]> git.saurik.com Git - wxWidgets.git/blob - src/tiff/libtiff/tif_luv.c
Merge libpng 1.6.2 into the trunk.
[wxWidgets.git] / src / tiff / libtiff / tif_luv.c
1 /* $Id$ */
2
3 /*
4 * Copyright (c) 1997 Greg Ward Larson
5 * Copyright (c) 1997 Silicon Graphics, Inc.
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Sam Leffler, Greg Larson and Silicon Graphics may not be used in any
12 * advertising or publicity relating to the software without the specific,
13 * prior written permission of Sam Leffler, Greg Larson and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL SAM LEFFLER, GREG LARSON OR SILICON GRAPHICS BE LIABLE
20 * FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27 #include "tiffiop.h"
28 #ifdef LOGLUV_SUPPORT
29
30 /*
31 * TIFF Library.
32 * LogLuv compression support for high dynamic range images.
33 *
34 * Contributed by Greg Larson.
35 *
36 * LogLuv image support uses the TIFF library to store 16 or 10-bit
37 * log luminance values with 8 bits each of u and v or a 14-bit index.
38 *
39 * The codec can take as input and produce as output 32-bit IEEE float values
40 * as well as 16-bit integer values. A 16-bit luminance is interpreted
41 * as a sign bit followed by a 15-bit integer that is converted
42 * to and from a linear magnitude using the transformation:
43 *
44 * L = 2^( (Le+.5)/256 - 64 ) # real from 15-bit
45 *
46 * Le = floor( 256*(log2(L) + 64) ) # 15-bit from real
47 *
48 * The actual conversion to world luminance units in candelas per sq. meter
49 * requires an additional multiplier, which is stored in the TIFFTAG_STONITS.
50 * This value is usually set such that a reasonable exposure comes from
51 * clamping decoded luminances above 1 to 1 in the displayed image.
52 *
53 * The 16-bit values for u and v may be converted to real values by dividing
54 * each by 32768. (This allows for negative values, which aren't useful as
55 * far as we know, but are left in case of future improvements in human
56 * color vision.)
57 *
58 * Conversion from (u,v), which is actually the CIE (u',v') system for
59 * you color scientists, is accomplished by the following transformation:
60 *
61 * u = 4*x / (-2*x + 12*y + 3)
62 * v = 9*y / (-2*x + 12*y + 3)
63 *
64 * x = 9*u / (6*u - 16*v + 12)
65 * y = 4*v / (6*u - 16*v + 12)
66 *
67 * This process is greatly simplified by passing 32-bit IEEE floats
68 * for each of three CIE XYZ coordinates. The codec then takes care
69 * of conversion to and from LogLuv, though the application is still
70 * responsible for interpreting the TIFFTAG_STONITS calibration factor.
71 *
72 * By definition, a CIE XYZ vector of [1 1 1] corresponds to a neutral white
73 * point of (x,y)=(1/3,1/3). However, most color systems assume some other
74 * white point, such as D65, and an absolute color conversion to XYZ then
75 * to another color space with a different white point may introduce an
76 * unwanted color cast to the image. It is often desirable, therefore, to
77 * perform a white point conversion that maps the input white to [1 1 1]
78 * in XYZ, then record the original white point using the TIFFTAG_WHITEPOINT
79 * tag value. A decoder that demands absolute color calibration may use
80 * this white point tag to get back the original colors, but usually it
81 * will be ignored and the new white point will be used instead that
82 * matches the output color space.
83 *
84 * Pixel information is compressed into one of two basic encodings, depending
85 * on the setting of the compression tag, which is one of COMPRESSION_SGILOG
86 * or COMPRESSION_SGILOG24. For COMPRESSION_SGILOG, greyscale data is
87 * stored as:
88 *
89 * 1 15
90 * |-+---------------|
91 *
92 * COMPRESSION_SGILOG color data is stored as:
93 *
94 * 1 15 8 8
95 * |-+---------------|--------+--------|
96 * S Le ue ve
97 *
98 * For the 24-bit COMPRESSION_SGILOG24 color format, the data is stored as:
99 *
100 * 10 14
101 * |----------|--------------|
102 * Le' Ce
103 *
104 * There is no sign bit in the 24-bit case, and the (u,v) chromaticity is
105 * encoded as an index for optimal color resolution. The 10 log bits are
106 * defined by the following conversions:
107 *
108 * L = 2^((Le'+.5)/64 - 12) # real from 10-bit
109 *
110 * Le' = floor( 64*(log2(L) + 12) ) # 10-bit from real
111 *
112 * The 10 bits of the smaller format may be converted into the 15 bits of
113 * the larger format by multiplying by 4 and adding 13314. Obviously,
114 * a smaller range of magnitudes is covered (about 5 orders of magnitude
115 * instead of 38), and the lack of a sign bit means that negative luminances
116 * are not allowed. (Well, they aren't allowed in the real world, either,
117 * but they are useful for certain types of image processing.)
118 *
119 * The desired user format is controlled by the setting the internal
120 * pseudo tag TIFFTAG_SGILOGDATAFMT to one of:
121 * SGILOGDATAFMT_FLOAT = IEEE 32-bit float XYZ values
122 * SGILOGDATAFMT_16BIT = 16-bit integer encodings of logL, u and v
123 * Raw data i/o is also possible using:
124 * SGILOGDATAFMT_RAW = 32-bit unsigned integer with encoded pixel
125 * In addition, the following decoding is provided for ease of display:
126 * SGILOGDATAFMT_8BIT = 8-bit default RGB gamma-corrected values
127 *
128 * For grayscale images, we provide the following data formats:
129 * SGILOGDATAFMT_FLOAT = IEEE 32-bit float Y values
130 * SGILOGDATAFMT_16BIT = 16-bit integer w/ encoded luminance
131 * SGILOGDATAFMT_8BIT = 8-bit gray monitor values
132 *
133 * Note that the COMPRESSION_SGILOG applies a simple run-length encoding
134 * scheme by separating the logL, u and v bytes for each row and applying
135 * a PackBits type of compression. Since the 24-bit encoding is not
136 * adaptive, the 32-bit color format takes less space in many cases.
137 *
138 * Further control is provided over the conversion from higher-resolution
139 * formats to final encoded values through the pseudo tag
140 * TIFFTAG_SGILOGENCODE:
141 * SGILOGENCODE_NODITHER = do not dither encoded values
142 * SGILOGENCODE_RANDITHER = apply random dithering during encoding
143 *
144 * The default value of this tag is SGILOGENCODE_NODITHER for
145 * COMPRESSION_SGILOG to maximize run-length encoding and
146 * SGILOGENCODE_RANDITHER for COMPRESSION_SGILOG24 to turn
147 * quantization errors into noise.
148 */
149
150 #include <stdio.h>
151 #include <stdlib.h>
152 #include <math.h>
153
154 /*
155 * State block for each open TIFF
156 * file using LogLuv compression/decompression.
157 */
158 typedef struct logLuvState LogLuvState;
159
160 struct logLuvState {
161 int user_datafmt; /* user data format */
162 int encode_meth; /* encoding method */
163 int pixel_size; /* bytes per pixel */
164
165 uint8* tbuf; /* translation buffer */
166 tmsize_t tbuflen; /* buffer length */
167 void (*tfunc)(LogLuvState*, uint8*, tmsize_t);
168
169 TIFFVSetMethod vgetparent; /* super-class method */
170 TIFFVSetMethod vsetparent; /* super-class method */
171 };
172
173 #define DecoderState(tif) ((LogLuvState*) (tif)->tif_data)
174 #define EncoderState(tif) ((LogLuvState*) (tif)->tif_data)
175
176 #define SGILOGDATAFMT_UNKNOWN -1
177
178 #define MINRUN 4 /* minimum run length */
179
180 /*
181 * Decode a string of 16-bit gray pixels.
