]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm_fault.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Page fault handling module. | |
63 | */ | |
1c79356b A |
64 | |
65 | #include <mach_cluster_stats.h> | |
66 | #include <mach_pagemap.h> | |
67 | #include <mach_kdb.h> | |
2d21ac55 | 68 | #include <libkern/OSAtomic.h> |
1c79356b | 69 | |
91447636 | 70 | #include <mach/mach_types.h> |
1c79356b A |
71 | #include <mach/kern_return.h> |
72 | #include <mach/message.h> /* for error codes */ | |
91447636 A |
73 | #include <mach/vm_param.h> |
74 | #include <mach/vm_behavior.h> | |
75 | #include <mach/memory_object.h> | |
76 | /* For memory_object_data_{request,unlock} */ | |
2d21ac55 | 77 | #include <mach/sdt.h> |
91447636 A |
78 | |
79 | #include <kern/kern_types.h> | |
1c79356b A |
80 | #include <kern/host_statistics.h> |
81 | #include <kern/counters.h> | |
82 | #include <kern/task.h> | |
83 | #include <kern/thread.h> | |
84 | #include <kern/sched_prim.h> | |
85 | #include <kern/host.h> | |
86 | #include <kern/xpr.h> | |
91447636 A |
87 | #include <kern/mach_param.h> |
88 | #include <kern/macro_help.h> | |
89 | #include <kern/zalloc.h> | |
90 | #include <kern/misc_protos.h> | |
91 | ||
0b4e3aa0 | 92 | #include <ppc/proc_reg.h> |
91447636 A |
93 | |
94 | #include <vm/vm_fault.h> | |
1c79356b A |
95 | #include <vm/vm_map.h> |
96 | #include <vm/vm_object.h> | |
97 | #include <vm/vm_page.h> | |
55e303ae | 98 | #include <vm/vm_kern.h> |
1c79356b A |
99 | #include <vm/pmap.h> |
100 | #include <vm/vm_pageout.h> | |
91447636 | 101 | #include <vm/vm_protos.h> |
2d21ac55 A |
102 | #include <vm/vm_external.h> |
103 | #include <vm/memory_object.h> | |
104 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ | |
1c79356b A |
105 | |
106 | #include <sys/kdebug.h> | |
107 | ||
108 | #define VM_FAULT_CLASSIFY 0 | |
1c79356b | 109 | |
2d21ac55 A |
110 | /* Zero-filled pages are marked "m->zero_fill" and put on the |
111 | * special zero-fill inactive queue only if they belong to | |
112 | * an object at least this big. | |
113 | */ | |
114 | #define VM_ZF_OBJECT_SIZE_THRESHOLD (0x200000) | |
1c79356b | 115 | |
2d21ac55 | 116 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ |
1c79356b | 117 | |
2d21ac55 | 118 | int vm_object_pagein_throttle = 16; |
1c79356b | 119 | |
2d21ac55 | 120 | extern int cs_debug; |
1c79356b A |
121 | |
122 | #if MACH_KDB | |
123 | extern struct db_watchpoint *db_watchpoint_list; | |
124 | #endif /* MACH_KDB */ | |
125 | ||
91447636 | 126 | |
1c79356b A |
127 | /* Forward declarations of internal routines. */ |
128 | extern kern_return_t vm_fault_wire_fast( | |
129 | vm_map_t map, | |
91447636 | 130 | vm_map_offset_t va, |
1c79356b | 131 | vm_map_entry_t entry, |
9bccf70c | 132 | pmap_t pmap, |
91447636 | 133 | vm_map_offset_t pmap_addr); |
1c79356b A |
134 | |
135 | extern void vm_fault_continue(void); | |
136 | ||
137 | extern void vm_fault_copy_cleanup( | |
138 | vm_page_t page, | |
139 | vm_page_t top_page); | |
140 | ||
141 | extern void vm_fault_copy_dst_cleanup( | |
142 | vm_page_t page); | |
143 | ||
144 | #if VM_FAULT_CLASSIFY | |
145 | extern void vm_fault_classify(vm_object_t object, | |
146 | vm_object_offset_t offset, | |
147 | vm_prot_t fault_type); | |
148 | ||
149 | extern void vm_fault_classify_init(void); | |
150 | #endif | |
151 | ||
4a3eedf9 A |
152 | |
153 | unsigned long vm_cs_validates = 0; | |
154 | unsigned long vm_cs_revalidates = 0; | |
155 | unsigned long vm_cs_query_modified = 0; | |
156 | unsigned long vm_cs_validated_dirtied = 0; | |
157 | ||
1c79356b A |
158 | /* |
159 | * Routine: vm_fault_init | |
160 | * Purpose: | |
161 | * Initialize our private data structures. | |
162 | */ | |
163 | void | |
164 | vm_fault_init(void) | |
165 | { | |
166 | } | |
167 | ||
168 | /* | |
169 | * Routine: vm_fault_cleanup | |
170 | * Purpose: | |
171 | * Clean up the result of vm_fault_page. | |
172 | * Results: | |
173 | * The paging reference for "object" is released. | |
174 | * "object" is unlocked. | |
175 | * If "top_page" is not null, "top_page" is | |
176 | * freed and the paging reference for the object | |
177 | * containing it is released. | |
178 | * | |
179 | * In/out conditions: | |
180 | * "object" must be locked. | |
181 | */ | |
182 | void | |
183 | vm_fault_cleanup( | |
184 | register vm_object_t object, | |
185 | register vm_page_t top_page) | |
186 | { | |
187 | vm_object_paging_end(object); | |
188 | vm_object_unlock(object); | |
189 | ||
190 | if (top_page != VM_PAGE_NULL) { | |
2d21ac55 A |
191 | object = top_page->object; |
192 | ||
193 | vm_object_lock(object); | |
194 | VM_PAGE_FREE(top_page); | |
195 | vm_object_paging_end(object); | |
196 | vm_object_unlock(object); | |
1c79356b A |
197 | } |
198 | } | |
199 | ||
200 | #if MACH_CLUSTER_STATS | |
201 | #define MAXCLUSTERPAGES 16 | |
202 | struct { | |
203 | unsigned long pages_in_cluster; | |
204 | unsigned long pages_at_higher_offsets; | |
205 | unsigned long pages_at_lower_offsets; | |
206 | } cluster_stats_in[MAXCLUSTERPAGES]; | |
207 | #define CLUSTER_STAT(clause) clause | |
208 | #define CLUSTER_STAT_HIGHER(x) \ | |
209 | ((cluster_stats_in[(x)].pages_at_higher_offsets)++) | |
210 | #define CLUSTER_STAT_LOWER(x) \ | |
211 | ((cluster_stats_in[(x)].pages_at_lower_offsets)++) | |
212 | #define CLUSTER_STAT_CLUSTER(x) \ | |
213 | ((cluster_stats_in[(x)].pages_in_cluster)++) | |
214 | #else /* MACH_CLUSTER_STATS */ | |
215 | #define CLUSTER_STAT(clause) | |
216 | #endif /* MACH_CLUSTER_STATS */ | |
217 | ||
55e303ae A |
218 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
219 | ||
220 | ||
221 | boolean_t vm_page_deactivate_behind = TRUE; | |
1c79356b | 222 | /* |
2d21ac55 | 223 | * default sizes given VM_BEHAVIOR_DEFAULT reference behavior |
1c79356b | 224 | */ |
55e303ae A |
225 | int vm_default_ahead = 0; |
226 | int vm_default_behind = MAX_UPL_TRANSFER; | |
227 | ||
2d21ac55 A |
228 | #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) |
229 | ||
230 | /* | |
231 | * vm_page_is_sequential | |
232 | * | |
233 | * Determine if sequential access is in progress | |
234 | * in accordance with the behavior specified. | |
235 | * Update state to indicate current access pattern. | |
236 | * | |
237 | * object must have at least the shared lock held | |
238 | */ | |
239 | static | |
240 | void | |
241 | vm_fault_is_sequential( | |
242 | vm_object_t object, | |
243 | vm_object_offset_t offset, | |
244 | vm_behavior_t behavior) | |
245 | { | |
246 | vm_object_offset_t last_alloc; | |
247 | int sequential; | |
248 | int orig_sequential; | |
249 | ||
250 | last_alloc = object->last_alloc; | |
251 | sequential = object->sequential; | |
252 | orig_sequential = sequential; | |
253 | ||
254 | switch (behavior) { | |
255 | case VM_BEHAVIOR_RANDOM: | |
256 | /* | |
257 | * reset indicator of sequential behavior | |
258 | */ | |
259 | sequential = 0; | |
260 | break; | |
261 | ||
262 | case VM_BEHAVIOR_SEQUENTIAL: | |
263 | if (offset && last_alloc == offset - PAGE_SIZE_64) { | |
264 | /* | |
265 | * advance indicator of sequential behavior | |
266 | */ | |
267 | if (sequential < MAX_SEQUENTIAL_RUN) | |
268 | sequential += PAGE_SIZE; | |
269 | } else { | |
270 | /* | |
271 | * reset indicator of sequential behavior | |
272 | */ | |
273 | sequential = 0; | |
274 | } | |
275 | break; | |
276 | ||
277 | case VM_BEHAVIOR_RSEQNTL: | |
278 | if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { | |
279 | /* | |
280 | * advance indicator of sequential behavior | |
281 | */ | |
282 | if (sequential > -MAX_SEQUENTIAL_RUN) | |
283 | sequential -= PAGE_SIZE; | |
284 | } else { | |
285 | /* | |
286 | * reset indicator of sequential behavior | |
287 | */ | |
288 | sequential = 0; | |
289 | } | |
290 | break; | |
291 | ||
292 | case VM_BEHAVIOR_DEFAULT: | |
293 | default: | |
294 | if (offset && last_alloc == (offset - PAGE_SIZE_64)) { | |
295 | /* | |
296 | * advance indicator of sequential behavior | |
297 | */ | |
298 | if (sequential < 0) | |
299 | sequential = 0; | |
300 | if (sequential < MAX_SEQUENTIAL_RUN) | |
301 | sequential += PAGE_SIZE; | |
302 | ||
303 | } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { | |
304 | /* | |
305 | * advance indicator of sequential behavior | |
306 | */ | |
307 | if (sequential > 0) | |
308 | sequential = 0; | |
309 | if (sequential > -MAX_SEQUENTIAL_RUN) | |
310 | sequential -= PAGE_SIZE; | |
311 | } else { | |
312 | /* | |
313 | * reset indicator of sequential behavior | |
314 | */ | |
315 | sequential = 0; | |
316 | } | |
317 | break; | |
318 | } | |
319 | if (sequential != orig_sequential) { | |
320 | if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { | |
321 | /* | |
322 | * if someone else has already updated object->sequential | |
323 | * don't bother trying to update it or object->last_alloc | |
324 | */ | |
325 | return; | |
326 | } | |
327 | } | |
328 | /* | |
329 | * I'd like to do this with a OSCompareAndSwap64, but that | |
330 | * doesn't exist for PPC... however, it shouldn't matter | |
331 | * that much... last_alloc is maintained so that we can determine | |
332 | * if a sequential access pattern is taking place... if only | |
333 | * one thread is banging on this object, no problem with the unprotected | |
334 | * update... if 2 or more threads are banging away, we run the risk of | |
335 | * someone seeing a mangled update... however, in the face of multiple | |
336 | * accesses, no sequential access pattern can develop anyway, so we | |
337 | * haven't lost any real info. | |
338 | */ | |
339 | object->last_alloc = offset; | |
340 | } | |
341 | ||
342 | ||
55e303ae | 343 | /* |
2d21ac55 A |
344 | * vm_page_deactivate_behind |
345 | * | |
346 | * Determine if sequential access is in progress | |
347 | * in accordance with the behavior specified. If | |
348 | * so, compute a potential page to deactivate and | |
349 | * deactivate it. | |
55e303ae | 350 | * |
2d21ac55 | 351 | * object must be locked. |
55e303ae | 352 | * |
2d21ac55 | 353 | * return TRUE if we actually deactivate a page |
55e303ae A |
354 | */ |
355 | static | |
356 | boolean_t | |
357 | vm_fault_deactivate_behind( | |
91447636 A |
358 | vm_object_t object, |
359 | vm_object_offset_t offset, | |
360 | vm_behavior_t behavior) | |
55e303ae | 361 | { |
2d21ac55 A |
362 | vm_page_t m = NULL; |
363 | int sequential_run; | |
364 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
55e303ae A |
365 | |
366 | #if TRACEFAULTPAGE | |
367 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ | |
368 | #endif | |
369 | ||
2d21ac55 | 370 | if (object == kernel_object || vm_page_deactivate_behind == FALSE) { |
91447636 A |
371 | /* |
372 | * Do not deactivate pages from the kernel object: they | |
373 | * are not intended to become pageable. | |
2d21ac55 | 374 | * or we've disabled the deactivate behind mechanism |
91447636 A |
375 | */ |
376 | return FALSE; | |
377 | } | |
2d21ac55 A |
378 | if ((sequential_run = object->sequential)) { |
379 | if (sequential_run < 0) { | |
380 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
381 | sequential_run = 0 - sequential_run; | |
382 | } else { | |
383 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
384 | } | |
385 | } | |
55e303ae A |
386 | switch (behavior) { |
387 | case VM_BEHAVIOR_RANDOM: | |
55e303ae A |
388 | break; |
389 | case VM_BEHAVIOR_SEQUENTIAL: | |
2d21ac55 | 390 | if (sequential_run >= (int)PAGE_SIZE) |
55e303ae | 391 | m = vm_page_lookup(object, offset - PAGE_SIZE_64); |
55e303ae A |
392 | break; |
393 | case VM_BEHAVIOR_RSEQNTL: | |
2d21ac55 | 394 | if (sequential_run >= (int)PAGE_SIZE) |
55e303ae | 395 | m = vm_page_lookup(object, offset + PAGE_SIZE_64); |
55e303ae A |
396 | break; |
397 | case VM_BEHAVIOR_DEFAULT: | |
398 | default: | |
2d21ac55 A |
399 | { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; |
400 | ||
401 | /* | |
402 | * determine if the run of sequential accesss has been | |
403 | * long enough on an object with default access behavior | |
404 | * to consider it for deactivation | |
405 | */ | |
406 | if ((uint64_t)sequential_run >= behind) { | |
407 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { | |
408 | if (offset >= behind) | |
409 | m = vm_page_lookup(object, offset - behind); | |
410 | } else { | |
411 | if (offset < -behind) | |
412 | m = vm_page_lookup(object, offset + behind); | |
413 | } | |
55e303ae A |
414 | } |
415 | break; | |
416 | } | |
2d21ac55 | 417 | } |
55e303ae | 418 | if (m) { |
2d21ac55 A |
419 | if (!m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) { |
420 | pmap_clear_reference(m->phys_page); | |
421 | m->deactivated = TRUE; | |
55e303ae A |
422 | #if TRACEFAULTPAGE |
423 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
424 | #endif | |
2d21ac55 | 425 | return TRUE; |
55e303ae | 426 | } |
55e303ae A |
427 | } |
428 | return FALSE; | |
429 | } | |
1c79356b | 430 | |
1c79356b | 431 | |
2d21ac55 A |
432 | /* |
433 | * check for various conditions that would | |
434 | * prevent us from creating a ZF page... | |
435 | * cleanup is based on being called from vm_fault_page | |
436 | * | |
437 | * object must be locked | |
438 | * object == m->object | |
439 | */ | |
440 | static vm_fault_return_t | |
441 | vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state) | |
442 | { | |
443 | if (object->shadow_severed) { | |
444 | /* | |
445 | * the shadow chain was severed | |
446 | * just have to return an error at this point | |
447 | */ | |
448 | if (m != VM_PAGE_NULL) | |
449 | VM_PAGE_FREE(m); | |
450 | vm_fault_cleanup(object, first_m); | |
451 | ||
452 | thread_interrupt_level(interruptible_state); | |
453 | ||
454 | return (VM_FAULT_MEMORY_ERROR); | |
455 | } | |
456 | if (vm_backing_store_low) { | |
457 | /* | |
458 | * are we protecting the system from | |
459 | * backing store exhaustion. If so | |
460 | * sleep unless we are privileged. | |
461 | */ | |
462 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
463 | ||
464 | if (m != VM_PAGE_NULL) | |
465 | VM_PAGE_FREE(m); | |
466 | vm_fault_cleanup(object, first_m); | |
467 | ||
468 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
469 | ||
470 | thread_block(THREAD_CONTINUE_NULL); | |
471 | thread_interrupt_level(interruptible_state); | |
472 | ||
473 | return (VM_FAULT_RETRY); | |
474 | } | |
475 | } | |
476 | if (VM_PAGE_ZFILL_THROTTLED()) { | |
477 | /* | |
478 | * we're throttling zero-fills... | |
479 | * treat this as if we couldn't grab a page | |
480 | */ | |
481 | if (m != VM_PAGE_NULL) | |
482 | VM_PAGE_FREE(m); | |
483 | vm_fault_cleanup(object, first_m); | |
484 | ||
485 | thread_interrupt_level(interruptible_state); | |
486 | ||
487 | return (VM_FAULT_MEMORY_SHORTAGE); | |
488 | } | |
489 | return (VM_FAULT_SUCCESS); | |
490 | } | |
491 | ||
492 | ||
493 | /* | |
494 | * do the work to zero fill a page and | |
495 | * inject it into the correct paging queue | |
496 | * | |
497 | * m->object must be locked | |
498 | * page queue lock must NOT be held | |
499 | */ | |
500 | static int | |
501 | vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) | |
502 | { | |
503 | int my_fault = DBG_ZERO_FILL_FAULT; | |
504 | ||
505 | /* | |
506 | * This is is a zero-fill page fault... | |
507 | * | |
508 | * Checking the page lock is a waste of | |
509 | * time; this page was absent, so | |
510 | * it can't be page locked by a pager. | |
511 | * | |
512 | * we also consider it undefined | |
513 | * with respect to instruction | |
514 | * execution. i.e. it is the responsibility | |
515 | * of higher layers to call for an instruction | |
516 | * sync after changing the contents and before | |
517 | * sending a program into this area. We | |
518 | * choose this approach for performance | |
519 | */ | |
520 | m->pmapped = TRUE; | |
521 | ||
522 | m->cs_validated = FALSE; | |
523 | m->cs_tainted = FALSE; | |
524 | ||
525 | if (no_zero_fill == TRUE) | |
526 | my_fault = DBG_NZF_PAGE_FAULT; | |
527 | else { | |
528 | vm_page_zero_fill(m); | |
529 | ||
530 | VM_STAT_INCR(zero_fill_count); | |
531 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); | |
532 | } | |
533 | assert(!m->laundry); | |
534 | assert(m->object != kernel_object); | |
535 | //assert(m->pageq.next == NULL && m->pageq.prev == NULL); | |
536 | ||
537 | if (!IP_VALID(memory_manager_default) && | |
538 | (m->object->purgable == VM_PURGABLE_DENY || | |
cf7d32b8 A |
539 | m->object->purgable == VM_PURGABLE_NONVOLATILE || |
540 | m->object->purgable == VM_PURGABLE_VOLATILE )) { | |
2d21ac55 A |
541 | vm_page_lock_queues(); |
542 | ||
543 | queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq); | |
544 | m->throttled = TRUE; | |
545 | vm_page_throttled_count++; | |
546 | ||
547 | vm_page_unlock_queues(); | |
548 | } else { | |
549 | if (m->object->size > VM_ZF_OBJECT_SIZE_THRESHOLD) { | |
550 | m->zero_fill = TRUE; | |
551 | OSAddAtomic(1, (SInt32 *)&vm_zf_count); | |
552 | } | |
553 | } | |
554 | return (my_fault); | |
555 | } | |
556 | ||
557 | ||
1c79356b A |
558 | /* |
559 | * Routine: vm_fault_page | |
560 | * Purpose: | |
561 | * Find the resident page for the virtual memory | |
562 | * specified by the given virtual memory object | |
563 | * and offset. | |
564 | * Additional arguments: | |
565 | * The required permissions for the page is given | |
566 | * in "fault_type". Desired permissions are included | |
2d21ac55 A |
567 | * in "protection". |
568 | * fault_info is passed along to determine pagein cluster | |
569 | * limits... it contains the expected reference pattern, | |
570 | * cluster size if available, etc... | |
1c79356b A |
571 | * |
572 | * If the desired page is known to be resident (for | |
573 | * example, because it was previously wired down), asserting | |
574 | * the "unwiring" parameter will speed the search. | |
575 | * | |
576 | * If the operation can be interrupted (by thread_abort | |
577 | * or thread_terminate), then the "interruptible" | |
578 | * parameter should be asserted. | |
579 | * | |
580 | * Results: | |
581 | * The page containing the proper data is returned | |
582 | * in "result_page". | |
583 | * | |
584 | * In/out conditions: | |
585 | * The source object must be locked and referenced, | |
586 | * and must donate one paging reference. The reference | |
587 | * is not affected. The paging reference and lock are | |
588 | * consumed. | |
589 | * | |
590 | * If the call succeeds, the object in which "result_page" | |
591 | * resides is left locked and holding a paging reference. | |
592 | * If this is not the original object, a busy page in the | |
593 | * original object is returned in "top_page", to prevent other | |
594 | * callers from pursuing this same data, along with a paging | |
595 | * reference for the original object. The "top_page" should | |
596 | * be destroyed when this guarantee is no longer required. | |
597 | * The "result_page" is also left busy. It is not removed | |
598 | * from the pageout queues. | |
599 | */ | |
600 | ||
601 | vm_fault_return_t | |
602 | vm_fault_page( | |
603 | /* Arguments: */ | |
604 | vm_object_t first_object, /* Object to begin search */ | |
605 | vm_object_offset_t first_offset, /* Offset into object */ | |
