2 // Purpose: wxTransformMatrix class
3 // Author: Chris Breeze, Julian Smart
4 // Modified by: Klaas Holwerda
7 // Copyright: (c) Julian Smart and Markus Holzem
8 // Licence: wxWindows licence
9 /////////////////////////////////////////////////////////////////////////////
12 #pragma implementation "matrix.h"
15 // Note: this is intended to be used in wxDC at some point to replace
16 // the current system of scaling/translation. It is not yet used.
18 // For compilers that support precompilation, includes "wx.h".
19 #include "wx/wxprec.h"
29 #include "wx/matrix.h"
32 #if ! (defined(__WXMAC__) && defined(__UNIX__))
33 const double pi = 3.1415926535;
36 wxTransformMatrix::wxTransformMatrix(void)
43 wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat)
48 double wxTransformMatrix::GetValue(int col, int row) const
50 if (row < 0 || row > 2 || col < 0 || col > 2)
53 return m_matrix[col][row];
56 void wxTransformMatrix::SetValue(int col, int row, double value)
58 if (row < 0 || row > 2 || col < 0 || col > 2)
61 m_matrix[col][row] = value;
62 m_isIdentity = IsIdentity1();
65 void wxTransformMatrix::operator = (const wxTransformMatrix& mat)
68 for (i = 0; i < 3; i++)
70 for (j = 0; j < 3; j++)
72 m_matrix[i][j] = mat.m_matrix[i][j];
75 m_isIdentity = mat.m_isIdentity;
78 bool wxTransformMatrix::operator == (const wxTransformMatrix& mat)
80 if (m_isIdentity==TRUE && mat.m_isIdentity==TRUE)
84 for (i = 0; i < 3; i++)
86 for (j = 0; j < 3; j++)
88 if (m_matrix[i][j] != mat.m_matrix[i][j])
95 bool wxTransformMatrix::operator != (const wxTransformMatrix& mat)
97 return (! ((*this) == mat));
100 double& wxTransformMatrix::operator()(int col, int row)
102 if (row < 0 || row > 2 || col < 0 || col > 2)
103 return m_matrix[0][0];
105 return m_matrix[col][row];
108 double wxTransformMatrix::operator()(int col, int row) const
110 if (row < 0 || row > 2 || col < 0 || col > 2)
113 return m_matrix[col][row];
117 bool wxTransformMatrix::Invert(void)
119 double inverseMatrix[3][3];
121 // calculate the adjoint
122 inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]);
123 inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]);
124 inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]);
126 inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]);
127 inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]);
128 inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]);
130 inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]);
131 inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]);
132 inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]);
134 // now divide by the determinant
135 double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0];
138 inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det;
139 inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det;
140 inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det;
143 for (i = 0; i < 3; i++)
145 for (j = 0; j < 3; j++)
147 m_matrix[i][j] = inverseMatrix[i][j];
150 m_isIdentity = IsIdentity1();
159 // Make into identity matrix
160 bool wxTransformMatrix::Identity(void)
162 m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0;
163 m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0;
169 // Scale by scale (isotropic scaling i.e. the same in x and y):
171 // matrix' = | 0 scale 0 | x matrix
174 bool wxTransformMatrix::Scale(double scale)
177 for (i = 0; i < 3; i++)
179 for (j = 0; j < 3; j++)
181 m_matrix[i][j] *= scale;
184 m_isIdentity = IsIdentity1();
190 // scale a matrix in 2D
196 wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc)
198 double r00,r10,r20,r01,r11,r21;
202 double tx =xc*(1-xs);
203 double ty =yc*(1-ys);
211 else if (xc!=0 || yc!=0)
