]> git.saurik.com Git - wxWidgets.git/blob - src/png/png.c
remove unnecessary override of AddChildGTK
[wxWidgets.git] / src / png / png.c
1
2 /* png.c - location for general purpose libpng functions
3 *
4 * Last changed in libpng 1.5.7 [December 15, 2011]
5 * Copyright (c) 1998-2011 Glenn Randers-Pehrson
6 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
7 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
8 *
9 * This code is released under the libpng license.
10 * For conditions of distribution and use, see the disclaimer
11 * and license in png.h
12 */
13
14 #include "pngpriv.h"
15
16 /* Generate a compiler error if there is an old png.h in the search path. */
17 typedef png_libpng_version_1_5_7 Your_png_h_is_not_version_1_5_7;
18
19 /* Tells libpng that we have already handled the first "num_bytes" bytes
20 * of the PNG file signature. If the PNG data is embedded into another
21 * stream we can set num_bytes = 8 so that libpng will not attempt to read
22 * or write any of the magic bytes before it starts on the IHDR.
23 */
24
25 #ifdef PNG_READ_SUPPORTED
26 void PNGAPI
27 png_set_sig_bytes(png_structp png_ptr, int num_bytes)
28 {
29 png_debug(1, "in png_set_sig_bytes");
30
31 if (png_ptr == NULL)
32 return;
33
34 if (num_bytes > 8)
35 png_error(png_ptr, "Too many bytes for PNG signature");
36
37 png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
38 }
39
40 /* Checks whether the supplied bytes match the PNG signature. We allow
41 * checking less than the full 8-byte signature so that those apps that
42 * already read the first few bytes of a file to determine the file type
43 * can simply check the remaining bytes for extra assurance. Returns
44 * an integer less than, equal to, or greater than zero if sig is found,
45 * respectively, to be less than, to match, or be greater than the correct
46 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
47 */
48 int PNGAPI
49 png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
50 {
51 png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
52
53 if (num_to_check > 8)
54 num_to_check = 8;
55
56 else if (num_to_check < 1)
57 return (-1);
58
59 if (start > 7)
60 return (-1);
61
62 if (start + num_to_check > 8)
63 num_to_check = 8 - start;
64
65 return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
66 }
67
68 #endif /* PNG_READ_SUPPORTED */
69
70 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
71 /* Function to allocate memory for zlib */
72 PNG_FUNCTION(voidpf /* PRIVATE */,
73 png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
74 {
75 png_voidp ptr;
76 png_structp p=(png_structp)png_ptr;
77 png_uint_32 save_flags=p->flags;
78 png_alloc_size_t num_bytes;
79
80 if (png_ptr == NULL)
81 return (NULL);
82
83 if (items > PNG_UINT_32_MAX/size)
84 {
85 png_warning (p, "Potential overflow in png_zalloc()");
86 return (NULL);
87 }
88 num_bytes = (png_alloc_size_t)items * size;
89
90 p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
91 ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
92 p->flags=save_flags;
93
94 return ((voidpf)ptr);
95 }
96
97 /* Function to free memory for zlib */
98 void /* PRIVATE */
99 png_zfree(voidpf png_ptr, voidpf ptr)
100 {
101 png_free((png_structp)png_ptr, (png_voidp)ptr);
102 }
103
104 /* Reset the CRC variable to 32 bits of 1's. Care must be taken
105 * in case CRC is > 32 bits to leave the top bits 0.
106 */
107 void /* PRIVATE */
108 png_reset_crc(png_structp png_ptr)
109 {
110 /* The cast is safe because the crc is a 32 bit value. */
111 png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
112 }
113
114 /* Calculate the CRC over a section of data. We can only pass as
115 * much data to this routine as the largest single buffer size. We
116 * also check that this data will actually be used before going to the
117 * trouble of calculating it.
118 */
119 void /* PRIVATE */
120 png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
121 {
122 int need_crc = 1;
123
124 if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name))
125 {
126 if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
127 (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
128 need_crc = 0;
129 }
130
131 else /* critical */
132 {
133 if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
134 need_crc = 0;
135 }
136
137 /* 'uLong' is defined as unsigned long, this means that on some systems it is
138 * a 64 bit value. crc32, however, returns 32 bits so the following cast is
139 * safe. 'uInt' may be no more than 16 bits, so it is necessary to perform a
140 * loop here.
141 */
142 if (need_crc && length > 0)
143 {
144 uLong crc = png_ptr->crc; /* Should never issue a warning */
145
146 do
147 {
148 uInt safeLength = (uInt)length;
149 if (safeLength == 0)
150 safeLength = (uInt)-1; /* evil, but safe */
151
152 crc = crc32(crc, ptr, safeLength);
153
154 /* The following should never issue compiler warnings, if they do the
155 * target system has characteristics that will probably violate other
156 * assumptions within the libpng code.
157 */
158 ptr += safeLength;
159 length -= safeLength;
160 }
161 while (length > 0);
162
163 /* And the following is always safe because the crc is only 32 bits. */
164 png_ptr->crc = (png_uint_32)crc;
165 }
166 }
167
168 /* Check a user supplied version number, called from both read and write
169 * functions that create a png_struct
170 */
171 int
172 png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver)
173 {
174 if (user_png_ver)
175 {
176 int i = 0;
177
178 do
179 {
180 if (user_png_ver[i] != png_libpng_ver[i])
181 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
182 } while (png_libpng_ver[i++]);
183 }
184
185 else
186 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
187
188 if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
189 {
190 /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
191 * we must recompile any applications that use any older library version.
192 * For versions after libpng 1.0, we will be compatible, so we need
193 * only check the first digit.
194 */
195 if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
196 (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
197 (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
198 {
199 #ifdef PNG_WARNINGS_SUPPORTED
200 size_t pos = 0;
201 char m[128];
202
203 pos = png_safecat(m, sizeof m, pos, "Application built with libpng-");
204 pos = png_safecat(m, sizeof m, pos, user_png_ver);
205 pos = png_safecat(m, sizeof m, pos, " but running with ");
206 pos = png_safecat(m, sizeof m, pos, png_libpng_ver);
207
208 png_warning(png_ptr, m);
209 #endif
210
211 #ifdef PNG_ERROR_NUMBERS_SUPPORTED
212 png_ptr->flags = 0;
213 #endif
214
215 return 0;
216 }
217 }
218
219 /* Success return. */
220 return 1;
221 }
222
223 /* Allocate the memory for an info_struct for the application. We don't
224 * really need the png_ptr, but it could potentially be useful in the
225 * future. This should be used in favour of malloc(png_sizeof(png_info))
226 * and png_info_init() so that applications that want to use a shared
227 * libpng don't have to be recompiled if png_info changes size.
228 */
229 PNG_FUNCTION(png_infop,PNGAPI
230 png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED)
231 {
232 png_infop info_ptr;
233
234 png_debug(1, "in png_create_info_struct");
235
236 if (png_ptr == NULL)
237 return (NULL);
238
239 #ifdef PNG_USER_MEM_SUPPORTED
240 info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
241 png_ptr->malloc_fn, png_ptr->mem_ptr);
242 #else
243 info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
244 #endif
245 if (info_ptr != NULL)
246 png_info_init_3(&info_ptr, png_sizeof(png_info));
247
248 return (info_ptr);
249 }
250
251 /* This function frees the memory associated with a single info struct.
252 * Normally, one would use either png_destroy_read_struct() or
253 * png_destroy_write_struct() to free an info struct, but this may be
254 * useful for some applications.
255 */
256 void PNGAPI
257 png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
258 {
259 png_infop info_ptr = NULL;
260
261 png_debug(1, "in png_destroy_info_struct");
262
263 if (png_ptr == NULL)
264 return;
265
266 if (info_ptr_ptr != NULL)
267 info_ptr = *info_ptr_ptr;
268
269 if (info_ptr != NULL)
270 {
271 png_info_destroy(png_ptr, info_ptr);
272
273 #ifdef PNG_USER_MEM_SUPPORTED
274 png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
275 png_ptr->mem_ptr);
276 #else
277 png_destroy_struct((png_voidp)info_ptr);
278 #endif
279 *info_ptr_ptr = NULL;
280 }
281 }
282
283 /* Initialize the info structure. This is now an internal function (0.89)
284 * and applications using it are urged to use png_create_info_struct()
285 * instead.