606 | vm_prot_t fault_type, /* What access is requested */ | |
607 | boolean_t must_be_resident,/* Must page be resident? */ | |
1c79356b A |
608 | /* Modifies in place: */ |
609 | vm_prot_t *protection, /* Protection for mapping */ | |
610 | /* Returns: */ | |
611 | vm_page_t *result_page, /* Page found, if successful */ | |
612 | vm_page_t *top_page, /* Page in top object, if | |
613 | * not result_page. */ | |
614 | int *type_of_fault, /* if non-null, fill in with type of fault | |
615 | * COW, zero-fill, etc... returned in trace point */ | |
616 | /* More arguments: */ | |
617 | kern_return_t *error_code, /* code if page is in error */ | |
618 | boolean_t no_zero_fill, /* don't zero fill absent pages */ | |
2d21ac55 | 619 | #if MACH_PAGEMAP |
0b4e3aa0 | 620 | boolean_t data_supply, /* treat as data_supply if |
1c79356b A |
621 | * it is a write fault and a full |
622 | * page is provided */ | |
2d21ac55 A |
623 | #else |
624 | __unused boolean_t data_supply, | |
625 | #endif | |
626 | vm_object_fault_info_t fault_info) | |
1c79356b | 627 | { |
1c79356b | 628 | vm_page_t m; |
1c79356b | 629 | vm_object_t object; |
1c79356b A |
630 | vm_object_offset_t offset; |
631 | vm_page_t first_m; | |
632 | vm_object_t next_object; | |
633 | vm_object_t copy_object; | |
634 | boolean_t look_for_page; | |
635 | vm_prot_t access_required = fault_type; | |
636 | vm_prot_t wants_copy_flag; | |
1c79356b A |
637 | CLUSTER_STAT(int pages_at_higher_offsets;) |
638 | CLUSTER_STAT(int pages_at_lower_offsets;) | |
2d21ac55 | 639 | kern_return_t wait_result; |
1c79356b | 640 | boolean_t interruptible_state; |
2d21ac55 A |
641 | vm_fault_return_t error; |
642 | int my_fault; | |
643 | uint32_t try_failed_count; | |
644 | int interruptible; /* how may fault be interrupted? */ | |
645 | memory_object_t pager; | |
1c79356b | 646 | |
1c79356b A |
647 | /* |
648 | * MACH page map - an optional optimization where a bit map is maintained | |
649 | * by the VM subsystem for internal objects to indicate which pages of | |
650 | * the object currently reside on backing store. This existence map | |
651 | * duplicates information maintained by the vnode pager. It is | |
652 | * created at the time of the first pageout against the object, i.e. | |
653 | * at the same time pager for the object is created. The optimization | |
654 | * is designed to eliminate pager interaction overhead, if it is | |
655 | * 'known' that the page does not exist on backing store. | |
656 | * | |
2d21ac55 | 657 | * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is |
1c79356b | 658 | * either marked as paged out in the existence map for the object or no |
2d21ac55 | 659 | * existence map exists for the object. MUST_ASK_PAGER() is one of the |
1c79356b A |
660 | * criteria in the decision to invoke the pager. It is also used as one |
661 | * of the criteria to terminate the scan for adjacent pages in a clustered | |
2d21ac55 | 662 | * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for |
1c79356b A |
663 | * permanent objects. Note also that if the pager for an internal object |
664 | * has not been created, the pager is not invoked regardless of the value | |
2d21ac55 | 665 | * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object |
1c79356b A |
666 | * for which a pager has been created. |
667 | * | |
668 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset | |
669 | * is marked as paged out in the existence map for the object. PAGED_OUT() | |
670 | * PAGED_OUT() is used to determine if a page has already been pushed | |
671 | * into a copy object in order to avoid a redundant page out operation. | |
672 | */ | |
2d21ac55 A |
673 | #if MACH_PAGEMAP |
674 | #define MUST_ASK_PAGER(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
1c79356b A |
675 | != VM_EXTERNAL_STATE_ABSENT) |
676 | #define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \ | |
677 | == VM_EXTERNAL_STATE_EXISTS) | |
2d21ac55 A |
678 | #else |
679 | #define MUST_ASK_PAGER(o, f) (TRUE) | |
680 | #define PAGED_OUT(o, f) (FALSE) | |
681 | #endif | |
1c79356b A |
682 | |
683 | /* | |
684 | * Recovery actions | |
685 | */ | |
686 | #define PREPARE_RELEASE_PAGE(m) \ | |
687 | MACRO_BEGIN \ | |
688 | vm_page_lock_queues(); \ | |
689 | MACRO_END | |
690 | ||
691 | #define DO_RELEASE_PAGE(m) \ | |
692 | MACRO_BEGIN \ | |
693 | PAGE_WAKEUP_DONE(m); \ | |
2d21ac55 | 694 | if (!m->active && !m->inactive && !m->throttled)\ |
1c79356b A |
695 | vm_page_activate(m); \ |
696 | vm_page_unlock_queues(); \ | |
697 | MACRO_END | |
698 | ||
699 | #define RELEASE_PAGE(m) \ | |
700 | MACRO_BEGIN \ | |
701 | PREPARE_RELEASE_PAGE(m); \ | |
702 | DO_RELEASE_PAGE(m); \ | |
703 | MACRO_END | |
704 | ||
705 | #if TRACEFAULTPAGE | |
706 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ | |
707 | #endif | |
708 | ||
709 | ||
1c79356b A |
710 | #if MACH_KDB |
711 | /* | |
712 | * If there are watchpoints set, then | |
713 | * we don't want to give away write permission | |
714 | * on a read fault. Make the task write fault, | |
715 | * so that the watchpoint code notices the access. | |
716 | */ | |
717 | if (db_watchpoint_list) { | |
718 | /* | |
719 | * If we aren't asking for write permission, | |
720 | * then don't give it away. We're using write | |
721 | * faults to set the dirty bit. | |
722 | */ | |
723 | if (!(fault_type & VM_PROT_WRITE)) | |
724 | *protection &= ~VM_PROT_WRITE; | |
725 | } | |
1c79356b | 726 | #endif /* MACH_KDB */ |
1c79356b | 727 | |
2d21ac55 | 728 | interruptible = fault_info->interruptible; |
9bccf70c | 729 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b A |
730 | |
731 | /* | |
732 | * INVARIANTS (through entire routine): | |
733 | * | |
734 | * 1) At all times, we must either have the object | |
735 | * lock or a busy page in some object to prevent | |
736 | * some other thread from trying to bring in | |
737 | * the same page. | |
738 | * | |
739 | * Note that we cannot hold any locks during the | |
740 | * pager access or when waiting for memory, so | |
741 | * we use a busy page then. | |
742 | * | |
1c79356b A |
743 | * 2) To prevent another thread from racing us down the |
744 | * shadow chain and entering a new page in the top | |
745 | * object before we do, we must keep a busy page in | |
746 | * the top object while following the shadow chain. | |
747 | * | |
748 | * 3) We must increment paging_in_progress on any object | |
2d21ac55 A |
749 | * for which we have a busy page before dropping |
750 | * the object lock | |
1c79356b A |
751 | * |
752 | * 4) We leave busy pages on the pageout queues. | |
753 | * If the pageout daemon comes across a busy page, | |
754 | * it will remove the page from the pageout queues. | |
755 | */ | |
756 | ||
1c79356b A |
757 | object = first_object; |
758 | offset = first_offset; | |
759 | first_m = VM_PAGE_NULL; | |
760 | access_required = fault_type; | |
761 | ||
2d21ac55 | 762 | |
1c79356b A |
763 | XPR(XPR_VM_FAULT, |
764 | "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n", | |
765 | (integer_t)object, offset, fault_type, *protection, 0); | |
766 | ||
767 | /* | |
2d21ac55 | 768 | * default type of fault |
1c79356b | 769 | */ |
2d21ac55 | 770 | my_fault = DBG_CACHE_HIT_FAULT; |
1c79356b A |
771 | |
772 | while (TRUE) { | |
773 | #if TRACEFAULTPAGE | |
774 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
775 | #endif | |
776 | if (!object->alive) { | |
2d21ac55 A |
777 | /* |
778 | * object is no longer valid | |
779 | * clean up and return error | |
780 | */ | |
1c79356b | 781 | vm_fault_cleanup(object, first_m); |
9bccf70c | 782 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
783 | |
784 | return (VM_FAULT_MEMORY_ERROR); | |
1c79356b | 785 | } |
2d21ac55 A |
786 | |
787 | /* | |
788 | * See whether the page at 'offset' is resident | |
789 | */ | |
1c79356b A |
790 | m = vm_page_lookup(object, offset); |
791 | #if TRACEFAULTPAGE | |
792 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
793 | #endif | |
794 | if (m != VM_PAGE_NULL) { | |
1c79356b A |
795 | |
796 | if (m->busy) { | |
2d21ac55 A |
797 | /* |
798 | * The page is being brought in, | |
799 | * wait for it and then retry. | |
800 | * | |
801 | * A possible optimization: if the page | |
802 | * is known to be resident, we can ignore | |
803 | * pages that are absent (regardless of | |
804 | * whether they're busy). | |
805 | */ | |
1c79356b A |
806 | #if TRACEFAULTPAGE |
807 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
808 | #endif | |
9bccf70c | 809 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1c79356b A |
810 | XPR(XPR_VM_FAULT, |
811 | "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n", | |
812 | (integer_t)object, offset, | |
813 | (integer_t)m, 0, 0); | |
814 | counter(c_vm_fault_page_block_busy_kernel++); | |
1c79356b | 815 | |
1c79356b A |
816 | if (wait_result != THREAD_AWAKENED) { |
817 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 818 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 819 | |
1c79356b | 820 | if (wait_result == THREAD_RESTART) |
2d21ac55 | 821 | return (VM_FAULT_RETRY); |
1c79356b | 822 | else |
2d21ac55 | 823 | return (VM_FAULT_INTERRUPTED); |
1c79356b A |
824 | } |
825 | continue; | |
826 | } | |
827 | ||
2d21ac55 | 828 | if (m->phys_page == vm_page_guard_addr) { |
91447636 | 829 | /* |
2d21ac55 | 830 | * Guard page: off limits ! |
91447636 | 831 | */ |
2d21ac55 A |
832 | if (fault_type == VM_PROT_NONE) { |
833 | /* | |
834 | * The fault is not requesting any | |
835 | * access to the guard page, so it must | |
836 | * be just to wire or unwire it. | |
837 | * Let's pretend it succeeded... | |
838 | */ | |
839 | m->busy = TRUE; | |
840 | *result_page = m; | |
841 | assert(first_m == VM_PAGE_NULL); | |
842 | *top_page = first_m; | |
843 | if (type_of_fault) | |
844 | *type_of_fault = DBG_GUARD_FAULT; | |
845 | return VM_FAULT_SUCCESS; | |
846 | } else { | |
847 | /* | |
848 | * The fault requests access to the | |
849 | * guard page: let's deny that ! | |
850 | */ | |
851 | vm_fault_cleanup(object, first_m); | |
852 | thread_interrupt_level(interruptible_state); | |
853 | return VM_FAULT_MEMORY_ERROR; | |
854 | } | |
91447636 | 855 | } |
1c79356b A |
856 | |
857 | if (m->error) { | |
2d21ac55 A |
858 | /* |
859 | * The page is in error, give up now. | |
860 | */ | |
1c79356b A |
861 | #if TRACEFAULTPAGE |
862 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ | |
863 | #endif | |
864 | if (error_code) | |
2d21ac55 | 865 | *error_code = KERN_MEMORY_ERROR; |
1c79356b | 866 | VM_PAGE_FREE(m); |
2d21ac55 | 867 | |
1c79356b | 868 | vm_fault_cleanup(object, first_m); |
9bccf70c | 869 | thread_interrupt_level(interruptible_state); |
1c79356b | 870 | |
2d21ac55 A |
871 | return (VM_FAULT_MEMORY_ERROR); |
872 | } | |
1c79356b | 873 | if (m->restart) { |
2d21ac55 A |
874 | /* |
875 | * The pager wants us to restart | |
876 | * at the top of the chain, | |
877 | * typically because it has moved the | |
878 | * page to another pager, then do so. | |
879 | */ | |
1c79356b A |
880 | #if TRACEFAULTPAGE |
881 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
882 | #endif | |
883 | VM_PAGE_FREE(m); | |
2d21ac55 | 884 | |
1c79356b | 885 | vm_fault_cleanup(object, first_m); |
9bccf70c | 886 | thread_interrupt_level(interruptible_state); |
1c79356b | 887 | |
2d21ac55 A |
888 | return (VM_FAULT_RETRY); |
889 | } | |
1c79356b | 890 | if (m->absent) { |
2d21ac55 A |
891 | /* |
892 | * The page isn't busy, but is absent, | |
893 | * therefore it's deemed "unavailable". | |
894 | * | |
1c79356b A |
895 | * Remove the non-existent page (unless it's |
896 | * in the top object) and move on down to the | |
897 | * next object (if there is one). | |
898 | */ | |
899 | #if TRACEFAULTPAGE | |
900 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ | |
901 | #endif | |
1c79356b | 902 | next_object = object->shadow; |
1c79356b | 903 | |
2d21ac55 | 904 | if (next_object == VM_OBJECT_NULL) { |
1c79356b A |
905 | /* |
906 | * Absent page at bottom of shadow | |
907 | * chain; zero fill the page we left | |
2d21ac55 A |
908 | * busy in the first object, and free |
909 | * the absent page. | |
1c79356b | 910 | */ |
2d21ac55 | 911 | assert(!must_be_resident); |
55e303ae A |
912 | |
913 | /* | |
2d21ac55 A |
914 | * check for any conditions that prevent |
915 | * us from creating a new zero-fill page | |
916 | * vm_fault_check will do all of the | |
917 | * fault cleanup in the case of an error condition | |
918 | * including resetting the thread_interrupt_level | |
55e303ae | 919 | */ |
2d21ac55 | 920 | error = vm_fault_check(object, m, first_m, interruptible_state); |
55e303ae | 921 | |
2d21ac55 A |
922 | if (error != VM_FAULT_SUCCESS) |
923 | return (error); | |
55e303ae | 924 | |
1c79356b | 925 | XPR(XPR_VM_FAULT, |
2d21ac55 | 926 | "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n", |
1c79356b A |
927 | (integer_t)object, offset, |
928 | (integer_t)m, | |
929 | (integer_t)first_object, 0); | |
2d21ac55 | 930 | |
1c79356b | 931 | if (object != first_object) { |
2d21ac55 A |
932 | /* |
933 | * free the absent page we just found | |
934 | */ | |
1c79356b | 935 | VM_PAGE_FREE(m); |
2d21ac55 A |
936 | |
937 | /* | |
938 | * drop reference and lock on current object | |
939 | */ | |
1c79356b A |
940 | vm_object_paging_end(object); |
941 | vm_object_unlock(object); | |
2d21ac55 A |
942 | |
943 | /* | |
944 | * grab the original page we | |
945 | * 'soldered' in place and | |
946 | * retake lock on 'first_object' | |
947 | */ | |
1c79356b A |
948 | m = first_m; |
949 | first_m = VM_PAGE_NULL; | |
1c79356b | 950 | |
2d21ac55 A |
951 | object = first_object; |
952 | offset = first_offset; | |
0b4e3aa0 | 953 | |
1c79356b | 954 | vm_object_lock(object); |
9bccf70c | 955 | } else { |
2d21ac55 A |
956 | /* |
957 | * we're going to use the absent page we just found | |
958 | * so convert it to a 'busy' page | |
959 | */ | |
960 | m->absent = FALSE; | |
961 | m->busy = TRUE; | |
0b4e3aa0 | 962 | } |
2d21ac55 A |
963 | /* |
964 | * zero-fill the page and put it on | |
965 | * the correct paging queue | |
966 | */ | |
967 | my_fault = vm_fault_zero_page(m, no_zero_fill); | |
968 | ||
1c79356b A |
969 | break; |
970 | } else { | |
2d21ac55 | 971 | if (must_be_resident) |
1c79356b | 972 | vm_object_paging_end(object); |
2d21ac55 | 973 | else if (object != first_object) { |
1c79356b A |
974 | vm_object_paging_end(object); |
975 | VM_PAGE_FREE(m); | |
976 | } else { | |
977 | first_m = m; | |
978 | m->absent = FALSE; | |
1c79356b A |
979 | m->busy = TRUE; |
980 | ||
2d21ac55 | 981 | vm_page_lockspin_queues(); |
1c79356b A |
982 | VM_PAGE_QUEUES_REMOVE(m); |
983 | vm_page_unlock_queues(); | |
984 | } | |
985 | XPR(XPR_VM_FAULT, | |
986 | "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n", | |
987 | (integer_t)object, offset, | |
988 | (integer_t)next_object, | |
989 | offset+object->shadow_offset,0); | |
2d21ac55 | 990 | |
1c79356b | 991 | offset += object->shadow_offset; |
2d21ac55 A |
992 | fault_info->lo_offset += object->shadow_offset; |
993 | fault_info->hi_offset += object->shadow_offset; | |
1c79356b | 994 | access_required = VM_PROT_READ; |
2d21ac55 | 995 | |
1c79356b A |
996 | vm_object_lock(next_object); |
997 | vm_object_unlock(object); | |
998 | object = next_object; | |
999 | vm_object_paging_begin(object); | |
2d21ac55 A |
1000 | |
1001 | /* | |
1002 | * reset to default type of fault | |
1003 | */ | |
1004 | my_fault = DBG_CACHE_HIT_FAULT; | |
1005 | ||
1c79356b A |
1006 | continue; |
1007 | } | |
1008 | } | |
1c79356b | 1009 | if ((m->cleaning) |
2d21ac55 A |
1010 | && ((object != first_object) || (object->copy != VM_OBJECT_NULL)) |
1011 | && (fault_type & VM_PROT_WRITE)) { | |
1c79356b A |
1012 | /* |
1013 | * This is a copy-on-write fault that will | |
1014 | * cause us to revoke access to this page, but | |
1015 | * this page is in the process of being cleaned | |
1016 | * in a clustered pageout. We must wait until | |
1017 | * the cleaning operation completes before | |
1018 | * revoking access to the original page, | |
1019 | * otherwise we might attempt to remove a | |
1020 | * wired mapping. | |
1021 | */ | |
1022 | #if TRACEFAULTPAGE | |
1023 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ | |
1024 | #endif | |
1025 | XPR(XPR_VM_FAULT, | |
1026 | "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n", | |
1027 | (integer_t)object, offset, | |
1028 | (integer_t)m, 0, 0); | |
2d21ac55 A |
1029 | /* |
1030 | * take an extra ref so that object won't die | |
1031 | */ | |
1032 | vm_object_reference_locked(object); | |
1033 | ||
1c79356b | 1034 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 1035 | |
1c79356b A |
1036 | counter(c_vm_fault_page_block_backoff_kernel++); |
1037 | vm_object_lock(object); | |
1038 | assert(object->ref_count > 0); | |
2d21ac55 | 1039 | |
1c79356b | 1040 | m = vm_page_lookup(object, offset); |
2d21ac55 | 1041 | |
1c79356b A |
1042 | if (m != VM_PAGE_NULL && m->cleaning) { |
1043 | PAGE_ASSERT_WAIT(m, interruptible); | |
2d21ac55 | 1044 | |
1c79356b | 1045 | vm_object_unlock(object); |
9bccf70c | 1046 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1047 | vm_object_deallocate(object); |
2d21ac55 | 1048 | |
1c79356b A |
1049 | goto backoff; |
1050 | } else { | |
1051 | vm_object_unlock(object); | |
2d21ac55 | 1052 | |
1c79356b | 1053 | vm_object_deallocate(object); |
9bccf70c | 1054 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1055 | |
1056 | return (VM_FAULT_RETRY); | |
1c79356b A |
1057 | } |
1058 | } | |
2d21ac55 A |
1059 | if (type_of_fault == NULL && m->speculative) { |
1060 | /* | |
1061 | * If we were passed a non-NULL pointer for | |
1062 | * "type_of_fault", than we came from | |
1063 | * vm_fault... we'll let it deal with | |
1064 | * this condition, since it | |
1065 | * needs to see m->speculative to correctly | |
1066 | * account the pageins, otherwise... | |
1067 | * take it off the speculative queue, we'll | |
1068 | * let the caller of vm_fault_page deal | |
1069 | * with getting it onto the correct queue | |
1070 | */ | |
1071 | vm_page_lockspin_queues(); | |
1072 | VM_PAGE_QUEUES_REMOVE(m); | |
1073 | vm_page_unlock_queues(); | |
1074 | } | |
1c79356b | 1075 | |
2d21ac55 A |
1076 | if (m->encrypted) { |
1077 | /* | |
1078 | * ENCRYPTED SWAP: | |
1079 | * the user needs access to a page that we | |
1080 | * encrypted before paging it out. | |
1081 | * Decrypt the page now. | |
1082 | * Keep it busy to prevent anyone from | |
1083 | * accessing it during the decryption. | |
1084 | */ | |
1085 | m->busy = TRUE; | |
1086 | vm_page_decrypt(m, 0); | |
1087 | assert(object == m->object); | |
1088 | assert(m->busy); | |
1089 | PAGE_WAKEUP_DONE(m); | |
1c79356b | 1090 | |
2d21ac55 A |
1091 | /* |
1092 | * Retry from the top, in case | |
1093 | * something changed while we were | |
1094 | * decrypting. | |
1095 | */ | |
1096 | continue; | |
1097 | } | |
1098 | ASSERT_PAGE_DECRYPTED(m); | |
1c79356b | 1099 | |
2d21ac55 A |
1100 | if (m->object->code_signed) { |
1101 | /* | |
1102 | * CODE SIGNING: | |
1103 | * We just paged in a page from a signed | |
