2 /* png.c - location for general purpose libpng functions
4 * Last changed in libpng 1.5.6 [November 3, 2011]
5 * Copyright (c) 1998-2011 Glenn Randers-Pehrson
6 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
7 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
9 * This code is released under the libpng license.
10 * For conditions of distribution and use, see the disclaimer
11 * and license in png.h
16 /* Generate a compiler error if there is an old png.h in the search path. */
17 typedef png_libpng_version_1_5_6 Your_png_h_is_not_version_1_5_6
;
19 /* Tells libpng that we have already handled the first "num_bytes" bytes
20 * of the PNG file signature. If the PNG data is embedded into another
21 * stream we can set num_bytes = 8 so that libpng will not attempt to read
22 * or write any of the magic bytes before it starts on the IHDR.
25 #ifdef PNG_READ_SUPPORTED
27 png_set_sig_bytes(png_structp png_ptr
, int num_bytes
)
29 png_debug(1, "in png_set_sig_bytes");
35 png_error(png_ptr
, "Too many bytes for PNG signature");
37 png_ptr
->sig_bytes
= (png_byte
)(num_bytes
< 0 ? 0 : num_bytes
);
40 /* Checks whether the supplied bytes match the PNG signature. We allow
41 * checking less than the full 8-byte signature so that those apps that
42 * already read the first few bytes of a file to determine the file type
43 * can simply check the remaining bytes for extra assurance. Returns
44 * an integer less than, equal to, or greater than zero if sig is found,
45 * respectively, to be less than, to match, or be greater than the correct
46 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
49 png_sig_cmp(png_const_bytep sig
, png_size_t start
, png_size_t num_to_check
)
51 png_byte png_signature
[8] = {137, 80, 78, 71, 13, 10, 26, 10};
56 else if (num_to_check
< 1)
62 if (start
+ num_to_check
> 8)
63 num_to_check
= 8 - start
;
65 return ((int)(png_memcmp(&sig
[start
], &png_signature
[start
], num_to_check
)));
68 #endif /* PNG_READ_SUPPORTED */
70 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
71 /* Function to allocate memory for zlib */
72 PNG_FUNCTION(voidpf
/* PRIVATE */,
73 png_zalloc
,(voidpf png_ptr
, uInt items
, uInt size
),PNG_ALLOCATED
)
76 png_structp p
=(png_structp
)png_ptr
;
77 png_uint_32 save_flags
=p
->flags
;
78 png_alloc_size_t num_bytes
;
83 if (items
> PNG_UINT_32_MAX
/size
)
85 png_warning (p
, "Potential overflow in png_zalloc()");
88 num_bytes
= (png_alloc_size_t
)items
* size
;
90 p
->flags
|=PNG_FLAG_MALLOC_NULL_MEM_OK
;
91 ptr
= (png_voidp
)png_malloc((png_structp
)png_ptr
, num_bytes
);
97 /* Function to free memory for zlib */
99 png_zfree(voidpf png_ptr
, voidpf ptr
)
101 png_free((png_structp
)png_ptr
, (png_voidp
)ptr
);
104 /* Reset the CRC variable to 32 bits of 1's. Care must be taken
105 * in case CRC is > 32 bits to leave the top bits 0.
108 png_reset_crc(png_structp png_ptr
)
110 /* The cast is safe because the crc is a 32 bit value. */
111 png_ptr
->crc
= (png_uint_32
)crc32(0, Z_NULL
, 0);
114 /* Calculate the CRC over a section of data. We can only pass as
115 * much data to this routine as the largest single buffer size. We
116 * also check that this data will actually be used before going to the
117 * trouble of calculating it.
120 png_calculate_crc(png_structp png_ptr
, png_const_bytep ptr
, png_size_t length
)
124 if (PNG_CHUNK_ANCILLIARY(png_ptr
->chunk_name
))
126 if ((png_ptr
->flags
& PNG_FLAG_CRC_ANCILLARY_MASK
) ==
127 (PNG_FLAG_CRC_ANCILLARY_USE
| PNG_FLAG_CRC_ANCILLARY_NOWARN
))
133 if (png_ptr
->flags
& PNG_FLAG_CRC_CRITICAL_IGNORE
)
137 /* 'uLong' is defined as unsigned long, this means that on some systems it is
138 * a 64 bit value. crc32, however, returns 32 bits so the following cast is
139 * safe. 'uInt' may be no more than 16 bits, so it is necessary to perform a
142 if (need_crc
&& length
> 0)
144 uLong crc
= png_ptr
->crc
; /* Should never issue a warning */
148 uInt safeLength
= (uInt
)length
;
150 safeLength
= (uInt
)-1; /* evil, but safe */
152 crc
= crc32(crc
, ptr
, safeLength
);
154 /* The following should never issue compiler warnings, if they do the
155 * target system has characteristics that will probably violate other
156 * assumptions within the libpng code.
