]> git.saurik.com Git - wxWidgets.git/blob - include/wx/matrix.h
added static Apply(GtkWidget, tip) method
[wxWidgets.git] / include / wx / matrix.h
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: matrix.h
3 // Purpose: wxTransformMatrix class. NOT YET USED
4 // Author: Chris Breeze, Julian Smart
5 // Modified by: Klaas Holwerda
6 // Created: 01/02/97
7 // RCS-ID: $Id$
8 // Copyright: (c) Julian Smart, Chris Breeze
9 // Licence: wxWindows licence
10 /////////////////////////////////////////////////////////////////////////////
11
12 #ifndef _WX_MATRIXH__
13 #define _WX_MATRIXH__
14
15 //! headerfiles="matrix.h wx/object.h"
16 #include "wx/object.h"
17
18 //! codefiles="matrix.cpp"
19
20 // A simple 3x3 matrix. This may be replaced by a more general matrix
21 // class some day.
22 //
23 // Note: this is intended to be used in wxDC at some point to replace
24 // the current system of scaling/translation. It is not yet used.
25
26 //:definition
27 // A 3x3 matrix to do 2D transformations.
28 // It can be used to map data to window coordinates,
29 // and also for manipulating your own data.
30 // For example drawing a picture (composed of several primitives)
31 // at a certain coordinate and angle within another parent picture.
32 // At all times m_isIdentity is set if the matrix itself is an Identity matrix.
33 // It is used where possible to optimize calculations.
34 class WXDLLEXPORT wxTransformMatrix: public wxObject
35 {
36 public:
37 wxTransformMatrix(void);
38 wxTransformMatrix(const wxTransformMatrix& mat);
39
40 //get the value in the matrix at col,row
41 //rows are horizontal (second index of m_matrix member)
42 //columns are vertical (first index of m_matrix member)
43 double GetValue(int col, int row) const;
44
45 //set the value in the matrix at col,row
46 //rows are horizontal (second index of m_matrix member)
47 //columns are vertical (first index of m_matrix member)
48 void SetValue(int col, int row, double value);
49
50 void operator = (const wxTransformMatrix& mat);
51 bool operator == (const wxTransformMatrix& mat) const;
52 bool operator != (const wxTransformMatrix& mat) const;
53
54 //multiply every element by t
55 wxTransformMatrix& operator*=(const double& t);
56 //divide every element by t
57 wxTransformMatrix& operator/=(const double& t);
58 //add matrix m to this t
59 wxTransformMatrix& operator+=(const wxTransformMatrix& m);
60 //subtract matrix m from this
61 wxTransformMatrix& operator-=(const wxTransformMatrix& m);
62 //multiply matrix m with this
63 wxTransformMatrix& operator*=(const wxTransformMatrix& m);
64
65 // constant operators
66
67 //multiply every element by t and return result
68 wxTransformMatrix operator*(const double& t) const;
69 //divide this matrix by t and return result
70 wxTransformMatrix operator/(const double& t) const;
71 //add matrix m to this and return result
72 wxTransformMatrix operator+(const wxTransformMatrix& m) const;
73 //subtract matrix m from this and return result
74 wxTransformMatrix operator-(const wxTransformMatrix& m) const;
75 //multiply this by matrix m and return result
76 wxTransformMatrix operator*(const wxTransformMatrix& m) const;
77 wxTransformMatrix operator-() const;
78
79 //rows are horizontal (second index of m_matrix member)
80 //columns are vertical (first index of m_matrix member)
81 double& operator()(int col, int row);
82
83 //rows are horizontal (second index of m_matrix member)
84 //columns are vertical (first index of m_matrix member)
85 double operator()(int col, int row) const;
86
87 // Invert matrix
88 bool Invert(void);
89
90 // Make into identity matrix
91 bool Identity(void);
92
93 // Is the matrix the identity matrix?
94 // Only returns a flag, which is set whenever an operation
95 // is done.
96 inline bool IsIdentity(void) const { return m_isIdentity; };
97
98 // This does an actual check.