1104 | * memory object but we don't need to | |
1105 | * validate it now. We'll validate it if | |
1106 | * when it gets mapped into a user address | |
1107 | * space for the first time or when the page | |
1108 | * gets copied to another object as a result | |
1109 | * of a copy-on-write. | |
1110 | */ | |
1c79356b | 1111 | } |
2d21ac55 | 1112 | |
1c79356b | 1113 | /* |
2d21ac55 A |
1114 | * We mark the page busy and leave it on |
1115 | * the pageout queues. If the pageout | |
1116 | * deamon comes across it, then it will | |
1117 | * remove the page from the queue, but not the object | |
1c79356b | 1118 | */ |
1c79356b A |
1119 | #if TRACEFAULTPAGE |
1120 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1121 | #endif | |
1c79356b A |
1122 | XPR(XPR_VM_FAULT, |
1123 | "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n", | |
1124 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
1125 | assert(!m->busy); | |
1c79356b | 1126 | assert(!m->absent); |
2d21ac55 A |
1127 | |
1128 | m->busy = TRUE; | |
1c79356b A |
1129 | break; |
1130 | } | |
2d21ac55 | 1131 | |
1c79356b | 1132 | |
2d21ac55 A |
1133 | /* |
1134 | * we get here when there is no page present in the object at | |
1135 | * the offset we're interested in... we'll allocate a page | |
1136 | * at this point if the pager associated with | |
1137 | * this object can provide the data or we're the top object... | |
1138 | * object is locked; m == NULL | |
1139 | */ | |
1140 | look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset) == TRUE) && !data_supply); | |
1141 | ||
1c79356b A |
1142 | #if TRACEFAULTPAGE |
1143 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ | |
1144 | #endif | |
2d21ac55 | 1145 | if ((look_for_page || (object == first_object)) && !must_be_resident && !object->phys_contiguous) { |
1c79356b | 1146 | /* |
2d21ac55 | 1147 | * Allocate a new page for this object/offset pair |
1c79356b | 1148 | */ |
2d21ac55 | 1149 | m = vm_page_grab(); |
1c79356b A |
1150 | #if TRACEFAULTPAGE |
1151 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ | |
1152 | #endif | |
1153 | if (m == VM_PAGE_NULL) { | |
2d21ac55 | 1154 | |
1c79356b | 1155 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1156 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1157 | |
1158 | return (VM_FAULT_MEMORY_SHORTAGE); | |
1c79356b A |
1159 | } |
1160 | vm_page_insert(m, object, offset); | |
1161 | } | |
2d21ac55 | 1162 | if (look_for_page && !must_be_resident) { |
1c79356b A |
1163 | kern_return_t rc; |
1164 | ||
1165 | /* | |
1166 | * If the memory manager is not ready, we | |
1167 | * cannot make requests. | |
1168 | */ | |
1169 | if (!object->pager_ready) { | |
1170 | #if TRACEFAULTPAGE | |
1171 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1172 | #endif | |
2d21ac55 A |
1173 | if (m != VM_PAGE_NULL) |
1174 | VM_PAGE_FREE(m); | |
1175 | ||
1c79356b A |
1176 | XPR(XPR_VM_FAULT, |
1177 | "vm_f_page: ready wait obj 0x%X, offset 0x%X\n", | |
1178 | (integer_t)object, offset, 0, 0, 0); | |
2d21ac55 A |
1179 | |
1180 | /* | |
1181 | * take an extra ref so object won't die | |
1182 | */ | |
1183 | vm_object_reference_locked(object); | |
1c79356b A |
1184 | vm_fault_cleanup(object, first_m); |
1185 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 1186 | |
1c79356b A |
1187 | vm_object_lock(object); |
1188 | assert(object->ref_count > 0); | |
2d21ac55 | 1189 | |
1c79356b | 1190 | if (!object->pager_ready) { |
2d21ac55 A |
1191 | wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); |
1192 | ||
1c79356b | 1193 | vm_object_unlock(object); |
9bccf70c A |
1194 | if (wait_result == THREAD_WAITING) |
1195 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1c79356b | 1196 | vm_object_deallocate(object); |
2d21ac55 | 1197 | |
1c79356b A |
1198 | goto backoff; |
1199 | } else { | |
1200 | vm_object_unlock(object); | |
1201 | vm_object_deallocate(object); | |
9bccf70c | 1202 | thread_interrupt_level(interruptible_state); |
1c79356b | 1203 | |
2d21ac55 | 1204 | return (VM_FAULT_RETRY); |
0b4e3aa0 | 1205 | } |
0b4e3aa0 | 1206 | } |
2d21ac55 | 1207 | if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { |
1c79356b | 1208 | /* |
2d21ac55 A |
1209 | * If there are too many outstanding page |
1210 | * requests pending on this external object, we | |
1211 | * wait for them to be resolved now. | |
1c79356b | 1212 | */ |
1c79356b | 1213 | #if TRACEFAULTPAGE |
2d21ac55 | 1214 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1c79356b | 1215 | #endif |
2d21ac55 | 1216 | if (m != VM_PAGE_NULL) |
1c79356b | 1217 | VM_PAGE_FREE(m); |
1c79356b | 1218 | /* |
2d21ac55 | 1219 | * take an extra ref so object won't die |
1c79356b | 1220 | */ |
2d21ac55 | 1221 | vm_object_reference_locked(object); |
1c79356b | 1222 | |
1c79356b | 1223 | vm_fault_cleanup(object, first_m); |
2d21ac55 | 1224 | |
1c79356b | 1225 | counter(c_vm_fault_page_block_backoff_kernel++); |
2d21ac55 | 1226 | |
1c79356b A |
1227 | vm_object_lock(object); |
1228 | assert(object->ref_count > 0); | |
2d21ac55 A |
1229 | |
1230 | if (object->paging_in_progress > vm_object_pagein_throttle) { | |
1231 | vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS, interruptible); | |
1232 | ||
1c79356b | 1233 | vm_object_unlock(object); |
9bccf70c | 1234 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1235 | vm_object_deallocate(object); |
2d21ac55 | 1236 | |
1c79356b A |
1237 | goto backoff; |
1238 | } else { | |
1239 | vm_object_unlock(object); | |
1240 | vm_object_deallocate(object); | |
9bccf70c | 1241 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1242 | |
1243 | return (VM_FAULT_RETRY); | |
1c79356b A |
1244 | } |
1245 | } | |
2d21ac55 A |
1246 | if (m != VM_PAGE_NULL) { |
1247 | /* | |
1248 | * Indicate that the page is waiting for data | |
1249 | * from the memory manager. | |
1250 | */ | |
1251 | m->list_req_pending = TRUE; | |
0b4e3aa0 | 1252 | m->absent = TRUE; |
0b4e3aa0 | 1253 | } |
1c79356b | 1254 | |
1c79356b A |
1255 | #if TRACEFAULTPAGE |
1256 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ | |
1257 | #endif | |
2d21ac55 | 1258 | |
1c79356b | 1259 | /* |
2d21ac55 A |
1260 | * It's possible someone called vm_object_destroy while we weren't |
1261 | * holding the object lock. If that has happened, then bail out | |
1262 | * here. | |
1c79356b | 1263 | */ |
2d21ac55 A |
1264 | |
1265 | pager = object->pager; | |
1266 | ||
1267 | if (pager == MEMORY_OBJECT_NULL) { | |
1268 | vm_fault_cleanup(object, first_m); | |
1269 | thread_interrupt_level(interruptible_state); | |
1270 | return VM_FAULT_MEMORY_ERROR; | |
1271 | } | |
1c79356b A |
1272 | |
1273 | /* | |
2d21ac55 A |
1274 | * We have an absent page in place for the faulting offset, |
1275 | * so we can release the object lock. | |
1c79356b A |
1276 | */ |
1277 | ||
2d21ac55 | 1278 | vm_object_unlock(object); |
1c79356b A |
1279 | |
1280 | /* | |
2d21ac55 A |
1281 | * If this object uses a copy_call strategy, |
1282 | * and we are interested in a copy of this object | |
1283 | * (having gotten here only by following a | |
1284 | * shadow chain), then tell the memory manager | |
1285 | * via a flag added to the desired_access | |
1286 | * parameter, so that it can detect a race | |
1287 | * between our walking down the shadow chain | |
1288 | * and its pushing pages up into a copy of | |
1289 | * the object that it manages. | |
1c79356b | 1290 | */ |
2d21ac55 | 1291 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) |
1c79356b | 1292 | wants_copy_flag = VM_PROT_WANTS_COPY; |
2d21ac55 | 1293 | else |
1c79356b | 1294 | wants_copy_flag = VM_PROT_NONE; |
1c79356b A |
1295 | |
1296 | XPR(XPR_VM_FAULT, | |
1297 | "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n", | |
1298 | (integer_t)object, offset, (integer_t)m, | |
1299 | access_required | wants_copy_flag, 0); | |
1300 | ||
2d21ac55 A |
1301 | /* |
1302 | * Call the memory manager to retrieve the data. | |
1303 | */ | |
1304 | rc = memory_object_data_request( | |
1305 | pager, | |
1306 | offset + object->paging_offset, | |
1307 | PAGE_SIZE, | |
1308 | access_required | wants_copy_flag, | |
1309 | (memory_object_fault_info_t)fault_info); | |
1c79356b A |
1310 | |
1311 | #if TRACEFAULTPAGE | |
1312 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ | |
1313 | #endif | |
2d21ac55 A |
1314 | vm_object_lock(object); |
1315 | ||
1c79356b | 1316 | if (rc != KERN_SUCCESS) { |
2d21ac55 | 1317 | |
1c79356b | 1318 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1319 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1320 | |
1321 | return ((rc == MACH_SEND_INTERRUPTED) ? | |
1c79356b A |
1322 | VM_FAULT_INTERRUPTED : |
1323 | VM_FAULT_MEMORY_ERROR); | |
1324 | } | |
2d21ac55 A |
1325 | if ((interruptible != THREAD_UNINT) && (current_thread()->sched_mode & TH_MODE_ABORT)) { |
1326 | ||
1c79356b | 1327 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1328 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1329 | |
1330 | return (VM_FAULT_INTERRUPTED); | |
1c79356b | 1331 | } |
2d21ac55 | 1332 | if (m == VM_PAGE_NULL && object->phys_contiguous) { |
91447636 A |
1333 | /* |
1334 | * No page here means that the object we | |
1335 | * initially looked up was "physically | |
1336 | * contiguous" (i.e. device memory). However, | |
1337 | * with Virtual VRAM, the object might not | |
1338 | * be backed by that device memory anymore, | |
1339 | * so we're done here only if the object is | |
1340 | * still "phys_contiguous". | |
1341 | * Otherwise, if the object is no longer | |
1342 | * "phys_contiguous", we need to retry the | |
1343 | * page fault against the object's new backing | |
1344 | * store (different memory object). | |
1345 | */ | |
0b4e3aa0 | 1346 | break; |
91447636 | 1347 | } |
2d21ac55 A |
1348 | /* |
1349 | * potentially a pagein fault | |
1350 | * if we make it through the state checks | |
1351 | * above, than we'll count it as such | |
1352 | */ | |
1353 | my_fault = DBG_PAGEIN_FAULT; | |
91447636 A |
1354 | |
1355 | /* | |
1356 | * Retry with same object/offset, since new data may | |
1357 | * be in a different page (i.e., m is meaningless at | |
1358 | * this point). | |
1359 | */ | |
1c79356b A |
1360 | continue; |
1361 | } | |
1362 | ||
1363 | /* | |
2d21ac55 A |
1364 | * We get here if the object has no pager, or an existence map |
1365 | * exists and indicates the page isn't present on the pager | |
1366 | * or we're unwiring a page. If a pager exists, but there | |
1367 | * is no existence map, then the m->absent case above handles | |
1368 | * the ZF case when the pager can't provide the page | |
1c79356b A |
1369 | */ |
1370 | #if TRACEFAULTPAGE | |
1371 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1372 | #endif | |
1373 | if (object == first_object) | |
1374 | first_m = m; | |
1375 | else | |
1376 | assert(m == VM_PAGE_NULL); | |
1377 | ||
1378 | XPR(XPR_VM_FAULT, | |
1379 | "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n", | |
1380 | (integer_t)object, offset, (integer_t)m, | |
1381 | (integer_t)object->shadow, 0); | |
2d21ac55 | 1382 | |
1c79356b | 1383 | next_object = object->shadow; |
2d21ac55 | 1384 | |
1c79356b | 1385 | if (next_object == VM_OBJECT_NULL) { |
1c79356b | 1386 | /* |
2d21ac55 A |
1387 | * we've hit the bottom of the shadown chain, |
1388 | * fill the page in the top object with zeros. | |
1c79356b | 1389 | */ |
2d21ac55 | 1390 | assert(!must_be_resident); |
1c79356b A |
1391 | |
1392 | if (object != first_object) { | |
1393 | vm_object_paging_end(object); | |
1394 | vm_object_unlock(object); | |
1395 | ||
1396 | object = first_object; | |
1397 | offset = first_offset; | |
1398 | vm_object_lock(object); | |
1399 | } | |
1c79356b A |
1400 | m = first_m; |
1401 | assert(m->object == object); | |
1402 | first_m = VM_PAGE_NULL; | |
1403 | ||
55e303ae | 1404 | /* |
2d21ac55 A |
1405 | * check for any conditions that prevent |
1406 | * us from creating a new zero-fill page | |
1407 | * vm_fault_check will do all of the | |
1408 | * fault cleanup in the case of an error condition | |
1409 | * including resetting the thread_interrupt_level | |
55e303ae | 1410 | */ |
2d21ac55 | 1411 | error = vm_fault_check(object, m, first_m, interruptible_state); |
55e303ae | 1412 | |
2d21ac55 A |
1413 | if (error != VM_FAULT_SUCCESS) |
1414 | return (error); | |
55e303ae | 1415 | |
2d21ac55 A |
1416 | if (m == VM_PAGE_NULL) { |
1417 | m = vm_page_grab(); | |
1c79356b | 1418 | |
2d21ac55 A |
1419 | if (m == VM_PAGE_NULL) { |
1420 | vm_fault_cleanup(object, VM_PAGE_NULL); | |
1421 | thread_interrupt_level(interruptible_state); | |
55e303ae | 1422 | |
2d21ac55 A |
1423 | return (VM_FAULT_MEMORY_SHORTAGE); |
1424 | } | |
1425 | vm_page_insert(m, object, offset); | |
0b4e3aa0 | 1426 | } |
2d21ac55 A |
1427 | my_fault = vm_fault_zero_page(m, no_zero_fill); |
1428 | ||
1c79356b | 1429 | break; |
2d21ac55 A |
1430 | |
1431 | } else { | |
1432 | /* | |
1433 | * Move on to the next object. Lock the next | |
1434 | * object before unlocking the current one. | |
1435 | */ | |
1c79356b A |
1436 | if ((object != first_object) || must_be_resident) |
1437 | vm_object_paging_end(object); | |
2d21ac55 | 1438 | |
1c79356b | 1439 | offset += object->shadow_offset; |
2d21ac55 A |
1440 | fault_info->lo_offset += object->shadow_offset; |
1441 | fault_info->hi_offset += object->shadow_offset; | |
1c79356b | 1442 | access_required = VM_PROT_READ; |
2d21ac55 | 1443 | |
1c79356b A |
1444 | vm_object_lock(next_object); |
1445 | vm_object_unlock(object); | |
2d21ac55 | 1446 | |
1c79356b A |
1447 | object = next_object; |
1448 | vm_object_paging_begin(object); | |
1449 | } | |
1450 | } | |
1451 | ||
1452 | /* | |
1453 | * PAGE HAS BEEN FOUND. | |
1454 | * | |
1455 | * This page (m) is: | |
1456 | * busy, so that we can play with it; | |
1457 | * not absent, so that nobody else will fill it; | |
1458 | * possibly eligible for pageout; | |
1459 | * | |
1460 | * The top-level page (first_m) is: | |
1461 | * VM_PAGE_NULL if the page was found in the | |
1462 | * top-level object; | |
1463 | * busy, not absent, and ineligible for pageout. | |
1464 | * | |
1465 | * The current object (object) is locked. A paging | |
1466 | * reference is held for the current and top-level | |
1467 | * objects. | |
1468 | */ | |
1469 | ||
1470 | #if TRACEFAULTPAGE | |
1471 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ | |
1472 | #endif | |
1473 | #if EXTRA_ASSERTIONS | |
2d21ac55 | 1474 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 A |
1475 | assert(m->busy && !m->absent); |
1476 | assert((first_m == VM_PAGE_NULL) || | |
1477 | (first_m->busy && !first_m->absent && | |
1478 | !first_m->active && !first_m->inactive)); | |
1479 | } | |
1c79356b A |
1480 | #endif /* EXTRA_ASSERTIONS */ |
1481 | ||
91447636 A |
1482 | /* |
1483 | * ENCRYPTED SWAP: | |
1484 | * If we found a page, we must have decrypted it before we | |
1485 | * get here... | |
1486 | */ | |
1487 | if (m != VM_PAGE_NULL) { | |
1488 | ASSERT_PAGE_DECRYPTED(m); | |
1489 | } | |
1490 | ||
1c79356b | 1491 | XPR(XPR_VM_FAULT, |
2d21ac55 | 1492 | "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n", |
1c79356b A |
1493 | (integer_t)object, offset, (integer_t)m, |
1494 | (integer_t)first_object, (integer_t)first_m); | |
2d21ac55 | 1495 | |
1c79356b | 1496 | /* |
2d21ac55 A |
1497 | * If the page is being written, but isn't |
1498 | * already owned by the top-level object, | |
1499 | * we have to copy it into a new page owned | |
1500 | * by the top-level object. | |
1c79356b | 1501 | */ |
0b4e3aa0 | 1502 | if ((object != first_object) && (m != VM_PAGE_NULL)) { |
1c79356b A |
1503 | |
1504 | #if TRACEFAULTPAGE | |
2d21ac55 | 1505 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
1c79356b A |
1506 | #endif |
1507 | if (fault_type & VM_PROT_WRITE) { | |
1508 | vm_page_t copy_m; | |
1509 | ||
2d21ac55 A |
1510 | /* |
1511 | * We only really need to copy if we | |
1512 | * want to write it. | |
1513 | */ | |
1c79356b A |
1514 | assert(!must_be_resident); |
1515 | ||
55e303ae A |
1516 | /* |
1517 | * are we protecting the system from | |
1518 | * backing store exhaustion. If so | |
1519 | * sleep unless we are privileged. | |
1520 | */ | |
2d21ac55 A |
1521 | if (vm_backing_store_low) { |
1522 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
55e303ae | 1523 | |
55e303ae A |
1524 | RELEASE_PAGE(m); |
1525 | vm_fault_cleanup(object, first_m); | |
2d21ac55 A |
1526 | |
1527 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
1528 | ||
91447636 | 1529 | thread_block(THREAD_CONTINUE_NULL); |
2d21ac55 A |
1530 | thread_interrupt_level(interruptible_state); |
1531 | ||
1532 | return (VM_FAULT_RETRY); | |
55e303ae A |
1533 | } |
1534 | } | |
1c79356b | 1535 | /* |
2d21ac55 A |
1536 | * If we try to collapse first_object at this |
1537 | * point, we may deadlock when we try to get | |
1538 | * the lock on an intermediate object (since we | |
1539 | * have the bottom object locked). We can't | |
1540 | * unlock the bottom object, because the page | |
1541 | * we found may move (by collapse) if we do. | |
1c79356b | 1542 | * |
2d21ac55 A |
1543 | * Instead, we first copy the page. Then, when |
1544 | * we have no more use for the bottom object, | |
1545 | * we unlock it and try to collapse. | |
1c79356b | 1546 | * |
2d21ac55 A |
1547 | * Note that we copy the page even if we didn't |
1548 | * need to... that's the breaks. | |
1c79356b A |
1549 | */ |
1550 | ||
1551 | /* | |
2d21ac55 | 1552 | * Allocate a page for the copy |
1c79356b A |
1553 | */ |
1554 | copy_m = vm_page_grab(); | |
2d21ac55 | 1555 | |
1c79356b A |
1556 | if (copy_m == VM_PAGE_NULL) { |
1557 | RELEASE_PAGE(m); | |
2d21ac55 | 1558 | |
1c79356b | 1559 | vm_fault_cleanup(object, first_m); |
9bccf70c | 1560 | thread_interrupt_level(interruptible_state); |
1c79356b | 1561 | |
2d21ac55 A |
1562 | return (VM_FAULT_MEMORY_SHORTAGE); |
1563 | } | |
1c79356b A |
1564 | XPR(XPR_VM_FAULT, |
1565 | "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n", | |
1566 | (integer_t)object, offset, | |
1567 | (integer_t)m, (integer_t)copy_m, 0); | |
2d21ac55 | 1568 | |
1c79356b A |
1569 | vm_page_copy(m, copy_m); |
1570 | ||
1571 | /* | |
2d21ac55 A |
1572 | * If another map is truly sharing this |
1573 | * page with us, we have to flush all | |
1574 | * uses of the original page, since we | |
1575 | * can't distinguish those which want the | |
1576 | * original from those which need the | |
1577 | * new copy. | |
1c79356b | 1578 | * |
2d21ac55 A |
1579 | * XXXO If we know that only one map has |
1580 | * access to this page, then we could | |
1581 | * avoid the pmap_disconnect() call. | |
1c79356b | 1582 | */ |
2d21ac55 A |
1583 | if (m->pmapped) |
1584 | pmap_disconnect(m->phys_page); | |
1c79356b | 1585 | |
1c79356b | 1586 | assert(!m->cleaning); |
1c79356b A |
1587 | |
1588 | /* | |
2d21ac55 | 1589 | * We no longer need the old page or object. |
1c79356b | 1590 | */ |
1c79356b A |
1591 | PAGE_WAKEUP_DONE(m); |
1592 | vm_object_paging_end(object); | |
1593 | vm_object_unlock(object); | |
1594 | ||
2d21ac55 A |
1595 | my_fault = DBG_COW_FAULT; |
1596 | VM_STAT_INCR(cow_faults); | |