159 length
-= safeLength
;
163 /* And the following is always safe because the crc is only 32 bits. */
164 png_ptr
->crc
= (png_uint_32
)crc
;
168 /* Check a user supplied version number, called from both read and write
169 * functions that create a png_struct
172 png_user_version_check(png_structp png_ptr
, png_const_charp user_png_ver
)
180 if (user_png_ver
[i
] != png_libpng_ver
[i
])
181 png_ptr
->flags
|= PNG_FLAG_LIBRARY_MISMATCH
;
182 } while (png_libpng_ver
[i
++]);
186 png_ptr
->flags
|= PNG_FLAG_LIBRARY_MISMATCH
;
188 if (png_ptr
->flags
& PNG_FLAG_LIBRARY_MISMATCH
)
190 /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
191 * we must recompile any applications that use any older library version.
192 * For versions after libpng 1.0, we will be compatible, so we need
193 * only check the first digit.
195 if (user_png_ver
== NULL
|| user_png_ver
[0] != png_libpng_ver
[0] ||
196 (user_png_ver
[0] == '1' && user_png_ver
[2] != png_libpng_ver
[2]) ||
197 (user_png_ver
[0] == '0' && user_png_ver
[2] < '9'))
199 #ifdef PNG_WARNINGS_SUPPORTED
203 pos
= png_safecat(m
, sizeof m
, pos
, "Application built with libpng-");
204 pos
= png_safecat(m
, sizeof m
, pos
, user_png_ver
);
205 pos
= png_safecat(m
, sizeof m
, pos
, " but running with ");
206 pos
= png_safecat(m
, sizeof m
, pos
, png_libpng_ver
);
208 png_warning(png_ptr
, m
);
211 #ifdef PNG_ERROR_NUMBERS_SUPPORTED
219 /* Success return. */
223 /* Allocate the memory for an info_struct for the application. We don't
224 * really need the png_ptr, but it could potentially be useful in the
225 * future. This should be used in favour of malloc(png_sizeof(png_info))
226 * and png_info_init() so that applications that want to use a shared
227 * libpng don't have to be recompiled if png_info changes size.
229 PNG_FUNCTION(png_infop
,PNGAPI
230 png_create_info_struct
,(png_structp png_ptr
),PNG_ALLOCATED
)
234 png_debug(1, "in png_create_info_struct");
239 #ifdef PNG_USER_MEM_SUPPORTED
240 info_ptr
= (png_infop
)png_create_struct_2(PNG_STRUCT_INFO
,
241 png_ptr
->malloc_fn
, png_ptr
->mem_ptr
);
243 info_ptr
= (png_infop
)png_create_struct(PNG_STRUCT_INFO
);
245 if (info_ptr
!= NULL
)
246 png_info_init_3(&info_ptr
, png_sizeof(png_info
));
251 /* This function frees the memory associated with a single info struct.
252 * Normally, one would use either png_destroy_read_struct() or
253 * png_destroy_write_struct() to free an info struct, but this may be
254 * useful for some applications.
257 png_destroy_info_struct(png_structp png_ptr
, png_infopp info_ptr_ptr
)
259 png_infop info_ptr
= NULL
;
261 png_debug(1, "in png_destroy_info_struct");
266 if (info_ptr_ptr
!= NULL
)
267 info_ptr
= *info_ptr_ptr
;
269 if (info_ptr
!= NULL
)
271 png_info_destroy(png_ptr
, info_ptr
);
273 #ifdef PNG_USER_MEM_SUPPORTED
274 png_destroy_struct_2((png_voidp
)info_ptr
, png_ptr
->free_fn
,
277 png_destroy_struct((png_voidp
)info_ptr
);
279 *info_ptr_ptr
= NULL
;
283 /* Initialize the info structure. This is now an internal function (0.89)
284 * and applications using it are urged to use png_create_info_struct()
289 png_info_init_3(png_infopp ptr_ptr
, png_size_t png_info_struct_size
)
291 png_infop info_ptr
= *ptr_ptr
;
293 png_debug(1, "in png_info_init_3");
295 if (info_ptr
== NULL
)
298 if (png_sizeof(png_info
) > png_info_struct_size
)
300 png_destroy_struct(info_ptr
);
301 info_ptr
= (png_infop
)png_create_struct(PNG_STRUCT_INFO