286 */
287
288 void PNGAPI
289 png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
290 {
291 png_infop info_ptr = *ptr_ptr;
292
293 png_debug(1, "in png_info_init_3");
294
295 if (info_ptr == NULL)
296 return;
297
298 if (png_sizeof(png_info) > png_info_struct_size)
299 {
300 png_destroy_struct(info_ptr);
301 info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
302 *ptr_ptr = info_ptr;
303 }
304
305 /* Set everything to 0 */
306 png_memset(info_ptr, 0, png_sizeof(png_info));
307 }
308
309 void PNGAPI
310 png_data_freer(png_structp png_ptr, png_infop info_ptr,
311 int freer, png_uint_32 mask)
312 {
313 png_debug(1, "in png_data_freer");
314
315 if (png_ptr == NULL || info_ptr == NULL)
316 return;
317
318 if (freer == PNG_DESTROY_WILL_FREE_DATA)
319 info_ptr->free_me |= mask;
320
321 else if (freer == PNG_USER_WILL_FREE_DATA)
322 info_ptr->free_me &= ~mask;
323
324 else
325 png_warning(png_ptr,
326 "Unknown freer parameter in png_data_freer");
327 }
328
329 void PNGAPI
330 png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
331 int num)
332 {
333 png_debug(1, "in png_free_data");
334
335 if (png_ptr == NULL || info_ptr == NULL)
336 return;
337
338 #ifdef PNG_TEXT_SUPPORTED
339 /* Free text item num or (if num == -1) all text items */
340 if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
341 {
342 if (num != -1)
343 {
344 if (info_ptr->text && info_ptr->text[num].key)
345 {
346 png_free(png_ptr, info_ptr->text[num].key);
347 info_ptr->text[num].key = NULL;
348 }
349 }
350
351 else
352 {
353 int i;
354 for (i = 0; i < info_ptr->num_text; i++)
355 png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
356 png_free(png_ptr, info_ptr->text);
357 info_ptr->text = NULL;
358 info_ptr->num_text=0;
359 }
360 }
361 #endif
362
363 #ifdef PNG_tRNS_SUPPORTED
364 /* Free any tRNS entry */
365 if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
366 {
367 png_free(png_ptr, info_ptr->trans_alpha);
368 info_ptr->trans_alpha = NULL;
369 info_ptr->valid &= ~PNG_INFO_tRNS;
370 }
371 #endif
372
373 #ifdef PNG_sCAL_SUPPORTED
374 /* Free any sCAL entry */
375 if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
376 {
377 png_free(png_ptr, info_ptr->scal_s_width);
378 png_free(png_ptr, info_ptr->scal_s_height);
379 info_ptr->scal_s_width = NULL;
380 info_ptr->scal_s_height = NULL;
381 info_ptr->valid &= ~PNG_INFO_sCAL;
382 }
383 #endif
384
385 #ifdef PNG_pCAL_SUPPORTED
386 /* Free any pCAL entry */
387 if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
388 {
389 png_free(png_ptr, info_ptr->pcal_purpose);
390 png_free(png_ptr, info_ptr->pcal_units);
391 info_ptr->pcal_purpose = NULL;
392 info_ptr->pcal_units = NULL;
393 if (info_ptr->pcal_params != NULL)
394 {
395 int i;
396 for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
397 {
398 png_free(png_ptr, info_ptr->pcal_params[i]);
399 info_ptr->pcal_params[i] = NULL;
400 }
401 png_free(png_ptr, info_ptr->pcal_params);
402 info_ptr->pcal_params = NULL;
403 }
404 info_ptr->valid &= ~PNG_INFO_pCAL;
405 }
406 #endif
407
408 #ifdef PNG_iCCP_SUPPORTED
409 /* Free any iCCP entry */
410 if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
411 {
412 png_free(png_ptr, info_ptr->iccp_name);
413 png_free(png_ptr, info_ptr->iccp_profile);
414 info_ptr->iccp_name = NULL;
415 info_ptr->iccp_profile = NULL;
416 info_ptr->valid &= ~PNG_INFO_iCCP;
417 }
418 #endif
419
420 #ifdef PNG_sPLT_SUPPORTED
421 /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
422 if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
423 {
424 if (num != -1)
425 {
426 if (info_ptr->splt_palettes)
427 {
428 png_free(png_ptr, info_ptr->splt_palettes[num].name);
429 png_free(png_ptr, info_ptr->splt_palettes[num].entries);
430 info_ptr->splt_palettes[num].name = NULL;
431 info_ptr->splt_palettes[num].entries = NULL;
432 }
433 }
434
435 else
436 {
437 if (info_ptr->splt_palettes_num)
438 {
439 int i;
440 for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
441 png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);
442
443 png_free(png_ptr, info_ptr->splt_palettes);
444 info_ptr->splt_palettes = NULL;
445 info_ptr->splt_palettes_num = 0;
446 }
447 info_ptr->valid &= ~PNG_INFO_sPLT;
448 }
449 }
450 #endif
451
452 #ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
453 if (png_ptr->unknown_chunk.data)
454 {
455 png_free(png_ptr, png_ptr->unknown_chunk.data);
456 png_ptr->unknown_chunk.data = NULL;
457 }
458
459 if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
460 {
461 if (num != -1)
462 {
463 if (info_ptr->unknown_chunks)
464 {
465 png_free(png_ptr, info_ptr->unknown_chunks[num].data);
466 info_ptr->unknown_chunks[num].data = NULL;
467 }
468 }
469
470 else
471 {
472 int i;
473
474 if (info_ptr->unknown_chunks_num)
475 {
476 for (i = 0; i < info_ptr->unknown_chunks_num; i++)
477 png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
478
479 png_free(png_ptr, info_ptr->unknown_chunks);
480 info_ptr->unknown_chunks = NULL;
481 info_ptr->unknown_chunks_num = 0;
482 }
483 }
484 }
485 #endif
486
487 #ifdef PNG_hIST_SUPPORTED
488 /* Free any hIST entry */
489 if ((mask & PNG_FREE_HIST) & info_ptr->free_me)
490 {
491 png_free(png_ptr, info_ptr->hist);
492 info_ptr->hist = NULL;
493 info_ptr->valid &= ~PNG_INFO_hIST;
494 }
495 #endif
496
497 /* Free any PLTE entry that was internally allocated */
498 if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
499 {
500 png_zfree(png_ptr, info_ptr->palette);
501 info_ptr->palette = NULL;
502 info_ptr->valid &= ~PNG_INFO_PLTE;
503 info_ptr->num_palette = 0;
504 }
505
506 #ifdef PNG_INFO_IMAGE_SUPPORTED
507 /* Free any image bits attached to the info structure */
508 if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
509 {
510 if (info_ptr->row_pointers)
511 {
512 int row;
513 for (row = 0; row < (int)info_ptr->height; row++)
514 {
515 png_free(png_ptr, info_ptr->row_pointers[row]);
516 info_ptr->row_pointers[row] = NULL;
517 }
518 png_free(png_ptr, info_ptr->row_pointers);
519 info_ptr->row_pointers = NULL;
520 }
521 info_ptr->valid &= ~PNG_INFO_IDAT;
522 }
523 #endif
524
525 if (num != -1)
526 mask &= ~PNG_FREE_MUL;
527
528 info_ptr->free_me &= ~mask;
529 }
530
531 /* This is an internal routine to free any memory that the info struct is
532 * pointing to before re-using it or freeing the struct itself. Recall
533 * that png_free() checks for NULL pointers for us.
534 */
535 void /* PRIVATE */
536 png_info_destroy(png_structp png_ptr, png_infop info_ptr)
537 {
538 png_debug(1, "in png_info_destroy");
539
540 png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
541
542 #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
543 if (png_ptr->num_chunk_list)
544 {
545 png_free(png_ptr, png_ptr->chunk_list);
546 png_ptr->chunk_list = NULL;
547 png_ptr->num_chunk_list = 0;
548 }
549 #endif
550
551 png_info_init_3(&info_ptr, png_sizeof(png_info));
552 }
553 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
554
555 /* This function returns a pointer to the io_ptr associated with the user
556 * functions. The application should free any memory associated with this
557 * pointer before png_write_destroy() or png_read_destroy() are called.
558 */
559 png_voidp PNGAPI
560 png_get_io_ptr(png_structp png_ptr)
561 {
562 if (png_ptr == NULL)
563 return (NULL);
564
565 return (png_ptr->io_ptr);
566 }
567
568 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
569 # ifdef PNG_STDIO_SUPPORTED
570 /* Initialize the default input/output functions for the PNG file. If you
571 * use your own read or write routines, you can call either png_set_read_fn()
572 * or png_set_write_fn() instead of png_init_io(). If you have defined
573 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
574 * function of your own because "FILE *" isn't necessarily available.
575 */
576 void PNGAPI
577 png_init_io(png_structp png_ptr, png_FILE_p fp)
578 {
579 png_debug(1, "in png_init_io");
580
581 if (png_ptr == NULL)
582 return;
583
584 png_ptr->io_ptr = (png_voidp)fp;
585 }
586 # endif
587
588 # ifdef PNG_TIME_RFC1123_SUPPORTED
589 /* Convert the supplied time into an RFC 1123 string suitable for use in
590 * a "Creation Time" or other text-based time string.
591 */
592 png_const_charp PNGAPI
593 png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
594 {
595 static PNG_CONST char short_months[12][4] =
596 {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
597 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
598
599 if (png_ptr == NULL)
600 return (NULL);
601
602 if (ptime->year > 9999 /* RFC1123 limitation */ ||
603 ptime->month == 0 || ptime->month > 12 ||
604 ptime->day == 0 || ptime->day > 31 ||
605 ptime->hour > 23 || ptime->minute > 59 ||
606 ptime->second > 60)
607 {
608 png_warning(png_ptr, "Ignoring invalid time value");
609 return (NULL);
610 }
611
612 {
613 size_t pos = 0;
614 char number_buf[5]; /* enough for a four-digit year */
615
616 # define APPEND_STRING(string)\
617 pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
618 pos, (string))
619 # define APPEND_NUMBER(format, value)\
620 APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
621 # define APPEND(ch)\
622 if (pos < (sizeof png_ptr->time_buffer)-1)\
623 png_ptr->time_buffer[pos++] = (ch)
624
625 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
626 APPEND(' ');
627 APPEND_STRING(short_months[(ptime->month - 1)]);
628 APPEND(' ');
629 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
630 APPEND(' ');
631 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
632 APPEND(':');
633 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
634 APPEND(':');
635 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
636 APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
637
638 # undef APPEND
639 # undef APPEND_NUMBER
640 # undef APPEND_STRING
641 }
642
643 return png_ptr->time_buffer;
644 }
645 # endif /* PNG_TIME_RFC1123_SUPPORTED */
646
647 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
648
649 png_const_charp PNGAPI
650 png_get_copyright(png_const_structp png_ptr)
651 {
652 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
653 #ifdef PNG_STRING_COPYRIGHT
654 return PNG_STRING_COPYRIGHT
655 #else
656 # ifdef __STDC__
657 return PNG_STRING_NEWLINE \
658 "libpng version 1.5.7 - December 15, 2011" PNG_STRING_NEWLINE \
659 "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
660 "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
661 "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
662 PNG_STRING_NEWLINE;
663 # else
664 return "libpng version 1.5.7 - December 15, 2011\
665 Copyright (c) 1998-2011 Glenn Randers-Pehrson\
666 Copyright (c) 1996-1997 Andreas Dilger\
667 Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
668 # endif
669 #endif
670 }
671
672 /* The following return the library version as a short string in the
673 * format 1.0.0 through 99.99.99zz. To get the version of *.h files
674 * used with your application, print out PNG_LIBPNG_VER_STRING, which
675 * is defined in png.h.
676 * Note: now there is no difference between png_get_libpng_ver() and
677 * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
678 * it is guaranteed that png.c uses the correct version of png.h.
679 */
680 png_const_charp PNGAPI
681 png_get_libpng_ver(png_const_structp png_ptr)
682 {
683 /* Version of *.c files used when building libpng */
684 return png_get_header_ver(png_ptr);
685 }
686
687 png_const_charp PNGAPI
688 png_get_header_ver(png_const_structp png_ptr)
689 {
690 /* Version of *.h files used when building libpng */
691 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
692 return PNG_LIBPNG_VER_STRING;
693 }
694
695 png_const_charp PNGAPI
696 png_get_header_version(png_const_structp png_ptr)
697 {
698 /* Returns longer string containing both version and date */
699 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
700 #ifdef __STDC__
701 return PNG_HEADER_VERSION_STRING
702 # ifndef PNG_READ_SUPPORTED
703 " (NO READ SUPPORT)"
704 # endif
705 PNG_STRING_NEWLINE;
706 #else
707 return PNG_HEADER_VERSION_STRING;
708 #endif
709 }
710
711 #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
712 int PNGAPI
713 png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
714 {
715 /* Check chunk_name and return "keep" value if it's on the list, else 0 */
716 png_const_bytep p, p_end;
717
718 if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0)
719 return PNG_HANDLE_CHUNK_AS_DEFAULT;
720
721 p_end = png_ptr->chunk_list;
722 p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
723
724 /* The code is the fifth byte after each four byte string. Historically this
725 * code was always searched from the end of the list, so it should continue
726 * to do so in case there are duplicated entries.