1597 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
1c79356b | 1598 | current_task()->cow_faults++; |
2d21ac55 | 1599 | |
1c79356b A |
1600 | object = first_object; |
1601 | offset = first_offset; | |
1602 | ||
1603 | vm_object_lock(object); | |
2d21ac55 A |
1604 | /* |
1605 | * get rid of the place holder | |
1606 | * page that we soldered in earlier | |
1607 | */ | |
1c79356b A |
1608 | VM_PAGE_FREE(first_m); |
1609 | first_m = VM_PAGE_NULL; | |
2d21ac55 A |
1610 | |
1611 | /* | |
1612 | * and replace it with the | |
1613 | * page we just copied into | |
1614 | */ | |
1c79356b A |
1615 | assert(copy_m->busy); |
1616 | vm_page_insert(copy_m, object, offset); | |
2d21ac55 | 1617 | copy_m->dirty = TRUE; |
1c79356b | 1618 | |
2d21ac55 | 1619 | m = copy_m; |
1c79356b | 1620 | /* |
2d21ac55 A |
1621 | * Now that we've gotten the copy out of the |
1622 | * way, let's try to collapse the top object. | |
1623 | * But we have to play ugly games with | |
1624 | * paging_in_progress to do that... | |
1c79356b | 1625 | */ |
1c79356b | 1626 | vm_object_paging_end(object); |
0c530ab8 | 1627 | vm_object_collapse(object, offset, TRUE); |
1c79356b A |
1628 | vm_object_paging_begin(object); |
1629 | ||
2d21ac55 | 1630 | } else |
1c79356b | 1631 | *protection &= (~VM_PROT_WRITE); |
1c79356b | 1632 | } |
1c79356b | 1633 | /* |
2d21ac55 A |
1634 | * Now check whether the page needs to be pushed into the |
1635 | * copy object. The use of asymmetric copy on write for | |
1636 | * shared temporary objects means that we may do two copies to | |
1637 | * satisfy the fault; one above to get the page from a | |
1638 | * shadowed object, and one here to push it into the copy. | |
1c79356b | 1639 | */ |
2d21ac55 | 1640 | try_failed_count = 0; |
1c79356b | 1641 | |
2d21ac55 | 1642 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL && (m != VM_PAGE_NULL)) { |
1c79356b A |
1643 | vm_object_offset_t copy_offset; |
1644 | vm_page_t copy_m; | |
1645 | ||
1646 | #if TRACEFAULTPAGE | |
1647 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ | |
1648 | #endif | |
1649 | /* | |
2d21ac55 A |
1650 | * If the page is being written, but hasn't been |
1651 | * copied to the copy-object, we have to copy it there. | |
1c79356b | 1652 | */ |
1c79356b A |
1653 | if ((fault_type & VM_PROT_WRITE) == 0) { |
1654 | *protection &= ~VM_PROT_WRITE; | |
1655 | break; | |
1656 | } | |
1657 | ||
1658 | /* | |
2d21ac55 A |
1659 | * If the page was guaranteed to be resident, |
1660 | * we must have already performed the copy. | |
1c79356b | 1661 | */ |
1c79356b A |
1662 | if (must_be_resident) |
1663 | break; | |
1664 | ||
1665 | /* | |
2d21ac55 | 1666 | * Try to get the lock on the copy_object. |
1c79356b A |
1667 | */ |
1668 | if (!vm_object_lock_try(copy_object)) { | |
1c79356b | 1669 | |
2d21ac55 A |
1670 | vm_object_unlock(object); |
1671 | try_failed_count++; | |
1c79356b | 1672 | |
2d21ac55 | 1673 | mutex_pause(try_failed_count); /* wait a bit */ |
1c79356b | 1674 | vm_object_lock(object); |
2d21ac55 | 1675 | |
1c79356b A |
1676 | continue; |
1677 | } | |
2d21ac55 | 1678 | try_failed_count = 0; |
1c79356b A |
1679 | |
1680 | /* | |
2d21ac55 A |
1681 | * Make another reference to the copy-object, |
1682 | * to keep it from disappearing during the | |
1683 | * copy. | |
1c79356b | 1684 | */ |
2d21ac55 | 1685 | vm_object_reference_locked(copy_object); |
1c79356b A |
1686 | |
1687 | /* | |
2d21ac55 | 1688 | * Does the page exist in the copy? |
1c79356b A |
1689 | */ |
1690 | copy_offset = first_offset - copy_object->shadow_offset; | |
2d21ac55 | 1691 | |
1c79356b A |
1692 | if (copy_object->size <= copy_offset) |
1693 | /* | |
1694 | * Copy object doesn't cover this page -- do nothing. | |
1695 | */ | |
1696 | ; | |
2d21ac55 A |
1697 | else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) { |
1698 | /* | |
1699 | * Page currently exists in the copy object | |
1700 | */ | |
1c79356b A |
1701 | if (copy_m->busy) { |
1702 | /* | |
2d21ac55 A |
1703 | * If the page is being brought |
1704 | * in, wait for it and then retry. | |
1c79356b A |
1705 | */ |
1706 | RELEASE_PAGE(m); | |
2d21ac55 A |
1707 | |
1708 | /* | |
1709 | * take an extra ref so object won't die | |
1710 | */ | |
1711 | vm_object_reference_locked(copy_object); | |
1c79356b A |
1712 | vm_object_unlock(copy_object); |
1713 | vm_fault_cleanup(object, first_m); | |
1714 | counter(c_vm_fault_page_block_backoff_kernel++); | |
2d21ac55 | 1715 | |
1c79356b A |
1716 | vm_object_lock(copy_object); |
1717 | assert(copy_object->ref_count > 0); | |
1718 | VM_OBJ_RES_DECR(copy_object); | |
2d21ac55 | 1719 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
1720 | copy_object->ref_count--; |
1721 | assert(copy_object->ref_count > 0); | |
1722 | copy_m = vm_page_lookup(copy_object, copy_offset); | |
91447636 A |
1723 | /* |
1724 | * ENCRYPTED SWAP: | |
1725 | * it's OK if the "copy_m" page is encrypted, | |
1726 | * because we're not moving it nor handling its | |
1727 | * contents. | |
1728 | */ | |
1c79356b A |
1729 | if (copy_m != VM_PAGE_NULL && copy_m->busy) { |
1730 | PAGE_ASSERT_WAIT(copy_m, interruptible); | |
2d21ac55 | 1731 | |
1c79356b | 1732 | vm_object_unlock(copy_object); |
9bccf70c | 1733 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 1734 | vm_object_deallocate(copy_object); |
2d21ac55 | 1735 | |
1c79356b A |
1736 | goto backoff; |
1737 | } else { | |
1738 | vm_object_unlock(copy_object); | |
1739 | vm_object_deallocate(copy_object); | |
9bccf70c | 1740 | thread_interrupt_level(interruptible_state); |
2d21ac55 A |
1741 | |
1742 | return (VM_FAULT_RETRY); | |
1c79356b A |
1743 | } |
1744 | } | |
1745 | } | |
1746 | else if (!PAGED_OUT(copy_object, copy_offset)) { | |
1747 | /* | |
1748 | * If PAGED_OUT is TRUE, then the page used to exist | |
1749 | * in the copy-object, and has already been paged out. | |
1750 | * We don't need to repeat this. If PAGED_OUT is | |
1751 | * FALSE, then either we don't know (!pager_created, | |
1752 | * for example) or it hasn't been paged out. | |
1753 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) | |
1754 | * We must copy the page to the copy object. | |
1755 | */ | |
1756 | ||
2d21ac55 A |
1757 | if (vm_backing_store_low) { |
1758 | /* | |
1759 | * we are protecting the system from | |
1760 | * backing store exhaustion. If so | |
1761 | * sleep unless we are privileged. | |
1762 | */ | |
1763 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) { | |
1764 | assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT); | |
55e303ae | 1765 | |
55e303ae A |
1766 | RELEASE_PAGE(m); |
1767 | VM_OBJ_RES_DECR(copy_object); | |
2d21ac55 | 1768 | vm_object_lock_assert_exclusive(copy_object); |
55e303ae A |
1769 | copy_object->ref_count--; |
1770 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 1771 | |
55e303ae A |
1772 | vm_object_unlock(copy_object); |
1773 | vm_fault_cleanup(object, first_m); | |
91447636 | 1774 | thread_block(THREAD_CONTINUE_NULL); |
2d21ac55 A |
1775 | thread_interrupt_level(interruptible_state); |
1776 | ||
1777 | return (VM_FAULT_RETRY); | |
55e303ae A |
1778 | } |
1779 | } | |
1c79356b | 1780 | /* |
2d21ac55 | 1781 | * Allocate a page for the copy |
1c79356b A |
1782 | */ |
1783 | copy_m = vm_page_alloc(copy_object, copy_offset); | |
2d21ac55 | 1784 | |
1c79356b A |
1785 | if (copy_m == VM_PAGE_NULL) { |
1786 | RELEASE_PAGE(m); | |
2d21ac55 | 1787 | |
1c79356b | 1788 | VM_OBJ_RES_DECR(copy_object); |
2d21ac55 | 1789 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
1790 | copy_object->ref_count--; |
1791 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 1792 | |
1c79356b A |
1793 | vm_object_unlock(copy_object); |
1794 | vm_fault_cleanup(object, first_m); | |
9bccf70c | 1795 | thread_interrupt_level(interruptible_state); |
1c79356b | 1796 | |
2d21ac55 A |
1797 | return (VM_FAULT_MEMORY_SHORTAGE); |
1798 | } | |
1c79356b | 1799 | /* |
2d21ac55 | 1800 | * Must copy page into copy-object. |
1c79356b | 1801 | */ |
1c79356b A |
1802 | vm_page_copy(m, copy_m); |
1803 | ||
1804 | /* | |
2d21ac55 A |
1805 | * If the old page was in use by any users |
1806 | * of the copy-object, it must be removed | |
1807 | * from all pmaps. (We can't know which | |
1808 | * pmaps use it.) | |
1c79356b | 1809 | */ |
2d21ac55 A |
1810 | if (m->pmapped) |
1811 | pmap_disconnect(m->phys_page); | |
1c79356b A |
1812 | |
1813 | /* | |
2d21ac55 A |
1814 | * If there's a pager, then immediately |
1815 | * page out this page, using the "initialize" | |
1816 | * option. Else, we use the copy. | |
1c79356b | 1817 | */ |
2d21ac55 A |
1818 | if ((!copy_object->pager_created) |
1819 | #if MACH_PAGEMAP | |
1820 | || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT | |
1c79356b | 1821 | #endif |
2d21ac55 A |
1822 | ) { |
1823 | ||
1824 | vm_page_lockspin_queues(); | |
1825 | assert(!m->cleaning); | |
1c79356b A |
1826 | vm_page_activate(copy_m); |
1827 | vm_page_unlock_queues(); | |
2d21ac55 A |
1828 | |
1829 | copy_m->dirty = TRUE; | |
1c79356b A |
1830 | PAGE_WAKEUP_DONE(copy_m); |
1831 | } | |
1832 | else { | |
1833 | assert(copy_m->busy == TRUE); | |
2d21ac55 | 1834 | assert(!m->cleaning); |
1c79356b A |
1835 | |
1836 | /* | |
2d21ac55 | 1837 | * dirty is protected by the object lock |
1c79356b | 1838 | */ |
2d21ac55 | 1839 | copy_m->dirty = TRUE; |
1c79356b | 1840 | |
2d21ac55 A |
1841 | /* |
1842 | * The page is already ready for pageout: | |
1843 | * not on pageout queues and busy. | |
1844 | * Unlock everything except the | |
1845 | * copy_object itself. | |
1846 | */ | |
1c79356b A |
1847 | vm_object_unlock(object); |
1848 | ||
1849 | /* | |
2d21ac55 A |
1850 | * Write the page to the copy-object, |
1851 | * flushing it from the kernel. | |
1c79356b | 1852 | */ |
1c79356b A |
1853 | vm_pageout_initialize_page(copy_m); |
1854 | ||
1855 | /* | |
2d21ac55 A |
1856 | * Since the pageout may have |
1857 | * temporarily dropped the | |
1858 | * copy_object's lock, we | |
1859 | * check whether we'll have | |
1860 | * to deallocate the hard way. | |
1c79356b | 1861 | */ |
2d21ac55 | 1862 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { |
1c79356b A |
1863 | vm_object_unlock(copy_object); |
1864 | vm_object_deallocate(copy_object); | |
1865 | vm_object_lock(object); | |
2d21ac55 | 1866 | |
1c79356b A |
1867 | continue; |
1868 | } | |
1c79356b | 1869 | /* |
2d21ac55 A |
1870 | * Pick back up the old object's |
1871 | * lock. [It is safe to do so, | |
1872 | * since it must be deeper in the | |
1873 | * object tree.] | |
1c79356b | 1874 | */ |
1c79356b A |
1875 | vm_object_lock(object); |
1876 | } | |
1c79356b | 1877 | /* |
2d21ac55 A |
1878 | * Because we're pushing a page upward |
1879 | * in the object tree, we must restart | |
1880 | * any faults that are waiting here. | |
1881 | * [Note that this is an expansion of | |
1882 | * PAGE_WAKEUP that uses the THREAD_RESTART | |
1883 | * wait result]. Can't turn off the page's | |
1884 | * busy bit because we're not done with it. | |
1c79356b | 1885 | */ |
1c79356b A |
1886 | if (m->wanted) { |
1887 | m->wanted = FALSE; | |
2d21ac55 | 1888 | thread_wakeup_with_result((event_t) m, THREAD_RESTART); |
1c79356b A |
1889 | } |
1890 | } | |
1c79356b | 1891 | /* |
2d21ac55 A |
1892 | * The reference count on copy_object must be |
1893 | * at least 2: one for our extra reference, | |
1894 | * and at least one from the outside world | |
1895 | * (we checked that when we last locked | |
1896 | * copy_object). | |
1c79356b | 1897 | */ |
2d21ac55 | 1898 | vm_object_lock_assert_exclusive(copy_object); |
1c79356b A |
1899 | copy_object->ref_count--; |
1900 | assert(copy_object->ref_count > 0); | |
2d21ac55 | 1901 | |
1c79356b A |
1902 | VM_OBJ_RES_DECR(copy_object); |
1903 | vm_object_unlock(copy_object); | |
1904 | ||
1905 | break; | |
1906 | } | |
1c79356b A |
1907 | *result_page = m; |
1908 | *top_page = first_m; | |
1909 | ||
1910 | XPR(XPR_VM_FAULT, | |
1911 | "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n", | |
1912 | (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0); | |
1c79356b | 1913 | |
2d21ac55 A |
1914 | if (m != VM_PAGE_NULL) { |
1915 | if (my_fault == DBG_PAGEIN_FAULT) { | |
55e303ae | 1916 | |
2d21ac55 A |
1917 | VM_STAT_INCR(pageins); |
1918 | DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL); | |
1919 | DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); | |
1920 | current_task()->pageins++; | |
1921 | ||
1922 | if (m->object->internal) { | |
1923 | DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL); | |
1924 | } else { | |
1925 | DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL); | |
1926 | } | |
1927 | ||
1928 | /* | |
1929 | * evaluate access pattern and update state | |
1930 | * vm_fault_deactivate_behind depends on the | |
1931 | * state being up to date | |
1932 | */ | |
1933 | vm_fault_is_sequential(object, offset, fault_info->behavior); | |
1934 | ||
1935 | vm_fault_deactivate_behind(object, offset, fault_info->behavior); | |
1936 | } | |
1937 | if (type_of_fault) | |
1938 | *type_of_fault = my_fault; | |
1939 | } else | |
55e303ae | 1940 | vm_object_unlock(object); |
2d21ac55 | 1941 | |
55e303ae A |
1942 | thread_interrupt_level(interruptible_state); |
1943 | ||
1c79356b A |
1944 | #if TRACEFAULTPAGE |
1945 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ | |
1946 | #endif | |
2d21ac55 | 1947 | return (VM_FAULT_SUCCESS); |
1c79356b | 1948 | |
2d21ac55 | 1949 | backoff: |
9bccf70c | 1950 | thread_interrupt_level(interruptible_state); |
2d21ac55 | 1951 | |
1c79356b | 1952 | if (wait_result == THREAD_INTERRUPTED) |
2d21ac55 A |
1953 | return (VM_FAULT_INTERRUPTED); |
1954 | return (VM_FAULT_RETRY); | |
1c79356b A |
1955 | |
1956 | #undef RELEASE_PAGE | |
1957 | } | |
1958 | ||
2d21ac55 A |
1959 | |
1960 | ||
55e303ae | 1961 | /* |
2d21ac55 A |
1962 | * page queue lock must NOT be held |
1963 | * m->object must be locked | |
1964 | * | |
1965 | * NOTE: m->object could be locked "shared" only if we are called | |
1966 | * from vm_fault() as part of a soft fault. If so, we must be | |
1967 | * careful not to modify the VM object in any way that is not | |
1968 | * legal under a shared lock... | |
55e303ae | 1969 | */ |
2d21ac55 A |
1970 | unsigned long cs_enter_tainted_rejected = 0; |
1971 | unsigned long cs_enter_tainted_accepted = 0; | |
1972 | kern_return_t | |
1973 | vm_fault_enter(vm_page_t m, | |
1974 | pmap_t pmap, | |
1975 | vm_map_offset_t vaddr, | |
1976 | vm_prot_t prot, | |
1977 | boolean_t wired, | |
1978 | boolean_t change_wiring, | |
1979 | boolean_t no_cache, | |
1980 | int *type_of_fault) | |
55e303ae | 1981 | { |
2d21ac55 | 1982 | unsigned int cache_attr; |
55e303ae | 1983 | kern_return_t kr; |
2d21ac55 A |
1984 | boolean_t previously_pmapped = m->pmapped; |
1985 | ||
1986 | vm_object_lock_assert_held(m->object); | |
1987 | #if DEBUG | |
1988 | mutex_assert(&vm_page_queue_lock, MA_NOTOWNED); | |
1989 | #endif /* DEBUG */ | |
1990 | ||
1991 | if (m->phys_page == vm_page_guard_addr) { | |
1992 | assert(m->fictitious); | |
1993 | return KERN_SUCCESS; | |
1994 | } | |
1995 | ||
1996 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
1997 | ||
4a3eedf9 A |
1998 | if (m->object->code_signed && pmap != kernel_pmap && |
1999 | (!m->cs_validated || m->wpmapped)) { | |
2d21ac55 A |
2000 | vm_object_lock_assert_exclusive(m->object); |
2001 | ||
4a3eedf9 A |
2002 | if (m->cs_validated && m->wpmapped) { |
2003 | vm_cs_revalidates++; | |
2004 | } | |
2d21ac55 | 2005 | |
4a3eedf9 A |
2006 | /* |
2007 | * CODE SIGNING: | |
2008 | * This page comes from a VM object backed by a signed | |
2009 | * memory object. We are about to enter it into a process | |
2010 | * address space, so we need to validate its signature. | |
2011 | */ | |
2012 | /* VM map is locked, so 1 ref will remain on VM object */ | |
2d21ac55 A |
2013 | vm_page_validate_cs(m); |
2014 | } | |
2015 | ||
2016 | if (m->pmapped == FALSE) { | |
2017 | /* | |
2018 | * This is the first time this page is being | |
2019 | * mapped in an address space (pmapped == FALSE). | |
2020 | * | |
2021 | * Part of that page may still be in the data cache | |
2022 | * and not flushed to memory. In case we end up | |
2023 | * accessing that page via the instruction cache, | |
2024 | * we need to ensure that the 2 caches are in sync. | |
2025 | */ | |
2026 | pmap_sync_page_data_phys(m->phys_page); | |
2027 | ||
2028 | if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) { | |
2029 | /* | |
2030 | * found it in the cache, but this | |
2031 | * is the first fault-in of the page (m->pmapped == FALSE) | |
2032 | * so it must have come in as part of | |
2033 | * a cluster... account 1 pagein against it | |
2034 | */ | |
2035 | VM_STAT_INCR(pageins); | |
2036 | DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL); | |
2037 | ||
2038 | if (m->object->internal) { | |
2039 | DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL); | |
2040 | } else { | |
2041 | DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL); | |
55e303ae | 2042 | } |
2d21ac55 A |
2043 | |
2044 | current_task()->pageins++; | |
2045 | ||
2046 | *type_of_fault = DBG_PAGEIN_FAULT; | |
2047 | } | |
2048 | VM_PAGE_CONSUME_CLUSTERED(m); | |
2049 | ||
2050 | } else if (cache_attr != VM_WIMG_DEFAULT) | |
2051 | pmap_sync_page_attributes_phys(m->phys_page); | |
2052 | ||
2053 | if (*type_of_fault != DBG_COW_FAULT) { | |
2054 | DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); | |
2055 | ||
2056 | if (pmap == kernel_pmap) { | |
2057 | DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL); | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | if (m->cs_tainted) { | |
2062 | /* | |
2063 | * CODE SIGNING: | |
2064 | * This page has been tainted and can not be trusted. | |
2065 | * Let's notify the current process and let it take any | |
2066 | * necessary precautions before we enter the tainted page | |
2067 | * into its address space. | |
2068 | */ | |
2069 | if (cs_invalid_page()) { | |
2070 | /* reject the tainted page: abort the page fault */ | |
2071 | kr = KERN_MEMORY_ERROR; | |
2072 | cs_enter_tainted_rejected++; | |
2073 | } else { | |
2074 | /* proceed with the tainted page */ | |
2075 | kr = KERN_SUCCESS; | |
2076 | cs_enter_tainted_accepted++; | |
2077 | } | |
2078 | if (cs_debug || kr != KERN_SUCCESS) { | |
2079 | printf("CODESIGNING: vm_fault_enter(0x%llx): " | |
2080 | "page %p obj %p off 0x%llx *** TAINTED ***\n", | |
2081 | (long long)vaddr, m, m->object, m->offset); | |
2082 | } | |
2083 | } else { | |
2084 | /* proceed with the valid page */ | |
2085 | kr = KERN_SUCCESS; | |
2086 | } | |
2087 | ||
2088 | if (kr == KERN_SUCCESS) { | |
2089 | /* | |
2090 | * NOTE: we may only hold the vm_object lock SHARED | |
2091 | * at this point, but the update of pmapped is ok | |
2092 | * since this is the ONLY bit updated behind the SHARED | |
2093 | * lock... however, we need to figure out how to do an atomic | |
2094 | * update on a bit field to make this less fragile... right | |
2095 | * now I don'w know how to coerce 'C' to give me the offset info | |
2096 | * that's needed for an AtomicCompareAndSwap | |
2097 | */ | |
2098 | m->pmapped = TRUE; | |