213 double tx =xc*(1-xs);
214 double ty =yc*(1-ys);
215 r00 = xs * m_matrix[0][0];
216 r10 = xs * m_matrix[1][0];
217 r20 = xs * m_matrix[2][0] + tx;
218 r01 = ys * m_matrix[0][1];
219 r11 = ys * m_matrix[1][1];
220 r21 = ys * m_matrix[2][1] + ty;
224 r00 = xs * m_matrix[0][0];
225 r10 = xs * m_matrix[1][0];
226 r20 = xs * m_matrix[2][0];
227 r01 = ys * m_matrix[0][1];
228 r11 = ys * m_matrix[1][1];
229 r21 = ys * m_matrix[2][1];
232 m_matrix[0][0] = r00;
233 m_matrix[1][0] = r10;
234 m_matrix[2][0] = r20;
235 m_matrix[0][1] = r01;
236 m_matrix[1][1] = r11;
237 m_matrix[2][1] = r21;
240 // first translate to origin O
241 (*this).Translate(-x_cen, -y_cen);
243 // now do the scaling
244 wxTransformMatrix scale;
245 scale.m_matrix[0][0] = x_fac;
246 scale.m_matrix[1][1] = y_fac;
247 scale.m_isIdentity = IsIdentity1();
249 *this = scale * (*this);
251 // translate back from origin to x_cen, y_cen
252 (*this).Translate(x_cen, y_cen);
255 m_isIdentity = IsIdentity1();
261 // mirror a matrix in x, y
266 wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y)
268 wxTransformMatrix temp;
271 temp.m_matrix[1][1] = -1;
272 temp.m_isIdentity=FALSE;
276 temp.m_matrix[0][0] = -1;
277 temp.m_isIdentity=FALSE;
280 *this = temp * (*this);
281 m_isIdentity = IsIdentity1();
285 // Translate by dx, dy:
287 // matrix' = | 0 1 dy | x matrix
290 bool wxTransformMatrix::Translate(double dx, double dy)
293 for (i = 0; i < 3; i++)
294 m_matrix[i][0] += dx * m_matrix[i][2];
295 for (i = 0; i < 3; i++)
296 m_matrix[i][1] += dy * m_matrix[i][2];
298 m_isIdentity = IsIdentity1();
303 // Rotate clockwise by the given number of degrees:
305 // matrix' = | -sin cos 0 | x matrix
307 bool wxTransformMatrix::Rotate(double degrees)
309 Rotate(-degrees,0,0);
313 // counter clockwise rotate around a point
315 // cos(r) -sin(r) x(1-cos(r))+y(sin(r)
316 // sin(r) cos(r) y(1-cos(r))-x(sin(r)
318 wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y)
320 double angle = degrees * pi / 180.0;
321 double c = cos(angle);
322 double s = sin(angle);
323 double r00,r10,r20,r01,r11,r21;
327 double tx = x*(1-c)+y*s;
328 double ty = y*(1-c)-x*s;
336 else if (x!=0 || y!=0)
338 double tx = x*(1-c)+y*s;
339 double ty = y*(1-c)-x*s;
340 r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2];
341 r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2];
342 r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2];
343 r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2];
344 r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2];
345 r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2];
349 r00 = c * m_matrix[0][0] - s * m_matrix[0][1];
350 r10 = c * m_matrix[1][0] - s * m_matrix[1][1];
351 r20 = c * m_matrix[2][0] - s * m_matrix[2][1];
352 r01 = c * m_matrix[0][1] + s * m_matrix[0][0];
353 r11 = c * m_matrix[1][1] + s * m_matrix[1][0];
354 r21 = c * m_matrix[2][1] + s * m_matrix[2][0];
357 m_matrix[0][0] = r00;
358 m_matrix[1][0] = r10;
359 m_matrix[2][0] = r20;
360 m_matrix[0][1] = r01;
361 m_matrix[1][1] = r11;
362 m_matrix[2][1] = r21;
365 wxTransformMatrix rotate;
366 rotate.m_matrix[2][0] = tx;
367 rotate.m_matrix[2][1] = ty;
369 rotate.m_matrix[0][0] = c;
370 rotate.m_matrix[0][1] = s;
372 rotate.m_matrix[1][0] = -s;
373 rotate.m_matrix[1][1] = c;
375 rotate.m_isIdentity=false;
376 *this = rotate * (*this);
378 m_isIdentity = IsIdentity1();
383 // Transform a point from logical to device coordinates
384 bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const
388 tx = x; ty = y; return TRUE;
391 tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0];
392 ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1];
397 // Transform a point from device to logical coordinates.