);
305 /* Set everything to 0 */
306 png_memset(info_ptr
, 0, png_sizeof(png_info
));
310 png_data_freer(png_structp png_ptr
, png_infop info_ptr
,
311 int freer
, png_uint_32 mask
)
313 png_debug(1, "in png_data_freer");
315 if (png_ptr
== NULL
|| info_ptr
== NULL
)
318 if (freer
== PNG_DESTROY_WILL_FREE_DATA
)
319 info_ptr
->free_me
|= mask
;
321 else if (freer
== PNG_USER_WILL_FREE_DATA
)
322 info_ptr
->free_me
&= ~mask
;
326 "Unknown freer parameter in png_data_freer");
330 png_free_data(png_structp png_ptr
, png_infop info_ptr
, png_uint_32 mask
,
333 png_debug(1, "in png_free_data");
335 if (png_ptr
== NULL
|| info_ptr
== NULL
)
338 #ifdef PNG_TEXT_SUPPORTED
339 /* Free text item num or (if num == -1) all text items */
340 if ((mask
& PNG_FREE_TEXT
) & info_ptr
->free_me
)
344 if (info_ptr
->text
&& info_ptr
->text
[num
].key
)
346 png_free(png_ptr
, info_ptr
->text
[num
].key
);
347 info_ptr
->text
[num
].key
= NULL
;
354 for (i
= 0; i
< info_ptr
->num_text
; i
++)
355 png_free_data(png_ptr
, info_ptr
, PNG_FREE_TEXT
, i
);
356 png_free(png_ptr
, info_ptr
->text
);
357 info_ptr
->text
= NULL
;
358 info_ptr
->num_text
=0;
363 #ifdef PNG_tRNS_SUPPORTED
364 /* Free any tRNS entry */
365 if ((mask
& PNG_FREE_TRNS
) & info_ptr
->free_me
)
367 png_free(png_ptr
, info_ptr
->trans_alpha
);
368 info_ptr
->trans_alpha
= NULL
;
369 info_ptr
->valid
&= ~PNG_INFO_tRNS
;
373 #ifdef PNG_sCAL_SUPPORTED
374 /* Free any sCAL entry */
375 if ((mask
& PNG_FREE_SCAL
) & info_ptr
->free_me
)
377 png_free(png_ptr
, info_ptr
->scal_s_width
);
378 png_free(png_ptr
, info_ptr
->scal_s_height
);
379 info_ptr
->scal_s_width
= NULL
;
380 info_ptr
->scal_s_height
= NULL
;
381 info_ptr
->valid
&= ~PNG_INFO_sCAL
;
385 #ifdef PNG_pCAL_SUPPORTED
386 /* Free any pCAL entry */
387 if ((mask
& PNG_FREE_PCAL
) & info_ptr
->free_me
)
389 png_free(png_ptr
, info_ptr
->pcal_purpose
);
390 png_free(png_ptr
, info_ptr
->pcal_units
);
391 info_ptr
->pcal_purpose
= NULL
;
392 info_ptr
->pcal_units
= NULL
;
393 if (info_ptr
->pcal_params
!= NULL
)
396 for (i
= 0; i
< (int)info_ptr
->pcal_nparams
; i
++)
398 png_free(png_ptr
, info_ptr
->pcal_params
[i
]);
399 info_ptr
->pcal_params
[i
] = NULL
;
401 png_free(png_ptr
, info_ptr
->pcal_params
);
402 info_ptr
->pcal_params
= NULL
;
404 info_ptr
->valid
&= ~PNG_INFO_pCAL
;
408 #ifdef PNG_iCCP_SUPPORTED
409 /* Free any iCCP entry */
410 if ((mask
& PNG_FREE_ICCP
) & info_ptr
->free_me
)
412 png_free(png_ptr
, info_ptr
->iccp_name
);
413 png_free(png_ptr
, info_ptr
->iccp_profile
);
414 info_ptr
->iccp_name
= NULL
;
415 info_ptr
->iccp_profile
= NULL
;
416 info_ptr
->valid
&= ~PNG_INFO_iCCP
;
420 #ifdef PNG_sPLT_SUPPORTED
421 /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
422 if ((mask
& PNG_FREE_SPLT
) & info_ptr
->free_me
)
426 if (info_ptr
->splt_palettes
)
428 png_free(png_ptr
, info_ptr
->splt_palettes
[num
].name
);
429 png_free(png_ptr
, info_ptr
->splt_palettes
[num
].entries
);
430 info_ptr
->splt_palettes
[num
].name
= NULL
;
431 info_ptr
->splt_palettes
[num
].entries
= NULL
;
437 if (info_ptr
->splt_palettes_num
)
440 for (i
= 0; i
< (int)info_ptr
->splt_palettes_num
; i
++)
441 png_free_data(png_ptr
, info_ptr
, PNG_FREE_SPLT
, i
);
443 png_free(png_ptr
, info_ptr
->splt_palettes
);
444 info_ptr
->splt_palettes
= NULL
;
445 info_ptr
->splt_palettes_num
= 0;
447 info_ptr
->valid
&= ~PNG_INFO_sPLT
;
452 #ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