4a3eedf9 A |
2099 | if (prot & VM_PROT_WRITE) { |
2100 | vm_object_lock_assert_exclusive(m->object); | |
2101 | m->wpmapped = TRUE; | |
2102 | } | |
2d21ac55 A |
2103 | |
2104 | PMAP_ENTER(pmap, vaddr, m, prot, cache_attr, wired); | |
2105 | } | |
2106 | ||
2107 | /* | |
2108 | * Hold queues lock to manipulate | |
2109 | * the page queues. Change wiring | |
2110 | * case is obvious. | |
2111 | */ | |
2112 | if (change_wiring) { | |
2113 | vm_page_lockspin_queues(); | |
2114 | ||
2115 | if (wired) { | |
2116 | if (kr == KERN_SUCCESS) { | |
2117 | vm_page_wire(m); | |
55e303ae | 2118 | } |
2d21ac55 A |
2119 | } else { |
2120 | vm_page_unwire(m); | |
2121 | } | |
2122 | vm_page_unlock_queues(); | |
2123 | ||
2124 | } else { | |
2125 | if (kr != KERN_SUCCESS) { | |
2126 | vm_page_lock_queues(); | |
2127 | vm_page_deactivate(m); | |
2128 | vm_page_unlock_queues(); | |
2129 | } else { | |
2130 | if (((!m->active && !m->inactive) || no_cache) && !m->wire_count && !m->throttled) { | |
2131 | vm_page_lockspin_queues(); | |
2132 | /* | |
2133 | * test again now that we hold the page queue lock | |
2134 | */ | |
2135 | if (((!m->active && !m->inactive) || no_cache) && !m->wire_count) { | |
2136 | ||
2137 | /* | |
2138 | * If this is a no_cache mapping and the page has never been | |
2139 | * mapped before or was previously a no_cache page, then we | |
2140 | * want to leave pages in the speculative state so that they | |
2141 | * can be readily recycled if free memory runs low. Otherwise | |
2142 | * the page is activated as normal. | |
2143 | */ | |
2144 | ||
2145 | if (no_cache && (!previously_pmapped || m->no_cache)) { | |
2146 | m->no_cache = TRUE; | |
2147 | ||
2148 | if (m->active || m->inactive) | |
2149 | VM_PAGE_QUEUES_REMOVE(m); | |
2150 | ||
2151 | if (!m->speculative) | |
2152 | vm_page_speculate(m, TRUE); | |
2153 | ||
2154 | } else if (!m->active && !m->inactive) | |
2155 | vm_page_activate(m); | |
2156 | ||
2157 | } | |
2158 | ||
2159 | vm_page_unlock_queues(); | |
55e303ae | 2160 | } |
55e303ae A |
2161 | } |
2162 | } | |
2d21ac55 | 2163 | return kr; |
55e303ae A |
2164 | } |
2165 | ||
2d21ac55 | 2166 | |
1c79356b A |
2167 | /* |
2168 | * Routine: vm_fault | |
2169 | * Purpose: | |
2170 | * Handle page faults, including pseudo-faults | |
2171 | * used to change the wiring status of pages. | |
2172 | * Returns: | |
2173 | * Explicit continuations have been removed. | |
2174 | * Implementation: | |
2175 | * vm_fault and vm_fault_page save mucho state | |
2176 | * in the moral equivalent of a closure. The state | |
2177 | * structure is allocated when first entering vm_fault | |
2178 | * and deallocated when leaving vm_fault. | |
2179 | */ | |
2180 | ||
91447636 A |
2181 | extern int _map_enter_debug; |
2182 | ||
2d21ac55 A |
2183 | unsigned long vm_fault_collapse_total = 0; |
2184 | unsigned long vm_fault_collapse_skipped = 0; | |
2185 | ||
1c79356b A |
2186 | kern_return_t |
2187 | vm_fault( | |
2188 | vm_map_t map, | |
91447636 | 2189 | vm_map_offset_t vaddr, |
1c79356b A |
2190 | vm_prot_t fault_type, |
2191 | boolean_t change_wiring, | |
9bccf70c A |
2192 | int interruptible, |
2193 | pmap_t caller_pmap, | |
91447636 | 2194 | vm_map_offset_t caller_pmap_addr) |
1c79356b A |
2195 | { |
2196 | vm_map_version_t version; /* Map version for verificiation */ | |
2197 | boolean_t wired; /* Should mapping be wired down? */ | |
2198 | vm_object_t object; /* Top-level object */ | |
2199 | vm_object_offset_t offset; /* Top-level offset */ | |
2200 | vm_prot_t prot; /* Protection for mapping */ | |
1c79356b A |
2201 | vm_object_t old_copy_object; /* Saved copy object */ |
2202 | vm_page_t result_page; /* Result of vm_fault_page */ | |
2203 | vm_page_t top_page; /* Placeholder page */ | |
2204 | kern_return_t kr; | |
2205 | ||
1c79356b | 2206 | vm_page_t m; /* Fast access to result_page */ |
2d21ac55 | 2207 | kern_return_t error_code; |
1c79356b | 2208 | vm_object_t cur_object; |
1c79356b A |
2209 | vm_object_offset_t cur_offset; |
2210 | vm_page_t cur_m; | |
2211 | vm_object_t new_object; | |
2212 | int type_of_fault; | |
2d21ac55 A |
2213 | pmap_t pmap; |
2214 | boolean_t interruptible_state; | |
91447636 | 2215 | vm_map_t real_map = map; |
1c79356b | 2216 | vm_map_t original_map = map; |
0c530ab8 | 2217 | vm_prot_t original_fault_type; |
2d21ac55 A |
2218 | struct vm_object_fault_info fault_info; |
2219 | boolean_t need_collapse = FALSE; | |
2220 | int object_lock_type = 0; | |
2221 | int cur_object_lock_type; | |
1c79356b | 2222 | |
de355530 | 2223 | |
2d21ac55 A |
2224 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, |
2225 | (int)((uint64_t)vaddr >> 32), | |
2226 | (int)vaddr, | |
1c79356b A |
2227 | 0, |
2228 | 0, | |
2229 | 0); | |
2230 | ||
0c530ab8 | 2231 | if (get_preemption_level() != 0) { |
2d21ac55 A |
2232 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
2233 | (int)((uint64_t)vaddr >> 32), | |
2234 | (int)vaddr, | |
0c530ab8 A |
2235 | KERN_FAILURE, |
2236 | 0, | |
2237 | 0); | |
2238 | ||
2239 | return (KERN_FAILURE); | |
9bccf70c | 2240 | } |
9bccf70c | 2241 | interruptible_state = thread_interrupt_level(interruptible); |
1c79356b | 2242 | |
2d21ac55 A |
2243 | VM_STAT_INCR(faults); |
2244 | current_task()->faults++; | |
2245 | original_fault_type = fault_type; | |
2246 | ||
2247 | if (fault_type & VM_PROT_WRITE) | |
2248 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2249 | else | |
2250 | object_lock_type = OBJECT_LOCK_SHARED; | |
2251 | ||
2252 | cur_object_lock_type = OBJECT_LOCK_SHARED; | |
2253 | ||
2254 | RetryFault: | |
1c79356b A |
2255 | /* |
2256 | * assume we will hit a page in the cache | |
2257 | * otherwise, explicitly override with | |
2258 | * the real fault type once we determine it | |
2259 | */ | |
2260 | type_of_fault = DBG_CACHE_HIT_FAULT; | |
2261 | ||
1c79356b A |
2262 | /* |
2263 | * Find the backing store object and offset into | |
2264 | * it to begin the search. | |
2265 | */ | |
0c530ab8 | 2266 | fault_type = original_fault_type; |
1c79356b A |
2267 | map = original_map; |
2268 | vm_map_lock_read(map); | |
1c79356b | 2269 | |
2d21ac55 A |
2270 | kr = vm_map_lookup_locked(&map, vaddr, fault_type, |
2271 | object_lock_type, &version, | |
2272 | &object, &offset, &prot, &wired, | |
2273 | &fault_info, | |
2274 | &real_map); | |
1c79356b A |
2275 | |
2276 | if (kr != KERN_SUCCESS) { | |
2277 | vm_map_unlock_read(map); | |
2278 | goto done; | |
2279 | } | |
2d21ac55 A |
2280 | pmap = real_map->pmap; |
2281 | fault_info.interruptible = interruptible; | |
1c79356b A |
2282 | |
2283 | /* | |
2d21ac55 A |
2284 | * If the page is wired, we must fault for the current protection |
2285 | * value, to avoid further faults. | |
1c79356b | 2286 | */ |
2d21ac55 | 2287 | if (wired) { |
1c79356b | 2288 | fault_type = prot | VM_PROT_WRITE; |
2d21ac55 A |
2289 | /* |
2290 | * since we're treating this fault as a 'write' | |
2291 | * we must hold the top object lock exclusively | |
2292 | */ | |
2293 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2294 | ||
2295 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2296 | ||
2297 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2298 | /* | |
2299 | * couldn't upgrade, so explictly | |
2300 | * take the lock exclusively | |
2301 | */ | |
2302 | vm_object_lock(object); | |
2303 | } | |
2304 | } | |
2305 | } | |
1c79356b A |
2306 | |
2307 | #if VM_FAULT_CLASSIFY | |
2308 | /* | |
2309 | * Temporary data gathering code | |
2310 | */ | |
2311 | vm_fault_classify(object, offset, fault_type); | |
2312 | #endif | |
2313 | /* | |
2314 | * Fast fault code. The basic idea is to do as much as | |
2315 | * possible while holding the map lock and object locks. | |
2316 | * Busy pages are not used until the object lock has to | |
2317 | * be dropped to do something (copy, zero fill, pmap enter). | |
2318 | * Similarly, paging references aren't acquired until that | |
2319 | * point, and object references aren't used. | |
2320 | * | |
2321 | * If we can figure out what to do | |
2322 | * (zero fill, copy on write, pmap enter) while holding | |
2323 | * the locks, then it gets done. Otherwise, we give up, | |
2324 | * and use the original fault path (which doesn't hold | |
2325 | * the map lock, and relies on busy pages). | |
2326 | * The give up cases include: | |
2327 | * - Have to talk to pager. | |
2328 | * - Page is busy, absent or in error. | |
2329 | * - Pager has locked out desired access. | |
2330 | * - Fault needs to be restarted. | |
2331 | * - Have to push page into copy object. | |
2332 | * | |
2333 | * The code is an infinite loop that moves one level down | |
2334 | * the shadow chain each time. cur_object and cur_offset | |
2335 | * refer to the current object being examined. object and offset | |
2336 | * are the original object from the map. The loop is at the | |
2337 | * top level if and only if object and cur_object are the same. | |
2338 | * | |
2339 | * Invariants: Map lock is held throughout. Lock is held on | |
2340 | * original object and cur_object (if different) when | |
2341 | * continuing or exiting loop. | |
2342 | * | |
2343 | */ | |
2344 | ||
2345 | ||
2346 | /* | |
2d21ac55 A |
2347 | * If this page is to be inserted in a copy delay object |
2348 | * for writing, and if the object has a copy, then the | |
2349 | * copy delay strategy is implemented in the slow fault page. | |
1c79356b | 2350 | */ |
2d21ac55 A |
2351 | if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY && |
2352 | object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) | |
2353 | goto handle_copy_delay; | |
2354 | ||
1c79356b A |
2355 | cur_object = object; |
2356 | cur_offset = offset; | |
2357 | ||
2358 | while (TRUE) { | |
2359 | m = vm_page_lookup(cur_object, cur_offset); | |
2d21ac55 | 2360 | |
1c79356b | 2361 | if (m != VM_PAGE_NULL) { |
55e303ae | 2362 | if (m->busy) { |
143cc14e A |
2363 | wait_result_t result; |
2364 | ||
2d21ac55 A |
2365 | /* |
2366 | * in order to do the PAGE_ASSERT_WAIT, we must | |
2367 | * have object that 'm' belongs to locked exclusively | |
2368 | */ | |
2369 | if (object != cur_object) { | |
143cc14e A |
2370 | vm_object_unlock(object); |
2371 | ||
2d21ac55 A |
2372 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
2373 | ||
2374 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2375 | ||
2376 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
2377 | /* | |
2378 | * couldn't upgrade so go do a full retry | |
2379 | * immediately since we've already dropped | |
2380 | * the top object lock associated with this page | |
2381 | * and the current one got dropped due to the | |
2382 | * failed upgrade... the state is no longer valid | |
2383 | */ | |
2384 | vm_map_unlock_read(map); | |
2385 | if (real_map != map) | |
2386 | vm_map_unlock(real_map); | |
2387 | ||
2388 | goto RetryFault; | |
2389 | } | |
2390 | } | |
2391 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2392 | ||
2393 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2394 | ||
2395 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2396 | /* | |
2397 | * couldn't upgrade, so explictly take the lock | |
2398 | * exclusively and go relookup the page since we | |
2399 | * will have dropped the object lock and | |
2400 | * a different thread could have inserted | |
2401 | * a page at this offset | |
2402 | * no need for a full retry since we're | |
2403 | * at the top level of the object chain | |
2404 | */ | |
2405 | vm_object_lock(object); | |
2406 | ||
2407 | continue; | |
2408 | } | |
2409 | } | |
143cc14e | 2410 | vm_map_unlock_read(map); |
91447636 A |
2411 | if (real_map != map) |
2412 | vm_map_unlock(real_map); | |
143cc14e | 2413 | |
143cc14e | 2414 | result = PAGE_ASSERT_WAIT(m, interruptible); |
1c79356b | 2415 | |
143cc14e A |
2416 | vm_object_unlock(cur_object); |
2417 | ||
2418 | if (result == THREAD_WAITING) { | |
2419 | result = thread_block(THREAD_CONTINUE_NULL); | |
2420 | ||
2421 | counter(c_vm_fault_page_block_busy_kernel++); | |
2422 | } | |
2423 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) | |
2424 | goto RetryFault; | |
2425 | ||
2426 | kr = KERN_ABORTED; | |
2427 | goto done; | |
2428 | } | |
2d21ac55 A |
2429 | if (m->phys_page == vm_page_guard_addr) { |
2430 | /* | |
2431 | * Guard page: let the slow path deal with it | |
2432 | */ | |
2433 | break; | |
2434 | } | |
2435 | if (m->unusual && (m->error || m->restart || m->private || m->absent)) { | |
143cc14e | 2436 | /* |
2d21ac55 | 2437 | * Unusual case... let the slow path deal with it |
1c79356b A |
2438 | */ |
2439 | break; | |
2440 | } | |
91447636 A |
2441 | if (m->encrypted) { |
2442 | /* | |
2443 | * ENCRYPTED SWAP: | |
2444 | * We've soft-faulted (because it's not in the page | |
2445 | * table) on an encrypted page. | |
2d21ac55 | 2446 | * Keep the page "busy" so that no one messes with |
91447636 A |
2447 | * it during the decryption. |
2448 | * Release the extra locks we're holding, keep only | |
2449 | * the page's VM object lock. | |
2d21ac55 A |
2450 | * |
2451 | * in order to set 'busy' on 'm', we must | |
2452 | * have object that 'm' belongs to locked exclusively | |
91447636 | 2453 | */ |
2d21ac55 | 2454 | if (object != cur_object) { |
91447636 | 2455 | vm_object_unlock(object); |
2d21ac55 A |
2456 | |
2457 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
2458 | ||
2459 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2460 | ||
2461 | if (vm_object_lock_upgrade(cur_object) == FALSE) { | |
2462 | /* | |
2463 | * couldn't upgrade so go do a full retry | |
2464 | * immediately since we've already dropped | |
2465 | * the top object lock associated with this page | |
2466 | * and the current one got dropped due to the | |
2467 | * failed upgrade... the state is no longer valid | |
2468 | */ | |
2469 | vm_map_unlock_read(map); | |
2470 | if (real_map != map) | |
2471 | vm_map_unlock(real_map); | |
2472 | ||
2473 | goto RetryFault; | |
2474 | } | |
2475 | } | |
2476 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2477 | ||
2478 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2479 | ||
2480 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2481 | /* | |
2482 | * couldn't upgrade, so explictly take the lock | |
2483 | * exclusively and go relookup the page since we | |
2484 | * will have dropped the object lock and | |
2485 | * a different thread could have inserted | |
2486 | * a page at this offset | |
2487 | * no need for a full retry since we're | |
2488 | * at the top level of the object chain | |
2489 | */ | |
2490 | vm_object_lock(object); | |
2491 | ||
2492 | continue; | |
2493 | } | |
91447636 | 2494 | } |
2d21ac55 A |
2495 | m->busy = TRUE; |
2496 | ||
91447636 A |
2497 | vm_map_unlock_read(map); |
2498 | if (real_map != map) | |
2499 | vm_map_unlock(real_map); | |
2500 | ||
2501 | vm_page_decrypt(m, 0); | |
2502 | ||
2503 | assert(m->busy); | |
2504 | PAGE_WAKEUP_DONE(m); | |
91447636 | 2505 | |
2d21ac55 | 2506 | vm_object_unlock(cur_object); |
91447636 A |
2507 | /* |
2508 | * Retry from the top, in case anything | |
2509 | * changed while we were decrypting... | |
2510 | */ | |
2511 | goto RetryFault; | |
2512 | } | |
2513 | ASSERT_PAGE_DECRYPTED(m); | |
2514 | ||
4a3eedf9 A |
2515 | if (m->object->code_signed && map != kernel_map && |
2516 | (!m->cs_validated || m->wpmapped)) { | |
2d21ac55 | 2517 | /* |
4a3eedf9 | 2518 | * We might need to validate this page |
2d21ac55 A |
2519 | * against its code signature, so we |
2520 | * want to hold the VM object exclusively. | |
2521 | */ | |
2522 | if (object != cur_object) { | |
2523 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { | |
2524 | vm_object_unlock(object); | |
2525 | vm_object_unlock(cur_object); | |
2526 | ||
2527 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2528 | ||
2529 | vm_map_unlock_read(map); | |
2530 | if (real_map != map) | |
2531 | vm_map_unlock(real_map); | |
2532 | ||
2533 | goto RetryFault; | |
2534 | } | |
2535 | ||
2536 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2537 | ||
2538 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2539 | ||
2540 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2541 | /* | |
2542 | * couldn't upgrade, so explictly take the lock | |
2543 | * exclusively and go relookup the page since we | |
2544 | * will have dropped the object lock and | |
2545 | * a different thread could have inserted | |
2546 | * a page at this offset | |
2547 | * no need for a full retry since we're | |
2548 | * at the top level of the object chain | |
2549 | */ | |
2550 | vm_object_lock(object); | |
2551 | ||
2552 | continue; | |
2553 | } | |
2554 | } | |
2555 | } | |
1c79356b A |
2556 | /* |
2557 | * Two cases of map in faults: | |
2558 | * - At top level w/o copy object. | |
2559 | * - Read fault anywhere. | |
2560 | * --> must disallow write. | |
2561 | */ | |
2562 | ||
4a3eedf9 A |
2563 | if (object == cur_object && object->copy == VM_OBJECT_NULL) { |
2564 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2565 | /* | |
2566 | * This is not a "write" fault, so we | |
2567 | * might not have taken the object lock | |
2568 | * exclusively and we might not be able | |
2569 | * to update the "wpmapped" bit in | |
2570 | * vm_fault_enter(). | |
2571 | * Let's just grant read access to | |
2572 | * the page for now and we'll | |
2573 | * soft-fault again if we need write | |
2574 | * access later... | |
2575 | */ | |
2576 | prot &= ~VM_PROT_WRITE; | |
2577 | } | |
2d21ac55 | 2578 | goto FastPmapEnter; |
4a3eedf9 | 2579 | } |
1c79356b A |
2580 | |
2581 | if ((fault_type & VM_PROT_WRITE) == 0) { | |
2582 | ||
2583 | prot &= ~VM_PROT_WRITE; | |
2584 | ||
2585 | /* | |
2d21ac55 A |
2586 | * Set up to map the page... |
2587 | * mark the page busy, drop | |
2588 | * unneeded object lock | |
1c79356b | 2589 | */ |
1c79356b | 2590 | if (object != cur_object) { |
2d21ac55 A |
2591 | /* |
2592 | * don't need the original object anymore | |
2593 | */ | |
1c79356b | 2594 | vm_object_unlock(object); |
2d21ac55 A |
2595 | |
2596 | /* | |
2597 | * switch to the object that has the new page | |
2598 | */ | |
1c79356b | 2599 | object = cur_object; |
2d21ac55 | 2600 | object_lock_type = cur_object_lock_type; |
1c79356b | 2601 | } |
1c79356b A |
2602 | FastPmapEnter: |
2603 | /* | |
2d21ac55 A |
2604 | * prepare for the pmap_enter... |
2605 | * object and map are both locked | |
2606 | * m contains valid data | |
2607 | * object == m->object | |
2608 | * cur_object == NULL or it's been unlocked | |
2609 | * no paging references on either object or cur_object | |
1c79356b | 2610 | */ |
1c79356b | 2611 | #if MACH_KDB |
2d21ac55 | 2612 | if (db_watchpoint_list && (fault_type & VM_PROT_WRITE) == 0) |
1c79356b | 2613 | prot &= ~VM_PROT_WRITE; |
2d21ac55 A |
2614 | #endif |
2615 | if (caller_pmap) { | |
2616 | kr = vm_fault_enter(m, | |
2617 | caller_pmap, | |
2618 | caller_pmap_addr, | |
2619 | prot, | |
2620 | wired, | |
2621 | change_wiring, | |
2622 | fault_info.no_cache, | |
2623 | &type_of_fault); | |
9bccf70c | 2624 | } else { |
2d21ac55 A |
2625 | kr = vm_fault_enter(m, |
2626 | pmap, | |
2627 | vaddr, | |
2628 | prot, | |
2629 | wired, | |