182 */
183 static int
184 LogL16Decode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
185 {
186 static const char module[] = "LogL16Decode";
187 LogLuvState* sp = DecoderState(tif);
188 int shft;
189 tmsize_t i;
190 tmsize_t npixels;
191 unsigned char* bp;
192 int16* tp;
193 int16 b;
194 tmsize_t cc;
195 int rc;
196
197 assert(s == 0);
198 assert(sp != NULL);
199
200 npixels = occ / sp->pixel_size;
201
202 if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
203 tp = (int16*) op;
204 else {
205 assert(sp->tbuflen >= npixels);
206 tp = (int16*) sp->tbuf;
207 }
208 _TIFFmemset((void*) tp, 0, npixels*sizeof (tp[0]));
209
210 bp = (unsigned char*) tif->tif_rawcp;
211 cc = tif->tif_rawcc;
212 /* get each byte string */
213 for (shft = 2*8; (shft -= 8) >= 0; ) {
214 for (i = 0; i < npixels && cc > 0; )
215 if (*bp >= 128) { /* run */
216 rc = *bp++ + (2-128); /* TODO: potential input buffer overrun when decoding corrupt or truncated data */
217 b = (int16)(*bp++ << shft);
218 cc -= 2;
219 while (rc-- && i < npixels)
220 tp[i++] |= b;
221 } else { /* non-run */
222 rc = *bp++; /* nul is noop */
223 while (--cc && rc-- && i < npixels)
224 tp[i++] |= (int16)*bp++ << shft;
225 }
226 if (i != npixels) {
227 #if defined(__WIN32__) && (defined(_MSC_VER) || defined(__MINGW32__))
228 TIFFErrorExt(tif->tif_clientdata, module,
229 "Not enough data at row %lu (short %I64d pixels)",
230 (unsigned long) tif->tif_row,
231 (unsigned __int64) (npixels - i));
232 #else
233 TIFFErrorExt(tif->tif_clientdata, module,
234 "Not enough data at row %lu (short %llu pixels)",
235 (unsigned long) tif->tif_row,
236 (unsigned long long) (npixels - i));
237 #endif
238 tif->tif_rawcp = (uint8*) bp;
239 tif->tif_rawcc = cc;
240 return (0);
241 }
242 }
243 (*sp->tfunc)(sp, op, npixels);
244 tif->tif_rawcp = (uint8*) bp;
245 tif->tif_rawcc = cc;
246 return (1);
247 }
248
249 /*
250 * Decode a string of 24-bit pixels.
251 */
252 static int
253 LogLuvDecode24(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
254 {
255 static const char module[] = "LogLuvDecode24";
256 LogLuvState* sp = DecoderState(tif);
257 tmsize_t cc;
258 tmsize_t i;
259 tmsize_t npixels;
260 unsigned char* bp;
261 uint32* tp;
262
263 assert(s == 0);
264 assert(sp != NULL);
265
266 npixels = occ / sp->pixel_size;
267
268 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
269 tp = (uint32 *)op;
270 else {
271 assert(sp->tbuflen >= npixels);
272 tp = (uint32 *) sp->tbuf;
273 }
274 /* copy to array of uint32 */
275 bp = (unsigned char*) tif->tif_rawcp;
276 cc = tif->tif_rawcc;
277 for (i = 0; i < npixels && cc > 0; i++) {
278 tp[i] = bp[0] << 16 | bp[1] << 8 | bp[2];
279 bp += 3;
280 cc -= 3;
281 }
282 tif->tif_rawcp = (uint8*) bp;
283 tif->tif_rawcc = cc;
284 if (i != npixels) {
285 #if defined(__WIN32__) && (defined(_MSC_VER) || defined(__MINGW32__))
286 TIFFErrorExt(tif->tif_clientdata, module,
287 "Not enough data at row %lu (short %I64d pixels)",
288 (unsigned long) tif->tif_row,
289 (unsigned __int64) (npixels - i));
290 #else
291 TIFFErrorExt(tif->tif_clientdata, module,
292 "Not enough data at row %lu (short %llu pixels)",
293 (unsigned long) tif->tif_row,
294 (unsigned long long) (npixels - i));
295 #endif
296 return (0);
297 }
298 (*sp->tfunc)(sp, op, npixels);
299 return (1);
300 }
301
302 /*
303 * Decode a string of 32-bit pixels.
304 */
305 static int
306 LogLuvDecode32(TIFF* tif, uint8* op, tmsize_t occ, uint16 s)
307 {
308 static const char module[] = "LogLuvDecode32";
309 LogLuvState* sp;
310 int shft;
311 tmsize_t i;
312 tmsize_t npixels;
313 unsigned char* bp;
314 uint32* tp;
315 uint32 b;
316 tmsize_t cc;
317 int rc;
318
319 assert(s == 0);
320 sp = DecoderState(tif);
321 assert(sp != NULL);
322
323 npixels = occ / sp->pixel_size;
324
325 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
326 tp = (uint32*) op;
327 else {
328 assert(sp->tbuflen >= npixels);
329 tp = (uint32*) sp->tbuf;
330 }
331 _TIFFmemset((void*) tp, 0, npixels*sizeof (tp[0]));
332
333 bp = (unsigned char*) tif->tif_rawcp;
334 cc = tif->tif_rawcc;
335 /* get each byte string */
336 for (shft = 4*8; (shft -= 8) >= 0; ) {
337 for (i = 0; i < npixels && cc > 0; )
338 if (*bp >= 128) { /* run */
339 rc = *bp++ + (2-128);
340 b = (uint32)*bp++ << shft;
341 cc -= 2; /* TODO: potential input buffer overrun when decoding corrupt or truncated data */
342 while (rc-- && i < npixels)
343 tp[i++] |= b;
344 } else { /* non-run */
345 rc = *bp++; /* nul is noop */
346 while (--cc && rc-- && i < npixels)
347 tp[i++] |= (uint32)*bp++ << shft;
348 }
349 if (i != npixels) {
350 #if defined(__WIN32__) && (defined(_MSC_VER) || defined(__MINGW32__))
351 TIFFErrorExt(tif->tif_clientdata, module,
352 "Not enough data at row %lu (short %I64d pixels)",
353 (unsigned long) tif->tif_row,
354 (unsigned __int64) (npixels - i));
355 #else
356 TIFFErrorExt(tif->tif_clientdata, module,
357 "Not enough data at row %lu (short %llu pixels)",
358 (unsigned long) tif->tif_row,
359 (unsigned long long) (npixels - i));
360 #endif
361 tif->tif_rawcp = (uint8*) bp;
362 tif->tif_rawcc = cc;
363 return (0);
364 }
365 }
366 (*sp->tfunc)(sp, op, npixels);
367 tif->tif_rawcp = (uint8*) bp;
368 tif->tif_rawcc = cc;
369 return (1);
370 }
371
372 /*
373 * Decode a strip of pixels. We break it into rows to
374 * maintain synchrony with the encode algorithm, which
375 * is row by row.
376 */
377 static int
378 LogLuvDecodeStrip(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
379 {
380 tmsize_t rowlen = TIFFScanlineSize(tif);
381
382 assert(cc%rowlen == 0);
383 while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
384 bp += rowlen, cc -= rowlen;
385 return (cc == 0);
386 }
387
388 /*
389 * Decode a tile of pixels. We break it into rows to
390 * maintain synchrony with the encode algorithm, which
391 * is row by row.
392 */
393 static int
394 LogLuvDecodeTile(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
395 {
396 tmsize_t rowlen = TIFFTileRowSize(tif);
397
398 assert(cc%rowlen == 0);
399 while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s))
400 bp += rowlen, cc -= rowlen;
401 return (cc == 0);
402 }
403
404 /*
405 * Encode a row of 16-bit pixels.