727 */
728 do /* num_chunk_list > 0, so at least one */
729 {
730 p -= 5;
731 if (!png_memcmp(chunk_name, p, 4))
732 return p[4];
733 }
734 while (p > p_end);
735
736 return PNG_HANDLE_CHUNK_AS_DEFAULT;
737 }
738
739 int /* PRIVATE */
740 png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name)
741 {
742 png_byte chunk_string[5];
743
744 PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
745 return png_handle_as_unknown(png_ptr, chunk_string);
746 }
747 #endif
748
749 #ifdef PNG_READ_SUPPORTED
750 /* This function, added to libpng-1.0.6g, is untested. */
751 int PNGAPI
752 png_reset_zstream(png_structp png_ptr)
753 {
754 if (png_ptr == NULL)
755 return Z_STREAM_ERROR;
756
757 return (inflateReset(&png_ptr->zstream));
758 }
759 #endif /* PNG_READ_SUPPORTED */
760
761 /* This function was added to libpng-1.0.7 */
762 png_uint_32 PNGAPI
763 png_access_version_number(void)
764 {
765 /* Version of *.c files used when building libpng */
766 return((png_uint_32)PNG_LIBPNG_VER);
767 }
768
769
770
771 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
772 /* png_convert_size: a PNGAPI but no longer in png.h, so deleted
773 * at libpng 1.5.5!
774 */
775
776 /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
777 # ifdef PNG_CHECK_cHRM_SUPPORTED
778
779 int /* PRIVATE */
780 png_check_cHRM_fixed(png_structp png_ptr,
781 png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
782 png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
783 png_fixed_point blue_x, png_fixed_point blue_y)
784 {
785 int ret = 1;
786 unsigned long xy_hi,xy_lo,yx_hi,yx_lo;
787
788 png_debug(1, "in function png_check_cHRM_fixed");
789
790 if (png_ptr == NULL)
791 return 0;
792
793 /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
794 * y must also be greater than 0. To test for the upper limit calculate
795 * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
796 * cannot overflow.) At this point we know x and y are >= 0 and (x+y) is
797 * <= PNG_FP_1. The previous test on PNG_MAX_UINT_31 is removed because it
798 * pointless (and it produces compiler warnings!)
799 */
800 if (white_x < 0 || white_y <= 0 ||
801 red_x < 0 || red_y < 0 ||
802 green_x < 0 || green_y < 0 ||
803 blue_x < 0 || blue_y < 0)
804 {
805 png_warning(png_ptr,
806 "Ignoring attempt to set negative chromaticity value");
807 ret = 0;
808 }
809 /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
810 if (white_x > PNG_FP_1 - white_y)
811 {
812 png_warning(png_ptr, "Invalid cHRM white point");
813 ret = 0;
814 }
815
816 if (red_x > PNG_FP_1 - red_y)
817 {
818 png_warning(png_ptr, "Invalid cHRM red point");
819 ret = 0;
820 }
821
822 if (green_x > PNG_FP_1 - green_y)
823 {
824 png_warning(png_ptr, "Invalid cHRM green point");
825 ret = 0;
826 }
827
828 if (blue_x > PNG_FP_1 - blue_y)
829 {
830 png_warning(png_ptr, "Invalid cHRM blue point");
831 ret = 0;
832 }
833
834 png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
835 png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);
836
837 if (xy_hi == yx_hi && xy_lo == yx_lo)
838 {
839 png_warning(png_ptr,
840 "Ignoring attempt to set cHRM RGB triangle with zero area");
841 ret = 0;
842 }
843
844 return ret;
845 }
846 # endif /* PNG_CHECK_cHRM_SUPPORTED */
847
848 #ifdef PNG_cHRM_SUPPORTED
849 /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
850 * cHRM, as opposed to using chromaticities. These internal APIs return
851 * non-zero on a parameter error. The X, Y and Z values are required to be
852 * positive and less than 1.0.
853 */
854 int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ)
855 {
856 png_int_32 d, dwhite, whiteX, whiteY;
857
858 d = XYZ.redX + XYZ.redY + XYZ.redZ;
859 if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1;
860 if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1;
861 dwhite = d;
862 whiteX = XYZ.redX;
863 whiteY = XYZ.redY;
864
865 d = XYZ.greenX + XYZ.greenY + XYZ.greenZ;
866 if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1;
867 if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1;
868 dwhite += d;
869 whiteX += XYZ.greenX;
870 whiteY += XYZ.greenY;
871
872 d = XYZ.blueX + XYZ.blueY + XYZ.blueZ;
873 if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1;
874 if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1;
875 dwhite += d;
876 whiteX += XYZ.blueX;
877 whiteY += XYZ.blueY;
878
879 /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
880 * thus:
881 */
882 if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
883 if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;
884
885 return 0;
886 }
887
888 int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy)
889 {
890 png_fixed_point red_inverse, green_inverse, blue_scale;
891 png_fixed_point left, right, denominator;
892
893 /* Check xy and, implicitly, z. Note that wide gamut color spaces typically
894 * have end points with 0 tristimulus values (these are impossible end
895 * points, but they are used to cover the possible colors.)
896 */
897 if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1;
898 if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1;
899 if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1;
900 if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1;
901 if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1;
902 if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1;
903 if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1;
904 if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1;
905
906 /* The reverse calculation is more difficult because the original tristimulus
907 * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
908 * derived values were recorded in the cHRM chunk;
909 * (red,green,blue,white)x(x,y). This loses one degree of freedom and
910 * therefore an arbitrary ninth value has to be introduced to undo the
911 * original transformations.
912 *
913 * Think of the original end-points as points in (X,Y,Z) space. The
914 * chromaticity values (c) have the property:
915 *
916 * C
917 * c = ---------
918 * X + Y + Z
919 *
920 * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
921 * three chromaticity values (x,y,z) for each end-point obey the
922 * relationship:
923 *
924 * x + y + z = 1
925 *
926 * This describes the plane in (X,Y,Z) space that intersects each axis at the
927 * value 1.0; call this the chromaticity plane. Thus the chromaticity
928 * calculation has scaled each end-point so that it is on the x+y+z=1 plane
929 * and chromaticity is the intersection of the vector from the origin to the
930 * (X,Y,Z) value with the chromaticity plane.
931 *
932 * To fully invert the chromaticity calculation we would need the three
933 * end-point scale factors, (red-scale, green-scale, blue-scale), but these
934 * were not recorded. Instead we calculated the reference white (X,Y,Z) and
935 * recorded the chromaticity of this. The reference white (X,Y,Z) would have
936 * given all three of the scale factors since:
937 *
938 * color-C = color-c * color-scale
939 * white-C = red-C + green-C + blue-C
940 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
941 *
942 * But cHRM records only white-x and white-y, so we have lost the white scale
943 * factor:
944 *
945 * white-C = white-c*white-scale
946 *
947 * To handle this the inverse transformation makes an arbitrary assumption
948 * about white-scale:
949 *
950 * Assume: white-Y = 1.0
951 * Hence: white-scale = 1/white-y
952 * Or: red-Y + green-Y + blue-Y = 1.0
953 *
954 * Notice the last statement of the assumption gives an equation in three of
955 * the nine values we want to calculate. 8 more equations come from the
956 * above routine as summarised at the top above (the chromaticity
957 * calculation):
958 *
959 * Given: color-x = color-X / (color-X + color-Y + color-Z)
960 * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
961 *
962 * This is 9 simultaneous equations in the 9 variables "color-C" and can be
963 * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
964 * determinants, however this is not as bad as it seems because only 28 of
965 * the total of 90 terms in the various matrices are non-zero. Nevertheless
966 * Cramer's rule is notoriously numerically unstable because the determinant
967 * calculation involves the difference of large, but similar, numbers. It is
968 * difficult to be sure that the calculation is stable for real world values
969 * and it is certain that it becomes unstable where the end points are close
970 * together.
971 *
972 * So this code uses the perhaps slighly less optimal but more understandable
973 * and totally obvious approach of calculating color-scale.
974 *
975 * This algorithm depends on the precision in white-scale and that is
976 * (1/white-y), so we can immediately see that as white-y approaches 0 the
977 * accuracy inherent in the cHRM chunk drops off substantially.
978 *
979 * libpng arithmetic: a simple invertion of the above equations
980 * ------------------------------------------------------------
981 *
982 * white_scale = 1/white-y
983 * white-X = white-x * white-scale
984 * white-Y = 1.0
985 * white-Z = (1 - white-x - white-y) * white_scale
986 *
987 * white-C = red-C + green-C + blue-C
988 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
989 *
990 * This gives us three equations in (red-scale,green-scale,blue-scale) where
991 * all the coefficients are now known:
992 *
993 * red-x*red-scale + green-x*green-scale + blue-x*blue-scale
994 * = white-x/white-y
995 * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
996 * red-z*red-scale + green-z*green-scale + blue-z*blue-scale
997 * = (1 - white-x - white-y)/white-y
998 *
999 * In the last equation color-z is (1 - color-x - color-y) so we can add all
1000 * three equations together to get an alternative third:
1001 *
1002 * red-scale + green-scale + blue-scale = 1/white-y = white-scale
1003 *
1004 * So now we have a Cramer's rule solution where the determinants are just
1005 * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
1006 * multiplication of three coefficients so we can't guarantee to avoid
1007 * overflow in the libpng fixed point representation. Using Cramer's rule in
1008 * floating point is probably a good choice here, but it's not an option for
1009 * fixed point. Instead proceed to simplify the first two equations by
1010 * eliminating what is likely to be the largest value, blue-scale:
1011 *
1012 * blue-scale = white-scale - red-scale - green-scale
1013 *
1014 * Hence:
1015 *
1016 * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1017 * (white-x - blue-x)*white-scale
1018 *
1019 * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1020 * 1 - blue-y*white-scale
1021 *
1022 * And now we can trivially solve for (red-scale,green-scale):
1023 *
1024 * green-scale =
1025 * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1026 * -----------------------------------------------------------
1027 * green-x - blue-x
1028 *
1029 * red-scale =
1030 * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1031 * ---------------------------------------------------------
1032 * red-y - blue-y
1033 *
1034 * Hence:
1035 *
1036 * red-scale =
1037 * ( (green-x - blue-x) * (white-y - blue-y) -
1038 * (green-y - blue-y) * (white-x - blue-x) ) / white-y
1039 * -------------------------------------------------------------------------
1040 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1041 *
1042 * green-scale =
1043 * ( (red-y - blue-y) * (white-x - blue-x) -
1044 * (red-x - blue-x) * (white-y - blue-y) ) / white-y
1045 * -------------------------------------------------------------------------
1046 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1047 *
1048 * Accuracy:
1049 * The input values have 5 decimal digits of accuracy. The values are all in
1050 * the range 0 < value < 1, so simple products are in the same range but may
1051 * need up to 10 decimal digits to preserve the original precision and avoid
1052 * underflow. Because we are using a 32-bit signed representation we cannot
1053 * match this; the best is a little over 9 decimal digits, less than 10.
1054 *
1055 * The approach used here is to preserve the maximum precision within the
1056 * signed representation. Because the red-scale calculation above uses the
1057 * difference between two products of values that must be in the range -1..+1
1058 * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The
1059 * factor is irrelevant in the calculation because it is applied to both
1060 * numerator and denominator.
