUE;
0b4c1975 4307 fault_info_dst.mark_zf_absent = FALSE;
2d21ac55 4308
1c79356b
A
4309 do { /* while (amount_left > 0) */
4310 /*
4311 * There may be a deadlock if both source and destination
4312 * pages are the same. To avoid this deadlock, the copy must
4313 * start by getting the destination page in order to apply
4314 * COW semantics if any.
4315 */
4316
4317 RetryDestinationFault: ;
4318
4319 dst_prot = VM_PROT_WRITE|VM_PROT_READ;
4320
4321 vm_object_lock(dst_object);
4322 vm_object_paging_begin(dst_object);
4323
b0d623f7
A
4324 if (amount_left > (vm_size_t) -1) {
4325 /* 32-bit overflow */
4326 fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
4327 } else {
4328 fault_info_dst.cluster_size = (vm_size_t) amount_left;
4329 assert(fault_info_dst.cluster_size == amount_left);
4330 }
2d21ac55 4331
1c79356b 4332 XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
b0d623f7
A
4333 result = vm_fault_page(dst_object,
4334 vm_object_trunc_page(dst_offset),
4335 VM_PROT_WRITE|VM_PROT_READ,
4336 FALSE,
4337 &dst_prot, &dst_page, &dst_top_page,
4338 (int *)0,
4339 &error,
4340 dst_map->no_zero_fill,
4341 FALSE, &fault_info_dst);
4342 switch (result) {
1c79356b
A
4343 case VM_FAULT_SUCCESS:
4344 break;
4345 case VM_FAULT_RETRY:
4346 goto RetryDestinationFault;
4347 case VM_FAULT_MEMORY_SHORTAGE:
4348 if (vm_page_wait(interruptible))
4349 goto RetryDestinationFault;
4350 /* fall thru */
4351 case VM_FAULT_INTERRUPTED:
4352 RETURN(MACH_SEND_INTERRUPTED);
b0d623f7
A
4353 case VM_FAULT_SUCCESS_NO_VM_PAGE:
4354 /* success but no VM page: fail the copy */
4355 vm_object_paging_end(dst_object);
4356 vm_object_unlock(dst_object);
4357 /*FALLTHROUGH*/
1c79356b
A
4358 case VM_FAULT_MEMORY_ERROR:
4359 if (error)
4360 return (error);
4361 else
4362 return(KERN_MEMORY_ERROR);
b0d623f7
A
4363 default:
4364 panic("vm_fault_copy: unexpected error 0x%x from "
4365 "vm_fault_page()\n", result);
1c79356b
A
4366 }
4367 assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
4368
4369 old_copy_object = dst_page->object->copy;
4370
4371 /*
4372 * There exists the possiblity that the source and
4373 * destination page are the same. But we can't
4374 * easily determine that now. If they are the
4375 * same, the call to vm_fault_page() for the
4376 * destination page will deadlock. To prevent this we
4377 * wire the page so we can drop busy without having
4378 * the page daemon steal the page. We clean up the
4379 * top page but keep the paging reference on the object
4380 * holding the dest page so it doesn't go away.
4381 */
4382
2d21ac55 4383 vm_page_lockspin_queues();
1c79356b
A
4384 vm_page_wire(dst_page);
4385 vm_page_unlock_queues();
4386 PAGE_WAKEUP_DONE(dst_page);
4387 vm_object_unlock(dst_page->object);
4388
4389 if (dst_top_page != VM_PAGE_NULL) {
4390 vm_object_lock(dst_object);
4391 VM_PAGE_FREE(dst_top_page);
4392 vm_object_paging_end(dst_object);
4393 vm_object_unlock(dst_object);
4394 }
4395
4396 RetrySourceFault: ;
4397
4398 if (src_object == VM_OBJECT_NULL) {
4399 /*
4400 * No source object. We will just
4401 * zero-fill the page in dst_object.