406 */
407 static int
408 LogL16Encode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
409 {
410 LogLuvState* sp = EncoderState(tif);
411 int shft;
412 tmsize_t i;
413 tmsize_t j;
414 tmsize_t npixels;
415 uint8* op;
416 int16* tp;
417 int16 b;
418 tmsize_t occ;
419 int rc=0, mask;
420 tmsize_t beg;
421
422 assert(s == 0);
423 assert(sp != NULL);
424 npixels = cc / sp->pixel_size;
425
426 if (sp->user_datafmt == SGILOGDATAFMT_16BIT)
427 tp = (int16*) bp;
428 else {
429 tp = (int16*) sp->tbuf;
430 assert(sp->tbuflen >= npixels);
431 (*sp->tfunc)(sp, bp, npixels);
432 }
433 /* compress each byte string */
434 op = tif->tif_rawcp;
435 occ = tif->tif_rawdatasize - tif->tif_rawcc;
436 for (shft = 2*8; (shft -= 8) >= 0; )
437 for (i = 0; i < npixels; i += rc) {
438 if (occ < 4) {
439 tif->tif_rawcp = op;
440 tif->tif_rawcc = tif->tif_rawdatasize - occ;
441 if (!TIFFFlushData1(tif))
442 return (-1);
443 op = tif->tif_rawcp;
444 occ = tif->tif_rawdatasize - tif->tif_rawcc;
445 }
446 mask = 0xff << shft; /* find next run */
447 for (beg = i; beg < npixels; beg += rc) {
448 b = (int16) (tp[beg] & mask);
449 rc = 1;
450 while (rc < 127+2 && beg+rc < npixels &&
451 (tp[beg+rc] & mask) == b)
452 rc++;
453 if (rc >= MINRUN)
454 break; /* long enough */
455 }
456 if (beg-i > 1 && beg-i < MINRUN) {
457 b = (int16) (tp[i] & mask);/*check short run */
458 j = i+1;
459 while ((tp[j++] & mask) == b)
460 if (j == beg) {
461 *op++ = (uint8)(128-2+j-i);
462 *op++ = (uint8)(b >> shft);
463 occ -= 2;
464 i = beg;
465 break;
466 }
467 }
468 while (i < beg) { /* write out non-run */
469 if ((j = beg-i) > 127) j = 127;
470 if (occ < j+3) {
471 tif->tif_rawcp = op;
472 tif->tif_rawcc = tif->tif_rawdatasize - occ;
473 if (!TIFFFlushData1(tif))
474 return (-1);
475 op = tif->tif_rawcp;
476 occ = tif->tif_rawdatasize - tif->tif_rawcc;
477 }
478 *op++ = (uint8) j; occ--;
479 while (j--) {
480 *op++ = (uint8) (tp[i++] >> shft & 0xff);
481 occ--;
482 }
483 }
484 if (rc >= MINRUN) { /* write out run */
485 *op++ = (uint8) (128-2+rc);
486 *op++ = (uint8) (tp[beg] >> shft & 0xff);
487 occ -= 2;
488 } else
489 rc = 0;
490 }
491 tif->tif_rawcp = op;
492 tif->tif_rawcc = tif->tif_rawdatasize - occ;
493
494 return (1);
495 }
496
497 /*
498 * Encode a row of 24-bit pixels.
499 */
500 static int
501 LogLuvEncode24(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
502 {
503 LogLuvState* sp = EncoderState(tif);
504 tmsize_t i;
505 tmsize_t npixels;
506 tmsize_t occ;
507 uint8* op;
508 uint32* tp;
509
510 assert(s == 0);
511 assert(sp != NULL);
512 npixels = cc / sp->pixel_size;
513
514 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
515 tp = (uint32*) bp;
516 else {
517 tp = (uint32*) sp->tbuf;
518 assert(sp->tbuflen >= npixels);
519 (*sp->tfunc)(sp, bp, npixels);
520 }
521 /* write out encoded pixels */
522 op = tif->tif_rawcp;
523 occ = tif->tif_rawdatasize - tif->tif_rawcc;
524 for (i = npixels; i--; ) {
525 if (occ < 3) {
526 tif->tif_rawcp = op;
527 tif->tif_rawcc = tif->tif_rawdatasize - occ;
528 if (!TIFFFlushData1(tif))
529 return (-1);
530 op = tif->tif_rawcp;
531 occ = tif->tif_rawdatasize - tif->tif_rawcc;
532 }
533 *op++ = (uint8)(*tp >> 16);
534 *op++ = (uint8)(*tp >> 8 & 0xff);
535 *op++ = (uint8)(*tp++ & 0xff);
536 occ -= 3;
537 }
538 tif->tif_rawcp = op;
539 tif->tif_rawcc = tif->tif_rawdatasize - occ;
540
541 return (1);
542 }
543
544 /*
545 * Encode a row of 32-bit pixels.
546 */
547 static int
548 LogLuvEncode32(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
549 {
550 LogLuvState* sp = EncoderState(tif);
551 int shft;
552 tmsize_t i;
553 tmsize_t j;
554 tmsize_t npixels;
555 uint8* op;
556 uint32* tp;
557 uint32 b;
558 tmsize_t occ;
559 int rc=0, mask;
560 tmsize_t beg;
561
562 assert(s == 0);
563 assert(sp != NULL);
564
565 npixels = cc / sp->pixel_size;
566
567 if (sp->user_datafmt == SGILOGDATAFMT_RAW)
568 tp = (uint32*) bp;
569 else {
570 tp = (uint32*) sp->tbuf;
571 assert(sp->tbuflen >= npixels);
572 (*sp->tfunc)(sp, bp, npixels);
573 }
574 /* compress each byte string */
575 op = tif->tif_rawcp;
576 occ = tif->tif_rawdatasize - tif->tif_rawcc;
577 for (shft = 4*8; (shft -= 8) >= 0; )
578 for (i = 0; i < npixels; i += rc) {
579 if (occ < 4) {
580 tif->tif_rawcp = op;
581 tif->tif_rawcc = tif->tif_rawdatasize - occ;
582 if (!TIFFFlushData1(tif))
583 return (-1);
584 op = tif->tif_rawcp;
585 occ = tif->tif_rawdatasize - tif->tif_rawcc;
586 }
587 mask = 0xff << shft; /* find next run */
588 for (beg = i; beg < npixels; beg += rc) {
589 b = tp[beg] & mask;
590 rc = 1;
591 while (rc < 127+2 && beg+rc < npixels &&
592 (tp[beg+rc] & mask) == b)
593 rc++;
594 if (rc >= MINRUN)
595 break; /* long enough */
596 }
597 if (beg-i > 1 && beg-i < MINRUN) {
598 b = tp[i] & mask; /* check short run */
599 j = i+1;
600 while ((tp[j++] & mask) == b)
601 if (j == beg) {
602 *op++ = (uint8)(128-2+j-i);
603 *op++ = (uint8)(b >> shft);
604 occ -= 2;
605 i = beg;
606 break;
607 }
608 }
609 while (i < beg) { /* write out non-run */
610 if ((j = beg-i) > 127) j = 127;
611 if (occ < j+3) {
612 tif->tif_rawcp = op;
613 tif->tif_rawcc = tif->tif_rawdatasize - occ;
614 if (!TIFFFlushData1(tif))
615 return (-1);
616 op = tif->tif_rawcp;
617 occ = tif->tif_rawdatasize - tif->tif_rawcc;
618 }
619 *op++ = (uint8) j; occ--;
620 while (j--) {
621 *op++ = (uint8)(tp[i++] >> shft & 0xff);
622 occ--;
623 }
624 }
625 if (rc >= MINRUN) { /* write out run */
626 *op++ = (uint8) (128-2+rc);
627 *op++ = (uint8)(tp[beg] >> shft & 0xff);
628 occ -= 2;
629 } else
630 rc = 0;
631 }
632 tif->tif_rawcp = op;
633 tif->tif_rawcc = tif->tif_rawdatasize - occ;
634
635 return (1);
636 }
637
638 /*
639 * Encode a strip of pixels. We break it into rows to
640 * avoid encoding runs across row boundaries.