2630 | change_wiring, | |
2631 | fault_info.no_cache, | |
2632 | &type_of_fault); | |
9bccf70c | 2633 | } |
0b4e3aa0 | 2634 | |
2d21ac55 A |
2635 | if (need_collapse == TRUE) |
2636 | vm_object_collapse(object, offset, TRUE); | |
0c530ab8 | 2637 | |
2d21ac55 A |
2638 | if (type_of_fault == DBG_PAGEIN_FAULT) { |
2639 | /* | |
2640 | * evaluate access pattern and update state | |
2641 | * vm_fault_deactivate_behind depends on the | |
2642 | * state being up to date | |
2643 | */ | |
2644 | vm_fault_is_sequential(object, cur_offset, fault_info.behavior); | |
0c530ab8 | 2645 | |
2d21ac55 | 2646 | vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior); |
1c79356b | 2647 | } |
1c79356b | 2648 | /* |
2d21ac55 | 2649 | * That's it, clean up and return. |
1c79356b | 2650 | */ |
2d21ac55 A |
2651 | if (m->busy) |
2652 | PAGE_WAKEUP_DONE(m); | |
6601e61a | 2653 | |
1c79356b | 2654 | vm_object_unlock(object); |
143cc14e | 2655 | |
1c79356b | 2656 | vm_map_unlock_read(map); |
2d21ac55 | 2657 | if (real_map != map) |
91447636 | 2658 | vm_map_unlock(real_map); |
1c79356b | 2659 | |
2d21ac55 | 2660 | goto done; |
1c79356b | 2661 | } |
1c79356b | 2662 | /* |
2d21ac55 A |
2663 | * COPY ON WRITE FAULT |
2664 | * | |
2665 | * If objects match, then | |
2666 | * object->copy must not be NULL (else control | |
2667 | * would be in previous code block), and we | |
2668 | * have a potential push into the copy object | |
2669 | * with which we can't cope with here. | |
1c79356b | 2670 | */ |
2d21ac55 A |
2671 | if (cur_object == object) { |
2672 | /* | |
2673 | * must take the slow path to | |
2674 | * deal with the copy push | |
2675 | */ | |
1c79356b | 2676 | break; |
2d21ac55 A |
2677 | } |
2678 | assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); | |
2679 | ||
1c79356b | 2680 | /* |
2d21ac55 A |
2681 | * This is now a shadow based copy on write |
2682 | * fault -- it requires a copy up the shadow | |
2683 | * chain. | |
2684 | * | |
2685 | * Allocate a page in the original top level | |
2686 | * object. Give up if allocate fails. Also | |
2687 | * need to remember current page, as it's the | |
2688 | * source of the copy. | |
1c79356b | 2689 | * |
2d21ac55 A |
2690 | * at this point we hold locks on both |
2691 | * object and cur_object... no need to take | |
2692 | * paging refs or mark pages BUSY since | |
2693 | * we don't drop either object lock until | |
2694 | * the page has been copied and inserted | |
1c79356b A |
2695 | */ |
2696 | cur_m = m; | |
2697 | m = vm_page_grab(); | |
2d21ac55 | 2698 | |
1c79356b | 2699 | if (m == VM_PAGE_NULL) { |
2d21ac55 A |
2700 | /* |
2701 | * no free page currently available... | |
2702 | * must take the slow path | |
2703 | */ | |
1c79356b A |
2704 | break; |
2705 | } | |
1c79356b | 2706 | /* |
2d21ac55 | 2707 | * Now do the copy. Mark the source page busy... |
1c79356b A |
2708 | * |
2709 | * NOTE: This code holds the map lock across | |
2710 | * the page copy. | |
2711 | */ | |
1c79356b A |
2712 | vm_page_copy(cur_m, m); |
2713 | vm_page_insert(m, object, offset); | |
2d21ac55 | 2714 | m->dirty = TRUE; |
1c79356b A |
2715 | |
2716 | /* | |
2d21ac55 | 2717 | * Now cope with the source page and object |
1c79356b | 2718 | */ |
2d21ac55 A |
2719 | if (object->ref_count > 1 && cur_m->pmapped) |
2720 | pmap_disconnect(cur_m->phys_page); | |
1c79356b | 2721 | |
2d21ac55 | 2722 | need_collapse = TRUE; |
1c79356b | 2723 | |
2d21ac55 A |
2724 | if (!cur_object->internal && |
2725 | cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
2726 | /* | |
2727 | * The object from which we've just | |
2728 | * copied a page is most probably backed | |
2729 | * by a vnode. We don't want to waste too | |
2730 | * much time trying to collapse the VM objects | |
2731 | * and create a bottleneck when several tasks | |
2732 | * map the same file. | |
2733 | */ | |
2734 | if (cur_object->copy == object) { | |
2735 | /* | |
2736 | * Shared mapping or no COW yet. | |
2737 | * We can never collapse a copy | |
2738 | * object into its backing object. | |
2739 | */ | |
2740 | need_collapse = FALSE; | |
2741 | } else if (cur_object->copy == object->shadow && | |
2742 | object->shadow->resident_page_count == 0) { | |
2743 | /* | |
2744 | * Shared mapping after a COW occurred. | |
2745 | */ | |
2746 | need_collapse = FALSE; | |
2747 | } | |
2748 | } | |
1c79356b A |
2749 | vm_object_unlock(cur_object); |
2750 | ||
2d21ac55 A |
2751 | if (need_collapse == FALSE) |
2752 | vm_fault_collapse_skipped++; | |
2753 | vm_fault_collapse_total++; | |
2754 | ||
2755 | type_of_fault = DBG_COW_FAULT; | |
2756 | VM_STAT_INCR(cow_faults); | |
2757 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); | |
2758 | current_task()->cow_faults++; | |
1c79356b A |
2759 | |
2760 | goto FastPmapEnter; | |
1c79356b | 2761 | |
2d21ac55 | 2762 | } else { |
1c79356b | 2763 | /* |
2d21ac55 | 2764 | * No page at cur_object, cur_offset... m == NULL |
1c79356b | 2765 | */ |
1c79356b | 2766 | if (cur_object->pager_created) { |
2d21ac55 A |
2767 | if (MUST_ASK_PAGER(cur_object, cur_offset) == TRUE) { |
2768 | /* | |
2769 | * May have to talk to a pager... | |
2770 | * take the slow path. | |
2771 | */ | |
2772 | break; | |
2773 | } | |
1c79356b | 2774 | /* |
2d21ac55 A |
2775 | * existence map present and indicates |
2776 | * that the pager doesn't have this page | |
1c79356b | 2777 | */ |
1c79356b | 2778 | } |
1c79356b | 2779 | if (cur_object->shadow == VM_OBJECT_NULL) { |
2d21ac55 A |
2780 | /* |
2781 | * Zero fill fault. Page gets | |
2782 | * inserted into the original object. | |
2783 | */ | |
1c79356b | 2784 | if (cur_object->shadow_severed) { |
2d21ac55 A |
2785 | |
2786 | if (object != cur_object) | |
2787 | vm_object_unlock(cur_object); | |
1c79356b | 2788 | vm_object_unlock(object); |
2d21ac55 | 2789 | |
1c79356b | 2790 | vm_map_unlock_read(map); |
2d21ac55 | 2791 | if (real_map != map) |
91447636 | 2792 | vm_map_unlock(real_map); |
1c79356b | 2793 | |
2d21ac55 A |
2794 | kr = KERN_MEMORY_ERROR; |
2795 | goto done; | |
2796 | } | |
2797 | if (VM_PAGE_ZFILL_THROTTLED()) { | |
2798 | /* | |
2799 | * drop all of our locks... | |
2800 | * wait until the free queue is | |
2801 | * pumped back up and then | |
2802 | * redrive the fault | |
2803 | */ | |
2804 | if (object != cur_object) | |
2805 | vm_object_unlock(cur_object); | |
2806 | vm_object_unlock(object); | |
2807 | vm_map_unlock_read(map); | |
2808 | if (real_map != map) | |
2809 | vm_map_unlock(real_map); | |
9bccf70c | 2810 | |
2d21ac55 A |
2811 | if (vm_page_wait((change_wiring) ? |
2812 | THREAD_UNINT : | |
2813 | THREAD_ABORTSAFE)) | |
2814 | goto RetryFault; | |
1c79356b | 2815 | |
2d21ac55 A |
2816 | kr = KERN_ABORTED; |
2817 | goto done; | |
2818 | } | |
2819 | if (vm_backing_store_low) { | |
2820 | /* | |
2821 | * we are protecting the system from | |
2822 | * backing store exhaustion... | |
2823 | * must take the slow path if we're | |
2824 | * not privileged | |
2825 | */ | |
2826 | if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) | |
2827 | break; | |
1c79356b | 2828 | } |
2d21ac55 A |
2829 | if (cur_object != object) { |
2830 | vm_object_unlock(cur_object); | |
1c79356b | 2831 | |
2d21ac55 | 2832 | cur_object = object; |
55e303ae | 2833 | } |
2d21ac55 | 2834 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
55e303ae | 2835 | |
2d21ac55 A |
2836 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
2837 | ||
2838 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2839 | /* | |
2840 | * couldn't upgrade so do a full retry on the fault | |
2841 | * since we dropped the object lock which | |
2842 | * could allow another thread to insert | |
2843 | * a page at this offset | |
2844 | */ | |
2845 | vm_map_unlock_read(map); | |
2846 | if (real_map != map) | |
2847 | vm_map_unlock(real_map); | |
2848 | ||
2849 | goto RetryFault; | |
2850 | } | |
1c79356b A |
2851 | } |
2852 | m = vm_page_alloc(object, offset); | |
2d21ac55 | 2853 | |
1c79356b | 2854 | if (m == VM_PAGE_NULL) { |
2d21ac55 A |
2855 | /* |
2856 | * no free page currently available... | |
2857 | * must take the slow path | |
2858 | */ | |
1c79356b A |
2859 | break; |
2860 | } | |
1c79356b | 2861 | |
1c79356b | 2862 | /* |
2d21ac55 A |
2863 | * Now zero fill page... |
2864 | * the page is probably going to | |
2865 | * be written soon, so don't bother | |
2866 | * to clear the modified bit | |
1c79356b | 2867 | * |
2d21ac55 A |
2868 | * NOTE: This code holds the map |
2869 | * lock across the zero fill. | |
1c79356b | 2870 | */ |
2d21ac55 | 2871 | type_of_fault = vm_fault_zero_page(m, map->no_zero_fill); |
143cc14e | 2872 | |
1c79356b A |
2873 | goto FastPmapEnter; |
2874 | } | |
1c79356b | 2875 | /* |
2d21ac55 | 2876 | * On to the next level in the shadow chain |
1c79356b | 2877 | */ |
1c79356b A |
2878 | cur_offset += cur_object->shadow_offset; |
2879 | new_object = cur_object->shadow; | |
2d21ac55 A |
2880 | |
2881 | /* | |
2882 | * take the new_object's lock with the indicated state | |
2883 | */ | |
2884 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) | |
2885 | vm_object_lock_shared(new_object); | |
2886 | else | |
2887 | vm_object_lock(new_object); | |
2888 | ||
1c79356b A |
2889 | if (cur_object != object) |
2890 | vm_object_unlock(cur_object); | |
2d21ac55 | 2891 | |
1c79356b A |
2892 | cur_object = new_object; |
2893 | ||
2894 | continue; | |
2895 | } | |
2896 | } | |
1c79356b | 2897 | /* |
2d21ac55 A |
2898 | * Cleanup from fast fault failure. Drop any object |
2899 | * lock other than original and drop map lock. | |
1c79356b | 2900 | */ |
1c79356b A |
2901 | if (object != cur_object) |
2902 | vm_object_unlock(cur_object); | |
2d21ac55 A |
2903 | |
2904 | /* | |
2905 | * must own the object lock exclusively at this point | |
2906 | */ | |
2907 | if (object_lock_type == OBJECT_LOCK_SHARED) { | |
2908 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
2909 | ||
2910 | if (vm_object_lock_upgrade(object) == FALSE) { | |
2911 | /* | |
2912 | * couldn't upgrade, so explictly | |
2913 | * take the lock exclusively | |
2914 | * no need to retry the fault at this | |
2915 | * point since "vm_fault_page" will | |
2916 | * completely re-evaluate the state | |
2917 | */ | |
2918 | vm_object_lock(object); | |
2919 | } | |
1c79356b | 2920 | } |
143cc14e | 2921 | |
2d21ac55 A |
2922 | handle_copy_delay: |
2923 | vm_map_unlock_read(map); | |
2924 | if (real_map != map) | |
91447636 | 2925 | vm_map_unlock(real_map); |
1c79356b A |
2926 | |
2927 | /* | |
2d21ac55 A |
2928 | * Make a reference to this object to |
2929 | * prevent its disposal while we are messing with | |
2930 | * it. Once we have the reference, the map is free | |
2931 | * to be diddled. Since objects reference their | |
2932 | * shadows (and copies), they will stay around as well. | |
1c79356b | 2933 | */ |
2d21ac55 | 2934 | vm_object_reference_locked(object); |
1c79356b A |
2935 | vm_object_paging_begin(object); |
2936 | ||
2937 | XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0); | |
55e303ae | 2938 | |
2d21ac55 | 2939 | error_code = 0; |
55e303ae | 2940 | |
1c79356b A |
2941 | kr = vm_fault_page(object, offset, fault_type, |
2942 | (change_wiring && !wired), | |
1c79356b A |
2943 | &prot, &result_page, &top_page, |
2944 | &type_of_fault, | |
2d21ac55 A |
2945 | &error_code, map->no_zero_fill, |
2946 | FALSE, &fault_info); | |
1c79356b A |
2947 | |
2948 | /* | |
2d21ac55 A |
2949 | * if kr != VM_FAULT_SUCCESS, then the paging reference |
2950 | * has been dropped and the object unlocked... the ref_count | |
2951 | * is still held | |
2952 | * | |
2953 | * if kr == VM_FAULT_SUCCESS, then the paging reference | |
2954 | * is still held along with the ref_count on the original object | |
2955 | * | |
2956 | * if m != NULL, then the object it belongs to | |
2957 | * is returned locked with a paging reference | |
2958 | * | |
2959 | * if top_page != NULL, then it's BUSY and the | |
2960 | * object it belongs to has a paging reference | |
2961 | * but is returned unlocked | |
1c79356b | 2962 | */ |
2d21ac55 A |
2963 | if (kr != VM_FAULT_SUCCESS) { |
2964 | /* | |
2965 | * we didn't succeed, lose the object reference immediately. | |
2966 | */ | |
1c79356b A |
2967 | vm_object_deallocate(object); |
2968 | ||
2d21ac55 A |
2969 | /* |
2970 | * See why we failed, and take corrective action. | |
2971 | */ | |
2972 | switch (kr) { | |
1c79356b A |
2973 | case VM_FAULT_MEMORY_SHORTAGE: |
2974 | if (vm_page_wait((change_wiring) ? | |
2975 | THREAD_UNINT : | |
2976 | THREAD_ABORTSAFE)) | |
2977 | goto RetryFault; | |
2d21ac55 A |
2978 | /* |
2979 | * fall thru | |
2980 | */ | |
1c79356b A |
2981 | case VM_FAULT_INTERRUPTED: |
2982 | kr = KERN_ABORTED; | |
2983 | goto done; | |
2984 | case VM_FAULT_RETRY: | |
2985 | goto RetryFault; | |
1c79356b A |
2986 | case VM_FAULT_MEMORY_ERROR: |
2987 | if (error_code) | |
2988 | kr = error_code; | |
2989 | else | |
2990 | kr = KERN_MEMORY_ERROR; | |
2991 | goto done; | |
2d21ac55 | 2992 | } |
1c79356b | 2993 | } |
1c79356b A |
2994 | m = result_page; |
2995 | ||
2d21ac55 | 2996 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 A |
2997 | assert((change_wiring && !wired) ? |
2998 | (top_page == VM_PAGE_NULL) : | |
2999 | ((top_page == VM_PAGE_NULL) == (m->object == object))); | |
3000 | } | |
1c79356b A |
3001 | |
3002 | /* | |
2d21ac55 A |
3003 | * What to do with the resulting page from vm_fault_page |
3004 | * if it doesn't get entered into the physical map: | |
1c79356b | 3005 | */ |
1c79356b A |
3006 | #define RELEASE_PAGE(m) \ |
3007 | MACRO_BEGIN \ | |
3008 | PAGE_WAKEUP_DONE(m); \ | |
2d21ac55 A |
3009 | vm_page_lockspin_queues(); \ |
3010 | if (!m->active && !m->inactive && !m->throttled)\ | |
1c79356b A |
3011 | vm_page_activate(m); \ |
3012 | vm_page_unlock_queues(); \ | |
3013 | MACRO_END | |
3014 | ||
3015 | /* | |
2d21ac55 A |
3016 | * We must verify that the maps have not changed |
3017 | * since our last lookup. | |
1c79356b | 3018 | */ |
2d21ac55 | 3019 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 | 3020 | old_copy_object = m->object->copy; |
0b4e3aa0 | 3021 | vm_object_unlock(m->object); |
2d21ac55 | 3022 | } else |
0b4e3aa0 | 3023 | old_copy_object = VM_OBJECT_NULL; |
2d21ac55 A |
3024 | |
3025 | /* | |
3026 | * no object locks are held at this point | |
3027 | */ | |
1c79356b A |
3028 | if ((map != original_map) || !vm_map_verify(map, &version)) { |
3029 | vm_object_t retry_object; | |
3030 | vm_object_offset_t retry_offset; | |
3031 | vm_prot_t retry_prot; | |
3032 | ||
3033 | /* | |
2d21ac55 A |
3034 | * To avoid trying to write_lock the map while another |
3035 | * thread has it read_locked (in vm_map_pageable), we | |
3036 | * do not try for write permission. If the page is | |
3037 | * still writable, we will get write permission. If it | |
3038 | * is not, or has been marked needs_copy, we enter the | |
3039 | * mapping without write permission, and will merely | |
3040 | * take another fault. | |
1c79356b A |
3041 | */ |
3042 | map = original_map; | |
3043 | vm_map_lock_read(map); | |
2d21ac55 | 3044 | |
1c79356b | 3045 | kr = vm_map_lookup_locked(&map, vaddr, |
2d21ac55 A |
3046 | fault_type & ~VM_PROT_WRITE, |
3047 | OBJECT_LOCK_EXCLUSIVE, &version, | |
3048 | &retry_object, &retry_offset, &retry_prot, | |
3049 | &wired, | |
3050 | &fault_info, | |
3051 | &real_map); | |
91447636 | 3052 | pmap = real_map->pmap; |
1c79356b A |
3053 | |
3054 | if (kr != KERN_SUCCESS) { | |
3055 | vm_map_unlock_read(map); | |
2d21ac55 A |
3056 | |
3057 | if (m != VM_PAGE_NULL) { | |
3058 | /* | |
3059 | * retake the lock so that | |
3060 | * we can drop the paging reference | |
3061 | * in vm_fault_cleanup and do the | |
3062 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
3063 | */ | |
0b4e3aa0 | 3064 | vm_object_lock(m->object); |
2d21ac55 | 3065 | |
0b4e3aa0 | 3066 | RELEASE_PAGE(m); |
2d21ac55 A |
3067 | |
3068 | vm_fault_cleanup(m->object, top_page); | |
0b4e3aa0 | 3069 | } else { |
2d21ac55 A |
3070 | /* |
3071 | * retake the lock so that | |
3072 | * we can drop the paging reference | |
3073 | * in vm_fault_cleanup | |
3074 | */ | |
3075 | vm_object_lock(object); | |
3076 | ||
3077 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 3078 | } |
2d21ac55 A |
3079 | vm_object_deallocate(object); |
3080 | ||
1c79356b A |
3081 | goto done; |
3082 | } | |
1c79356b | 3083 | vm_object_unlock(retry_object); |
1c79356b | 3084 | |
2d21ac55 A |
3085 | if ((retry_object != object) || (retry_offset != offset)) { |
3086 | ||
1c79356b | 3087 | vm_map_unlock_read(map); |
2d21ac55 | 3088 | if (real_map != map) |
91447636 | 3089 | vm_map_unlock(real_map); |
2d21ac55 A |
3090 | |
3091 | if (m != VM_PAGE_NULL) { | |
3092 | /* | |
3093 | * retake the lock so that | |
3094 | * we can drop the paging reference | |
3095 | * in vm_fault_cleanup and do the | |
3096 | * PAGE_WAKEUP_DONE in RELEASE_PAGE | |
3097 | */ | |
3098 | vm_object_lock(m->object); | |
3099 | ||
0b4e3aa0 | 3100 | RELEASE_PAGE(m); |
2d21ac55 A |
3101 | |
3102 | vm_fault_cleanup(m->object, top_page); | |
0b4e3aa0 | 3103 | } else { |
2d21ac55 A |
3104 | /* |
3105 | * retake the lock so that | |
3106 | * we can drop the paging reference | |
3107 | * in vm_fault_cleanup | |
3108 | */ | |
3109 | vm_object_lock(object); | |
3110 | ||
3111 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 3112 | } |
2d21ac55 A |
3113 | vm_object_deallocate(object); |
3114 | ||
1c79356b A |
3115 | goto RetryFault; |
3116 | } | |
1c79356b | 3117 | /* |
2d21ac55 A |
3118 | * Check whether the protection has changed or the object |
3119 | * has been copied while we left the map unlocked. | |
1c79356b A |
3120 | */ |
3121 | prot &= retry_prot; | |
0b4e3aa0 | 3122 | } |
2d21ac55 | 3123 | if (m != VM_PAGE_NULL) { |
0b4e3aa0 | 3124 | vm_object_lock(m->object); |
1c79356b | 3125 | |
2d21ac55 A |
3126 | if (m->object->copy != old_copy_object) { |
3127 | /* | |
3128 | * The copy object changed while the top-level object | |
3129 | * was unlocked, so take away write permission. | |
3130 | */ | |
0b4e3aa0 | 3131 | prot &= ~VM_PROT_WRITE; |
2d21ac55 A |
3132 | } |
3133 | } else | |
3134 | vm_object_lock(object); | |
1c79356b A |
3135 | |
3136 | /* | |
2d21ac55 A |
3137 | * If we want to wire down this page, but no longer have |
3138 | * adequate permissions, we must start all over. | |
1c79356b | 3139 | */ |
2d21ac55 | 3140 | if (wired && (fault_type != (prot | VM_PROT_WRITE))) { |
1c79356b | 3141 | |
1c79356b | 3142 | vm_map_verify_done(map, &version); |
2d21ac55 | 3143 | if (real_map != map) |
91447636 | 3144 | vm_map_unlock(real_map); |
1c79356b | 3145 | |
2d21ac55 A |
3146 | if (m != VM_PAGE_NULL) { |
3147 | RELEASE_PAGE(m); | |
91447636 | 3148 | |
2d21ac55 A |
3149 | vm_fault_cleanup(m->object, top_page); |
3150 | } else | |
3151 | vm_fault_cleanup(object, top_page); | |
0b4e3aa0 | 3152 | |
2d21ac55 | 3153 | vm_object_deallocate(object); |
55e303ae | 3154 | |
2d21ac55 A |
3155 | goto RetryFault; |
3156 | } | |
3157 | if (m != VM_PAGE_NULL) { | |
55e303ae | 3158 | /* |
2d21ac55 A |
3159 | * Put this page into the physical map. |
3160 | * We had to do the unlock above because pmap_enter | |