1061 *
1062 * Note that the values of the differences of the products of the
1063 * chromaticities in the above equations tend to be small, for example for
1064 * the sRGB chromaticities they are:
1065 *
1066 * red numerator: -0.04751
1067 * green numerator: -0.08788
1068 * denominator: -0.2241 (without white-y multiplication)
1069 *
1070 * The resultant Y coefficients from the chromaticities of some widely used
1071 * color space definitions are (to 15 decimal places):
1072 *
1073 * sRGB
1074 * 0.212639005871510 0.715168678767756 0.072192315360734
1075 * Kodak ProPhoto
1076 * 0.288071128229293 0.711843217810102 0.000085653960605
1077 * Adobe RGB
1078 * 0.297344975250536 0.627363566255466 0.075291458493998
1079 * Adobe Wide Gamut RGB
1080 * 0.258728243040113 0.724682314948566 0.016589442011321
1081 */
1082 /* By the argument, above overflow should be impossible here. The return
1083 * value of 2 indicates an internal error to the caller.
1084 */
1085 if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2;
1086 if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2;
1087 denominator = left - right;
1088
1089 /* Now find the red numerator. */
1090 if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
1091 if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
1092
1093 /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1094 * chunk values. This calculation actually returns the reciprocal of the
1095 * scale value because this allows us to delay the multiplication of white-y
1096 * into the denominator, which tends to produce a small number.
1097 */
1098 if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) ||
1099 red_inverse <= xy.whitey /* r+g+b scales = white scale */)
1100 return 1;
1101
1102 /* Similarly for green_inverse: */
1103 if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
1104 if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
1105 if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) ||
1106 green_inverse <= xy.whitey)
1107 return 1;
1108
1109 /* And the blue scale, the checks above guarantee this can't overflow but it
1110 * can still produce 0 for extreme cHRM values.
1111 */
1112 blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) -
1113 png_reciprocal(green_inverse);
1114 if (blue_scale <= 0) return 1;
1115
1116
1117 /* And fill in the png_XYZ: */
1118 if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1;
1119 if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1;
1120 if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1,
1121 red_inverse))
1122 return 1;
1123
1124 if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1;
1125 if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1;
1126 if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1,
1127 green_inverse))
1128 return 1;
1129
1130 if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1;
1131 if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1;
1132 if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale,
1133 PNG_FP_1))
1134 return 1;
1135
1136 return 0; /*success*/
1137 }
1138
1139 int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy)
1140 {
1141 switch (png_XYZ_from_xy(XYZ, xy))
1142 {
1143 case 0: /* success */
1144 return 1;
1145
1146 case 1:
1147 /* The chunk may be technically valid, but we got png_fixed_point
1148 * overflow while trying to get XYZ values out of it. This is
1149 * entirely benign - the cHRM chunk is pretty extreme.
1150 */
1151 png_warning(png_ptr,
1152 "extreme cHRM chunk cannot be converted to tristimulus values");
1153 break;
1154
1155 default:
1156 /* libpng is broken; this should be a warning but if it happens we
1157 * want error reports so for the moment it is an error.
1158 */
1159 png_error(png_ptr, "internal error in png_XYZ_from_xy");
1160 break;
1161 }
1162
1163 /* ERROR RETURN */
1164 return 0;
1165 }
1166 #endif
1167
1168 void /* PRIVATE */
1169 png_check_IHDR(png_structp png_ptr,
1170 png_uint_32 width, png_uint_32 height, int bit_depth,
1171 int color_type, int interlace_type, int compression_type,
1172 int filter_type)
1173 {
1174 int error = 0;
1175
1176 /* Check for width and height valid values */
1177 if (width == 0)
1178 {
1179 png_warning(png_ptr, "Image width is zero in IHDR");
1180 error = 1;
1181 }
1182
1183 if (height == 0)
1184 {
1185 png_warning(png_ptr, "Image height is zero in IHDR");
1186 error = 1;
1187 }
1188
1189 # ifdef PNG_SET_USER_LIMITS_SUPPORTED
1190 if (width > png_ptr->user_width_max)
1191
1192 # else
1193 if (width > PNG_USER_WIDTH_MAX)
1194 # endif
1195 {
1196 png_warning(png_ptr, "Image width exceeds user limit in IHDR");
1197 error = 1;
1198 }
1199
1200 # ifdef PNG_SET_USER_LIMITS_SUPPORTED
1201 if (height > png_ptr->user_height_max)
1202 # else
1203 if (height > PNG_USER_HEIGHT_MAX)
1204 # endif
1205 {
1206 png_warning(png_ptr, "Image height exceeds user limit in IHDR");
1207 error = 1;
1208 }
1209
1210 if (width > PNG_UINT_31_MAX)
1211 {
1212 png_warning(png_ptr, "Invalid image width in IHDR");
1213 error = 1;
1214 }
1215
1216 if (height > PNG_UINT_31_MAX)
1217 {
1218 png_warning(png_ptr, "Invalid image height in IHDR");
1219 error = 1;
1220 }
1221
1222 if (width > (PNG_UINT_32_MAX
1223 >> 3) /* 8-byte RGBA pixels */
1224 - 48 /* bigrowbuf hack */
1225 - 1 /* filter byte */
1226 - 7*8 /* rounding of width to multiple of 8 pixels */
1227 - 8) /* extra max_pixel_depth pad */
1228 png_warning(png_ptr, "Width is too large for libpng to process pixels");
1229
1230 /* Check other values */
1231 if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
1232 bit_depth != 8 && bit_depth != 16)
1233 {
1234 png_warning(png_ptr, "Invalid bit depth in IHDR");
1235 error = 1;
1236 }
1237
1238 if (color_type < 0 || color_type == 1 ||
1239 color_type == 5 || color_type > 6)
1240 {
1241 png_warning(png_ptr, "Invalid color type in IHDR");
1242 error = 1;
1243 }
1244
1245 if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
1246 ((color_type == PNG_COLOR_TYPE_RGB ||
1247 color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
1248 color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
1249 {
1250 png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
1251 error = 1;
1252 }
1253
1254 if (interlace_type >= PNG_INTERLACE_LAST)
1255 {
1256 png_warning(png_ptr, "Unknown interlace method in IHDR");
1257 error = 1;
1258 }
1259
1260 if (compression_type != PNG_COMPRESSION_TYPE_BASE)
1261 {
1262 png_warning(png_ptr, "Unknown compression method in IHDR");
1263 error = 1;
1264 }
1265
1266 # ifdef PNG_MNG_FEATURES_SUPPORTED
1267 /* Accept filter_method 64 (intrapixel differencing) only if
1268 * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
1269 * 2. Libpng did not read a PNG signature (this filter_method is only
1270 * used in PNG datastreams that are embedded in MNG datastreams) and
1271 * 3. The application called png_permit_mng_features with a mask that
1272 * included PNG_FLAG_MNG_FILTER_64 and
1273 * 4. The filter_method is 64 and
1274 * 5. The color_type is RGB or RGBA
1275 */
1276 if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
1277 png_ptr->mng_features_permitted)
1278 png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
1279
1280 if (filter_type != PNG_FILTER_TYPE_BASE)
1281 {
1282 if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
1283 (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
1284 ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
1285 (color_type == PNG_COLOR_TYPE_RGB ||
1286 color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
1287 {
1288 png_warning(png_ptr, "Unknown filter method in IHDR");
1289 error = 1;
1290 }
1291
1292 if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
1293 {
1294 png_warning(png_ptr, "Invalid filter method in IHDR");
1295 error = 1;
1296 }
1297 }
1298
1299 # else
1300 if (filter_type != PNG_FILTER_TYPE_BASE)
1301 {
1302 png_warning(png_ptr, "Unknown filter method in IHDR");
1303 error = 1;
1304 }
1305 # endif
1306
1307 if (error == 1)
1308 png_error(png_ptr, "Invalid IHDR data");
1309 }
1310
1311 #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
1312 /* ASCII to fp functions */
1313 /* Check an ASCII formated floating point value, see the more detailed
1314 * comments in pngpriv.h
1315 */
1316 /* The following is used internally to preserve the sticky flags */
1317 #define png_fp_add(state, flags) ((state) |= (flags))
1318 #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
1319
1320 int /* PRIVATE */
1321 png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
1322 png_size_tp whereami)
1323 {
1324 int state = *statep;
1325 png_size_t i = *whereami;
1326
1327 while (i < size)
1328 {
1329 int type;
1330 /* First find the type of the next character */
1331 switch (string[i])
1332 {
1333 case 43: type = PNG_FP_SAW_SIGN; break;
1334 case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
1335 case 46: type = PNG_FP_SAW_DOT; break;
1336 case 48: type = PNG_FP_SAW_DIGIT; break;
1337 case 49: case 50: case 51: case 52:
1338 case 53: case 54: case 55: case 56:
1339 case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
1340 case 69:
1341 case 101: type = PNG_FP_SAW_E; break;
1342 default: goto PNG_FP_End;
1343 }
1344
1345 /* Now deal with this type according to the current
1346 * state, the type is arranged to not overlap the
1347 * bits of the PNG_FP_STATE.
1348 */
1349 switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
1350 {
1351 case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
1352 if (state & PNG_FP_SAW_ANY)
1353 goto PNG_FP_End; /* not a part of the number */
1354
1355 png_fp_add(state, type);
1356 break;
1357
1358 case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
1359 /* Ok as trailer, ok as lead of fraction. */
1360 if (state & PNG_FP_SAW_DOT) /* two dots */
1361 goto PNG_FP_End;
1362
1363 else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
1364 png_fp_add(state, type);
1365
1366 else
1367 png_fp_set(state, PNG_FP_FRACTION | type);
1368
1369 break;
1370
1371 case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
1372 if (state & PNG_FP_SAW_DOT) /* delayed fraction */
1373 png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
1374
1375 png_fp_add(state, type | PNG_FP_WAS_VALID);
1376
1377 break;
1378
1379 case PNG_FP_INTEGER + PNG_FP_SAW_E:
1380 if ((state & PNG_FP_SAW_DIGIT) == 0)
1381 goto PNG_FP_End;
1382
1383 png_fp_set(state, PNG_FP_EXPONENT);
1384
1385 break;
1386
1387 /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
1388 goto PNG_FP_End; ** no sign in fraction */
1389
1390 /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
1391 goto PNG_FP_End; ** Because SAW_DOT is always set */
1392
1393 case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
1394 png_fp_add(state, type | PNG_FP_WAS_VALID);
1395 break;
1396
1397 case PNG_FP_FRACTION + PNG_FP_SAW_E:
1398 /* This is correct because the trailing '.' on an
1399 * integer is handled above - so we can only get here
1400 * with the sequence ".E" (with no preceding digits).