641 */
642 static int
643 LogLuvEncodeStrip(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
644 {
645 tmsize_t rowlen = TIFFScanlineSize(tif);
646
647 assert(cc%rowlen == 0);
648 while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 1)
649 bp += rowlen, cc -= rowlen;
650 return (cc == 0);
651 }
652
653 /*
654 * Encode a tile of pixels. We break it into rows to
655 * avoid encoding runs across row boundaries.
656 */
657 static int
658 LogLuvEncodeTile(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s)
659 {
660 tmsize_t rowlen = TIFFTileRowSize(tif);
661
662 assert(cc%rowlen == 0);
663 while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 1)
664 bp += rowlen, cc -= rowlen;
665 return (cc == 0);
666 }
667
668 /*
669 * Encode/Decode functions for converting to and from user formats.
670 */
671
672 #include "uvcode.h"
673
674 #ifndef UVSCALE
675 #define U_NEU 0.210526316
676 #define V_NEU 0.473684211
677 #define UVSCALE 410.
678 #endif
679
680 #ifndef M_LN2
681 #define M_LN2 0.69314718055994530942
682 #endif
683 #ifndef M_PI
684 #define M_PI 3.14159265358979323846
685 #endif
686 #define log2(x) ((1./M_LN2)*log(x))
687 #define exp2(x) exp(M_LN2*(x))
688
689 #define itrunc(x,m) ((m)==SGILOGENCODE_NODITHER ? \
690 (int)(x) : \
691 (int)((x) + rand()*(1./RAND_MAX) - .5))
692
693 #if !LOGLUV_PUBLIC
694 static
695 #endif
696 double
697 LogL16toY(int p16) /* compute luminance from 16-bit LogL */
698 {
699 int Le = p16 & 0x7fff;
700 double Y;
701
702 if (!Le)
703 return (0.);
704 Y = exp(M_LN2/256.*(Le+.5) - M_LN2*64.);
705 return (!(p16 & 0x8000) ? Y : -Y);
706 }
707
708 #if !LOGLUV_PUBLIC
709 static
710 #endif
711 int
712 LogL16fromY(double Y, int em) /* get 16-bit LogL from Y */
713 {
714 if (Y >= 1.8371976e19)
715 return (0x7fff);
716 if (Y <= -1.8371976e19)
717 return (0xffff);
718 if (Y > 5.4136769e-20)
719 return itrunc(256.*(log2(Y) + 64.), em);
720 if (Y < -5.4136769e-20)
721 return (~0x7fff | itrunc(256.*(log2(-Y) + 64.), em));
722 return (0);
723 }
724
725 static void
726 L16toY(LogLuvState* sp, uint8* op, tmsize_t n)
727 {
728 int16* l16 = (int16*) sp->tbuf;
729 float* yp = (float*) op;
730
731 while (n-- > 0)
732 *yp++ = (float)LogL16toY(*l16++);
733 }
734
735 static void
736 L16toGry(LogLuvState* sp, uint8* op, tmsize_t n)
737 {
738 int16* l16 = (int16*) sp->tbuf;
739 uint8* gp = (uint8*) op;
740
741 while (n-- > 0) {
742 double Y = LogL16toY(*l16++);
743 *gp++ = (uint8) ((Y <= 0.) ? 0 : (Y >= 1.) ? 255 : (int)(256.*sqrt(Y)));
744 }
745 }
746
747 static void
748 L16fromY(LogLuvState* sp, uint8* op, tmsize_t n)
749 {
750 int16* l16 = (int16*) sp->tbuf;
751 float* yp = (float*) op;
752
753 while (n-- > 0)
754 *l16++ = (int16) (LogL16fromY(*yp++, sp->encode_meth));
755 }
756
757 #if !LOGLUV_PUBLIC
758 static
759 #endif
760 void
761 XYZtoRGB24(float xyz[3], uint8 rgb[3])
762 {
763 double r, g, b;
764 /* assume CCIR-709 primaries */
765 r = 2.690*xyz[0] + -1.276*xyz[1] + -0.414*xyz[2];
766 g = -1.022*xyz[0] + 1.978*xyz[1] + 0.044*xyz[2];
767 b = 0.061*xyz[0] + -0.224*xyz[1] + 1.163*xyz[2];
768 /* assume 2.0 gamma for speed */
769 /* could use integer sqrt approx., but this is probably faster */
770 rgb[0] = (uint8)((r<=0.) ? 0 : (r >= 1.) ? 255 : (int)(256.*sqrt(r)));
771 rgb[1] = (uint8)((g<=0.) ? 0 : (g >= 1.) ? 255 : (int)(256.*sqrt(g)));
772 rgb[2] = (uint8)((b<=0.) ? 0 : (b >= 1.) ? 255 : (int)(256.*sqrt(b)));
773 }
774
775 #if !LOGLUV_PUBLIC
776 static
777 #endif
778 double
779 LogL10toY(int p10) /* compute luminance from 10-bit LogL */
780 {
781 if (p10 == 0)
782 return (0.);
783 return (exp(M_LN2/64.*(p10+.5) - M_LN2*12.));
784 }
785
786 #if !LOGLUV_PUBLIC
787 static
788 #endif
789 int
790 LogL10fromY(double Y, int em) /* get 10-bit LogL from Y */
791 {
792 if (Y >= 15.742)
793 return (0x3ff);
794 else if (Y <= .00024283)
795 return (0);
796 else
797 return itrunc(64.*(log2(Y) + 12.), em);
798 }
799
800 #define NANGLES 100
801 #define uv2ang(u, v) ( (NANGLES*.499999999/M_PI) \
802 * atan2((v)-V_NEU,(u)-U_NEU) + .5*NANGLES )
803
804 static int
805 oog_encode(double u, double v) /* encode out-of-gamut chroma */
806 {
807 static int oog_table[NANGLES];
808 static int initialized = 0;
809 register int i;
810
811 if (!initialized) { /* set up perimeter table */
812 double eps[NANGLES], ua, va, ang, epsa;
813 int ui, vi, ustep;
814 for (i = NANGLES; i--; )
815 eps[i] = 2.;
816 for (vi = UV_NVS; vi--; ) {
817 va = UV_VSTART + (vi+.5)*UV_SQSIZ;
818 ustep = uv_row[vi].nus-1;
819 if (vi == UV_NVS-1 || vi == 0 || ustep <= 0)
820 ustep = 1;
821 for (ui = uv_row[vi].nus-1; ui >= 0; ui -= ustep) {
822 ua = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
823 ang = uv2ang(ua, va);
824 i = (int) ang;
825 epsa = fabs(ang - (i+.5));
826 if (epsa < eps[i]) {
827 oog_table[i] = uv_row[vi].ncum + ui;
828 eps[i] = epsa;
829 }
830 }
831 }
832 for (i = NANGLES; i--; ) /* fill any holes */
833 if (eps[i] > 1.5) {
834 int i1, i2;
835 for (i1 = 1; i1 < NANGLES/2; i1++)
836 if (eps[(i+i1)%NANGLES] < 1.5)
837 break;
838 for (i2 = 1; i2 < NANGLES/2; i2++)
839 if (eps[(i+NANGLES-i2)%NANGLES] < 1.5)
840 break;
841 if (i1 < i2)
842 oog_table[i] =
843 oog_table[(i+i1)%NANGLES];
844 else
845 oog_table[i] =
846 oog_table[(i+NANGLES-i2)%NANGLES];
847 }
848 initialized = 1;
849 }
850 i = (int) uv2ang(u, v); /* look up hue angle */
851 return (oog_table[i]);
852 }
853
854 #undef uv2ang
855 #undef NANGLES
856
857 #if !LOGLUV_PUBLIC