4402 */
4403 src_page = VM_PAGE_NULL;
e3027f41 4404 result_page = VM_PAGE_NULL;
1c79356b
A
4405 } else {
4406 vm_object_lock(src_object);
4407 src_page = vm_page_lookup(src_object,
91447636 4408 vm_object_trunc_page(src_offset));
e3027f41 4409 if (src_page == dst_page) {
1c79356b 4410 src_prot = dst_prot;
e3027f41
A
4411 result_page = VM_PAGE_NULL;
4412 } else {
1c79356b
A
4413 src_prot = VM_PROT_READ;
4414 vm_object_paging_begin(src_object);
4415
b0d623f7
A
4416 if (amount_left > (vm_size_t) -1) {
4417 /* 32-bit overflow */
4418 fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
4419 } else {
4420 fault_info_src.cluster_size = (vm_size_t) amount_left;
4421 assert(fault_info_src.cluster_size == amount_left);
4422 }
2d21ac55 4423
1c79356b
A
4424 XPR(XPR_VM_FAULT,
4425 "vm_fault_copy(2) -> vm_fault_page\n",
4426 0,0,0,0,0);
b0d623f7
A
4427 result = vm_fault_page(
4428 src_object,
4429 vm_object_trunc_page(src_offset),
4430 VM_PROT_READ, FALSE,
4431 &src_prot,
4432 &result_page, &src_top_page,
4433 (int *)0, &error, FALSE,
4434 FALSE, &fault_info_src);
4435
4436 switch (result) {
1c79356b
A
4437 case VM_FAULT_SUCCESS:
4438 break;
4439 case VM_FAULT_RETRY:
4440 goto RetrySourceFault;
4441 case VM_FAULT_MEMORY_SHORTAGE:
4442 if (vm_page_wait(interruptible))
4443 goto RetrySourceFault;
4444 /* fall thru */
4445 case VM_FAULT_INTERRUPTED:
4446 vm_fault_copy_dst_cleanup(dst_page);
4447 RETURN(MACH_SEND_INTERRUPTED);
b0d623f7
A
4448 case VM_FAULT_SUCCESS_NO_VM_PAGE:
4449 /* success but no VM page: fail */
4450 vm_object_paging_end(src_object);
4451 vm_object_unlock(src_object);
4452 /*FALLTHROUGH*/
1c79356b
A
4453 case VM_FAULT_MEMORY_ERROR:
4454 vm_fault_copy_dst_cleanup(dst_page);
4455 if (error)
4456 return (error);
4457 else
4458 return(KERN_MEMORY_ERROR);
b0d623f7
A
4459 default:
4460 panic("vm_fault_copy(2): unexpected "
4461 "error 0x%x from "
4462 "vm_fault_page()\n", result);
1c79356b
A
4463 }
4464
1c79356b
A
4465
4466 assert((src_top_page == VM_PAGE_NULL) ==
e3027f41 4467 (result_page->object == src_object));
1c79356b
A
4468 }
4469 assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE);
e3027f41 4470 vm_object_unlock(result_page->object);
1c79356b
A
4471 }
4472
4473 if (!vm_map_verify(dst_map, dst_version)) {
e3027f41
A
4474 if (result_page != VM_PAGE_NULL && src_page != dst_page)
4475 vm_fault_copy_cleanup(result_page, src_top_page);
1c79356b
A
4476 vm_fault_copy_dst_cleanup(dst_page);
4477 break;
4478 }
4479
4480 vm_object_lock(dst_page->object);
4481
4482 if (dst_page->object->copy != old_copy_object) {
4483 vm_object_unlock(dst_page->object);
4484 vm_map_verify_done(dst_map, dst_version);
e3027f41
A
4485 if (result_page != VM_PAGE_NULL && src_page != dst_page)
4486 vm_fault_copy_cleanup(result_page, src_top_page);
1c79356b
A
4487 vm_fault_copy_dst_cleanup(dst_page);
4488 break;
4489 }
4490 vm_object_unlock(dst_page->object);
4491
4492 /*
4493 * Copy the page, and note that it is dirty
4494 * immediately.