1401 */
1402 if ((state & PNG_FP_SAW_DIGIT) == 0)
1403 goto PNG_FP_End;
1404
1405 png_fp_set(state, PNG_FP_EXPONENT);
1406
1407 break;
1408
1409 case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
1410 if (state & PNG_FP_SAW_ANY)
1411 goto PNG_FP_End; /* not a part of the number */
1412
1413 png_fp_add(state, PNG_FP_SAW_SIGN);
1414
1415 break;
1416
1417 /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
1418 goto PNG_FP_End; */
1419
1420 case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
1421 png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
1422
1423 break;
1424
1425 /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
1426 goto PNG_FP_End; */
1427
1428 default: goto PNG_FP_End; /* I.e. break 2 */
1429 }
1430
1431 /* The character seems ok, continue. */
1432 ++i;
1433 }
1434
1435 PNG_FP_End:
1436 /* Here at the end, update the state and return the correct
1437 * return code.
1438 */
1439 *statep = state;
1440 *whereami = i;
1441
1442 return (state & PNG_FP_SAW_DIGIT) != 0;
1443 }
1444
1445
1446 /* The same but for a complete string. */
1447 int
1448 png_check_fp_string(png_const_charp string, png_size_t size)
1449 {
1450 int state=0;
1451 png_size_t char_index=0;
1452
1453 if (png_check_fp_number(string, size, &state, &char_index) &&
1454 (char_index == size || string[char_index] == 0))
1455 return state /* must be non-zero - see above */;
1456
1457 return 0; /* i.e. fail */
1458 }
1459 #endif /* pCAL or sCAL */
1460
1461 #ifdef PNG_READ_sCAL_SUPPORTED
1462 # ifdef PNG_FLOATING_POINT_SUPPORTED
1463 /* Utility used below - a simple accurate power of ten from an integral
1464 * exponent.
1465 */
1466 static double
1467 png_pow10(int power)
1468 {
1469 int recip = 0;
1470 double d = 1;
1471
1472 /* Handle negative exponent with a reciprocal at the end because
1473 * 10 is exact whereas .1 is inexact in base 2
1474 */
1475 if (power < 0)
1476 {
1477 if (power < DBL_MIN_10_EXP) return 0;
1478 recip = 1, power = -power;
1479 }
1480
1481 if (power > 0)
1482 {
1483 /* Decompose power bitwise. */
1484 double mult = 10;
1485 do
1486 {
1487 if (power & 1) d *= mult;
1488 mult *= mult;
1489 power >>= 1;
1490 }
1491 while (power > 0);
1492
1493 if (recip) d = 1/d;
1494 }
1495 /* else power is 0 and d is 1 */
1496
1497 return d;
1498 }
1499
1500 /* Function to format a floating point value in ASCII with a given
1501 * precision.
1502 */
1503 void /* PRIVATE */
1504 png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
1505 double fp, unsigned int precision)
1506 {
1507 /* We use standard functions from math.h, but not printf because
1508 * that would require stdio. The caller must supply a buffer of
1509 * sufficient size or we will png_error. The tests on size and
1510 * the space in ascii[] consumed are indicated below.
1511 */
1512 if (precision < 1)
1513 precision = DBL_DIG;
1514
1515 /* Enforce the limit of the implementation precision too. */
1516 if (precision > DBL_DIG+1)
1517 precision = DBL_DIG+1;
1518
1519 /* Basic sanity checks */
1520 if (size >= precision+5) /* See the requirements below. */
1521 {
1522 if (fp < 0)
1523 {
1524 fp = -fp;
1525 *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */
1526 --size;
1527 }
1528
1529 if (fp >= DBL_MIN && fp <= DBL_MAX)
1530 {
1531 int exp_b10; /* A base 10 exponent */
1532 double base; /* 10^exp_b10 */
1533
1534 /* First extract a base 10 exponent of the number,
1535 * the calculation below rounds down when converting
1536 * from base 2 to base 10 (multiply by log10(2) -
1537 * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
1538 * be increased. Note that the arithmetic shift
1539 * performs a floor() unlike C arithmetic - using a
1540 * C multiply would break the following for negative
1541 * exponents.
1542 */
1543 (void)frexp(fp, &exp_b10); /* exponent to base 2 */
1544
1545 exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
1546
1547 /* Avoid underflow here. */
1548 base = png_pow10(exp_b10); /* May underflow */
1549
1550 while (base < DBL_MIN || base < fp)
1551 {
1552 /* And this may overflow. */
1553 double test = png_pow10(exp_b10+1);
1554
1555 if (test <= DBL_MAX)
1556 ++exp_b10, base = test;
1557
1558 else
1559 break;
1560 }
1561
1562 /* Normalize fp and correct exp_b10, after this fp is in the
1563 * range [.1,1) and exp_b10 is both the exponent and the digit
1564 * *before* which the decimal point should be inserted
1565 * (starting with 0 for the first digit). Note that this
1566 * works even if 10^exp_b10 is out of range because of the
1567 * test on DBL_MAX above.
1568 */
1569 fp /= base;
1570 while (fp >= 1) fp /= 10, ++exp_b10;
1571
1572 /* Because of the code above fp may, at this point, be
1573 * less than .1, this is ok because the code below can
1574 * handle the leading zeros this generates, so no attempt
1575 * is made to correct that here.
1576 */
1577
1578 {
1579 int czero, clead, cdigits;
1580 char exponent[10];
1581
1582 /* Allow up to two leading zeros - this will not lengthen
1583 * the number compared to using E-n.
1584 */
1585 if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
1586 {
1587 czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
1588 exp_b10 = 0; /* Dot added below before first output. */
1589 }
1590 else
1591 czero = 0; /* No zeros to add */
1592
1593 /* Generate the digit list, stripping trailing zeros and
1594 * inserting a '.' before a digit if the exponent is 0.
1595 */
1596 clead = czero; /* Count of leading zeros */
1597 cdigits = 0; /* Count of digits in list. */
1598
1599 do
1600 {
1601 double d;
1602
1603 fp *= 10;
1604 /* Use modf here, not floor and subtract, so that
1605 * the separation is done in one step. At the end
1606 * of the loop don't break the number into parts so
1607 * that the final digit is rounded.
1608 */
1609 if (cdigits+czero-clead+1 < (int)precision)
1610 fp = modf(fp, &d);
1611
1612 else
1613 {
1614 d = floor(fp + .5);
1615
1616 if (d > 9)
1617 {
1618 /* Rounding up to 10, handle that here. */
1619 if (czero > 0)
1620 {
1621 --czero, d = 1;
1622 if (cdigits == 0) --clead;
1623 }
1624 else
1625 {
1626 while (cdigits > 0 && d > 9)
1627 {
1628 int ch = *--ascii;
1629
1630 if (exp_b10 != (-1))
1631 ++exp_b10;
1632
1633 else if (ch == 46)
1634 {
1635 ch = *--ascii, ++size;
1636 /* Advance exp_b10 to '1', so that the
1637 * decimal point happens after the
1638 * previous digit.
1639 */
1640 exp_b10 = 1;
1641 }
1642
1643 --cdigits;
1644 d = ch - 47; /* I.e. 1+(ch-48) */
1645 }
1646
1647 /* Did we reach the beginning? If so adjust the
1648 * exponent but take into account the leading
1649 * decimal point.
1650 */
1651 if (d > 9) /* cdigits == 0 */
1652 {
1653 if (exp_b10 == (-1))
1654 {
1655 /* Leading decimal point (plus zeros?), if
1656 * we lose the decimal point here it must
1657 * be reentered below.
1658 */
1659 int ch = *--ascii;
1660
1661 if (ch == 46)
1662 ++size, exp_b10 = 1;
1663
1664 /* Else lost a leading zero, so 'exp_b10' is
1665 * still ok at (-1)
1666 */
1667 }
1668 else
1669 ++exp_b10;
1670
1671 /* In all cases we output a '1' */
1672 d = 1;
1673 }
1674 }
1675 }
1676 fp = 0; /* Guarantees termination below. */
1677 }
1678
1679 if (d == 0)
1680 {
1681 ++czero;
1682 if (cdigits == 0) ++clead;
1683 }
1684 else
1685 {
1686 /* Included embedded zeros in the digit count. */
1687 cdigits += czero - clead;
1688 clead = 0;
1689
1690 while (czero > 0)
1691 {
1692 /* exp_b10 == (-1) means we just output the decimal
1693 * place - after the DP don't adjust 'exp_b10' any
1694 * more!
1695 */
1696 if (exp_b10 != (-1))
1697 {
1698 if (exp_b10 == 0) *ascii++ = 46, --size;
1699 /* PLUS 1: TOTAL 4 */
1700 --exp_b10;
1701 }
1702 *ascii++ = 48, --czero;
1703 }
1704
1705 if (exp_b10 != (-1))
1706 {
1707 if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
1708 above */
1709 --exp_b10;
1710 }
1711 *ascii++ = (char)(48 + (int)d), ++cdigits;
1712 }
1713 }
1714 while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
1715
1716 /* The total output count (max) is now 4+precision */
1717
1718 /* Check for an exponent, if we don't need one we are
1719 * done and just need to terminate the string. At
1720 * this point exp_b10==(-1) is effectively if flag - it got
1721 * to '-1' because of the decrement after outputing
1722 * the decimal point above (the exponent required is
1723 * *not* -1!)
1724 */
1725 if (exp_b10 >= (-1) && exp_b10 <= 2)
1726 {
1727 /* The following only happens if we didn't output the
1728 * leading zeros above for negative exponent, so this
1729 * doest add to the digit requirement. Note that the
1730 * two zeros here can only be output if the two leading
1731 * zeros were *not* output, so this doesn't increase
1732 * the output count.
1733 */
1734 while (--exp_b10 >= 0) *ascii++ = 48;
1735
1736 *ascii = 0;
1737
1738 /* Total buffer requirement (including the '\0') is
1739 * 5+precision - see check at the start.
1740 */
1741 return;
1742 }
1743
1744 /* Here if an exponent is required, adjust size for
1745 * the digits we output but did not count. The total
1746 * digit output here so far is at most 1+precision - no
1747 * decimal point and no leading or trailing zeros have
1748 * been output.
1749 */
1750 size -= cdigits;
1751
1752 *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */
1753
1754 /* The following use of an unsigned temporary avoids ambiguities in
1755 * the signed arithmetic on exp_b10 and permits GCC at least to do
1756 * better optimization.
1757 */
1758 {
1759 unsigned int uexp_b10;
1760
1761 if (exp_b10 < 0)
1762 {
1763 *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
1764 uexp_b10 = -exp_b10;
1765 }
1766
1767 else
1768 uexp_b10 = exp_b10;
1769
1770 cdigits = 0;
1771
1772 while (uexp_b10 > 0)
1773 {
1774 exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
1775 uexp_b10 /= 10;
1776 }
1777 }
1778
1779 /* Need another size check here for the exponent digits, so
1780 * this need not be considered above.
