]> git.saurik.com Git - wxWidgets.git/blob - docs/latex/wx/thread.tex
made the alphabetic class order more alphabetic
[wxWidgets.git] / docs / latex / wx / thread.tex
1 \section{\class{wxThread}}\label{wxthread}
2
3 A thread is basically a path of execution through a program. Threads are
4 sometimes called {\it light-weight processes}, but the fundamental difference
5 between threads and processes is that memory spaces of different processes are
6 separated while all threads share the same address space. While it makes it
7 much easier to share common data between several threads, it also makes much
8 easier to shoot oneself in the foot, so careful use of synchronization objects
9 such as \helpref{mutexes}{wxmutex} and/or \helpref{critical sections}{wxcriticalsection} is recommended.
10
11 There are two types of threads in wxWindows: {\it detached} and {\it joinable}
12 ones, just as in the POSIX thread API (but unlike Win32 threads where all threads
13 are joinable). The difference between the two is that only joinable threads
14 can return a return code - this is returned by the Wait() function. Detached
15 threads (the default type) cannot be waited for.
16
17 You shouldn't hurry to create all the threads joinable, however, because this
18 has a disadvantage as well: you {\bf must} Wait() for a joinable thread or the
19 system resources used by it will never be freed, and you also must delete the
20 corresponding wxThread object yourself. In contrast, detached threads are of the
21 "fire-and-forget" kind: you only have to start a detached thread and it will
22 terminate and destroy itself.
23
24 This means, of course, that all detached threads {\bf must} be created on the
25 heap because the thread will call {\tt delete this;} upon termination. Joinable
26 threads may be created on the stack although more usually they will be created
27 on the heap as well. Don't create global thread objects because they allocate
28 memory in their constructor, which will cause problems for the memory checking
29 system.
30
31 \wxheading{Derived from}
32
33 None.
34
35 \wxheading{Include files}
36
37 <wx/thread.h>
38
39 \wxheading{See also}
40
41 \helpref{wxMutex}{wxmutex}, \helpref{wxCondition}{wxcondition}, \helpref{wxCriticalSection}{wxcriticalsection}
42
43 \latexignore{\rtfignore{\wxheading{Members}}}
44
45 \membersection{wxThread::wxThread}\label{wxthreadctor}
46
47 \func{}{wxThread}{\param{wxThreadKind }{kind = wxTHREAD\_DETACHED}}
48
49 This constructor creates a new detached (default) or joinable C++ thread object. It
50 does not create or start execution of the real thread - for this you should
51 use the \helpref{Create}{wxthreadcreate} and \helpref{Run}{wxthreadrun} methods.
52
53 The possible values for {\it kind} parameters are:
54
55 \twocolwidtha{7cm}
56 \begin{twocollist}\itemsep=0pt
57 \twocolitem{{\bf wxTHREAD\_DETACHED}}{Create a detached thread.}
58 \twocolitem{{\bf wxTHREAD\_JOINABLE}}{Create a joinable thread}
59 \end{twocollist}
60
61 \membersection{wxThread::\destruct{wxThread}}
62
63 \func{}{\destruct{wxThread}}{\void}
64
65 The destructor frees the resources associated with the thread. Notice that you
66 should never delete a detached thread - you may only call
67 \helpref{Delete}{wxthreaddelete} on it or wait until it terminates (and auto
68 destructs) itself. Because the detached threads delete themselves, they can
69 only be allocated on the heap.
70
71 Joinable threads should be deleted explicitly. The \helpref{Delete}{wxthreaddelete} and \helpref{Kill}{wxthreadkill} functions
72 will not delete the C++ thread object. It is also safe to allocate them on
73 stack.
74
75 \membersection{wxThread::Create}\label{wxthreadcreate}
76
77 \func{wxThreadError}{Create}{\param{unsigned int }{stackSize = 0}}
78
79 Creates a new thread. The thread object is created in the suspended state, and you
80 should call \helpref{Run}{wxthreadrun} to start running it. You may optionally
81 specify the stack size to be allocated to it (Ignored on platforms that don't
82 support setting it explicitly, eg. Unix).
83
84 \wxheading{Return value}
85
86 One of:
87
88 \twocolwidtha{7cm}
89 \begin{twocollist}\itemsep=0pt
90 \twocolitem{{\bf wxTHREAD\_NO\_ERROR}}{There was no error.}
91 \twocolitem{{\bf wxTHREAD\_NO\_RESOURCE}}{There were insufficient resources to create a new thread.}
92 \twocolitem{{\bf wxTHREAD\_RUNNING}}{The thread is already running.}
93 \end{twocollist}
94
95 \membersection{wxThread::Delete}\label{wxthreaddelete}
96
97 \func{void}{Delete}{\void}
98
99 Calling \helpref{Delete}{wxthreaddelete} is a graceful way to terminate the
100 thread. It asks the thread to terminate and, if the thread code is well
101 written, the thread will terminate after the next call to
102 \helpref{TestDestroy}{wxthreadtestdestroy} which should happen quite soon.
103
104 However, if the thread doesn't call \helpref{TestDestroy}{wxthreadtestdestroy}
105 often enough (or at all), the function will not return immediately, but wait
106 until the thread terminates. As it may take a long time, and the message processing
107 is not stopped during this function execution, message handlers may be
108 called from inside it!
109
110 Delete() may be called for thread in any state: running, paused or even not yet
111 created. Moreover, it must be called if \helpref{Create}{wxthreadcreate} or
112 \helpref{Run}{wxthreadrun} failed for a detached thread to free the memory
113 occupied by the thread object. This cleanup will be done in the destructor for joinable
114 threads.
115
116 Delete() may be called for a thread in any state: running, paused or even not yet created. Moreover,
117 it must be called if \helpref{Create}{wxthreadcreate} or \helpref{Run}{wxthreadrun} fail to free
118 the memory occupied by the thread object. However, you should not call Delete()
119 on a detached thread which already terminated - doing so will probably result
120 in a crash because the thread object doesn't exist any more.
121
122 For detached threads Delete() will also delete the C++ thread object, but it
123 will not do this for joinable ones.
124
125 This function can only be called from another thread context.
126
127 \membersection{wxThread::Entry}\label{wxthreadentry}
128
129 \func{virtual ExitCode}{Entry}{\void}
130
131 This is the entry point of the thread. This function is pure virtual and must
132 be implemented by any derived class. The thread execution will start here.
133
134 The returned value is the thread exit code which is only useful for
135 joinable threads and is the value returned by \helpref{Wait}{wxthreadwait}.
136
137 This function is called by wxWindows itself and should never be called
138 directly.
139
140 \membersection{wxThread::Exit}\label{wxthreadexit}
141
142 \func{void}{Exit}{\param{ExitCode }{exitcode = 0}}
143
144 This is a protected function of the wxThread class and thus can only be called
145 from a derived class. It also can only be called in the context of this
146 thread, i.e. a thread can only exit from itself, not from another thread.
147
148 This function will terminate the OS thread (i.e. stop the associated path of
149 execution) and also delete the associated C++ object for detached threads.
150 \helpref{wxThread::OnExit}{wxthreadonexit} will be called just before exiting.
151
152 \membersection{wxThread::GetCPUCount}\label{wxthreadgetcpucount}
153
154 \func{static int}{GetCPUCount}{\void}
155
156 Returns the number of system CPUs or -1 if the value is unknown.
157
158 \wxheading{See also}
159
160 \helpref{SetConcurrency}{wxthreadsetconcurrency}
161
162 \membersection{wxThread::GetId}\label{wxthreadgetid}
163
164 \constfunc{unsigned long}{GetId}{\void}
165
166 Gets the thread identifier: this is a platform dependent number that uniquely identifies the
167 thread throughout the system during its existence (i.e. the thread identifiers may be reused).
168
169 \membersection{wxThread::GetPriority}\label{wxthreadgetpriority}
170
171 \constfunc{int}{GetPriority}{\void}
172
173 Gets the priority of the thread, between zero and 100.
174
175 The following priorities are defined:
176
177 \twocolwidtha{7cm}
178 \begin{twocollist}\itemsep=0pt
179 \twocolitem{{\bf WXTHREAD\_MIN\_PRIORITY}}{0}
180 \twocolitem{{\bf WXTHREAD\_DEFAULT\_PRIORITY}}{50}
181 \twocolitem{{\bf WXTHREAD\_MAX\_PRIORITY}}{100}
182 \end{twocollist}
183
184 \membersection{wxThread::IsAlive}\label{wxthreadisalive}
185
186 \constfunc{bool}{IsAlive}{\void}
187
188 Returns TRUE if the thread is alive (i.e. started and not terminating).
189
190 \membersection{wxThread::IsDetached}\label{wxthreadisdetached}
191
192 \constfunc{bool}{IsDetached}{\void}
193
194 Returns TRUE if the thread is of the detached kind, FALSE if it is a joinable one.
195
196 \membersection{wxThread::IsMain}\label{wxthreadismain}
197
198 \func{static bool}{IsMain}{\void}
199
200 Returns TRUE if the calling thread is the main application thread.
201
202 \membersection{wxThread::IsPaused}\label{wxthreadispaused}
203
204 \constfunc{bool}{IsPaused}{\void}
205
206 Returns TRUE if the thread is paused.
207
208 \membersection{wxThread::IsRunning}\label{wxthreadisrunning}
209
210 \constfunc{bool}{IsRunning}{\void}
211
212 Returns TRUE if the thread is running.
213
214 \membersection{wxThread::Kill}\label{wxthreadkill}
215
216 \func{wxThreadError}{Kill}{\void}
217
218 Immediately terminates the target thread. {\bf This function is dangerous and should
219 be used with extreme care (and not used at all whenever possible)!} The resources
220 allocated to the thread will not be freed and the state of the C runtime library
221 may become inconsistent. Use \helpref{Delete()}{wxthreaddelete} instead.
222
223 For detached threads Kill() will also delete the associated C++ object.
224 However this will not happen for joinable threads and this means that you will
225 still have to delete the wxThread object yourself to avoid memory leaks.
226 In neither case \helpref{OnExit}{wxthreadonexit} of the dying thread will be
227 called, so no thread-specific cleanup will be performed.
228
229 This function can only be called from another thread context, i.e. a thread
230 cannot kill itself.
231
232 It is also an error to call this function for a thread which is not running or
233 paused (in the latter case, the thread will be resumed first) - if you do it,
234 a {\tt wxTHREAD\_NOT\_RUNNING} error will be returned.
235
236 \membersection{wxThread::OnExit}\label{wxthreadonexit}
237
238 \func{void}{OnExit}{\void}
239
240 Called when the thread exits. This function is called in the context of the
241 thread associated with the wxThread object, not in the context of the main
242 thread. This function will not be called if the thread was
243 \helpref{killed}{wxthreadkill}.
244
245 This function should never be called directly.
246
247 \membersection{wxThread::Pause}\label{wxthreadpause}
248
249 \func{wxThreadError}{Pause}{\void}
250
251 Suspends the thread. Under some implementations (Win32), the thread is
252 suspended immediately, under others it will only be suspended when it calls
253 \helpref{TestDestroy}{wxthreadtestdestroy} for the next time (hence, if the
254 thread doesn't call it at all, it won't be suspended).
255
256 This function can only be called from another thread context.
257
258 \membersection{wxThread::Run}\label{wxthreadrun}
259
260 \func{wxThreadError}{Run}{\void}
261
262 Starts the thread execution. Should be called after
263 \helpref{Create}{wxthreadcreate}.
264
265 This function can only be called from another thread context.
266
267 \membersection{wxThread::SetPriority}\label{wxthreadsetpriority}
268
269 \func{void}{SetPriority}{\param{int}{ priority}}
270
271 Sets the priority of the thread, between $0$ and $100$. It can only be set
272 after calling \helpref{Create()}{wxthreadcreate} but before calling
273 \helpref{Run()}{wxthreadrun}.
274
275 The following priorities are already defined:
276
277 \twocolwidtha{7cm}
278 \begin{twocollist}\itemsep=0pt
279 \twocolitem{{\bf WXTHREAD\_MIN\_PRIORITY}}{0}
280 \twocolitem{{\bf WXTHREAD\_DEFAULT\_PRIORITY}}{50}
281 \twocolitem{{\bf WXTHREAD\_MAX\_PRIORITY}}{100}
282 \end{twocollist}
283
284 \membersection{wxThread::Sleep}\label{wxthreadsleep}
285
286 \func{static void}{Sleep}{\param{unsigned long }{milliseconds}}
287
288 Pauses the thread execution for the given amount of time.
289
290 This function should be used instead of \helpref{wxSleep}{wxsleep} by all worker
291 threads (i.e. all except the main one).
292
293 \membersection{wxThread::Resume}\label{wxthreadresume}
294
295 \func{wxThreadError}{Resume}{\void}
296
297 Resumes a thread suspended by the call to \helpref{Pause}{wxthreadpause}.
298
299 This function can only be called from another thread context.
300
301 \membersection{wxThread::SetConcurrency}\label{wxthreadsetconcurrency}
302
303 \func{static bool}{SetConcurrency}{\param{size\_t }{level}}
304
305 Sets the thread concurrency level for this process. This is, roughly, the
306 number of threads that the system tries to schedule to run in parallel.
307 The value of $0$ for {\it level} may be used to set the default one.
308
309 Returns TRUE on success or FALSE otherwise (for example, if this function is
310 not implemented for this platform - currently everything except Solaris).
311
312 \membersection{wxThread::TestDestroy}\label{wxthreadtestdestroy}
313
314 \func{bool}{TestDestroy}{\void}
315
316 This function should be called periodically by the thread to ensure that calls
317 to \helpref{Pause}{wxthreadpause} and \helpref{Delete}{wxthreaddelete} will
318 work. If it returns TRUE, the thread should exit as soon as possible.
319
320 \membersection{wxThread::This}\label{wxthreadthis}
321
322 \func{static wxThread *}{This}{\void}
323
324 Return the thread object for the calling thread. NULL is returned if the calling thread
325 is the main (GUI) thread, but \helpref{IsMain}{wxthreadismain} should be used to test
326 whether the thread is really the main one because NULL may also be returned for the thread
327 not created with wxThread class. Generally speaking, the return value for such a thread
328 is undefined.
329
330 \membersection{wxThread::Yield}\label{wxthreadyield}
331
332 \func{void}{Yield}{\void}
333
334 Give the rest of the thread time slice to the system allowing the other threads to run.
335 See also \helpref{Sleep()}{wxthreadsleep}.
336
337 \membersection{wxThread::Wait}\label{wxthreadwait}
338
339 \constfunc{ExitCode}{Wait}{\void}
340
341 Waits until the thread terminates and returns its exit code or {\tt (ExitCode)-1} on error.
342
343 You can only Wait() for joinable (not detached) threads.
344
345 This function can only be called from another thread context.
346