858 static
859 #endif
860 int
861 uv_encode(double u, double v, int em) /* encode (u',v') coordinates */
862 {
863 register int vi, ui;
864
865 if (v < UV_VSTART)
866 return oog_encode(u, v);
867 vi = itrunc((v - UV_VSTART)*(1./UV_SQSIZ), em);
868 if (vi >= UV_NVS)
869 return oog_encode(u, v);
870 if (u < uv_row[vi].ustart)
871 return oog_encode(u, v);
872 ui = itrunc((u - uv_row[vi].ustart)*(1./UV_SQSIZ), em);
873 if (ui >= uv_row[vi].nus)
874 return oog_encode(u, v);
875
876 return (uv_row[vi].ncum + ui);
877 }
878
879 #if !LOGLUV_PUBLIC
880 static
881 #endif
882 int
883 uv_decode(double *up, double *vp, int c) /* decode (u',v') index */
884 {
885 int upper, lower;
886 register int ui, vi;
887
888 if (c < 0 || c >= UV_NDIVS)
889 return (-1);
890 lower = 0; /* binary search */
891 upper = UV_NVS;
892 while (upper - lower > 1) {
893 vi = (lower + upper) >> 1;
894 ui = c - uv_row[vi].ncum;
895 if (ui > 0)
896 lower = vi;
897 else if (ui < 0)
898 upper = vi;
899 else {
900 lower = vi;
901 break;
902 }
903 }
904 vi = lower;
905 ui = c - uv_row[vi].ncum;
906 *up = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ;
907 *vp = UV_VSTART + (vi+.5)*UV_SQSIZ;
908 return (0);
909 }
910
911 #if !LOGLUV_PUBLIC
912 static
913 #endif
914 void
915 LogLuv24toXYZ(uint32 p, float XYZ[3])
916 {
917 int Ce;
918 double L, u, v, s, x, y;
919 /* decode luminance */
920 L = LogL10toY(p>>14 & 0x3ff);
921 if (L <= 0.) {
922 XYZ[0] = XYZ[1] = XYZ[2] = 0.;
923 return;
924 }
925 /* decode color */
926 Ce = p & 0x3fff;
927 if (uv_decode(&u, &v, Ce) < 0) {
928 u = U_NEU; v = V_NEU;
929 }
930 s = 1./(6.*u - 16.*v + 12.);
931 x = 9.*u * s;
932 y = 4.*v * s;
933 /* convert to XYZ */
934 XYZ[0] = (float)(x/y * L);
935 XYZ[1] = (float)L;
936 XYZ[2] = (float)((1.-x-y)/y * L);
937 }
938
939 #if !LOGLUV_PUBLIC
940 static
941 #endif
942 uint32
943 LogLuv24fromXYZ(float XYZ[3], int em)
944 {
945 int Le, Ce;
946 double u, v, s;
947 /* encode luminance */
948 Le = LogL10fromY(XYZ[1], em);
949 /* encode color */
950 s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
951 if (!Le || s <= 0.) {
952 u = U_NEU;
953 v = V_NEU;
954 } else {
955 u = 4.*XYZ[0] / s;
956 v = 9.*XYZ[1] / s;
957 }
958 Ce = uv_encode(u, v, em);
959 if (Ce < 0) /* never happens */
960 Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
961 /* combine encodings */
962 return (Le << 14 | Ce);
963 }
964
965 static void
966 Luv24toXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
967 {
968 uint32* luv = (uint32*) sp->tbuf;
969 float* xyz = (float*) op;
970
971 while (n-- > 0) {
972 LogLuv24toXYZ(*luv, xyz);
973 xyz += 3;
974 luv++;
975 }
976 }
977
978 static void
979 Luv24toLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
980 {
981 uint32* luv = (uint32*) sp->tbuf;
982 int16* luv3 = (int16*) op;
983
984 while (n-- > 0) {
985 double u, v;
986
987 *luv3++ = (int16)((*luv >> 12 & 0xffd) + 13314);
988 if (uv_decode(&u, &v, *luv&0x3fff) < 0) {
989 u = U_NEU;
990 v = V_NEU;
991 }
992 *luv3++ = (int16)(u * (1L<<15));
993 *luv3++ = (int16)(v * (1L<<15));
994 luv++;
995 }
996 }
997
998 static void
999 Luv24toRGB(LogLuvState* sp, uint8* op, tmsize_t n)
1000 {
1001 uint32* luv = (uint32*) sp->tbuf;
1002 uint8* rgb = (uint8*) op;
1003
1004 while (n-- > 0) {
1005 float xyz[3];
1006
1007 LogLuv24toXYZ(*luv++, xyz);
1008 XYZtoRGB24(xyz, rgb);
1009 rgb += 3;
1010 }
1011 }
1012
1013 static void
1014 Luv24fromXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
1015 {
1016 uint32* luv = (uint32*) sp->tbuf;
1017 float* xyz = (float*) op;
1018
1019 while (n-- > 0) {
1020 *luv++ = LogLuv24fromXYZ(xyz, sp->encode_meth);
1021 xyz += 3;
1022 }
1023 }
1024
1025 static void
1026 Luv24fromLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
1027 {
1028 uint32* luv = (uint32*) sp->tbuf;
1029 int16* luv3 = (int16*) op;
1030
1031 while (n-- > 0) {
1032 int Le, Ce;
1033
1034 if (luv3[0] <= 0)
1035 Le = 0;
1036 else if (luv3[0] >= (1<<12)+3314)
1037 Le = (1<<10) - 1;
1038 else if (sp->encode_meth == SGILOGENCODE_NODITHER)
1039 Le = (luv3[0]-3314) >> 2;
1040 else
1041 Le = itrunc(.25*(luv3[0]-3314.), sp->encode_meth);
1042
1043 Ce = uv_encode((luv3[1]+.5)/(1<<15), (luv3[2]+.5)/(1<<15),
1044 sp->encode_meth);
1045 if (Ce < 0) /* never happens */
1046 Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER);
1047 *luv++ = (uint32)Le << 14 | Ce;
1048 luv3 += 3;
1049 }
1050 }
1051
1052 #if !LOGLUV_PUBLIC
1053 static
1054 #endif
1055 void
1056 LogLuv32toXYZ(uint32 p, float XYZ[3])
1057 {
1058 double L, u, v, s, x, y;
1059 /* decode luminance */
1060 L = LogL16toY((int)p >> 16);
1061 if (L <= 0.) {
1062 XYZ[0] = XYZ[1] = XYZ[2] = 0.;
1063 return;
1064 }
1065 /* decode color */
1066 u = 1./UVSCALE * ((p>>8 & 0xff) + .5);
1067 v = 1./UVSCALE * ((p & 0xff) + .5);
1068 s = 1./(6.*u - 16.*v + 12.);
1069 x = 9.*u * s;
1070 y = 4.*v * s;
1071 /* convert to XYZ */
1072 XYZ[0] = (float)(x/y * L);
1073 XYZ[1] = (float)L;
1074 XYZ[2] = (float)((1.-x-y)/y * L);
1075 }
1076
1077 #if !LOGLUV_PUBLIC
1078 static
1079 #endif
1080 uint32
1081 LogLuv32fromXYZ(float XYZ[3], int em)
1082 {
1083 unsigned int Le, ue, ve;
1084 double u, v, s;
1085 /* encode luminance */
1086 Le = (unsigned int)LogL16fromY(XYZ[1], em);
1087 /* encode color */
1088 s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2];
1089 if (!Le || s <= 0.) {
1090 u = U_NEU;
1091 v = V_NEU;
1092 } else {
1093 u = 4.*XYZ[0] / s;
1094 v = 9.*XYZ[1] / s;
1095 }