453 if (png_ptr
->unknown_chunk
.data
)
455 png_free(png_ptr
, png_ptr
->unknown_chunk
.data
);
456 png_ptr
->unknown_chunk
.data
= NULL
;
459 if ((mask
& PNG_FREE_UNKN
) & info_ptr
->free_me
)
463 if (info_ptr
->unknown_chunks
)
465 png_free(png_ptr
, info_ptr
->unknown_chunks
[num
].data
);
466 info_ptr
->unknown_chunks
[num
].data
= NULL
;
474 if (info_ptr
->unknown_chunks_num
)
476 for (i
= 0; i
< info_ptr
->unknown_chunks_num
; i
++)
477 png_free_data(png_ptr
, info_ptr
, PNG_FREE_UNKN
, i
);
479 png_free(png_ptr
, info_ptr
->unknown_chunks
);
480 info_ptr
->unknown_chunks
= NULL
;
481 info_ptr
->unknown_chunks_num
= 0;
487 #ifdef PNG_hIST_SUPPORTED
488 /* Free any hIST entry */
489 if ((mask
& PNG_FREE_HIST
) & info_ptr
->free_me
)
491 png_free(png_ptr
, info_ptr
->hist
);
492 info_ptr
->hist
= NULL
;
493 info_ptr
->valid
&= ~PNG_INFO_hIST
;
497 /* Free any PLTE entry that was internally allocated */
498 if ((mask
& PNG_FREE_PLTE
) & info_ptr
->free_me
)
500 png_zfree(png_ptr
, info_ptr
->palette
);
501 info_ptr
->palette
= NULL
;
502 info_ptr
->valid
&= ~PNG_INFO_PLTE
;
503 info_ptr
->num_palette
= 0;
506 #ifdef PNG_INFO_IMAGE_SUPPORTED
507 /* Free any image bits attached to the info structure */
508 if ((mask
& PNG_FREE_ROWS
) & info_ptr
->free_me
)
510 if (info_ptr
->row_pointers
)
513 for (row
= 0; row
< (int)info_ptr
->height
; row
++)
515 png_free(png_ptr
, info_ptr
->row_pointers
[row
]);
516 info_ptr
->row_pointers
[row
] = NULL
;
518 png_free(png_ptr
, info_ptr
->row_pointers
);
519 info_ptr
->row_pointers
= NULL
;
521 info_ptr
->valid
&= ~PNG_INFO_IDAT
;
526 mask
&= ~PNG_FREE_MUL
;
528 info_ptr
->free_me
&= ~mask
;
531 /* This is an internal routine to free any memory that the info struct is
532 * pointing to before re-using it or freeing the struct itself. Recall
533 * that png_free() checks for NULL pointers for us.
536 png_info_destroy(png_structp png_ptr
, png_infop info_ptr
)
538 png_debug(1, "in png_info_destroy");
540 png_free_data(png_ptr
, info_ptr
, PNG_FREE_ALL
, -1);
542 #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
543 if (png_ptr
->num_chunk_list
)
545 png_free(png_ptr
, png_ptr
->chunk_list
);
546 png_ptr
->chunk_list
= NULL
;
547 png_ptr
->num_chunk_list
= 0;
551 png_info_init_3(&info_ptr
, png_sizeof(png_info
));
553 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
555 /* This function returns a pointer to the io_ptr associated with the user
556 * functions. The application should free any memory associated with this
557 * pointer before png_write_destroy() or png_read_destroy() are called.
560 png_get_io_ptr(png_structp png_ptr
)
565 return (png_ptr
->io_ptr
);
568 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
569 # ifdef PNG_STDIO_SUPPORTED
570 /* Initialize the default input/output functions for the PNG file. If you
571 * use your own read or write routines, you can call either png_set_read_fn()
572 * or png_set_write_fn() instead of png_init_io(). If you have defined
573 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
574 * function of your own because "FILE *" isn't necessarily available.
577 png_init_io(png_structp png_ptr
, png_FILE_p fp
)
579 png_debug(1, "in png_init_io");
584 png_ptr
->io_ptr
= (png_voidp
)fp
;
588 # ifdef PNG_TIME_RFC1123_SUPPORTED
589 /* Convert the supplied time into an RFC 1123 string suitable for use in
590 * a "Creation Time" or other text-based time string.