99 inline bool IsIdentity1(void) const ;
100
101 //Scale by scale (isotropic scaling i.e. the same in x and y):
102 //!ex:
103 //!code: | scale 0 0 |
104 //!code: matrix' = | 0 scale 0 | x matrix
105 //!code: | 0 0 scale |
106 bool Scale(double scale);
107
108 //Scale with center point and x/y scale
109 //
110 //!ex:
111 //!code: | xs 0 xc(1-xs) |
112 //!code: matrix' = | 0 ys yc(1-ys) | x matrix
113 //!code: | 0 0 1 |
114 wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
115
116 // mirror a matrix in x, y
117 //!ex:
118 //!code: | -1 0 0 |
119 //!code: matrix' = | 0 -1 0 | x matrix
120 //!code: | 0 0 1 |
121 wxTransformMatrix& Mirror(bool x=true, bool y=false);
122 // Translate by dx, dy:
123 //!ex:
124 //!code: | 1 0 dx |
125 //!code: matrix' = | 0 1 dy | x matrix
126 //!code: | 0 0 1 |
127 bool Translate(double x, double y);
128
129 // Rotate clockwise by the given number of degrees:
130 //!ex:
131 //!code: | cos sin 0 |
132 //!code: matrix' = | -sin cos 0 | x matrix
133 //!code: | 0 0 1 |
134 bool Rotate(double angle);
135
136 //Rotate counter clockwise with point of rotation
137 //
138 //!ex:
139 //!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
140 //!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
141 //!code: | 0 0 1 |
142 wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
143
144 // Transform X value from logical to device
145 inline double TransformX(double x) const;
146
147 // Transform Y value from logical to device
148 inline double TransformY(double y) const;
149
150 // Transform a point from logical to device coordinates
151 bool TransformPoint(double x, double y, double& tx, double& ty) const;
152
153 // Transform a point from device to logical coordinates.
154 // Example of use:
155 // wxTransformMatrix mat = dc.GetTransformation();
156 // mat.Invert();
157 // mat.InverseTransformPoint(x, y, x1, y1);
158 // OR (shorthand:)
159 // dc.LogicalToDevice(x, y, x1, y1);
160 // The latter is slightly less efficient if we're doing several
161 // conversions, since the matrix is inverted several times.
162 // N.B. 'this' matrix is the inverse at this point
163 bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
164
165 double Get_scaleX();
166 double Get_scaleY();
167 double GetRotation();
168 void SetRotation(double rotation);
169
170
171 public:
172 double m_matrix[3][3];
173 bool m_isIdentity;
174 };
175
176
177 /*
178 Chris Breeze reported, that
179 some functions of wxTransformMatrix cannot work because it is not
180 known if he matrix has been inverted. Be careful when using it.
181 */
182
183 // Transform X value from logical to device
184 // warning: this function can only be used for this purpose
185 // because no rotation is involved when mapping logical to device coordinates
186 // mirror and scaling for x and y will be part of the matrix
187 // if you have a matrix that is rotated, eg a shape containing a matrix to place
188 // it in the logical coordinate system, use TransformPoint
189 inline double wxTransformMatrix::TransformX(double x) const
190 {
191 //normally like this, but since no rotation is involved (only mirror and scale)
192 //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
193 //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
194 return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
195 }
196
197 // Transform Y value from logical to device
198 // warning: this function can only be used for this purpose
199 // because no rotation is involved when mapping logical to device coordinates
200 // mirror and scaling for x and y will be part of the matrix
201 // if you have a matrix that is rotated, eg a shape containing a matrix to place
202 // it in the logical coordinate system, use TransformPoint
203 inline double wxTransformMatrix::TransformY(double y) const
204 {
205 //normally like this, but since no rotation is involved (only mirror and scale)
206 //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
207 //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
208 return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
209 }
210
211
212 // Is the matrix the identity matrix?
213 // Each operation checks whether the result is still the identity matrix and sets a flag.
214 inline bool wxTransformMatrix::IsIdentity1(void) const
215 {
216 return
217 ( wxIsSameDouble(m_matrix[0][0], 1.0) &&
218 wxIsSameDouble(m_matrix[1][1], 1.0) &&
219 wxIsSameDouble(m_matrix[2][2], 1.0) &&
220 wxIsSameDouble(m_matrix[1][0], 0.0) &&
221 wxIsSameDouble(m_matrix[2][0], 0.0) &&
222 wxIsSameDouble(m_matrix[0][1], 0.0) &&
223 wxIsSameDouble(m_matrix[2][1], 0.0) &&
224 wxIsSameDouble(m_matrix[0][2], 0.0) &&
225 wxIsSameDouble(m_matrix[1][2], 0.0) );
226 }
227
228 // Calculates the determinant of a 2 x 2 matrix
229 inline double wxCalculateDet(double a11, double a21, double a12, double a22)
230 {
231 return a11 * a22 - a12 * a21;
232 }
233
234 #endif // _WX_MATRIXH__