3161 | * may cause other faults. The page may be on | |
3162 | * the pageout queues. If the pageout daemon comes | |
3163 | * across the page, it will remove it from the queues. | |
55e303ae | 3164 | */ |
2d21ac55 A |
3165 | if (caller_pmap) { |
3166 | kr = vm_fault_enter(m, | |
3167 | caller_pmap, | |
3168 | caller_pmap_addr, | |
3169 | prot, | |
3170 | wired, | |
3171 | change_wiring, | |
3172 | fault_info.no_cache, | |
3173 | &type_of_fault); | |
3174 | } else { | |
3175 | kr = vm_fault_enter(m, | |
3176 | pmap, | |
3177 | vaddr, | |
3178 | prot, | |
3179 | wired, | |
3180 | change_wiring, | |
3181 | fault_info.no_cache, | |
3182 | &type_of_fault); | |
3183 | } | |
3184 | if (kr != KERN_SUCCESS) { | |
3185 | /* abort this page fault */ | |
3186 | vm_map_verify_done(map, &version); | |
3187 | if (real_map != map) | |
3188 | vm_map_unlock(real_map); | |
3189 | PAGE_WAKEUP_DONE(m); | |
3190 | vm_fault_cleanup(m->object, top_page); | |
3191 | vm_object_deallocate(object); | |
3192 | goto done; | |
0b4e3aa0 A |
3193 | } |
3194 | } else { | |
3195 | ||
9bccf70c | 3196 | vm_map_entry_t entry; |
91447636 A |
3197 | vm_map_offset_t laddr; |
3198 | vm_map_offset_t ldelta, hdelta; | |
143cc14e | 3199 | |
0b4e3aa0 A |
3200 | /* |
3201 | * do a pmap block mapping from the physical address | |
3202 | * in the object | |
3203 | */ | |
9bccf70c | 3204 | |
2d21ac55 | 3205 | #ifdef ppc |
55e303ae A |
3206 | /* While we do not worry about execution protection in */ |
3207 | /* general, certian pages may have instruction execution */ | |
3208 | /* disallowed. We will check here, and if not allowed */ | |
3209 | /* to execute, we return with a protection failure. */ | |
9bccf70c | 3210 | |
2d21ac55 A |
3211 | if ((fault_type & VM_PROT_EXECUTE) && |
3212 | (!pmap_eligible_for_execute((ppnum_t)(object->shadow_offset >> 12)))) { | |
9bccf70c | 3213 | |
9bccf70c | 3214 | vm_map_verify_done(map, &version); |
2d21ac55 A |
3215 | |
3216 | if (real_map != map) | |
91447636 | 3217 | vm_map_unlock(real_map); |
2d21ac55 | 3218 | |
9bccf70c A |
3219 | vm_fault_cleanup(object, top_page); |
3220 | vm_object_deallocate(object); | |
2d21ac55 | 3221 | |
9bccf70c A |
3222 | kr = KERN_PROTECTION_FAILURE; |
3223 | goto done; | |
0b4e3aa0 | 3224 | } |
2d21ac55 | 3225 | #endif /* ppc */ |
1c79356b | 3226 | |
2d21ac55 | 3227 | if (real_map != map) |
91447636 | 3228 | vm_map_unlock(real_map); |
2d21ac55 | 3229 | |
9bccf70c A |
3230 | if (original_map != map) { |
3231 | vm_map_unlock_read(map); | |
3232 | vm_map_lock_read(original_map); | |
3233 | map = original_map; | |
3234 | } | |
91447636 | 3235 | real_map = map; |
9bccf70c A |
3236 | |
3237 | laddr = vaddr; | |
3238 | hdelta = 0xFFFFF000; | |
3239 | ldelta = 0xFFFFF000; | |
3240 | ||
2d21ac55 A |
3241 | while (vm_map_lookup_entry(map, laddr, &entry)) { |
3242 | if (ldelta > (laddr - entry->vme_start)) | |
9bccf70c | 3243 | ldelta = laddr - entry->vme_start; |
2d21ac55 | 3244 | if (hdelta > (entry->vme_end - laddr)) |
9bccf70c | 3245 | hdelta = entry->vme_end - laddr; |
2d21ac55 | 3246 | if (entry->is_sub_map) { |
9bccf70c A |
3247 | |
3248 | laddr = (laddr - entry->vme_start) | |
3249 | + entry->offset; | |
3250 | vm_map_lock_read(entry->object.sub_map); | |
2d21ac55 A |
3251 | |
3252 | if (map != real_map) | |
9bccf70c | 3253 | vm_map_unlock_read(map); |
2d21ac55 | 3254 | if (entry->use_pmap) { |
91447636 A |
3255 | vm_map_unlock_read(real_map); |
3256 | real_map = entry->object.sub_map; | |
9bccf70c A |
3257 | } |
3258 | map = entry->object.sub_map; | |
3259 | ||
3260 | } else { | |
3261 | break; | |
3262 | } | |
3263 | } | |
3264 | ||
2d21ac55 A |
3265 | if (vm_map_lookup_entry(map, laddr, &entry) && |
3266 | (entry->object.vm_object != NULL) && | |
3267 | (entry->object.vm_object == object)) { | |
3268 | ||
3269 | if (caller_pmap) { | |
3270 | /* | |
3271 | * Set up a block mapped area | |
3272 | */ | |
3273 | pmap_map_block(caller_pmap, | |
3274 | (addr64_t)(caller_pmap_addr - ldelta), | |
3275 | (((vm_map_offset_t) (entry->object.vm_object->shadow_offset)) + | |
3276 | entry->offset + (laddr - entry->vme_start) - ldelta) >> 12, | |
3277 | ((ldelta + hdelta) >> 12), prot, | |
3278 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); | |
55e303ae | 3279 | } else { |
2d21ac55 A |
3280 | /* |
3281 | * Set up a block mapped area | |
3282 | */ | |
3283 | pmap_map_block(real_map->pmap, | |
3284 | (addr64_t)(vaddr - ldelta), | |
3285 | (((vm_map_offset_t)(entry->object.vm_object->shadow_offset)) + | |
3286 | entry->offset + (laddr - entry->vme_start) - ldelta) >> 12, | |
3287 | ((ldelta + hdelta) >> 12), prot, | |
3288 | (VM_WIMG_MASK & (int)object->wimg_bits), 0); | |
9bccf70c A |
3289 | } |
3290 | } | |
0b4e3aa0 | 3291 | } |
1c79356b A |
3292 | |
3293 | /* | |
2d21ac55 | 3294 | * Unlock everything, and return |
1c79356b | 3295 | */ |
1c79356b | 3296 | vm_map_verify_done(map, &version); |
2d21ac55 | 3297 | if (real_map != map) |
91447636 | 3298 | vm_map_unlock(real_map); |
2d21ac55 A |
3299 | |
3300 | if (m != VM_PAGE_NULL) { | |
0b4e3aa0 | 3301 | PAGE_WAKEUP_DONE(m); |
1c79356b | 3302 | |
2d21ac55 A |
3303 | vm_fault_cleanup(m->object, top_page); |
3304 | } else | |
3305 | vm_fault_cleanup(object, top_page); | |
1c79356b | 3306 | |
2d21ac55 A |
3307 | vm_object_deallocate(object); |
3308 | ||
3309 | #undef RELEASE_PAGE | |
91447636 | 3310 | |
2d21ac55 A |
3311 | kr = KERN_SUCCESS; |
3312 | done: | |
9bccf70c | 3313 | thread_interrupt_level(interruptible_state); |
1c79356b | 3314 | |
2d21ac55 A |
3315 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
3316 | (int)((uint64_t)vaddr >> 32), | |
3317 | (int)vaddr, | |
1c79356b | 3318 | kr, |
2d21ac55 | 3319 | type_of_fault, |
1c79356b | 3320 | 0); |
143cc14e | 3321 | |
2d21ac55 | 3322 | return (kr); |
1c79356b A |
3323 | } |
3324 | ||
3325 | /* | |
3326 | * vm_fault_wire: | |
3327 | * | |
3328 | * Wire down a range of virtual addresses in a map. | |
3329 | */ | |
3330 | kern_return_t | |
3331 | vm_fault_wire( | |
3332 | vm_map_t map, | |
3333 | vm_map_entry_t entry, | |
9bccf70c | 3334 | pmap_t pmap, |
91447636 | 3335 | vm_map_offset_t pmap_addr) |
1c79356b A |
3336 | { |
3337 | ||
91447636 A |
3338 | register vm_map_offset_t va; |
3339 | register vm_map_offset_t end_addr = entry->vme_end; | |
1c79356b A |
3340 | register kern_return_t rc; |
3341 | ||
3342 | assert(entry->in_transition); | |
3343 | ||
9bccf70c A |
3344 | if ((entry->object.vm_object != NULL) && |
3345 | !entry->is_sub_map && | |
3346 | entry->object.vm_object->phys_contiguous) { | |
3347 | return KERN_SUCCESS; | |
3348 | } | |
3349 | ||
1c79356b A |
3350 | /* |
3351 | * Inform the physical mapping system that the | |
3352 | * range of addresses may not fault, so that | |
3353 | * page tables and such can be locked down as well. | |
3354 | */ | |
3355 | ||
9bccf70c A |
3356 | pmap_pageable(pmap, pmap_addr, |
3357 | pmap_addr + (end_addr - entry->vme_start), FALSE); | |
1c79356b A |
3358 | |
3359 | /* | |
3360 | * We simulate a fault to get the page and enter it | |
3361 | * in the physical map. | |
3362 | */ | |
3363 | ||
3364 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
3365 | if ((rc = vm_fault_wire_fast( | |
9bccf70c A |
3366 | map, va, entry, pmap, |
3367 | pmap_addr + (va - entry->vme_start) | |
3368 | )) != KERN_SUCCESS) { | |
1c79356b | 3369 | rc = vm_fault(map, va, VM_PROT_NONE, TRUE, |
9bccf70c A |
3370 | (pmap == kernel_pmap) ? |
3371 | THREAD_UNINT : THREAD_ABORTSAFE, | |
3372 | pmap, pmap_addr + (va - entry->vme_start)); | |
2d21ac55 | 3373 | DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); |
1c79356b A |
3374 | } |
3375 | ||
3376 | if (rc != KERN_SUCCESS) { | |
3377 | struct vm_map_entry tmp_entry = *entry; | |
3378 | ||
3379 | /* unwire wired pages */ | |
3380 | tmp_entry.vme_end = va; | |
9bccf70c A |
3381 | vm_fault_unwire(map, |
3382 | &tmp_entry, FALSE, pmap, pmap_addr); | |
1c79356b A |
3383 | |
3384 | return rc; | |
3385 | } | |
3386 | } | |
3387 | return KERN_SUCCESS; | |
3388 | } | |
3389 | ||
3390 | /* | |
3391 | * vm_fault_unwire: | |
3392 | * | |
3393 | * Unwire a range of virtual addresses in a map. | |
3394 | */ | |
3395 | void | |
3396 | vm_fault_unwire( | |
3397 | vm_map_t map, | |
3398 | vm_map_entry_t entry, | |
3399 | boolean_t deallocate, | |
9bccf70c | 3400 | pmap_t pmap, |
91447636 | 3401 | vm_map_offset_t pmap_addr) |
1c79356b | 3402 | { |
91447636 A |
3403 | register vm_map_offset_t va; |
3404 | register vm_map_offset_t end_addr = entry->vme_end; | |
1c79356b | 3405 | vm_object_t object; |
2d21ac55 | 3406 | struct vm_object_fault_info fault_info; |
1c79356b A |
3407 | |
3408 | object = (entry->is_sub_map) | |
3409 | ? VM_OBJECT_NULL : entry->object.vm_object; | |
3410 | ||
2d21ac55 A |
3411 | /* |
3412 | * If it's marked phys_contiguous, then vm_fault_wire() didn't actually | |
3413 | * do anything since such memory is wired by default. So we don't have | |
3414 | * anything to undo here. | |
3415 | */ | |
3416 | ||
3417 | if (object != VM_OBJECT_NULL && object->phys_contiguous) | |
3418 | return; | |
3419 | ||
3420 | fault_info.interruptible = THREAD_UNINT; | |
3421 | fault_info.behavior = entry->behavior; | |
3422 | fault_info.user_tag = entry->alias; | |
3423 | fault_info.lo_offset = entry->offset; | |
3424 | fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset; | |
3425 | fault_info.no_cache = entry->no_cache; | |
3426 | ||
1c79356b A |
3427 | /* |
3428 | * Since the pages are wired down, we must be able to | |
3429 | * get their mappings from the physical map system. | |
3430 | */ | |
3431 | ||
3432 | for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) { | |
1c79356b | 3433 | |
2d21ac55 A |
3434 | if (pmap) { |
3435 | pmap_change_wiring(pmap, | |
3436 | pmap_addr + (va - entry->vme_start), FALSE); | |
3437 | } | |
1c79356b | 3438 | if (object == VM_OBJECT_NULL) { |
9bccf70c A |
3439 | (void) vm_fault(map, va, VM_PROT_NONE, |
3440 | TRUE, THREAD_UNINT, pmap, pmap_addr); | |
1c79356b A |
3441 | } else { |
3442 | vm_prot_t prot; | |
3443 | vm_page_t result_page; | |
3444 | vm_page_t top_page; | |
3445 | vm_object_t result_object; | |
3446 | vm_fault_return_t result; | |
3447 | ||
2d21ac55 A |
3448 | fault_info.cluster_size = end_addr - va; |
3449 | ||
1c79356b A |
3450 | do { |
3451 | prot = VM_PROT_NONE; | |
3452 | ||
3453 | vm_object_lock(object); | |
3454 | vm_object_paging_begin(object); | |
3455 | XPR(XPR_VM_FAULT, | |
3456 | "vm_fault_unwire -> vm_fault_page\n", | |
3457 | 0,0,0,0,0); | |
2d21ac55 A |
3458 | result = vm_fault_page( |
3459 | object, | |
3460 | entry->offset + (va - entry->vme_start), | |
3461 | VM_PROT_NONE, TRUE, | |
3462 | &prot, &result_page, &top_page, | |
3463 | (int *)0, | |
3464 | NULL, map->no_zero_fill, | |
3465 | FALSE, &fault_info); | |
1c79356b A |
3466 | } while (result == VM_FAULT_RETRY); |
3467 | ||
2d21ac55 A |
3468 | /* |
3469 | * If this was a mapping to a file on a device that has been forcibly | |
3470 | * unmounted, then we won't get a page back from vm_fault_page(). Just | |
3471 | * move on to the next one in case the remaining pages are mapped from | |
3472 | * different objects. During a forced unmount, the object is terminated | |
3473 | * so the alive flag will be false if this happens. A forced unmount will | |
3474 | * will occur when an external disk is unplugged before the user does an | |
3475 | * eject, so we don't want to panic in that situation. | |
3476 | */ | |
3477 | ||
3478 | if (result == VM_FAULT_MEMORY_ERROR && !object->alive) | |
3479 | continue; | |
3480 | ||
1c79356b A |
3481 | if (result != VM_FAULT_SUCCESS) |
3482 | panic("vm_fault_unwire: failure"); | |
3483 | ||
3484 | result_object = result_page->object; | |
2d21ac55 | 3485 | |
1c79356b | 3486 | if (deallocate) { |
2d21ac55 A |
3487 | assert(result_page->phys_page != |
3488 | vm_page_fictitious_addr); | |
91447636 | 3489 | pmap_disconnect(result_page->phys_page); |
1c79356b A |
3490 | VM_PAGE_FREE(result_page); |
3491 | } else { | |
2d21ac55 | 3492 | vm_page_lockspin_queues(); |
1c79356b A |
3493 | vm_page_unwire(result_page); |
3494 | vm_page_unlock_queues(); | |
3495 | PAGE_WAKEUP_DONE(result_page); | |
3496 | } | |
1c79356b A |
3497 | vm_fault_cleanup(result_object, top_page); |
3498 | } | |
3499 | } | |
3500 | ||
3501 | /* | |
3502 | * Inform the physical mapping system that the range | |
3503 | * of addresses may fault, so that page tables and | |
3504 | * such may be unwired themselves. | |
3505 | */ | |
3506 | ||
9bccf70c A |
3507 | pmap_pageable(pmap, pmap_addr, |
3508 | pmap_addr + (end_addr - entry->vme_start), TRUE); | |
1c79356b A |
3509 | |
3510 | } | |
3511 | ||
3512 | /* | |
3513 | * vm_fault_wire_fast: | |
3514 | * | |
3515 | * Handle common case of a wire down page fault at the given address. | |
3516 | * If successful, the page is inserted into the associated physical map. | |
3517 | * The map entry is passed in to avoid the overhead of a map lookup. | |
3518 | * | |
3519 | * NOTE: the given address should be truncated to the | |
3520 | * proper page address. | |
3521 | * | |
3522 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, | |
3523 | * a standard error specifying why the fault is fatal is returned. | |
3524 | * | |
3525 | * The map in question must be referenced, and remains so. | |
3526 | * Caller has a read lock on the map. | |
3527 | * | |
3528 | * This is a stripped version of vm_fault() for wiring pages. Anything | |
3529 | * other than the common case will return KERN_FAILURE, and the caller | |
3530 | * is expected to call vm_fault(). | |
3531 | */ | |
3532 | kern_return_t | |
3533 | vm_fault_wire_fast( | |
91447636 A |
3534 | __unused vm_map_t map, |
3535 | vm_map_offset_t va, | |
1c79356b | 3536 | vm_map_entry_t entry, |
91447636 A |
3537 | pmap_t pmap, |
3538 | vm_map_offset_t pmap_addr) | |
1c79356b A |
3539 | { |
3540 | vm_object_t object; | |
3541 | vm_object_offset_t offset; | |
3542 | register vm_page_t m; | |
3543 | vm_prot_t prot; | |
91447636 | 3544 | thread_t thread = current_thread(); |
2d21ac55 A |
3545 | int type_of_fault; |
3546 | kern_return_t kr; | |
1c79356b | 3547 | |
2d21ac55 | 3548 | VM_STAT_INCR(faults); |
1c79356b | 3549 | |
91447636 A |
3550 | if (thread != THREAD_NULL && thread->task != TASK_NULL) |
3551 | thread->task->faults++; | |
1c79356b A |
3552 | |
3553 | /* | |
3554 | * Recovery actions | |
3555 | */ | |
3556 | ||
3557 | #undef RELEASE_PAGE | |
3558 | #define RELEASE_PAGE(m) { \ | |
3559 | PAGE_WAKEUP_DONE(m); \ | |
2d21ac55 | 3560 | vm_page_lockspin_queues(); \ |
1c79356b A |
3561 | vm_page_unwire(m); \ |
3562 | vm_page_unlock_queues(); \ | |
3563 | } | |
3564 | ||
3565 | ||
3566 | #undef UNLOCK_THINGS | |
3567 | #define UNLOCK_THINGS { \ | |
ff6e181a A |
3568 | vm_object_paging_end(object); \ |
3569 | vm_object_unlock(object); \ | |
1c79356b A |
3570 | } |
3571 | ||
3572 | #undef UNLOCK_AND_DEALLOCATE | |
3573 | #define UNLOCK_AND_DEALLOCATE { \ | |
3574 | UNLOCK_THINGS; \ | |
3575 | vm_object_deallocate(object); \ | |
3576 | } | |
3577 | /* | |
3578 | * Give up and have caller do things the hard way. | |
3579 | */ | |
3580 | ||
3581 | #define GIVE_UP { \ | |
3582 | UNLOCK_AND_DEALLOCATE; \ | |
3583 | return(KERN_FAILURE); \ | |
3584 | } | |
3585 | ||
3586 | ||
3587 | /* | |
3588 | * If this entry is not directly to a vm_object, bail out. | |
3589 | */ | |
3590 | if (entry->is_sub_map) | |
3591 | return(KERN_FAILURE); | |
3592 | ||
3593 | /* | |
3594 | * Find the backing store object and offset into it. | |
3595 | */ | |
3596 | ||
3597 | object = entry->object.vm_object; | |
3598 | offset = (va - entry->vme_start) + entry->offset; | |
3599 | prot = entry->protection; | |
3600 | ||
3601 | /* | |
3602 | * Make a reference to this object to prevent its | |
3603 | * disposal while we are messing with it. | |
3604 | */ | |
3605 | ||
3606 | vm_object_lock(object); | |
2d21ac55 | 3607 | vm_object_reference_locked(object); |
ff6e181a | 3608 | vm_object_paging_begin(object); |
1c79356b A |
3609 | |
3610 | /* | |
3611 | * INVARIANTS (through entire routine): | |
3612 | * | |
3613 | * 1) At all times, we must either have the object | |
3614 | * lock or a busy page in some object to prevent | |
3615 | * some other thread from trying to bring in | |
3616 | * the same page. | |
3617 | * | |
3618 | * 2) Once we have a busy page, we must remove it from | |
3619 | * the pageout queues, so that the pageout daemon | |
3620 | * will not grab it away. | |
3621 | * | |
3622 | */ | |
3623 | ||
3624 | /* | |
3625 | * Look for page in top-level object. If it's not there or | |
3626 | * there's something going on, give up. | |
91447636 A |
3627 | * ENCRYPTED SWAP: use the slow fault path, since we'll need to |
3628 | * decrypt the page before wiring it down. | |
1c79356b A |
3629 | */ |
3630 | m = vm_page_lookup(object, offset); | |
91447636 | 3631 | if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) || |
2d21ac55 | 3632 | (m->unusual && ( m->error || m->restart || m->absent))) { |
1c79356b A |
3633 | |
3634 | GIVE_UP; | |
3635 | } | |
91447636 | 3636 | ASSERT_PAGE_DECRYPTED(m); |
1c79356b | 3637 | |
2d21ac55 A |
3638 | if (m->fictitious && |
3639 | m->phys_page == vm_page_guard_addr) { | |
3640 | /* | |
3641 | * Guard pages are fictitious pages and are never | |
3642 | * entered into a pmap, so let's say it's been wired... | |
3643 | */ | |
3644 | kr = KERN_SUCCESS; | |
3645 | goto done; | |
3646 | } | |
3647 | ||
1c79356b A |
3648 | /* |
3649 | * Wire the page down now. All bail outs beyond this | |
3650 | * point must unwire the page. | |
3651 | */ | |
3652 | ||
2d21ac55 | 3653 | vm_page_lockspin_queues(); |
1c79356b A |
3654 | vm_page_wire(m); |
3655 | vm_page_unlock_queues(); | |
3656 | ||
3657 | /* | |
3658 | * Mark page busy for other threads. | |
3659 | */ | |
3660 | assert(!m->busy); | |
3661 | m->busy = TRUE; | |
3662 | assert(!m->absent); | |
3663 | ||
3664 | /* | |
3665 | * Give up if the page is being written and there's a copy object | |
3666 | */ | |
3667 | if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { | |
3668 | RELEASE_PAGE(m); | |
3669 | GIVE_UP; | |
3670 | } | |
3671 | ||
3672 | /* | |
3673 | * Put this page into the physical map. | |
1c79356b | 3674 | */ |
2d21ac55 A |
3675 | type_of_fault = DBG_CACHE_HIT_FAULT; |
3676 | kr = vm_fault_enter(m, | |
3677 | pmap, | |
3678 | pmap_addr, | |
3679 | prot, | |
3680 | TRUE, | |
3681 | FALSE, | |
3682 | FALSE, | |
3683 | &type_of_fault); | |
3684 | ||
3685 | done: | |
1c79356b A |
3686 | /* |
3687 | * Unlock everything, and return | |
3688 | */ | |
3689 | ||
3690 | PAGE_WAKEUP_DONE(m); | |
3691 | UNLOCK_AND_DEALLOCATE; | |
3692 | ||
2d21ac55 | 3693 | return kr; |
1c79356b A |
3694 | |
3695 | } | |
3696 | ||
3697 | /* | |
3698 | * Routine: vm_fault_copy_cleanup | |
3699 | * Purpose: | |
3700 | * Release a page used by vm_fault_copy. | |
3701 | */ | |
3702 | ||
3703 | void | |
3704 | vm_fault_copy_cleanup( | |
3705 | vm_page_t page, | |
3706 | vm_page_t top_page) | |
3707 | { | |
3708 | vm_object_t object = page->object; | |
3709 | ||
3710 | vm_object_lock(object); | |
3711 | PAGE_WAKEUP_DONE(page); | |