1096 if (u <= 0.) ue = 0;
1097 else ue = itrunc(UVSCALE*u, em);
1098 if (ue > 255) ue = 255;
1099 if (v <= 0.) ve = 0;
1100 else ve = itrunc(UVSCALE*v, em);
1101 if (ve > 255) ve = 255;
1102 /* combine encodings */
1103 return (Le << 16 | ue << 8 | ve);
1104 }
1105
1106 static void
1107 Luv32toXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
1108 {
1109 uint32* luv = (uint32*) sp->tbuf;
1110 float* xyz = (float*) op;
1111
1112 while (n-- > 0) {
1113 LogLuv32toXYZ(*luv++, xyz);
1114 xyz += 3;
1115 }
1116 }
1117
1118 static void
1119 Luv32toLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
1120 {
1121 uint32* luv = (uint32*) sp->tbuf;
1122 int16* luv3 = (int16*) op;
1123
1124 while (n-- > 0) {
1125 double u, v;
1126
1127 *luv3++ = (int16)(*luv >> 16);
1128 u = 1./UVSCALE * ((*luv>>8 & 0xff) + .5);
1129 v = 1./UVSCALE * ((*luv & 0xff) + .5);
1130 *luv3++ = (int16)(u * (1L<<15));
1131 *luv3++ = (int16)(v * (1L<<15));
1132 luv++;
1133 }
1134 }
1135
1136 static void
1137 Luv32toRGB(LogLuvState* sp, uint8* op, tmsize_t n)
1138 {
1139 uint32* luv = (uint32*) sp->tbuf;
1140 uint8* rgb = (uint8*) op;
1141
1142 while (n-- > 0) {
1143 float xyz[3];
1144
1145 LogLuv32toXYZ(*luv++, xyz);
1146 XYZtoRGB24(xyz, rgb);
1147 rgb += 3;
1148 }
1149 }
1150
1151 static void
1152 Luv32fromXYZ(LogLuvState* sp, uint8* op, tmsize_t n)
1153 {
1154 uint32* luv = (uint32*) sp->tbuf;
1155 float* xyz = (float*) op;
1156
1157 while (n-- > 0) {
1158 *luv++ = LogLuv32fromXYZ(xyz, sp->encode_meth);
1159 xyz += 3;
1160 }
1161 }
1162
1163 static void
1164 Luv32fromLuv48(LogLuvState* sp, uint8* op, tmsize_t n)
1165 {
1166 uint32* luv = (uint32*) sp->tbuf;
1167 int16* luv3 = (int16*) op;
1168
1169 if (sp->encode_meth == SGILOGENCODE_NODITHER) {
1170 while (n-- > 0) {
1171 *luv++ = (uint32)luv3[0] << 16 |
1172 (luv3[1]*(uint32)(UVSCALE+.5) >> 7 & 0xff00) |
1173 (luv3[2]*(uint32)(UVSCALE+.5) >> 15 & 0xff);
1174 luv3 += 3;
1175 }
1176 return;
1177 }
1178 while (n-- > 0) {
1179 *luv++ = (uint32)luv3[0] << 16 |
1180 (itrunc(luv3[1]*(UVSCALE/(1<<15)), sp->encode_meth) << 8 & 0xff00) |
1181 (itrunc(luv3[2]*(UVSCALE/(1<<15)), sp->encode_meth) & 0xff);
1182 luv3 += 3;
1183 }
1184 }
1185
1186 static void
1187 _logLuvNop(LogLuvState* sp, uint8* op, tmsize_t n)
1188 {
1189 (void) sp; (void) op; (void) n;
1190 }
1191
1192 static int
1193 LogL16GuessDataFmt(TIFFDirectory *td)
1194 {
1195 #define PACK(s,b,f) (((b)<<6)|((s)<<3)|(f))
1196 switch (PACK(td->td_samplesperpixel, td->td_bitspersample, td->td_sampleformat)) {
1197 case PACK(1, 32, SAMPLEFORMAT_IEEEFP):
1198 return (SGILOGDATAFMT_FLOAT);
1199 case PACK(1, 16, SAMPLEFORMAT_VOID):
1200 case PACK(1, 16, SAMPLEFORMAT_INT):
1201 case PACK(1, 16, SAMPLEFORMAT_UINT):
1202 return (SGILOGDATAFMT_16BIT);
1203 case PACK(1, 8, SAMPLEFORMAT_VOID):
1204 case PACK(1, 8, SAMPLEFORMAT_UINT):
1205 return (SGILOGDATAFMT_8BIT);
1206 }
1207 #undef PACK
1208 return (SGILOGDATAFMT_UNKNOWN);
1209 }
1210
1211 static tmsize_t
1212 multiply_ms(tmsize_t m1, tmsize_t m2)
1213 {
1214 tmsize_t bytes = m1 * m2;
1215
1216 if (m1 && bytes / m1 != m2)
1217 bytes = 0;
1218
1219 return bytes;
1220 }
1221
1222 static int
1223 LogL16InitState(TIFF* tif)
1224 {
1225 static const char module[] = "LogL16InitState";
1226 TIFFDirectory *td = &tif->tif_dir;
1227 LogLuvState* sp = DecoderState(tif);
1228
1229 assert(sp != NULL);
1230 assert(td->td_photometric == PHOTOMETRIC_LOGL);
1231
1232 /* for some reason, we can't do this in TIFFInitLogL16 */
1233 if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1234 sp->user_datafmt = LogL16GuessDataFmt(td);
1235 switch (sp->user_datafmt) {
1236 case SGILOGDATAFMT_FLOAT:
1237 sp->pixel_size = sizeof (float);
1238 break;
1239 case SGILOGDATAFMT_16BIT:
1240 sp->pixel_size = sizeof (int16);
1241 break;
1242 case SGILOGDATAFMT_8BIT:
1243 sp->pixel_size = sizeof (uint8);
1244 break;
1245 default:
1246 TIFFErrorExt(tif->tif_clientdata, module,
1247 "No support for converting user data format to LogL");
1248 return (0);
1249 }
1250 if( isTiled(tif) )
1251 sp->tbuflen = multiply_ms(td->td_tilewidth, td->td_tilelength);
1252 else
1253 sp->tbuflen = multiply_ms(td->td_imagewidth, td->td_rowsperstrip);
1254 if (multiply_ms(sp->tbuflen, sizeof (int16)) == 0 ||
1255 (sp->tbuf = (uint8*) _TIFFmalloc(sp->tbuflen * sizeof (int16))) == NULL) {
1256 TIFFErrorExt(tif->tif_clientdata, module, "No space for SGILog translation buffer");
1257 return (0);
1258 }
1259 return (1);
1260 }
1261
1262 static int
1263 LogLuvGuessDataFmt(TIFFDirectory *td)
1264 {
1265 int guess;
1266
1267 /*
1268 * If the user didn't tell us their datafmt,
1269 * take our best guess from the bitspersample.
1270 */
1271 #define PACK(a,b) (((a)<<3)|(b))
1272 switch (PACK(td->td_bitspersample, td->td_sampleformat)) {
1273 case PACK(32, SAMPLEFORMAT_IEEEFP):
1274 guess = SGILOGDATAFMT_FLOAT;
1275 break;
1276 case PACK(32, SAMPLEFORMAT_VOID):
1277 case PACK(32, SAMPLEFORMAT_UINT):
1278 case PACK(32, SAMPLEFORMAT_INT):
1279 guess = SGILOGDATAFMT_RAW;
1280 break;
1281 case PACK(16, SAMPLEFORMAT_VOID):
1282 case PACK(16, SAMPLEFORMAT_INT):
1283 case PACK(16, SAMPLEFORMAT_UINT):
1284 guess = SGILOGDATAFMT_16BIT;
1285 break;
1286 case PACK( 8, SAMPLEFORMAT_VOID):
1287 case PACK( 8, SAMPLEFORMAT_UINT):
1288 guess = SGILOGDATAFMT_8BIT;
1289 break;
1290 default:
1291 guess = SGILOGDATAFMT_UNKNOWN;
1292 break;
1293 #undef PACK
1294 }
1295 /*
1296 * Double-check samples per pixel.