1781 */
1782 if ((int)size > cdigits)
1783 {
1784 while (cdigits > 0) *ascii++ = exponent[--cdigits];
1785
1786 *ascii = 0;
1787
1788 return;
1789 }
1790 }
1791 }
1792 else if (!(fp >= DBL_MIN))
1793 {
1794 *ascii++ = 48; /* '0' */
1795 *ascii = 0;
1796 return;
1797 }
1798 else
1799 {
1800 *ascii++ = 105; /* 'i' */
1801 *ascii++ = 110; /* 'n' */
1802 *ascii++ = 102; /* 'f' */
1803 *ascii = 0;
1804 return;
1805 }
1806 }
1807
1808 /* Here on buffer too small. */
1809 png_error(png_ptr, "ASCII conversion buffer too small");
1810 }
1811
1812 # endif /* FLOATING_POINT */
1813
1814 # ifdef PNG_FIXED_POINT_SUPPORTED
1815 /* Function to format a fixed point value in ASCII.
1816 */
1817 void /* PRIVATE */
1818 png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
1819 png_fixed_point fp)
1820 {
1821 /* Require space for 10 decimal digits, a decimal point, a minus sign and a
1822 * trailing \0, 13 characters:
1823 */
1824 if (size > 12)
1825 {
1826 png_uint_32 num;
1827
1828 /* Avoid overflow here on the minimum integer. */
1829 if (fp < 0)
1830 *ascii++ = 45, --size, num = -fp;
1831 else
1832 num = fp;
1833
1834 if (num <= 0x80000000) /* else overflowed */
1835 {
1836 unsigned int ndigits = 0, first = 16 /* flag value */;
1837 char digits[10];
1838
1839 while (num)
1840 {
1841 /* Split the low digit off num: */
1842 unsigned int tmp = num/10;
1843 num -= tmp*10;
1844 digits[ndigits++] = (char)(48 + num);
1845 /* Record the first non-zero digit, note that this is a number
1846 * starting at 1, it's not actually the array index.
1847 */
1848 if (first == 16 && num > 0)
1849 first = ndigits;
1850 num = tmp;
1851 }
1852
1853 if (ndigits > 0)
1854 {
1855 while (ndigits > 5) *ascii++ = digits[--ndigits];
1856 /* The remaining digits are fractional digits, ndigits is '5' or
1857 * smaller at this point. It is certainly not zero. Check for a
1858 * non-zero fractional digit:
1859 */
1860 if (first <= 5)
1861 {
1862 unsigned int i;
1863 *ascii++ = 46; /* decimal point */
1864 /* ndigits may be <5 for small numbers, output leading zeros
1865 * then ndigits digits to first:
1866 */
1867 i = 5;
1868 while (ndigits < i) *ascii++ = 48, --i;
1869 while (ndigits >= first) *ascii++ = digits[--ndigits];
1870 /* Don't output the trailing zeros! */
1871 }
1872 }
1873 else
1874 *ascii++ = 48;
1875
1876 /* And null terminate the string: */
1877 *ascii = 0;
1878 return;
1879 }
1880 }
1881
1882 /* Here on buffer too small. */
1883 png_error(png_ptr, "ASCII conversion buffer too small");
1884 }
1885 # endif /* FIXED_POINT */
1886 #endif /* READ_SCAL */
1887
1888 #if defined(PNG_FLOATING_POINT_SUPPORTED) && \
1889 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
1890 png_fixed_point
1891 png_fixed(png_structp png_ptr, double fp, png_const_charp text)
1892 {
1893 double r = floor(100000 * fp + .5);
1894
1895 if (r > 2147483647. || r < -2147483648.)
1896 png_fixed_error(png_ptr, text);
1897
1898 return (png_fixed_point)r;
1899 }
1900 #endif
1901
1902 #if defined(PNG_READ_GAMMA_SUPPORTED) || \
1903 defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
1904 /* muldiv functions */
1905 /* This API takes signed arguments and rounds the result to the nearest
1906 * integer (or, for a fixed point number - the standard argument - to
1907 * the nearest .00001). Overflow and divide by zero are signalled in
1908 * the result, a boolean - true on success, false on overflow.
1909 */
1910 int
1911 png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
1912 png_int_32 divisor)
1913 {
1914 /* Return a * times / divisor, rounded. */
1915 if (divisor != 0)
1916 {
1917 if (a == 0 || times == 0)
1918 {
1919 *res = 0;
1920 return 1;
1921 }
1922 else
1923 {
1924 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
1925 double r = a;
1926 r *= times;
1927 r /= divisor;
1928 r = floor(r+.5);
1929
1930 /* A png_fixed_point is a 32-bit integer. */
1931 if (r <= 2147483647. && r >= -2147483648.)
1932 {
1933 *res = (png_fixed_point)r;
1934 return 1;
1935 }
1936 #else
1937 int negative = 0;
1938 png_uint_32 A, T, D;
1939 png_uint_32 s16, s32, s00;
1940
1941 if (a < 0)
1942 negative = 1, A = -a;
1943 else
1944 A = a;
1945
1946 if (times < 0)
1947 negative = !negative, T = -times;
1948 else
1949 T = times;
1950
1951 if (divisor < 0)
1952 negative = !negative, D = -divisor;
1953 else
1954 D = divisor;
1955
1956 /* Following can't overflow because the arguments only
1957 * have 31 bits each, however the result may be 32 bits.
1958 */
1959 s16 = (A >> 16) * (T & 0xffff) +
1960 (A & 0xffff) * (T >> 16);
1961 /* Can't overflow because the a*times bit is only 30
1962 * bits at most.
1963 */
1964 s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
1965 s00 = (A & 0xffff) * (T & 0xffff);
1966
1967 s16 = (s16 & 0xffff) << 16;
1968 s00 += s16;
1969
1970 if (s00 < s16)
1971 ++s32; /* carry */
1972
1973 if (s32 < D) /* else overflow */
1974 {
1975 /* s32.s00 is now the 64-bit product, do a standard
1976 * division, we know that s32 < D, so the maximum
1977 * required shift is 31.
1978 */
1979 int bitshift = 32;
1980 png_fixed_point result = 0; /* NOTE: signed */
1981
1982 while (--bitshift >= 0)
1983 {
1984 png_uint_32 d32, d00;
1985
1986 if (bitshift > 0)
1987 d32 = D >> (32-bitshift), d00 = D << bitshift;
1988
1989 else
1990 d32 = 0, d00 = D;
1991
1992 if (s32 > d32)
1993 {
1994 if (s00 < d00) --s32; /* carry */
1995 s32 -= d32, s00 -= d00, result += 1<<bitshift;
1996 }
1997
1998 else
1999 if (s32 == d32 && s00 >= d00)
2000 s32 = 0, s00 -= d00, result += 1<<bitshift;
2001 }
2002
2003 /* Handle the rounding. */
2004 if (s00 >= (D >> 1))
2005 ++result;
2006
2007 if (negative)
2008 result = -result;
2009
2010 /* Check for overflow. */
2011 if ((negative && result <= 0) || (!negative && result >= 0))
2012 {
2013 *res = result;
2014 return 1;
2015 }
2016 }
2017 #endif
2018 }
2019 }
2020
2021 return 0;
2022 }
2023 #endif /* READ_GAMMA || INCH_CONVERSIONS */
2024
2025 #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
2026 /* The following is for when the caller doesn't much care about the
2027 * result.
2028 */
2029 png_fixed_point
2030 png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
2031 png_int_32 divisor)
2032 {
2033 png_fixed_point result;
2034
2035 if (png_muldiv(&result, a, times, divisor))
2036 return result;
2037
2038 png_warning(png_ptr, "fixed point overflow ignored");
2039 return 0;
2040 }
2041 #endif
2042
2043 #ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */
2044 /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
2045 png_fixed_point
2046 png_reciprocal(png_fixed_point a)
2047 {
2048 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2049 double r = floor(1E10/a+.5);
2050
2051 if (r <= 2147483647. && r >= -2147483648.)
2052 return (png_fixed_point)r;
2053 #else
2054 png_fixed_point res;
2055
2056 if (png_muldiv(&res, 100000, 100000, a))
2057 return res;
2058 #endif
2059
2060 return 0; /* error/overflow */
2061 }
2062
2063 /* A local convenience routine. */
2064 static png_fixed_point
2065 png_product2(png_fixed_point a, png_fixed_point b)
2066 {
2067 /* The required result is 1/a * 1/b; the following preserves accuracy. */
2068 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2069 double r = a * 1E-5;
2070 r *= b;
2071 r = floor(r+.5);
2072
2073 if (r <= 2147483647. && r >= -2147483648.)
2074 return (png_fixed_point)r;
2075 #else
2076 png_fixed_point res;
2077
2078 if (png_muldiv(&res, a, b, 100000))
2079 return res;
2080 #endif
2081
2082 return 0; /* overflow */
2083 }
2084
2085 /* The inverse of the above. */
2086 png_fixed_point
2087 png_reciprocal2(png_fixed_point a, png_fixed_point b)
2088 {
2089 /* The required result is 1/a * 1/b; the following preserves accuracy. */
2090 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2091 double r = 1E15/a;
2092 r /= b;
2093 r = floor(r+.5);
2094
2095 if (r <= 2147483647. && r >= -2147483648.)
2096 return (png_fixed_point)r;
2097 #else
2098 /* This may overflow because the range of png_fixed_point isn't symmetric,
2099 * but this API is only used for the product of file and screen gamma so it
2100 * doesn't matter that the smallest number it can produce is 1/21474, not
2101 * 1/100000
2102 */
2103 png_fixed_point res = png_product2(a, b);
2104
2105 if (res != 0)
2106 return png_reciprocal(res);
2107 #endif
2108
2109 return 0; /* overflow */
2110 }
2111 #endif /* READ_GAMMA */
2112
2113 #ifdef PNG_CHECK_cHRM_SUPPORTED
2114 /* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
2115 * 2010: moved from pngset.c) */
2116 /*
2117 * Multiply two 32-bit numbers, V1 and V2, using 32-bit
2118 * arithmetic, to produce a 64-bit result in the HI/LO words.
2119 *
2120 * A B
2121 * x C D
2122 * ------
2123 * AD || BD
2124 * AC || CB || 0
2125 *
2126 * where A and B are the high and low 16-bit words of V1,
2127 * C and D are the 16-bit words of V2, AD is the product of
2128 * A and D, and X || Y is (X << 16) + Y.
2129 */
2130
2131 void /* PRIVATE */
2132 png_64bit_product (long v1, long v2, unsigned long *hi_product,
2133 unsigned long *lo_product)
2134 {
2135 int a, b, c, d;
2136 long lo, hi, x, y;
2137
2138 a = (v1 >> 16) & 0xffff;
2139 b = v1 & 0xffff;
2140 c = (v2 >> 16) & 0xffff;
2141 d = v2 & 0xffff;
2142
2143 lo = b * d; /* BD */
2144 x = a * d + c * b; /* AD + CB */
2145 y = ((lo >> 16) & 0xffff) + x;
2146
2147 lo = (lo & 0xffff) | ((y & 0xffff) << 16);
2148 hi = (y >> 16) & 0xffff;
2149
2150 hi += a * c; /* AC */
2151
2152 *hi_product = (unsigned long)hi;
2153 *lo_product = (unsigned long)lo;
2154 }
2155 #endif /* CHECK_cHRM */
2156
2157 #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
2158 #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2159 /* Fixed point gamma.