4495 */
4496
4497 if (!page_aligned(src_offset) ||
4498 !page_aligned(dst_offset) ||
4499 !page_aligned(amount_left)) {
4500
4501 vm_object_offset_t src_po,
4502 dst_po;
4503
91447636
A
4504 src_po = src_offset - vm_object_trunc_page(src_offset);
4505 dst_po = dst_offset - vm_object_trunc_page(dst_offset);
1c79356b
A
4506
4507 if (dst_po > src_po) {
4508 part_size = PAGE_SIZE - dst_po;
4509 } else {
4510 part_size = PAGE_SIZE - src_po;
4511 }
4512 if (part_size > (amount_left)){
4513 part_size = amount_left;
4514 }
4515
e3027f41 4516 if (result_page == VM_PAGE_NULL) {
b0d623f7
A
4517 assert((vm_offset_t) dst_po == dst_po);
4518 assert((vm_size_t) part_size == part_size);
1c79356b 4519 vm_page_part_zero_fill(dst_page,
b0d623f7
A
4520 (vm_offset_t) dst_po,
4521 (vm_size_t) part_size);
1c79356b 4522 } else {
b0d623f7
A
4523 assert((vm_offset_t) src_po == src_po);
4524 assert((vm_offset_t) dst_po == dst_po);
4525 assert((vm_size_t) part_size == part_size);
4526 vm_page_part_copy(result_page,
4527 (vm_offset_t) src_po,
4528 dst_page,
4529 (vm_offset_t) dst_po,
4530 (vm_size_t)part_size);
1c79356b
A
4531 if(!dst_page->dirty){
4532 vm_object_lock(dst_object);
4533 dst_page->dirty = TRUE;
4534 vm_object_unlock(dst_page->object);
4535 }
4536
4537 }
4538 } else {
4539 part_size = PAGE_SIZE;
4540
e3027f41 4541 if (result_page == VM_PAGE_NULL)
1c79356b
A
4542 vm_page_zero_fill(dst_page);
4543 else{
e3027f41 4544 vm_page_copy(result_page, dst_page);
1c79356b
A
4545 if(!dst_page->dirty){
4546 vm_object_lock(dst_object);
4547 dst_page->dirty = TRUE;
4548 vm_object_unlock(dst_page->object);
4549 }
4550 }
4551
4552 }
4553
4554 /*
4555 * Unlock everything, and return
4556 */
4557
4558 vm_map_verify_done(dst_map, dst_version);
4559
e3027f41
A
4560 if (result_page != VM_PAGE_NULL && src_page != dst_page)
4561 vm_fault_copy_cleanup(result_page, src_top_page);
1c79356b
A
4562 vm_fault_copy_dst_cleanup(dst_page);
4563
4564 amount_left -= part_size;
4565 src_offset += part_size;
4566 dst_offset += part_size;
4567 } while (amount_left > 0);
4568
4569 RETURN(KERN_SUCCESS);
4570#undef RETURN
4571
4572 /*NOTREACHED*/
4573}
4574
1c79356b
A
4575#if VM_FAULT_CLASSIFY
4576/*
4577 * Temporary statistics gathering support.