2d21ac55 A |
3712 | vm_page_lockspin_queues(); |
3713 | if (!page->active && !page->inactive && !page->throttled) | |
1c79356b A |
3714 | vm_page_activate(page); |
3715 | vm_page_unlock_queues(); | |
3716 | vm_fault_cleanup(object, top_page); | |
3717 | } | |
3718 | ||
3719 | void | |
3720 | vm_fault_copy_dst_cleanup( | |
3721 | vm_page_t page) | |
3722 | { | |
3723 | vm_object_t object; | |
3724 | ||
3725 | if (page != VM_PAGE_NULL) { | |
3726 | object = page->object; | |
3727 | vm_object_lock(object); | |
2d21ac55 | 3728 | vm_page_lockspin_queues(); |
1c79356b A |
3729 | vm_page_unwire(page); |
3730 | vm_page_unlock_queues(); | |
3731 | vm_object_paging_end(object); | |
3732 | vm_object_unlock(object); | |
3733 | } | |
3734 | } | |
3735 | ||
3736 | /* | |
3737 | * Routine: vm_fault_copy | |
3738 | * | |
3739 | * Purpose: | |
3740 | * Copy pages from one virtual memory object to another -- | |
3741 | * neither the source nor destination pages need be resident. | |
3742 | * | |
3743 | * Before actually copying a page, the version associated with | |
3744 | * the destination address map wil be verified. | |
3745 | * | |
3746 | * In/out conditions: | |
3747 | * The caller must hold a reference, but not a lock, to | |
3748 | * each of the source and destination objects and to the | |
3749 | * destination map. | |
3750 | * | |
3751 | * Results: | |
3752 | * Returns KERN_SUCCESS if no errors were encountered in | |
3753 | * reading or writing the data. Returns KERN_INTERRUPTED if | |
3754 | * the operation was interrupted (only possible if the | |
3755 | * "interruptible" argument is asserted). Other return values | |
3756 | * indicate a permanent error in copying the data. | |
3757 | * | |
3758 | * The actual amount of data copied will be returned in the | |
3759 | * "copy_size" argument. In the event that the destination map | |
3760 | * verification failed, this amount may be less than the amount | |
3761 | * requested. | |
3762 | */ | |
3763 | kern_return_t | |
3764 | vm_fault_copy( | |
3765 | vm_object_t src_object, | |
3766 | vm_object_offset_t src_offset, | |
91447636 | 3767 | vm_map_size_t *copy_size, /* INOUT */ |
1c79356b A |
3768 | vm_object_t dst_object, |
3769 | vm_object_offset_t dst_offset, | |
3770 | vm_map_t dst_map, | |
3771 | vm_map_version_t *dst_version, | |
3772 | int interruptible) | |
3773 | { | |
3774 | vm_page_t result_page; | |
3775 | ||
3776 | vm_page_t src_page; | |
3777 | vm_page_t src_top_page; | |
3778 | vm_prot_t src_prot; | |
3779 | ||
3780 | vm_page_t dst_page; | |
3781 | vm_page_t dst_top_page; | |
3782 | vm_prot_t dst_prot; | |
3783 | ||
91447636 | 3784 | vm_map_size_t amount_left; |
1c79356b A |
3785 | vm_object_t old_copy_object; |
3786 | kern_return_t error = 0; | |
3787 | ||
91447636 | 3788 | vm_map_size_t part_size; |
2d21ac55 A |
3789 | struct vm_object_fault_info fault_info_src; |
3790 | struct vm_object_fault_info fault_info_dst; | |
1c79356b A |
3791 | |
3792 | /* | |
3793 | * In order not to confuse the clustered pageins, align | |
3794 | * the different offsets on a page boundary. | |
3795 | */ | |
1c79356b A |
3796 | |
3797 | #define RETURN(x) \ | |
3798 | MACRO_BEGIN \ | |
91447636 | 3799 | *copy_size -= amount_left; \ |
1c79356b A |
3800 | MACRO_RETURN(x); \ |
3801 | MACRO_END | |
3802 | ||
91447636 | 3803 | amount_left = *copy_size; |
2d21ac55 A |
3804 | |
3805 | fault_info_src.interruptible = interruptible; | |
3806 | fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
3807 | fault_info_src.user_tag = 0; | |
3808 | fault_info_src.lo_offset = vm_object_trunc_page(src_offset); | |
3809 | fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; | |
3810 | fault_info_src.no_cache = FALSE; | |
3811 | ||
3812 | fault_info_dst.interruptible = interruptible; | |
3813 | fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
3814 | fault_info_dst.user_tag = 0; | |
3815 | fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); | |
3816 | fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; | |
3817 | fault_info_dst.no_cache = FALSE; | |
3818 | ||
1c79356b A |
3819 | do { /* while (amount_left > 0) */ |
3820 | /* | |
3821 | * There may be a deadlock if both source and destination | |
3822 | * pages are the same. To avoid this deadlock, the copy must | |
3823 | * start by getting the destination page in order to apply | |
3824 | * COW semantics if any. | |
3825 | */ | |
3826 | ||
3827 | RetryDestinationFault: ; | |
3828 | ||
3829 | dst_prot = VM_PROT_WRITE|VM_PROT_READ; | |
3830 | ||
3831 | vm_object_lock(dst_object); | |
3832 | vm_object_paging_begin(dst_object); | |
3833 | ||
2d21ac55 A |
3834 | fault_info_dst.cluster_size = amount_left; |
3835 | ||
1c79356b A |
3836 | XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0); |
3837 | switch (vm_fault_page(dst_object, | |
91447636 | 3838 | vm_object_trunc_page(dst_offset), |
1c79356b A |
3839 | VM_PROT_WRITE|VM_PROT_READ, |
3840 | FALSE, | |
2d21ac55 | 3841 | &dst_prot, &dst_page, &dst_top_page, |
1c79356b A |
3842 | (int *)0, |
3843 | &error, | |
3844 | dst_map->no_zero_fill, | |
2d21ac55 | 3845 | FALSE, &fault_info_dst)) { |
1c79356b A |
3846 | case VM_FAULT_SUCCESS: |
3847 | break; | |
3848 | case VM_FAULT_RETRY: | |
3849 | goto RetryDestinationFault; | |
3850 | case VM_FAULT_MEMORY_SHORTAGE: | |
3851 | if (vm_page_wait(interruptible)) | |
3852 | goto RetryDestinationFault; | |
3853 | /* fall thru */ | |
3854 | case VM_FAULT_INTERRUPTED: | |
3855 | RETURN(MACH_SEND_INTERRUPTED); | |
1c79356b A |
3856 | case VM_FAULT_MEMORY_ERROR: |
3857 | if (error) | |
3858 | return (error); | |
3859 | else | |
3860 | return(KERN_MEMORY_ERROR); | |
3861 | } | |
3862 | assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); | |
3863 | ||
3864 | old_copy_object = dst_page->object->copy; | |
3865 | ||
3866 | /* | |
3867 | * There exists the possiblity that the source and | |
3868 | * destination page are the same. But we can't | |
3869 | * easily determine that now. If they are the | |
3870 | * same, the call to vm_fault_page() for the | |
3871 | * destination page will deadlock. To prevent this we | |
3872 | * wire the page so we can drop busy without having | |
3873 | * the page daemon steal the page. We clean up the | |
3874 | * top page but keep the paging reference on the object | |
3875 | * holding the dest page so it doesn't go away. | |
3876 | */ | |
3877 | ||
2d21ac55 | 3878 | vm_page_lockspin_queues(); |
1c79356b A |
3879 | vm_page_wire(dst_page); |
3880 | vm_page_unlock_queues(); | |
3881 | PAGE_WAKEUP_DONE(dst_page); | |
3882 | vm_object_unlock(dst_page->object); | |
3883 | ||
3884 | if (dst_top_page != VM_PAGE_NULL) { | |
3885 | vm_object_lock(dst_object); | |
3886 | VM_PAGE_FREE(dst_top_page); | |
3887 | vm_object_paging_end(dst_object); | |
3888 | vm_object_unlock(dst_object); | |
3889 | } | |
3890 | ||
3891 | RetrySourceFault: ; | |
3892 | ||
3893 | if (src_object == VM_OBJECT_NULL) { | |
3894 | /* | |
3895 | * No source object. We will just | |
3896 | * zero-fill the page in dst_object. | |
3897 | */ | |
3898 | src_page = VM_PAGE_NULL; | |
e3027f41 | 3899 | result_page = VM_PAGE_NULL; |
1c79356b A |
3900 | } else { |
3901 | vm_object_lock(src_object); | |
3902 | src_page = vm_page_lookup(src_object, | |
91447636 | 3903 | vm_object_trunc_page(src_offset)); |
e3027f41 | 3904 | if (src_page == dst_page) { |
1c79356b | 3905 | src_prot = dst_prot; |
e3027f41 A |
3906 | result_page = VM_PAGE_NULL; |
3907 | } else { | |
1c79356b A |
3908 | src_prot = VM_PROT_READ; |
3909 | vm_object_paging_begin(src_object); | |
3910 | ||
2d21ac55 A |
3911 | fault_info_src.cluster_size = amount_left; |
3912 | ||
1c79356b A |
3913 | XPR(XPR_VM_FAULT, |
3914 | "vm_fault_copy(2) -> vm_fault_page\n", | |
3915 | 0,0,0,0,0); | |
2d21ac55 A |
3916 | switch (vm_fault_page( |
3917 | src_object, | |
3918 | vm_object_trunc_page(src_offset), | |
3919 | VM_PROT_READ, FALSE, | |
3920 | &src_prot, | |
3921 | &result_page, &src_top_page, | |
3922 | (int *)0, &error, FALSE, | |
3923 | FALSE, &fault_info_src)) { | |
1c79356b A |
3924 | |
3925 | case VM_FAULT_SUCCESS: | |
3926 | break; | |
3927 | case VM_FAULT_RETRY: | |
3928 | goto RetrySourceFault; | |
3929 | case VM_FAULT_MEMORY_SHORTAGE: | |
3930 | if (vm_page_wait(interruptible)) | |
3931 | goto RetrySourceFault; | |
3932 | /* fall thru */ | |
3933 | case VM_FAULT_INTERRUPTED: | |
3934 | vm_fault_copy_dst_cleanup(dst_page); | |
3935 | RETURN(MACH_SEND_INTERRUPTED); | |
1c79356b A |
3936 | case VM_FAULT_MEMORY_ERROR: |
3937 | vm_fault_copy_dst_cleanup(dst_page); | |
3938 | if (error) | |
3939 | return (error); | |
3940 | else | |
3941 | return(KERN_MEMORY_ERROR); | |
3942 | } | |
3943 | ||
1c79356b A |
3944 | |
3945 | assert((src_top_page == VM_PAGE_NULL) == | |
e3027f41 | 3946 | (result_page->object == src_object)); |
1c79356b A |
3947 | } |
3948 | assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE); | |
e3027f41 | 3949 | vm_object_unlock(result_page->object); |
1c79356b A |
3950 | } |
3951 | ||
3952 | if (!vm_map_verify(dst_map, dst_version)) { | |
e3027f41 A |
3953 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3954 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3955 | vm_fault_copy_dst_cleanup(dst_page); |
3956 | break; | |
3957 | } | |
3958 | ||
3959 | vm_object_lock(dst_page->object); | |
3960 | ||
3961 | if (dst_page->object->copy != old_copy_object) { | |
3962 | vm_object_unlock(dst_page->object); | |
3963 | vm_map_verify_done(dst_map, dst_version); | |
e3027f41 A |
3964 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
3965 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
3966 | vm_fault_copy_dst_cleanup(dst_page); |
3967 | break; | |
3968 | } | |
3969 | vm_object_unlock(dst_page->object); | |
3970 | ||
3971 | /* | |
3972 | * Copy the page, and note that it is dirty | |
3973 | * immediately. | |
3974 | */ | |
3975 | ||
3976 | if (!page_aligned(src_offset) || | |
3977 | !page_aligned(dst_offset) || | |
3978 | !page_aligned(amount_left)) { | |
3979 | ||
3980 | vm_object_offset_t src_po, | |
3981 | dst_po; | |
3982 | ||
91447636 A |
3983 | src_po = src_offset - vm_object_trunc_page(src_offset); |
3984 | dst_po = dst_offset - vm_object_trunc_page(dst_offset); | |
1c79356b A |
3985 | |
3986 | if (dst_po > src_po) { | |
3987 | part_size = PAGE_SIZE - dst_po; | |
3988 | } else { | |
3989 | part_size = PAGE_SIZE - src_po; | |
3990 | } | |
3991 | if (part_size > (amount_left)){ | |
3992 | part_size = amount_left; | |
3993 | } | |
3994 | ||
e3027f41 | 3995 | if (result_page == VM_PAGE_NULL) { |
1c79356b A |
3996 | vm_page_part_zero_fill(dst_page, |
3997 | dst_po, part_size); | |
3998 | } else { | |
e3027f41 | 3999 | vm_page_part_copy(result_page, src_po, |
1c79356b A |
4000 | dst_page, dst_po, part_size); |
4001 | if(!dst_page->dirty){ | |
4002 | vm_object_lock(dst_object); | |
4003 | dst_page->dirty = TRUE; | |
4004 | vm_object_unlock(dst_page->object); | |
4005 | } | |
4006 | ||
4007 | } | |
4008 | } else { | |
4009 | part_size = PAGE_SIZE; | |
4010 | ||
e3027f41 | 4011 | if (result_page == VM_PAGE_NULL) |
1c79356b A |
4012 | vm_page_zero_fill(dst_page); |
4013 | else{ | |
e3027f41 | 4014 | vm_page_copy(result_page, dst_page); |
1c79356b A |
4015 | if(!dst_page->dirty){ |
4016 | vm_object_lock(dst_object); | |
4017 | dst_page->dirty = TRUE; | |
4018 | vm_object_unlock(dst_page->object); | |
4019 | } | |
4020 | } | |
4021 | ||
4022 | } | |
4023 | ||
4024 | /* | |
4025 | * Unlock everything, and return | |
4026 | */ | |
4027 | ||
4028 | vm_map_verify_done(dst_map, dst_version); | |
4029 | ||
e3027f41 A |
4030 | if (result_page != VM_PAGE_NULL && src_page != dst_page) |
4031 | vm_fault_copy_cleanup(result_page, src_top_page); | |
1c79356b A |
4032 | vm_fault_copy_dst_cleanup(dst_page); |
4033 | ||
4034 | amount_left -= part_size; | |
4035 | src_offset += part_size; | |
4036 | dst_offset += part_size; | |
4037 | } while (amount_left > 0); | |
4038 | ||
4039 | RETURN(KERN_SUCCESS); | |
4040 | #undef RETURN | |
4041 | ||
4042 | /*NOTREACHED*/ | |
4043 | } | |
4044 | ||
1c79356b A |
4045 | #if VM_FAULT_CLASSIFY |
4046 | /* | |
4047 | * Temporary statistics gathering support. | |
4048 | */ | |
4049 | ||
4050 | /* | |
4051 | * Statistics arrays: | |
4052 | */ | |
4053 | #define VM_FAULT_TYPES_MAX 5 | |
4054 | #define VM_FAULT_LEVEL_MAX 8 | |
4055 | ||
4056 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; | |
4057 | ||
4058 | #define VM_FAULT_TYPE_ZERO_FILL 0 | |
4059 | #define VM_FAULT_TYPE_MAP_IN 1 | |
4060 | #define VM_FAULT_TYPE_PAGER 2 | |
4061 | #define VM_FAULT_TYPE_COPY 3 | |
4062 | #define VM_FAULT_TYPE_OTHER 4 | |
4063 | ||
4064 | ||
4065 | void | |
4066 | vm_fault_classify(vm_object_t object, | |
4067 | vm_object_offset_t offset, | |
4068 | vm_prot_t fault_type) | |
4069 | { | |
4070 | int type, level = 0; | |
4071 | vm_page_t m; | |
4072 | ||
4073 | while (TRUE) { | |
4074 | m = vm_page_lookup(object, offset); | |
4075 | if (m != VM_PAGE_NULL) { | |
2d21ac55 | 4076 | if (m->busy || m->error || m->restart || m->absent) { |
1c79356b A |
4077 | type = VM_FAULT_TYPE_OTHER; |
4078 | break; | |
4079 | } | |
4080 | if (((fault_type & VM_PROT_WRITE) == 0) || | |
4081 | ((level == 0) && object->copy == VM_OBJECT_NULL)) { | |
4082 | type = VM_FAULT_TYPE_MAP_IN; | |
4083 | break; | |
4084 | } | |
4085 | type = VM_FAULT_TYPE_COPY; | |
4086 | break; | |
4087 | } | |
4088 | else { | |
4089 | if (object->pager_created) { | |
4090 | type = VM_FAULT_TYPE_PAGER; | |
4091 | break; | |
4092 | } | |
4093 | if (object->shadow == VM_OBJECT_NULL) { | |
4094 | type = VM_FAULT_TYPE_ZERO_FILL; | |
4095 | break; | |
4096 | } | |
4097 | ||
4098 | offset += object->shadow_offset; | |
4099 | object = object->shadow; | |
4100 | level++; | |
4101 | continue; | |
4102 | } | |
4103 | } | |
4104 | ||
4105 | if (level > VM_FAULT_LEVEL_MAX) | |
4106 | level = VM_FAULT_LEVEL_MAX; | |
4107 | ||
4108 | vm_fault_stats[type][level] += 1; | |
4109 | ||
4110 | return; | |
4111 | } | |
4112 | ||
4113 | /* cleanup routine to call from debugger */ | |
4114 | ||
4115 | void | |
4116 | vm_fault_classify_init(void) | |
4117 | { | |
4118 | int type, level; | |
4119 | ||
4120 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { | |
4121 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { | |
4122 | vm_fault_stats[type][level] = 0; | |
4123 | } | |
4124 | } | |
4125 | ||
4126 | return; | |
4127 | } | |
4128 | #endif /* VM_FAULT_CLASSIFY */ | |
2d21ac55 A |
4129 | |
4130 | ||
4131 | extern int cs_validation; | |
4132 | ||
4133 | void | |
4134 | vm_page_validate_cs( | |
4135 | vm_page_t page) | |
4136 | { | |
4137 | vm_object_t object; | |
4138 | vm_object_offset_t offset; | |
4139 | vm_map_offset_t koffset; | |
4140 | vm_map_size_t ksize; | |
4141 | vm_offset_t kaddr; | |
4142 | kern_return_t kr; | |
4143 | memory_object_t pager; | |
4144 | void *blobs; | |
4145 | boolean_t validated, tainted; | |
4146 | boolean_t busy_page; | |
4147 | ||
4a3eedf9 | 4148 | vm_object_lock_assert_held(page->object); |
2d21ac55 A |
4149 | |
4150 | if (!cs_validation) { | |
4151 | return; | |
4152 | } | |
4153 | ||
4a3eedf9 A |
4154 | if (page->cs_validated && !page->cs_tainted && page->wpmapped) { |
4155 | vm_object_lock_assert_exclusive(page->object); | |
4156 | ||
4157 | /* | |
4158 | * This page has already been validated and found to | |
4159 | * be valid. However, it was mapped for "write" access | |
4160 | * sometime in the past, so we have to check if it was | |
4161 | * modified. If so, it needs to be revalidated. | |
4162 | * If the page was already found to be "tainted", no | |
4163 | * need to re-validate. | |
4164 | */ | |
4165 | if (!page->dirty) { | |
4166 | vm_cs_query_modified++; | |
4167 | page->dirty = pmap_is_modified(page->phys_page); | |
4168 | } | |
4169 | if (page->dirty) { | |
4170 | /* | |
4171 | * The page is dirty, so let's clear its | |
4172 | * "validated" bit and re-validate it. | |
4173 | */ | |
4174 | if (cs_debug) { | |
4175 | printf("CODESIGNING: vm_page_validate_cs: " | |
4176 | "page %p obj %p off 0x%llx " | |
4177 | "was modified\n", | |
4178 | page, page->object, page->offset); | |
4179 | } | |
4180 | page->cs_validated = FALSE; | |
4181 | vm_cs_validated_dirtied++; | |
4182 | } | |
4183 | } | |
4184 | ||
4185 | if (page->cs_validated) { | |
4186 | return; | |
4187 | } | |
4188 | ||
4189 | vm_object_lock_assert_exclusive(page->object); | |
4190 | ||
4191 | vm_cs_validates++; | |
4192 | ||
2d21ac55 A |
4193 | object = page->object; |
4194 | assert(object->code_signed); | |
4195 | offset = page->offset; | |
4196 | ||
4197 | busy_page = page->busy; | |
4198 | if (!busy_page) { | |
4199 | /* keep page busy while we map (and unlock) the VM object */ | |
4200 | page->busy = TRUE; | |
4201 | } | |
4202 | ||
4203 | /* | |
4204 | * Take a paging reference on the VM object | |
4205 | * to protect it from collapse or bypass, | |
4206 | * and keep it from disappearing too. | |
4207 | */ | |
4208 | vm_object_paging_begin(object); | |
4209 | ||
4210 | /* map the page in the kernel address space */ | |
4211 | koffset = 0; | |
4212 | ksize = PAGE_SIZE_64; | |
4213 | kr = vm_paging_map_object(&koffset, | |
4214 | page, | |
4215 | object, | |
4216 | offset, | |
4217 | &ksize, | |
4218 | FALSE); /* can't unlock object ! */ | |
4219 | if (kr != KERN_SUCCESS) { | |
4220 | panic("vm_page_validate_cs: could not map page: 0x%x\n", kr); | |
4221 | } | |
4222 | kaddr = CAST_DOWN(vm_offset_t, koffset); | |
4223 | ||
4224 | /* | |
4225 | * Since we get here to validate a page that was brought in by | |
4226 | * the pager, we know that this pager is all setup and ready | |
4227 | * by now. | |
4228 | */ | |
4229 | assert(!object->internal); | |
4230 | assert(object->pager != NULL); | |
4231 | assert(object->pager_ready); | |
4232 | ||
4233 | if (!object->alive || object->terminating || object->pager == NULL) { | |
4234 | /* | |
4235 | * The object is terminating and we don't have its pager | |
4236 | * so we can't validate the data... | |
4237 | */ | |
4238 | goto out; | |
4239 | } | |
4240 | ||
4241 | pager = object->pager; | |
4242 | assert(pager != NULL); | |
4243 | ||
4244 | kr = vnode_pager_get_object_cs_blobs(pager, &blobs); | |
4245 | if (kr != KERN_SUCCESS) { | |
4246 | blobs = NULL; | |
4247 | } | |
4248 | ||
4249 | /* verify the SHA1 hash for this page */ | |
4250 | validated = cs_validate_page(blobs, | |
4251 | offset + object->paging_offset, | |
4252 | (const void *)kaddr, | |
4253 | &tainted); | |
4254 | ||
4255 | assert(page->busy); | |
4256 | assert(object == page->object); | |
4257 | vm_object_lock_assert_exclusive(object); | |
4258 | ||
4259 | page->cs_validated = validated; | |
4260 | if (validated) { | |
4261 | page->cs_tainted = tainted; | |
4262 | } | |
4263 | ||
4264 | out: | |
4265 | if (!busy_page) { | |
4266 | PAGE_WAKEUP_DONE(page); | |
4267 | } | |
4268 | if (koffset != 0) { | |
4269 | /* unmap the map from the kernel address space */ | |
4270 | vm_paging_unmap_object(object, koffset, koffset + ksize); | |
4271 | koffset = 0; | |
4272 | ksize = 0; | |
4273 | kaddr = 0; | |
4274 | } | |
4275 | vm_object_paging_end(object); | |
4276 | } |