2160 *
2161 * To calculate gamma this code implements fast log() and exp() calls using only
2162 * fixed point arithmetic. This code has sufficient precision for either 8-bit
2163 * or 16-bit sample values.
2164 *
2165 * The tables used here were calculated using simple 'bc' programs, but C double
2166 * precision floating point arithmetic would work fine. The programs are given
2167 * at the head of each table.
2168 *
2169 * 8-bit log table
2170 * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2171 * 255, so it's the base 2 logarithm of a normalized 8-bit floating point
2172 * mantissa. The numbers are 32-bit fractions.
2173 */
2174 static png_uint_32
2175 png_8bit_l2[128] =
2176 {
2177 # ifdef PNG_DO_BC
2178 for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
2179 # else
2180 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
2181 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
2182 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
2183 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
2184 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
2185 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
2186 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
2187 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
2188 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
2189 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
2190 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
2191 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
2192 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
2193 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
2194 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
2195 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
2196 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
2197 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
2198 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
2199 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
2200 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
2201 24347096U, 0U
2202 # endif
2203
2204 #if 0
2205 /* The following are the values for 16-bit tables - these work fine for the
2206 * 8-bit conversions but produce very slightly larger errors in the 16-bit
2207 * log (about 1.2 as opposed to 0.7 absolute error in the final value). To
2208 * use these all the shifts below must be adjusted appropriately.
2209 */
2210 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
2211 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
2212 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
2213 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
2214 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
2215 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
2216 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
2217 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
2218 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
2219 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
2220 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
2221 1119, 744, 372
2222 #endif
2223 };
2224
2225 PNG_STATIC png_int_32
2226 png_log8bit(unsigned int x)
2227 {
2228 unsigned int lg2 = 0;
2229 /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
2230 * because the log is actually negate that means adding 1. The final
2231 * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
2232 * input), return 7.99998 for the overflow (log 0) case - so the result is
2233 * always at most 19 bits.
2234 */
2235 if ((x &= 0xff) == 0)
2236 return 0xffffffff;
2237
2238 if ((x & 0xf0) == 0)
2239 lg2 = 4, x <<= 4;
2240
2241 if ((x & 0xc0) == 0)
2242 lg2 += 2, x <<= 2;
2243
2244 if ((x & 0x80) == 0)
2245 lg2 += 1, x <<= 1;
2246
2247 /* result is at most 19 bits, so this cast is safe: */
2248 return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
2249 }
2250
2251 /* The above gives exact (to 16 binary places) log2 values for 8-bit images,
2252 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
2253 * get an approximation then multiply the approximation by a correction factor
2254 * determined by the remaining up to 8 bits. This requires an additional step
2255 * in the 16-bit case.
2256 *
2257 * We want log2(value/65535), we have log2(v'/255), where:
2258 *
2259 * value = v' * 256 + v''
2260 * = v' * f
2261 *
2262 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
2263 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
2264 * than 258. The final factor also needs to correct for the fact that our 8-bit
2265 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
2266 *
2267 * This gives a final formula using a calculated value 'x' which is value/v' and
2268 * scaling by 65536 to match the above table:
2269 *
2270 * log2(x/257) * 65536
2271 *
2272 * Since these numbers are so close to '1' we can use simple linear
2273 * interpolation between the two end values 256/257 (result -368.61) and 258/257
2274 * (result 367.179). The values used below are scaled by a further 64 to give
2275 * 16-bit precision in the interpolation:
2276 *
2277 * Start (256): -23591
2278 * Zero (257): 0
2279 * End (258): 23499
2280 */
2281 PNG_STATIC png_int_32
2282 png_log16bit(png_uint_32 x)
2283 {
2284 unsigned int lg2 = 0;
2285
2286 /* As above, but now the input has 16 bits. */
2287 if ((x &= 0xffff) == 0)
2288 return 0xffffffff;
2289
2290 if ((x & 0xff00) == 0)
2291 lg2 = 8, x <<= 8;
2292
2293 if ((x & 0xf000) == 0)
2294 lg2 += 4, x <<= 4;
2295
2296 if ((x & 0xc000) == 0)
2297 lg2 += 2, x <<= 2;
2298
2299 if ((x & 0x8000) == 0)
2300 lg2 += 1, x <<= 1;
2301
2302 /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
2303 * value.
2304 */
2305 lg2 <<= 28;
2306 lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
2307
2308 /* Now we need to interpolate the factor, this requires a division by the top
2309 * 8 bits. Do this with maximum precision.
2310 */
2311 x = ((x << 16) + (x >> 9)) / (x >> 8);
2312
2313 /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
2314 * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
2315 * 16 bits to interpolate to get the low bits of the result. Round the
2316 * answer. Note that the end point values are scaled by 64 to retain overall
2317 * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
2318 * the overall scaling by 6-12. Round at every step.
2319 */
2320 x -= 1U << 24;
2321
2322 if (x <= 65536U) /* <= '257' */
2323 lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
2324
2325 else
2326 lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
2327
2328 /* Safe, because the result can't have more than 20 bits: */
2329 return (png_int_32)((lg2 + 2048) >> 12);
2330 }
2331
2332 /* The 'exp()' case must invert the above, taking a 20-bit fixed point
2333 * logarithmic value and returning a 16 or 8-bit number as appropriate. In
2334 * each case only the low 16 bits are relevant - the fraction - since the
2335 * integer bits (the top 4) simply determine a shift.
2336 *
2337 * The worst case is the 16-bit distinction between 65535 and 65534, this
2338 * requires perhaps spurious accuracy in the decoding of the logarithm to
2339 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
2340 * of getting this accuracy in practice.
2341 *
2342 * To deal with this the following exp() function works out the exponent of the
2343 * frational part of the logarithm by using an accurate 32-bit value from the
2344 * top four fractional bits then multiplying in the remaining bits.
2345 */
2346 static png_uint_32
2347 png_32bit_exp[16] =
2348 {
2349 # ifdef PNG_DO_BC
2350 for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
2351 # else
2352 /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
2353 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
2354 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
2355 2553802834U, 2445529972U, 2341847524U, 2242560872U
2356 # endif
2357 };
2358
2359 /* Adjustment table; provided to explain the numbers in the code below. */
2360 #ifdef PNG_DO_BC
2361 for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
2362 11 44937.64284865548751208448
2363 10 45180.98734845585101160448
2364 9 45303.31936980687359311872
2365 8 45364.65110595323018870784
2366 7 45395.35850361789624614912
2367 6 45410.72259715102037508096
2368 5 45418.40724413220722311168
2369 4 45422.25021786898173001728
2370 3 45424.17186732298419044352
2371 2 45425.13273269940811464704
2372 1 45425.61317555035558641664
2373 0 45425.85339951654943850496
2374 #endif
2375
2376 PNG_STATIC png_uint_32
2377 png_exp(png_fixed_point x)
2378 {
2379 if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
2380 {
2381 /* Obtain a 4-bit approximation */
2382 png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
2383
2384 /* Incorporate the low 12 bits - these decrease the returned value by
2385 * multiplying by a number less than 1 if the bit is set. The multiplier
2386 * is determined by the above table and the shift. Notice that the values
2387 * converge on 45426 and this is used to allow linear interpolation of the
2388 * low bits.
2389 */
2390 if (x & 0x800)
2391 e -= (((e >> 16) * 44938U) + 16U) >> 5;
2392
2393 if (x & 0x400)
2394 e -= (((e >> 16) * 45181U) + 32U) >> 6;
2395
2396 if (x & 0x200)
2397 e -= (((e >> 16) * 45303U) + 64U) >> 7;
2398
2399 if (x & 0x100)
2400 e -= (((e >> 16) * 45365U) + 128U) >> 8;
2401
2402 if (x & 0x080)
2403 e -= (((e >> 16) * 45395U) + 256U) >> 9;
2404
2405 if (x & 0x040)
2406 e -= (((e >> 16) * 45410U) + 512U) >> 10;
2407
2408 /* And handle the low 6 bits in a single block. */
2409 e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
2410
2411 /* Handle the upper bits of x. */
2412 e >>= x >> 16;
2413 return e;
2414 }
2415
2416 /* Check for overflow */
2417 if (x <= 0)
2418 return png_32bit_exp[0];
2419
2420 /* Else underflow */
2421 return 0;
2422 }
2423
2424 PNG_STATIC png_byte
2425 png_exp8bit(png_fixed_point lg2)
2426 {
2427 /* Get a 32-bit value: */
2428 png_uint_32 x = png_exp(lg2);
2429
2430 /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
2431 * second, rounding, step can't overflow because of the first, subtraction,
2432 * step.
2433 */
2434 x -= x >> 8;
2435 return (png_byte)((x + 0x7fffffU) >> 24);
2436 }
2437
2438 PNG_STATIC png_uint_16
2439 png_exp16bit(png_fixed_point lg2)
2440 {
2441 /* Get a 32-bit value: */
2442 png_uint_32 x = png_exp(lg2);
2443
2444 /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
2445 x -= x >> 16;
2446 return (png_uint_16)((x + 32767U) >> 16);
2447 }
2448 #endif /* FLOATING_ARITHMETIC */
2449
2450 png_byte
2451 png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
2452 {
2453 if (value > 0 && value < 255)
2454 {
2455 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2456 double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
2457 return (png_byte)r;
2458 # else
2459 png_int_32 lg2 = png_log8bit(value);
2460 png_fixed_point res;
2461
2462 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
2463 return png_exp8bit(res);
2464
2465 /* Overflow. */
2466 value = 0;
2467 # endif
2468 }
2469
2470 return (png_byte)value;
2471 }
2472
2473 png_uint_16
2474 png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
2475 {
2476 if (value > 0 && value < 65535)
2477 {
2478 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2479 double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
2480 return (png_uint_16)r;
2481 # else
2482 png_int_32 lg2 = png_log16bit(value);
2483 png_fixed_point res;
2484
2485 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
2486 return png_exp16bit(res);
2487
2488 /* Overflow. */
2489 value = 0;
2490 # endif
2491 }
2492
2493 return (png_uint_16)value;
2494 }
2495
2496 /* This does the right thing based on the bit_depth field of the
2497 * png_struct, interpreting values as 8-bit or 16-bit. While the result
2498 * is nominally a 16-bit value if bit depth is 8 then the result is
2499 * 8-bit (as are the arguments.)
2500 */
2501 png_uint_16 /* PRIVATE */
2502 png_gamma_correct(png_structp png_ptr, unsigned int value,
2503 png_fixed_point gamma_val)
2504 {
2505 if (png_ptr->bit_depth == 8)
2506 return png_gamma_8bit_correct(value, gamma_val);
2507
2508 else
2509 return png_gamma_16bit_correct(value, gamma_val);
2510 }
2511
2512 /* This is the shared test on whether a gamma value is 'significant' - whether
2513 * it is worth doing gamma correction.