4578 */
4579
4580/*
4581 * Statistics arrays:
4582 */
4583#define VM_FAULT_TYPES_MAX 5
4584#define VM_FAULT_LEVEL_MAX 8
4585
4586int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX];
4587
4588#define VM_FAULT_TYPE_ZERO_FILL 0
4589#define VM_FAULT_TYPE_MAP_IN 1
4590#define VM_FAULT_TYPE_PAGER 2
4591#define VM_FAULT_TYPE_COPY 3
4592#define VM_FAULT_TYPE_OTHER 4
4593
4594
4595void
4596vm_fault_classify(vm_object_t object,
4597 vm_object_offset_t offset,
4598 vm_prot_t fault_type)
4599{
4600 int type, level = 0;
4601 vm_page_t m;
4602
4603 while (TRUE) {
4604 m = vm_page_lookup(object, offset);
4605 if (m != VM_PAGE_NULL) {
2d21ac55 4606 if (m->busy || m->error || m->restart || m->absent) {
1c79356b
A
4607 type = VM_FAULT_TYPE_OTHER;
4608 break;
4609 }
4610 if (((fault_type & VM_PROT_WRITE) == 0) ||
4611 ((level == 0) && object->copy == VM_OBJECT_NULL)) {
4612 type = VM_FAULT_TYPE_MAP_IN;
4613 break;
4614 }
4615 type = VM_FAULT_TYPE_COPY;
4616 break;
4617 }
4618 else {
4619 if (object->pager_created) {
4620 type = VM_FAULT_TYPE_PAGER;
4621 break;
4622 }
4623 if (object->shadow == VM_OBJECT_NULL) {
4624 type = VM_FAULT_TYPE_ZERO_FILL;
4625 break;
4626 }
4627
4628 offset += object->shadow_offset;
4629 object = object->shadow;
4630 level++;
4631 continue;
4632 }
4633 }
4634
4635 if (level > VM_FAULT_LEVEL_MAX)
4636 level = VM_FAULT_LEVEL_MAX;
4637
4638 vm_fault_stats[type][level] += 1;
4639
4640 return;
4641}
4642
4643/* cleanup routine to call from debugger */
4644
4645void
4646vm_fault_classify_init(void)
4647{
4648 int type, level;
4649
4650 for (type = 0; type < VM_FAULT_TYPES_MAX; type++) {
4651 for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) {
4652 vm_fault_stats[type][level] = 0;
4653 }
4654 }
4655
4656 return;
4657}
4658#endif /* VM_FAULT_CLASSIFY */
2d21ac55
A
4659
4660
4661extern int cs_validation;
4662
593a1d5f
A
4663void
4664vm_page_validate_cs_mapped(
4665 vm_page_t page,
4666 const void *kaddr)
4667{
4668 vm_object_t object;
4669 vm_object_offset_t offset;
4670 kern_return_t kr;
4671 memory_object_t pager;
4672 void *blobs;
4673 boolean_t validated, tainted;
4674
4675 assert(page->busy);
4676 vm_object_lock_assert_exclusive(page->object);
4677
4678 if (!cs_validation) {
4679 return;
4680 }
4681
4682 if (page->wpmapped && !page->cs_tainted) {
4683 /*
4684 * This page was mapped for "write" access sometime in the
4685 * past and could still be modifiable in the future.
4686 * Consider it tainted.
4687 * [ If the page was already found to be "tainted", no
4688 * need to re-validate. ]
4689 */
4690 page->cs_validated = TRUE;
4691 page->cs_tainted = TRUE;
4692 if (cs_debug) {
4693 printf("CODESIGNING: vm_page_validate_cs: "
4694 "page %p obj %p off 0x%llx "
4695 "was modified\n",
4696 page, page->object, page->offset);
4697 }
4698 vm_cs_validated_dirtied++;
4699 }
4700
4701 if (page->cs_validated) {
4702 return;
4703 }
4704
4705 vm_cs_validates++;
4706
4707 object = page->object;
4708 assert(object->code_signed);
4709 offset = page->offset;
4710
4711 if (!object->alive || object->terminating || object->pager == NULL) {
4712 /*
4713 * The object is terminating and we don't have its pager
4714 * so we can't validate the data...
4715 */
4716 return;
4717 }
4718 /*
4719 * Since we get here to validate a page that was brought in by
4720 * the pager, we know that this pager is all setup and ready
4721 * by now.
4722 */
4723 assert(!object->internal);
4724 assert(object->pager != NULL);
4725 assert(object->pager_ready);
4726
4727 pager = object->pager;
b0d623f7 4728 assert(object->paging_in_progress);
593a1d5f
A
4729 kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
4730 if (kr != KERN_SUCCESS) {
4731 blobs = NULL;
4732 }
4733
4734 /* verify the SHA1 hash for this page */
4735 validated = cs_validate_page(blobs,
4736 offset + object->paging_offset,
4737 (const void *)kaddr,
4738 &tainted);
4739
4740 page->cs_validated = validated;
4741 if (validated) {
4742 page->cs_tainted = tainted;
4743 }
4744}
4745
2d21ac55
A
4746void
4747vm_page_validate_cs(
4748 vm_page_t page)
4749{
4750 vm_object_t object;
4751 vm_object_offset_t offset;
4752 vm_map_offset_t koffset;
4753 vm_map_size_t ksize;
4754 vm_offset_t kaddr;
4755 kern_return_t kr;
2d21ac55
A
4756 boolean_t busy_page;
4757
4a3eedf9 4758 vm_object_lock_assert_held(page->object);
2d21ac55
A
4759
4760 if (!cs_validation) {
4761 return;
4762 }
4763
593a1d5f 4764 if (page->wpmapped && !page->cs_tainted) {
4a3eedf9
A
4765 vm_object_lock_assert_exclusive(page->object);
4766
4767 /*
593a1d5f
A
4768 * This page was mapped for "write" access sometime in the
4769 * past and could still be modifiable in the future.
4770 * Consider it tainted.
4771 * [ If the page was already found to be "tainted", no
4772 * need to re-validate. ]
4a3eedf9 4773 */
593a1d5f
A
4774 page->cs_validated = TRUE;
4775 page->cs_tainted = TRUE;
4776 if (cs_debug) {
4777 printf("CODESIGNING: vm_page_validate_cs: "
4778 "page %p obj %p off 0x%llx "
4779 "was modified\n",
4780 page, page->object, page->offset);
4a3eedf9 4781 }
593a1d5f 4782 vm_cs_validated_dirtied++;
4a3eedf9
A
4783 }
4784
4785 if (page->cs_validated) {
4786 return;
4787 }
4788
4789 vm_object_lock_assert_exclusive(page->object);
4790
2d21ac55
A
4791 object = page->object;
4792 assert(object->code_signed);
4793 offset = page->offset;
4794
4795 busy_page = page->busy;
4796 if (!busy_page) {
4797 /* keep page busy while we map (and unlock) the VM object */
4798 page->busy = TRUE;
4799 }
4800
4801 /*
4802 * Take a paging reference on the VM object
4803 * to protect it from collapse or bypass,
4804 * and keep it from disappearing too.
4805 */
4806 vm_object_paging_begin(object);
4807
4808 /* map the page in the kernel address space */
4809 koffset = 0;
4810 ksize = PAGE_SIZE_64;
4811 kr = vm_paging_map_object(&koffset,
4812 page,
4813 object,
4814 offset,
4815 &ksize,
593a1d5f 4816 VM_PROT_READ,
2d21ac55
A
4817 FALSE); /* can't unlock object ! */
4818 if (kr != KERN_SUCCESS) {
4819 panic("vm_page_validate_cs: could not map page: 0x%x\n", kr);
4820 }
4821 kaddr = CAST_DOWN(vm_offset_t, koffset);
4822
593a1d5f
A
4823 /* validate the mapped page */
4824 vm_page_validate_cs_mapped(page, (const void *) kaddr);
2d21ac55
A
4825
4826 assert(page->busy);
4827 assert(object == page->object);
4828 vm_object_lock_assert_exclusive(object);
4829
2d21ac55
A
4830 if (!busy_page) {
4831 PAGE_WAKEUP_DONE(page);
4832 }
4833 if (koffset != 0) {
4834 /* unmap the map from the kernel address space */
4835 vm_paging_unmap_object(object, koffset, koffset + ksize);
4836 koffset = 0;
4837 ksize = 0;
4838 kaddr = 0;
4839 }
4840 vm_object_paging_end(object);
4841}