400 // wxTransformMatrix mat = dc.GetTransformation();
402 // mat.InverseTransformPoint(x, y, x1, y1);
404 // dc.LogicalToDevice(x, y, x1, y1);
405 // The latter is slightly less efficient if we're doing several
406 // conversions, since the matrix is inverted several times.
407 bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const
411 tx = x; ty = y; return TRUE;
414 double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2];
420 tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
421 ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
425 wxTransformMatrix& wxTransformMatrix::operator*=(const double& t)
427 for (int i = 0; i < 3; i++)
428 for (int j = 0; j < 3; j++)
430 m_isIdentity = IsIdentity1();
434 wxTransformMatrix& wxTransformMatrix::operator/=(const double& t)
436 for (int i = 0; i < 3; i++)
437 for (int j = 0; j < 3; j++)
439 m_isIdentity = IsIdentity1();
443 wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat)
445 for (int i = 0; i < 3; i++)
446 for (int j = 0; j < 3; j++)
447 m_matrix[i][j] += mat.m_matrix[i][j];
448 m_isIdentity = IsIdentity1();
452 wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat)
454 for (int i = 0; i < 3; i++)
455 for (int j = 0; j < 3; j++)
456 m_matrix[i][j] -= mat.m_matrix[i][j];
457 m_isIdentity = IsIdentity1();
461 wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat)
464 if (mat.m_isIdentity)
473 wxTransformMatrix result;
474 for (int i = 0; i < 3; i++)
476 for (int j = 0; j < 3; j++)
479 for (int k = 0; k < 3; k++)
480 sum += m_matrix[k][i] * mat.m_matrix[j][k];
481 result.m_matrix[j][i] = sum;
487 m_isIdentity = IsIdentity1();
492 // constant operators
493 wxTransformMatrix wxTransformMatrix::operator*(const double& t) const
495 wxTransformMatrix result = *this;
497 result.m_isIdentity = result.IsIdentity1();
501 wxTransformMatrix wxTransformMatrix::operator/(const double& t) const
503 wxTransformMatrix result = *this;
506 result.m_isIdentity = result.IsIdentity1();
510 wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const
512 wxTransformMatrix result = *this;
514 result.m_isIdentity = result.IsIdentity1();
518 wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const
520 wxTransformMatrix result = *this;
522 result.m_isIdentity = result.IsIdentity1();
527 wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const
529 wxTransformMatrix result = *this;
531 result.m_isIdentity = result.IsIdentity1();
536 wxTransformMatrix wxTransformMatrix::operator-() const
538 wxTransformMatrix result = *this;
539 for (int i = 0; i < 3; i++)
540 for (int j = 0; j < 3; j++)
541 result.m_matrix[i][j] = -(this->m_matrix[i][j]);
542 result.m_isIdentity = result.IsIdentity1();
546 static double CheckInt(double getal)
548 // check if the number is very close to an integer
549 if ( (ceil(getal) - getal) < 0.0001)
552 else if ( (getal - floor(getal)) < 0.0001)
559 double wxTransformMatrix::Get_scaleX()
562 double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
563 if (rot_angle != 90 && rot_angle != -90)
564 scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi);
566 scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
568 scale_factor = CheckInt(scale_factor);
569 if (scale_factor < 0)
570 scale_factor = -scale_factor;
575 double wxTransformMatrix::Get_scaleY()
578 double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
579 if (rot_angle != 90 && rot_angle != -90)
580 scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi);
582 scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
584 scale_factor = CheckInt(scale_factor);
585 if (scale_factor < 0)
587 scale_factor = -scale_factor;
593 double wxTransformMatrix::GetRotation()
595 double temp1 = GetValue(0,0); // for angle calculation
596 double temp2 = GetValue(0,1); //
599 double rot_angle = atan2(temp2,temp1)*180/pi;
601 rot_angle = CheckInt(rot_angle);
605 void wxTransformMatrix::SetRotation(double rotation)
607 double x=GetValue(2,0);
608 double y=GetValue(2,1);
609 Rotate(-GetRotation(), x, y);
610 Rotate(rotation, x, y);