2514 */
2515 int /* PRIVATE */
2516 png_gamma_significant(png_fixed_point gamma_val)
2517 {
2518 return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
2519 gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
2520 }
2521
2522 /* Internal function to build a single 16-bit table - the table consists of
2523 * 'num' 256-entry subtables, where 'num' is determined by 'shift' - the amount
2524 * to shift the input values right (or 16-number_of_signifiant_bits).
2525 *
2526 * The caller is responsible for ensuring that the table gets cleaned up on
2527 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
2528 * should be somewhere that will be cleaned.
2529 */
2530 static void
2531 png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
2532 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
2533 {
2534 /* Various values derived from 'shift': */
2535 PNG_CONST unsigned int num = 1U << (8U - shift);
2536 PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
2537 PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
2538 unsigned int i;
2539
2540 png_uint_16pp table = *ptable =
2541 (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
2542
2543 for (i = 0; i < num; i++)
2544 {
2545 png_uint_16p sub_table = table[i] =
2546 (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
2547
2548 /* The 'threshold' test is repeated here because it can arise for one of
2549 * the 16-bit tables even if the others don't hit it.
2550 */
2551 if (png_gamma_significant(gamma_val))
2552 {
2553 /* The old code would overflow at the end and this would cause the
2554 * 'pow' function to return a result >1, resulting in an
2555 * arithmetic error. This code follows the spec exactly; ig is
2556 * the recovered input sample, it always has 8-16 bits.
2557 *
2558 * We want input * 65535/max, rounded, the arithmetic fits in 32
2559 * bits (unsigned) so long as max <= 32767.
2560 */
2561 unsigned int j;
2562 for (j = 0; j < 256; j++)
2563 {
2564 png_uint_32 ig = (j << (8-shift)) + i;
2565 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2566 /* Inline the 'max' scaling operation: */
2567 double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
2568 sub_table[j] = (png_uint_16)d;
2569 # else
2570 if (shift)
2571 ig = (ig * 65535U + max_by_2)/max;
2572
2573 sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
2574 # endif
2575 }
2576 }
2577 else
2578 {
2579 /* We must still build a table, but do it the fast way. */
2580 unsigned int j;
2581
2582 for (j = 0; j < 256; j++)
2583 {
2584 png_uint_32 ig = (j << (8-shift)) + i;
2585
2586 if (shift)
2587 ig = (ig * 65535U + max_by_2)/max;
2588
2589 sub_table[j] = (png_uint_16)ig;
2590 }
2591 }
2592 }
2593 }
2594
2595 /* NOTE: this function expects the *inverse* of the overall gamma transformation
2596 * required.
2597 */
2598 static void
2599 png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
2600 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
2601 {
2602 PNG_CONST unsigned int num = 1U << (8U - shift);
2603 PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
2604 unsigned int i;
2605 png_uint_32 last;
2606
2607 png_uint_16pp table = *ptable =
2608 (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
2609
2610 /* 'num' is the number of tables and also the number of low bits of the
2611 * input 16-bit value used to select a table. Each table is itself indexed
2612 * by the high 8 bits of the value.
2613 */
2614 for (i = 0; i < num; i++)
2615 table[i] = (png_uint_16p)png_malloc(png_ptr,
2616 256 * png_sizeof(png_uint_16));
2617
2618 /* 'gamma_val' is set to the reciprocal of the value calculated above, so
2619 * pow(out,g) is an *input* value. 'last' is the last input value set.
2620 *
2621 * In the loop 'i' is used to find output values. Since the output is
2622 * 8-bit there are only 256 possible values. The tables are set up to
2623 * select the closest possible output value for each input by finding
2624 * the input value at the boundary between each pair of output values
2625 * and filling the table up to that boundary with the lower output
2626 * value.
2627 *
2628 * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
2629 * values the code below uses a 16-bit value in i; the values start at
2630 * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
2631 * entries are filled with 255). Start i at 128 and fill all 'last'
2632 * table entries <= 'max'
2633 */
2634 last = 0;
2635 for (i = 0; i < 255; ++i) /* 8-bit output value */
2636 {
2637 /* Find the corresponding maximum input value */
2638 png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
2639
2640 /* Find the boundary value in 16 bits: */
2641 png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
2642
2643 /* Adjust (round) to (16-shift) bits: */
2644 bound = (bound * max + 32768U)/65535U + 1U;
2645
2646 while (last < bound)
2647 {
2648 table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
2649 last++;
2650 }
2651 }
2652
2653 /* And fill in the final entries. */
2654 while (last < (num << 8))
2655 {
2656 table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
2657 last++;
2658 }
2659 }
2660
2661 /* Build a single 8-bit table: same as the 16-bit case but much simpler (and
2662 * typically much faster). Note that libpng currently does no sBIT processing
2663 * (apparently contrary to the spec) so a 256-entry table is always generated.
2664 */
2665 static void
2666 png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
2667 PNG_CONST png_fixed_point gamma_val)
2668 {
2669 unsigned int i;
2670 png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
2671
2672 if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
2673 table[i] = png_gamma_8bit_correct(i, gamma_val);
2674
2675 else for (i=0; i<256; ++i)
2676 table[i] = (png_byte)i;
2677 }
2678
2679 /* Used from png_read_destroy and below to release the memory used by the gamma
2680 * tables.
2681 */
2682 void /* PRIVATE */
2683 png_destroy_gamma_table(png_structp png_ptr)
2684 {
2685 png_free(png_ptr, png_ptr->gamma_table);
2686 png_ptr->gamma_table = NULL;
2687
2688 if (png_ptr->gamma_16_table != NULL)
2689 {
2690 int i;
2691 int istop = (1 << (8 - png_ptr->gamma_shift));
2692 for (i = 0; i < istop; i++)
2693 {
2694 png_free(png_ptr, png_ptr->gamma_16_table[i]);
2695 }
2696 png_free(png_ptr, png_ptr->gamma_16_table);
2697 png_ptr->gamma_16_table = NULL;
2698 }
2699
2700 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2701 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2702 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2703 png_free(png_ptr, png_ptr->gamma_from_1);
2704 png_ptr->gamma_from_1 = NULL;
2705 png_free(png_ptr, png_ptr->gamma_to_1);
2706 png_ptr->gamma_to_1 = NULL;
2707
2708 if (png_ptr->gamma_16_from_1 != NULL)
2709 {
2710 int i;
2711 int istop = (1 << (8 - png_ptr->gamma_shift));
2712 for (i = 0; i < istop; i++)
2713 {
2714 png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
2715 }
2716 png_free(png_ptr, png_ptr->gamma_16_from_1);
2717 png_ptr->gamma_16_from_1 = NULL;
2718 }
2719 if (png_ptr->gamma_16_to_1 != NULL)
2720 {
2721 int i;
2722 int istop = (1 << (8 - png_ptr->gamma_shift));
2723 for (i = 0; i < istop; i++)
2724 {
2725 png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
2726 }
2727 png_free(png_ptr, png_ptr->gamma_16_to_1);
2728 png_ptr->gamma_16_to_1 = NULL;
2729 }
2730 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2731 }
2732
2733 /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
2734 * tables, we don't make a full table if we are reducing to 8-bit in
2735 * the future. Note also how the gamma_16 tables are segmented so that
2736 * we don't need to allocate > 64K chunks for a full 16-bit table.
2737 */
2738 void /* PRIVATE */
2739 png_build_gamma_table(png_structp png_ptr, int bit_depth)
2740 {
2741 png_debug(1, "in png_build_gamma_table");
2742
2743 /* Remove any existing table; this copes with multiple calls to
2744 * png_read_update_info. The warning is because building the gamma tables
2745 * multiple times is a performance hit - it's harmless but the ability to call
2746 * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
2747 * to warn if the app introduces such a hit.
2748 */
2749 if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
2750 {
2751 png_warning(png_ptr, "gamma table being rebuilt");
2752 png_destroy_gamma_table(png_ptr);
2753 }
2754
2755 if (bit_depth <= 8)
2756 {
2757 png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
2758 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
2759 png_ptr->screen_gamma) : PNG_FP_1);
2760
2761 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2762 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2763 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2764 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
2765 {
2766 png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
2767 png_reciprocal(png_ptr->gamma));
2768
2769 png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
2770 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
2771 png_ptr->gamma/* Probably doing rgb_to_gray */);
2772 }
2773 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2774 }
2775 else
2776 {
2777 png_byte shift, sig_bit;
2778
2779 if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
2780 {
2781 sig_bit = png_ptr->sig_bit.red;
2782
2783 if (png_ptr->sig_bit.green > sig_bit)
2784 sig_bit = png_ptr->sig_bit.green;
2785
2786 if (png_ptr->sig_bit.blue > sig_bit)
2787 sig_bit = png_ptr->sig_bit.blue;
2788 }
2789 else
2790 sig_bit = png_ptr->sig_bit.gray;
2791
2792 /* 16-bit gamma code uses this equation:
2793 *
2794 * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
2795 *
2796 * Where 'iv' is the input color value and 'ov' is the output value -
2797 * pow(iv, gamma).
2798 *
2799 * Thus the gamma table consists of up to 256 256-entry tables. The table
2800 * is selected by the (8-gamma_shift) most significant of the low 8 bits of
2801 * the color value then indexed by the upper 8 bits:
2802 *
2803 * table[low bits][high 8 bits]
2804 *
2805 * So the table 'n' corresponds to all those 'iv' of:
2806 *
2807 * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
2808 *
2809 */
2810 if (sig_bit > 0 && sig_bit < 16U)
2811 shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
2812
2813 else
2814 shift = 0; /* keep all 16 bits */
2815
2816 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
2817 {
2818 /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
2819 * the significant bits in the *input* when the output will
2820 * eventually be 8 bits. By default it is 11.
2821 */
2822 if (shift < (16U - PNG_MAX_GAMMA_8))
2823 shift = (16U - PNG_MAX_GAMMA_8);
2824 }
2825
2826 if (shift > 8U)
2827 shift = 8U; /* Guarantees at least one table! */
2828
2829 png_ptr->gamma_shift = shift;
2830
2831 #ifdef PNG_16BIT_SUPPORTED
2832 /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
2833 * PNG_COMPOSE). This effectively smashed the background calculation for
2834 * 16-bit output because the 8-bit table assumes the result will be reduced
2835 * to 8 bits.
2836 */
2837 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
2838 #endif
2839 png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
2840 png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
2841 png_ptr->screen_gamma) : PNG_FP_1);
2842
2843 #ifdef PNG_16BIT_SUPPORTED
2844 else
2845 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
2846 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
2847 png_ptr->screen_gamma) : PNG_FP_1);
2848 #endif
2849
2850 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2851 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2852 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2853 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
2854 {
2855 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
2856 png_reciprocal(png_ptr->gamma));
2857
2858 /* Notice that the '16 from 1' table should be full precision, however
2859 * the lookup on this table still uses gamma_shift, so it can't be.
2860 * TODO: fix this.
2861 */
2862 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
2863 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
2864 png_ptr->gamma/* Probably doing rgb_to_gray */);
2865 }
2866 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2867 }
2868 }
2869 #endif /* READ_GAMMA */
2870 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */