]>
git.saurik.com Git - wxWidgets.git/blob - utils/wxMMedia/adpcm/g723_40.cpp
2 * This source code is a product of Sun Microsystems, Inc. and is provided
3 * for unrestricted use. Users may copy or modify this source code without
6 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
10 * Sun source code is provided with no support and without any obligation on
11 * the part of Sun Microsystems, Inc. to assist in its use, correction,
12 * modification or enhancement.
14 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16 * OR ANY PART THEREOF.
18 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19 * or profits or other special, indirect and consequential damages, even if
20 * Sun has been advised of the possibility of such damages.
22 * Sun Microsystems, Inc.
24 * Mountain View, California 94043
32 * g723_40_encoder(), g723_40_decoder()
34 * These routines comprise an implementation of the CCITT G.723 40Kbps
35 * ADPCM coding algorithm. Essentially, this implementation is identical to
36 * the bit level description except for a few deviations which
37 * take advantage of workstation attributes, such as hardware 2's
38 * complement arithmetic.
40 * The deviation from the bit level specification (lookup tables),
41 * preserves the bit level performance specifications.
43 * As outlined in the G.723 Recommendation, the algorithm is broken
44 * down into modules. Each section of code below is preceded by
45 * the name of the module which it is implementing.
51 * Maps G.723_40 code word to ructeconstructed scale factor normalized log
54 static short _dqlntab
[32] = {-2048, -66, 28, 104, 169, 224, 274, 318,
55 358, 395, 429, 459, 488, 514, 539, 566,
56 566, 539, 514, 488, 459, 429, 395, 358,
57 318, 274, 224, 169, 104, 28, -66, -2048};
59 /* Maps G.723_40 code word to log of scale factor multiplier. */
60 static short _witab
[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200,
61 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272,
62 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512,
63 3200, 1856, 1312, 1280, 1248, 768, 448, 448};
66 * Maps G.723_40 code words to a set of values whose long and short
67 * term averages are computed and then compared to give an indication
68 * how stationary (steady state) the signal is.
70 static short _fitab
[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200,
71 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00,
72 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200,
73 0x200, 0x200, 0x200, 0, 0, 0, 0, 0};
75 static short qtab_723_40
[15] = {-122, -16, 68, 139, 198, 250, 298, 339,
76 378, 413, 445, 475, 502, 528, 553};
81 * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
82 * the resulting 5-bit CCITT G.723 40Kbps code.
83 * Returns -1 if the input coding value is invalid.
89 struct g72x_state
*state_ptr
)
91 short sei
, sezi
, se
, sez
; /* ACCUM */
95 short dqsez
; /* ADDC */
98 switch (in_coding
) { /* linearize input sample to 14-bit PCM */
99 case AUDIO_ENCODING_ALAW
:
100 sl
= alaw2linear(sl
) >> 2;
102 case AUDIO_ENCODING_ULAW
:
103 sl
= ulaw2linear(sl
) >> 2;
105 case AUDIO_ENCODING_LINEAR
:
106 sl
= ((short) sl
) >> 2; /* sl of 14-bit dynamic range */
112 sezi
= predictor_zero(state_ptr
);
114 sei
= sezi
+ predictor_pole(state_ptr
);
115 se
= sei
>> 1; /* se = estimated signal */
117 d
= sl
- se
; /* d = estimation difference */
119 /* quantize prediction difference */
120 y
= step_size(state_ptr
); /* adaptive quantizer step size */
121 i
= quantize(d
, y
, qtab_723_40
, 15); /* i = ADPCM code */
123 dq
= reconstruct(i
& 0x10, _dqlntab
[i
], y
); /* quantized diff */
125 sr
= (dq
< 0) ? se
- (dq
& 0x7FFF) : se
+ dq
; /* reconstructed signal */
127 dqsez
= sr
+ sez
- se
; /* dqsez = pole prediction diff. */
129 update(5, y
, _witab
[i
], _fitab
[i
], dq
, sr
, dqsez
, state_ptr
);
137 * Decodes a 5-bit CCITT G.723 40Kbps code and returns
138 * the resulting 16-bit linear PCM, A-law or u-law sample value.
139 * -1 is returned if the output coding is unknown.
145 struct g72x_state
*state_ptr
)
147 short sezi
, sei
, sez
, se
; /* ACCUM */
153 i
&= 0x1f; /* mask to get proper bits */
154 sezi
= predictor_zero(state_ptr
);
156 sei
= sezi
+ predictor_pole(state_ptr
);
157 se
= sei
>> 1; /* se = estimated signal */
159 y
= step_size(state_ptr
); /* adaptive quantizer step size */
160 dq
= reconstruct(i
& 0x10, _dqlntab
[i
], y
); /* estimation diff. */
162 sr
= (dq
< 0) ? (se
- (dq
& 0x7FFF)) : (se
+ dq
); /* reconst. signal */
164 dqsez
= sr
- se
+ sez
; /* pole prediction diff. */
166 update(5, y
, _witab
[i
], _fitab
[i
], dq
, sr
, dqsez
, state_ptr
);
168 switch (out_coding
) {
169 case AUDIO_ENCODING_ALAW
:
170 return (tandem_adjust_alaw(sr
, se
, y
, i
, 0x10, qtab_723_40
));
171 case AUDIO_ENCODING_ULAW
:
172 return (tandem_adjust_ulaw(sr
, se
, y
, i
, 0x10, qtab_723_40
));
173 case AUDIO_ENCODING_LINEAR
:
174 return (sr
<< 2); /* sr was of 14-bit dynamic range */