1297 */
1298 switch (td->td_samplesperpixel) {
1299 case 1:
1300 if (guess != SGILOGDATAFMT_RAW)
1301 guess = SGILOGDATAFMT_UNKNOWN;
1302 break;
1303 case 3:
1304 if (guess == SGILOGDATAFMT_RAW)
1305 guess = SGILOGDATAFMT_UNKNOWN;
1306 break;
1307 default:
1308 guess = SGILOGDATAFMT_UNKNOWN;
1309 break;
1310 }
1311 return (guess);
1312 }
1313
1314 static int
1315 LogLuvInitState(TIFF* tif)
1316 {
1317 static const char module[] = "LogLuvInitState";
1318 TIFFDirectory* td = &tif->tif_dir;
1319 LogLuvState* sp = DecoderState(tif);
1320
1321 assert(sp != NULL);
1322 assert(td->td_photometric == PHOTOMETRIC_LOGLUV);
1323
1324 /* for some reason, we can't do this in TIFFInitLogLuv */
1325 if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
1326 TIFFErrorExt(tif->tif_clientdata, module,
1327 "SGILog compression cannot handle non-contiguous data");
1328 return (0);
1329 }
1330 if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN)
1331 sp->user_datafmt = LogLuvGuessDataFmt(td);
1332 switch (sp->user_datafmt) {
1333 case SGILOGDATAFMT_FLOAT:
1334 sp->pixel_size = 3*sizeof (float);
1335 break;
1336 case SGILOGDATAFMT_16BIT:
1337 sp->pixel_size = 3*sizeof (int16);
1338 break;
1339 case SGILOGDATAFMT_RAW:
1340 sp->pixel_size = sizeof (uint32);
1341 break;
1342 case SGILOGDATAFMT_8BIT:
1343 sp->pixel_size = 3*sizeof (uint8);
1344 break;
1345 default:
1346 TIFFErrorExt(tif->tif_clientdata, module,
1347 "No support for converting user data format to LogLuv");
1348 return (0);
1349 }
1350 if( isTiled(tif) )
1351 sp->tbuflen = multiply_ms(td->td_tilewidth, td->td_tilelength);
1352 else
1353 sp->tbuflen = multiply_ms(td->td_imagewidth, td->td_rowsperstrip);
1354 if (multiply_ms(sp->tbuflen, sizeof (uint32)) == 0 ||
1355 (sp->tbuf = (uint8*) _TIFFmalloc(sp->tbuflen * sizeof (uint32))) == NULL) {
1356 TIFFErrorExt(tif->tif_clientdata, module, "No space for SGILog translation buffer");
1357 return (0);
1358 }
1359 return (1);
1360 }
1361
1362 static int
1363 LogLuvFixupTags(TIFF* tif)
1364 {
1365 (void) tif;
1366 return (1);
1367 }
1368
1369 static int
1370 LogLuvSetupDecode(TIFF* tif)
1371 {
1372 static const char module[] = "LogLuvSetupDecode";
1373 LogLuvState* sp = DecoderState(tif);
1374 TIFFDirectory* td = &tif->tif_dir;
1375
1376 tif->tif_postdecode = _TIFFNoPostDecode;
1377 switch (td->td_photometric) {
1378 case PHOTOMETRIC_LOGLUV:
1379 if (!LogLuvInitState(tif))
1380 break;
1381 if (td->td_compression == COMPRESSION_SGILOG24) {
1382 tif->tif_decoderow = LogLuvDecode24;
1383 switch (sp->user_datafmt) {
1384 case SGILOGDATAFMT_FLOAT:
1385 sp->tfunc = Luv24toXYZ;
1386 break;
1387 case SGILOGDATAFMT_16BIT:
1388 sp->tfunc = Luv24toLuv48;
1389 break;
1390 case SGILOGDATAFMT_8BIT:
1391 sp->tfunc = Luv24toRGB;
1392 break;
1393 }
1394 } else {
1395 tif->tif_decoderow = LogLuvDecode32;
1396 switch (sp->user_datafmt) {
1397 case SGILOGDATAFMT_FLOAT:
1398 sp->tfunc = Luv32toXYZ;
1399 break;
1400 case SGILOGDATAFMT_16BIT:
1401 sp->tfunc = Luv32toLuv48;
1402 break;
1403 case SGILOGDATAFMT_8BIT:
1404 sp->tfunc = Luv32toRGB;
1405 break;
1406 }
1407 }
1408 return (1);
1409 case PHOTOMETRIC_LOGL:
1410 if (!LogL16InitState(tif))
1411 break;
1412 tif->tif_decoderow = LogL16Decode;
1413 switch (sp->user_datafmt) {
1414 case SGILOGDATAFMT_FLOAT:
1415 sp->tfunc = L16toY;
1416 break;
1417 case SGILOGDATAFMT_8BIT:
1418 sp->tfunc = L16toGry;
1419 break;
1420 }
1421 return (1);
1422 default:
1423 TIFFErrorExt(tif->tif_clientdata, module,
1424 "Inappropriate photometric interpretation %d for SGILog compression; %s",
1425 td->td_photometric, "must be either LogLUV or LogL");
1426 break;
1427 }
1428 return (0);
1429 }
1430
1431 static int
1432 LogLuvSetupEncode(TIFF* tif)
1433 {
1434 static const char module[] = "LogLuvSetupEncode";
1435 LogLuvState* sp = EncoderState(tif);
1436 TIFFDirectory* td = &tif->tif_dir;
1437
1438 switch (td->td_photometric) {
1439 case PHOTOMETRIC_LOGLUV:
1440 if (!LogLuvInitState(tif))
1441 break;
1442 if (td->td_compression == COMPRESSION_SGILOG24) {
1443 tif->tif_encoderow = LogLuvEncode24;
1444 switch (sp->user_datafmt) {
1445 case SGILOGDATAFMT_FLOAT:
1446 sp->tfunc = Luv24fromXYZ;
1447 break;
1448 case SGILOGDATAFMT_16BIT:
1449 sp->tfunc = Luv24fromLuv48;
1450 break;
1451 case SGILOGDATAFMT_RAW:
1452 break;
1453 default:
1454 goto notsupported;
1455 }
1456 } else {
1457 tif->tif_encoderow = LogLuvEncode32;
1458 switch (sp->user_datafmt) {
1459 case SGILOGDATAFMT_FLOAT:
1460 sp->tfunc = Luv32fromXYZ;
1461 break;
1462 case SGILOGDATAFMT_16BIT:
1463 sp->tfunc = Luv32fromLuv48;
1464 break;
1465 case SGILOGDATAFMT_RAW:
1466 break;
1467 default:
1468 goto notsupported;
1469 }
1470 }
1471 break;
1472 case PHOTOMETRIC_LOGL:
1473 if (!LogL16InitState(tif))
1474 break;
1475 tif->tif_encoderow = LogL16Encode;
1476 switch (sp->user_datafmt) {
1477 case SGILOGDATAFMT_FLOAT:
1478 sp->tfunc = L16fromY;
1479 break;
1480 case SGILOGDATAFMT_16BIT:
1481 break;
1482 default:
1483 goto notsupported;
1484 }
1485 break;
1486 default:
1487 TIFFErrorExt(tif->tif_clientdata, module,
1488 "Inappropriate photometric interpretation %d for SGILog compression; %s",
1489 td->td_photometric, "must be either LogLUV or LogL");
1490 break;
1491 }
1492 return (1);
1493 notsupported:
1494 TIFFErrorExt(tif->tif_clientdata, module,
1495 "SGILog compression supported only for %s, or raw data",
1496 td->td_photometric == PHOTOMETRIC_LOGL ? "Y, L" : "XYZ, Luv");
1497 return (0);
1498 }
1499
1500 static void
1501 LogLuvClose(TIFF* tif)
1502 {
1503 TIFFDirectory *td = &tif->tif_dir;
1504
1505 /*
1506 * For consistency, we always want to write out the same
1507 * bitspersample and sampleformat for our TIFF file,
1508 * regardless of the data format being used by the application.
1509 * Since this routine is called after tags have been set but
1510 * before they have been recorded in the file, we reset them here.
1511 */
1512 td->td_samplesperpixel =
1513 (td->td_photometric == PHOTOMETRIC_LOGL) ? 1 : 3;
1514 td->td_bitspersample = 16;
1515 td->td_sampleformat = SAMPLEFORMAT_INT;
1516 }
1517
1518 static void
1519 LogLuvCleanup(TIFF* tif)
1520 {
1521 LogLuvState* sp = (LogLuvState *)tif->tif_data;
1522
1523 assert(sp != 0);
1524
1525 tif->tif_tagmethods.vgetfield = sp->vgetparent;
1526 tif->tif_tagmethods.vsetfield = sp->vsetparent;
1527
1528 if (sp->tbuf)
1529 _TIFFfree(sp->tbuf);
1530 _TIFFfree(sp);
1531 tif->tif_data = NULL;
1532
1533 _TIFFSetDefaultCompressionState(tif);
1534 }
1535
1536 static int
1537 LogLuvVSetField(TIFF* tif, uint32 tag, va_list ap)
1538 {
1539 static const char module[] = "LogLuvVSetField";
1540 LogLuvState* sp = DecoderState(tif);
1541 int bps, fmt;
1542
1543 switch (tag) {
1544 case TIFFTAG_SGILOGDATAFMT:
1545 sp->user_datafmt = (int) va_arg(ap, int);
1546 /*
1547 * Tweak the TIFF header so that the rest of libtiff knows what
1548 * size of data will be passed between app and library, and
1549 * assume that the app knows what it is doing and is not
1550 * confused by these header manipulations...
1551 */
1552 switch (sp->user_datafmt) {
1553 case SGILOGDATAFMT_FLOAT:
1554 bps = 32, fmt = SAMPLEFORMAT_IEEEFP;
1555 break;
1556 case SGILOGDATAFMT_16BIT:
1557 bps = 16, fmt = SAMPLEFORMAT_INT;
1558 break;
1559 case SGILOGDATAFMT_RAW:
1560 bps = 32, fmt = SAMPLEFORMAT_UINT;
1561 TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
1562 break;
1563 case SGILOGDATAFMT_8BIT:
1564 bps = 8, fmt = SAMPLEFORMAT_UINT;
1565 break;
1566 default:
1567 TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1568 "Unknown data format %d for LogLuv compression",
1569 sp->user_datafmt);
1570 return (0);
1571 }
1572 TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps);
1573 TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, fmt);
1574 /*
1575 * Must recalculate sizes should bits/sample change.
1576 */
1577 tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t) -1;
1578 tif->tif_scanlinesize = TIFFScanlineSize(tif);
1579 return (1);
1580 case TIFFTAG_SGILOGENCODE:
1581 sp->encode_meth = (int) va_arg(ap, int);
1582 if (sp->encode_meth != SGILOGENCODE_NODITHER &&
1583 sp->encode_meth != SGILOGENCODE_RANDITHER) {
1584 TIFFErrorExt(tif->tif_clientdata, module,
1585 "Unknown encoding %d for LogLuv compression",
1586 sp->encode_meth);
1587 return (0);
1588 }
1589 return (1);
1590 default:
1591 return (*sp->vsetparent)(tif, tag, ap);
1592 }
1593 }
1594
1595 static int
1596 LogLuvVGetField(TIFF* tif, uint32 tag, va_list ap)
1597 {
1598 LogLuvState *sp = (LogLuvState *)tif->tif_data;
1599
1600 switch (tag) {
1601 case TIFFTAG_SGILOGDATAFMT:
1602 *va_arg(ap, int*) = sp->user_datafmt;
1603 return (1);
1604 default:
1605 return (*sp->vgetparent)(tif, tag, ap);
1606 }
1607 }
1608
1609 static const TIFFField LogLuvFields[] = {
1610 { TIFFTAG_SGILOGDATAFMT, 0, 0, TIFF_SHORT, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, TRUE, FALSE, "SGILogDataFmt", NULL},
1611 { TIFFTAG_SGILOGENCODE, 0, 0, TIFF_SHORT, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, TRUE, FALSE, "SGILogEncode", NULL}
1612 };
1613
1614 int
1615 TIFFInitSGILog(TIFF* tif, int scheme)
1616 {
1617 static const char module[] = "TIFFInitSGILog";
1618 LogLuvState* sp;
1619
1620 assert(scheme == COMPRESSION_SGILOG24 || scheme == COMPRESSION_SGILOG);
1621
1622 /*
1623 * Merge codec-specific tag information.
1624 */
1625 if (!_TIFFMergeFields(tif, LogLuvFields,
1626 TIFFArrayCount(LogLuvFields))) {
1627 TIFFErrorExt(tif->tif_clientdata, module,
1628 "Merging SGILog codec-specific tags failed");
1629 return 0;
1630 }
1631
1632 /*
1633 * Allocate state block so tag methods have storage to record values.
1634 */
1635 tif->tif_data = (uint8*) _TIFFmalloc(sizeof (LogLuvState));
1636 if (tif->tif_data == NULL)
1637 goto bad;
1638 sp = (LogLuvState*) tif->tif_data;
1639 _TIFFmemset((void*)sp, 0, sizeof (*sp));
1640 sp->user_datafmt = SGILOGDATAFMT_UNKNOWN;
1641 sp->encode_meth = (scheme == COMPRESSION_SGILOG24) ?
1642 SGILOGENCODE_RANDITHER : SGILOGENCODE_NODITHER;
1643 sp->tfunc = _logLuvNop;
1644
1645 /*
1646 * Install codec methods.
1647 * NB: tif_decoderow & tif_encoderow are filled
1648 * in at setup time.
1649 */
1650 tif->tif_fixuptags = LogLuvFixupTags;
1651 tif->tif_setupdecode = LogLuvSetupDecode;
1652 tif->tif_decodestrip = LogLuvDecodeStrip;
1653 tif->tif_decodetile = LogLuvDecodeTile;
1654 tif->tif_setupencode = LogLuvSetupEncode;
1655 tif->tif_encodestrip = LogLuvEncodeStrip;
1656 tif->tif_encodetile = LogLuvEncodeTile;
1657 tif->tif_close = LogLuvClose;
1658 tif->tif_cleanup = LogLuvCleanup;
1659
1660 /*
1661 * Override parent get/set field methods.
1662 */
1663 sp->vgetparent = tif->tif_tagmethods.vgetfield;
1664 tif->tif_tagmethods.vgetfield = LogLuvVGetField; /* hook for codec tags */
1665 sp->vsetparent = tif->tif_tagmethods.vsetfield;
1666 tif->tif_tagmethods.vsetfield = LogLuvVSetField; /* hook for codec tags */
1667
1668 return (1);
1669 bad:
1670 TIFFErrorExt(tif->tif_clientdata, module,
1671 "%s: No space for LogLuv state block", tif->tif_name);
1672 return (0);
1673 }
1674 #endif /* LOGLUV_SUPPORT */
1675
1676 /* vim: set ts=8 sts=8 sw=8 noet: */
1677 /*
1678 * Local Variables:
1679 * mode: c
1680 * c-basic-offset: 8
1681 * fill-column: 78
1682 * End:
1683 */