592 png_const_charp PNGAPI
593 png_convert_to_rfc1123(png_structp png_ptr
, png_const_timep ptime
)
595 static PNG_CONST
char short_months
[12][4] =
596 {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
597 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
604 char number_buf
[5]; /* enough for a four digit year */
606 # define APPEND_STRING(string)\
607 pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
609 # define APPEND_NUMBER(format, value)\
610 APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
612 if (pos < (sizeof png_ptr->time_buffer)-1)\
613 png_ptr->time_buffer[pos++] = (ch)
615 APPEND_NUMBER(PNG_NUMBER_FORMAT_u
, (unsigned)ptime
->day
% 32);
617 APPEND_STRING(short_months
[(ptime
->month
- 1) % 12]);
619 APPEND_NUMBER(PNG_NUMBER_FORMAT_u
, ptime
->year
);
621 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u
, (unsigned)ptime
->hour
% 24);
623 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u
, (unsigned)ptime
->minute
% 60);
625 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u
, (unsigned)ptime
->second
% 61);
626 APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
629 # undef APPEND_NUMBER
630 # undef APPEND_STRING
633 return png_ptr
->time_buffer
;
635 # endif /* PNG_TIME_RFC1123_SUPPORTED */
637 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
639 png_const_charp PNGAPI
640 png_get_copyright(png_const_structp png_ptr
)
642 PNG_UNUSED(png_ptr
) /* Silence compiler warning about unused png_ptr */
643 #ifdef PNG_STRING_COPYRIGHT
644 return PNG_STRING_COPYRIGHT
647 return PNG_STRING_NEWLINE \
648 "libpng version 1.5.6 - November 3, 2011" PNG_STRING_NEWLINE \
649 "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
650 "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
651 "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
654 return "libpng version 1.5.6 - November 3, 2011\
655 Copyright (c) 1998-2011 Glenn Randers-Pehrson\
656 Copyright (c) 1996-1997 Andreas Dilger\
657 Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
662 /* The following return the library version as a short string in the
663 * format 1.0.0 through 99.99.99zz. To get the version of *.h files
664 * used with your application, print out PNG_LIBPNG_VER_STRING, which
665 * is defined in png.h.
666 * Note: now there is no difference between png_get_libpng_ver() and
667 * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
668 * it is guaranteed that png.c uses the correct version of png.h.
670 png_const_charp PNGAPI
671 png_get_libpng_ver(png_const_structp png_ptr
)
673 /* Version of *.c files used when building libpng */
674 return png_get_header_ver(png_ptr
);
677 png_const_charp PNGAPI
678 png_get_header_ver(png_const_structp png_ptr
)
680 /* Version of *.h files used when building libpng */
681 PNG_UNUSED(png_ptr
) /* Silence compiler warning about unused png_ptr */
682 return PNG_LIBPNG_VER_STRING
;
685 png_const_charp PNGAPI
686 png_get_header_version(png_const_structp png_ptr
)
688 /* Returns longer string containing both version and date */
689 PNG_UNUSED(png_ptr
) /* Silence compiler warning about unused png_ptr */
691 return PNG_HEADER_VERSION_STRING
692 # ifndef PNG_READ_SUPPORTED
697 return PNG_HEADER_VERSION_STRING
;
701 #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
703 png_handle_as_unknown(png_structp png_ptr
, png_const_bytep chunk_name
)
705 /* Check chunk_name and return "keep" value if it's on the list, else 0 */
706 png_const_bytep p
, p_end
;
708 if (png_ptr
== NULL
|| chunk_name
== NULL
|| png_ptr
->num_chunk_list
<= 0)
709 return PNG_HANDLE_CHUNK_AS_DEFAULT
;
711 p_end
= png_ptr
->chunk_list
;
712 p
= p_end
+ png_ptr
->num_chunk_list
*5; /* beyond end */
714 /* The code is the fifth byte after each four byte string. Historically this
715 * code was always searched from the end of the list, so it should continue
716 * to do so in case there are duplicated entries.
718 do /* num_chunk_list > 0, so at least one */
721 if (!png_memcmp(chunk_name
, p
, 4))
726 return PNG_HANDLE_CHUNK_AS_DEFAULT
;
730 png_chunk_unknown_handling(png_structp png_ptr
, png_uint_32 chunk_name
)
732 png_byte chunk_string
[5];
734 PNG_CSTRING_FROM_CHUNK(chunk_string
, chunk_name
);
735 return png_handle_as_unknown(png_ptr
, chunk_string
);
739 #ifdef PNG_READ_SUPPORTED
740 /* This function, added to libpng-1.0.6g, is untested. */
742 png_reset_zstream(png_structp png_ptr
)
745 return Z_STREAM_ERROR
;
747 return (inflateReset(&png_ptr
->zstream
));
749 #endif /* PNG_READ_SUPPORTED */
751 /* This function was added to libpng-1.0.7 */
753 png_access_version_number(void)
755 /* Version of *.c files used when building libpng */
756 return((png_uint_32
)PNG_LIBPNG_VER
);
761 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
762 /* png_convert_size: a PNGAPI but no longer in png.h, so deleted
766 /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
767 # ifdef PNG_CHECK_cHRM_SUPPORTED
770 png_check_cHRM_fixed(png_structp png_ptr
,
771 png_fixed_point white_x
, png_fixed_point white_y
, png_fixed_point red_x
,
772 png_fixed_point red_y
, png_fixed_point green_x
, png_fixed_point green_y
,
773 png_fixed_point blue_x
, png_fixed_point blue_y
)
776 unsigned long xy_hi
,xy_lo
,yx_hi
,yx_lo
;
778 png_debug(1, "in function png_check_cHRM_fixed");
783 /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
784 * y must also be greater than 0. To test for the upper limit calculate
785 * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
786 * cannot overflow.) At this point we know x and y are >= 0 and (x+y) is
787 * <= PNG_FP_1. The previous test on PNG_MAX_UINT_31 is removed because it
788 * pointless (and it produces compiler warnings!)
790 if (white_x
< 0 || white_y
<= 0 ||
791 red_x
< 0 || red_y
< 0 ||
792 green_x
< 0 || green_y
< 0 ||
793 blue_x
< 0 || blue_y
< 0)
796 "Ignoring attempt to set negative chromaticity value");
799 /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
800 if (white_x
> PNG_FP_1
- white_y
)
802 png_warning(png_ptr
, "Invalid cHRM white point");
806 if (red_x
> PNG_FP_1
- red_y
)
808 png_warning(png_ptr
, "Invalid cHRM red point");
812 if (green_x
> PNG_FP_1
- green_y
)
814 png_warning(png_ptr
, "Invalid cHRM green point");
818 if (blue_x
> PNG_FP_1
- blue_y
)
820 png_warning(png_ptr
, "Invalid cHRM blue point");
824 png_64bit_product(green_x
- red_x
, blue_y
- red_y
, &xy_hi
, &xy_lo
);
825 png_64bit_product(green_y
- red_y
, blue_x
- red_x
, &yx_hi
, &yx_lo
);
827 if (xy_hi
== yx_hi
&& xy_lo
== yx_lo
)
830 "Ignoring attempt to set cHRM RGB triangle with zero area");
836 # endif /* PNG_CHECK_cHRM_SUPPORTED */
838 #ifdef PNG_cHRM_SUPPORTED
839 /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
840 * cHRM, as opposed to using chromaticities. These internal APIs return
841 * non-zero on a parameter error. The X, Y and Z values are required to be
842 * positive and less than 1.0.
844 int png_xy_from_XYZ(png_xy
*xy
, png_XYZ XYZ
)
846 png_int_32 d
, dwhite
, whiteX
, whiteY
;
848 d
= XYZ
.redX
+ XYZ
.redY
+ XYZ
.redZ
;
849 if (!png_muldiv(&xy
->redx
, XYZ
.redX
, PNG_FP_1
, d
)) return 1;
850 if (!png_muldiv(&xy
->redy
, XYZ
.redY
, PNG_FP_1
, d
)) return 1;
855 d
= XYZ
.greenX
+ XYZ
.greenY
+ XYZ
.greenZ
;
856 if (!png_muldiv(&xy
->greenx
, XYZ
.greenX
, PNG_FP_1
, d
)) return 1;
857 if (!png_muldiv(&xy
->greeny
, XYZ
.greenY
, PNG_FP_1
, d
)) return 1;
859 whiteX
+= XYZ
.greenX
;
860 whiteY
+= XYZ
.greenY
;
862 d
= XYZ
.blueX
+ XYZ
.blueY
+ XYZ
.blueZ
;
863 if (!png_muldiv(&xy
->bluex
, XYZ
.blueX
, PNG_FP_1
, d
)) return 1;
864 if (!png_muldiv(&xy
->bluey
, XYZ
.blueY
, PNG_FP_1
, d
)) return 1;
869 /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
872 if (!png_muldiv(&xy
->whitex
, whiteX
, PNG_FP_1
, dwhite
)) return 1;
873 if (!png_muldiv(&xy
->whitey
, whiteY
, PNG_FP_1
, dwhite
)) return 1;
878 int png_XYZ_from_xy(png_XYZ
*XYZ
, png_xy xy
)
880 png_fixed_point red_inverse
, green_inverse
, blue_scale
;
881 png_fixed_point left
, right
, denominator
;
883 /* Check xy and, implicitly, z. Note that wide gamut color spaces typically
884 * have end points with 0 tristimulus values (these are impossible end
885 * points, but they are used to cover the possible colors.)
887 if (xy
.redx
< 0 || xy
.redx
> PNG_FP_1
) return 1;
888 if (xy
.redy
< 0 || xy
.redy
> PNG_FP_1
-xy
.redx
) return 1;
889 if (xy
.greenx
< 0 || xy
.greenx
> PNG_FP_1
) return 1;
890 if (xy
.greeny
< 0 || xy
.greeny
> PNG_FP_1
-xy
.greenx
) return 1;
891 if (xy
.bluex
< 0 || xy
.bluex
> PNG_FP_1
) return 1;
892 if (xy
.bluey
< 0 || xy
.bluey
> PNG_FP_1
-xy
.bluex
) return 1;
893 if (xy
.whitex
< 0 || xy
.whitex
> PNG_FP_1
) return 1;
894 if (xy
.whitey
< 0 || xy
.whitey
> PNG_FP_1
-xy
.whitex
) return 1;
896 /* The reverse calculation is more difficult because the original tristimulus
897 * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
898 * derived values were recorded in the cHRM chunk;
899 * (red,green,blue,white)x(x,y). This loses one degree of freedom and
900 * therefore an arbitrary ninth value has to be introduced to undo the
901 * original transformations.
903 * Think of the original end-points as points in (X,Y,Z) space. The
904 * chromaticity values (c) have the property:
910 * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
911 * three chromaticity values (x,y,z) for each end-point obey the
916 * This describes the plane in (X,Y,Z) space that intersects each axis at the
917 * value 1.0; call this the chromaticity plane. Thus the chromaticity
918 * calculation has scaled each end-point so that it is on the x+y+z=1 plane
919 * and chromaticity is the intersection of the vector from the origin to the
920 * (X,Y,Z) value with the chromaticity plane.
922 * To fully invert the chromaticity calculation we would need the three
923 * end-point scale factors, (red-scale, green-scale, blue-scale), but these
924 * were not recorded. Instead we calculated the reference white (X,Y,Z) and
925 * recorded the chromaticity of this. The reference white (X,Y,Z) would have
926 * given all three of the scale factors since:
928 * color-C = color-c * color-scale
929 * white-C = red-C + green-C + blue-C
930 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
932 * But cHRM records only white-x and white-y, so we have lost the white scale
935 * white-C = white-c*white-scale
937 * To handle this the inverse transformation makes an arbitrary assumption
940 * Assume: white-Y = 1.0
941 * Hence: white-scale = 1/white-y
942 * Or: red-Y + green-Y + blue-Y = 1.0
944 * Notice the last statement of the assumption gives an equation in three of
945 * the nine values we want to calculate. 8 more equations come from the
946 * above routine as summarised at the top above (the chromaticity
949 * Given: color-x = color-X / (color-X + color-Y + color-Z)
950 * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
952 * This is 9 simultaneous equations in the 9 variables "color-C" and can be
953 * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
954 * determinants, however this is not as bad as it seems because only 28 of
955 * the total of 90 terms in the various matrices are non-zero. Nevertheless
956 * Cramer's rule is notoriously numerically unstable because the determinant
957 * calculation involves the difference of large, but similar, numbers. It is
958 * difficult to be sure that the calculation is stable for real world values
959 * and it is certain that it becomes unstable where the end points are close
962 * So this code uses the perhaps slighly less optimal but more understandable
963 * and totally obvious approach of calculating color-scale.
965 * This algorithm depends on the precision in white-scale and that is
966 * (1/white-y), so we can immediately see that as white-y approaches 0 the
967 * accuracy inherent in the cHRM chunk drops off substantially.
969 * libpng arithmetic: a simple invertion of the above equations
970 * ------------------------------------------------------------
972 * white_scale = 1/white-y
973 * white-X = white-x * white-scale
975 * white-Z = (1 - white-x - white-y) * white_scale
977 * white-C = red-C + green-C + blue-C
978 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
980 * This gives us three equations in (red-scale,green-scale,blue-scale) where
981 * all the coefficients are now known:
983 * red-x*red-scale + green-x*green-scale + blue-x*blue-scale
985 * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
986 * red-z*red-scale + green-z*green-scale + blue-z*blue-scale
987 * = (1 - white-x - white-y)/white-y
989 * In the last equation color-z is (1 - color-x - color-y) so we can add all
990 * three equations together to get an alternative third:
992 * red-scale + green-scale + blue-scale = 1/white-y = white-scale
994 * So now we have a Cramer's rule solution where the determinants are just
995 * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
996 * multiplication of three coefficients so we can't guarantee to avoid
997 * overflow in the libpng fixed point representation. Using Cramer's rule in
998 * floating point is probably a good choice here, but it's not an option for
999 * fixed point. Instead proceed to simplify the first two equations by
1000 * eliminating what is likely to be the largest value, blue-scale:
1002 * blue-scale = white-scale - red-scale - green-scale
1006 * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1007 * (white-x - blue-x)*white-scale
1009 * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1010 * 1 - blue-y*white-scale
1012 * And now we can trivially solve for (red-scale,green-scale):
1015 * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1016 * -----------------------------------------------------------
1020 * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1021 * ---------------------------------------------------------
1027 * ( (green-x - blue-x) * (white-y - blue-y) -
1028 * (green-y - blue-y) * (white-x - blue-x) ) / white-y
1029 * -------------------------------------------------------------------------
1030 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1033 * ( (red-y - blue-y) * (white-x - blue-x) -
1034 * (red-x - blue-x) * (white-y - blue-y) ) / white-y
1035 * -------------------------------------------------------------------------
1036 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1039 * The input values have 5 decimal digits of accuracy. The values are all in
1040 * the range 0 < value < 1, so simple products are in the same range but may
1041 * need up to 10 decimal digits to preserve the original precision and avoid
1042 * underflow. Because we are using a 32-bit signed representation we cannot
1043 * match this; the best is a little over 9 decimal digits, less than 10.
1045 * The approach used here is to preserve the maximum precision within the
1046 * signed representation. Because the red-scale calculation above uses the
1047 * difference between two products of values that must be in the range -1..+1
1048 * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The
1049 * factor is irrelevant in the calculation because it is applied to both
1050 * numerator and denominator.
1052 * Note that the values of the differences of the products of the
1053 * chromaticities in the above equations tend to be small, for example for
1054 * the sRGB chromaticities they are:
1056 * red numerator: -0.04751
1057 * green numerator: -0.08788
1058 * denominator: -0.2241 (without white-y multiplication)
1060 * The resultant Y coefficients from the chromaticities of some widely used
1061 * color space definitions are (to 15 decimal places):
1064 * 0.212639005871510 0.715168678767756 0.072192315360734
1066 * 0.288071128229293 0.711843217810102 0.000085653960605
1068 * 0.297344975250536 0.627363566255466 0.075291458493998
1069 * Adobe Wide Gamut RGB
1070 * 0.258728243040113 0.724682314948566 0.016589442011321
1072 /* By the argument, above overflow should be impossible here. The return
1073 * value of 2 indicates an internal error to the caller.
1075 if (!png_muldiv(&left
, xy
.greenx
-xy
.bluex
, xy
.redy
- xy
.bluey
, 7)) return 2;
1076 if (!png_muldiv(&right
, xy
.greeny
-xy
.bluey
, xy
.redx
- xy
.bluex
, 7)) return 2;
1077 denominator
= left
- right
;
1079 /* Now find the red numerator. */
1080 if (!png_muldiv(&left
, xy
.greenx
-xy
.bluex
, xy
.whitey
-xy
.bluey
, 7)) return 2;
1081 if (!png_muldiv(&right
, xy
.greeny
-xy
.bluey
, xy
.whitex
-xy
.bluex
, 7)) return 2;
1083 /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1084 * chunk values. This calculation actually returns the reciprocal of the
1085 * scale value because this allows us to delay the multiplication of white-y
1086 * into the denominator, which tends to produce a small number.
1088 if (!png_muldiv(&red_inverse
, xy
.whitey
, denominator
, left
-right
) ||
1089 red_inverse
<= xy
.whitey
/* r+g+b scales = white scale */)
1092 /* Similarly for green_inverse: */
1093 if (!png_muldiv(&left
, xy
.redy
-xy
.bluey
, xy
.whitex
-xy
.bluex
, 7)) return 2;
1094 if (!png_muldiv(&right
, xy
.redx
-xy
.bluex
, xy
.whitey
-xy
.bluey
, 7)) return 2;
1095 if (!png_muldiv(&green_inverse
, xy
.whitey
, denominator
, left
-right
) ||
1096 green_inverse
<= xy
.whitey
)
1099 /* And the blue scale, the checks above guarantee this can't overflow but it
1100 * can still produce 0 for extreme cHRM values.
1102 blue_scale
= png_reciprocal(xy
.whitey
) - png_reciprocal(red_inverse
) -
1103 png_reciprocal(green_inverse
);
1104 if (blue_scale
<= 0) return 1;
1107 /* And fill in the png_XYZ: */
1108 if (!png_muldiv(&XYZ
->redX
, xy
.redx
, PNG_FP_1
, red_inverse
)) return 1;
1109 if (!png_muldiv(&XYZ
->redY
, xy
.redy
, PNG_FP_1
, red_inverse
)) return 1;
1110 if (!png_muldiv(&XYZ
->redZ
, PNG_FP_1
- xy
.redx
- xy
.redy
, PNG_FP_1
,
1114 if (!png_muldiv(&XYZ
->greenX
, xy
.greenx
, PNG_FP_1
, green_inverse
)) return 1;
1115 if (!png_muldiv(&XYZ
->greenY
, xy
.greeny
, PNG_FP_1
, green_inverse
)) return 1;
1116 if (!png_muldiv(&XYZ
->greenZ
, PNG_FP_1
- xy
.greenx
- xy
.greeny
, PNG_FP_1
,
1120 if (!png_muldiv(&XYZ
->blueX
, xy
.bluex
, blue_scale
, PNG_FP_1
)) return 1;
1121 if (!png_muldiv(&XYZ
->blueY
, xy
.bluey
, blue_scale
, PNG_FP_1
)) return 1;
1122 if (!png_muldiv(&XYZ
->blueZ
, PNG_FP_1
- xy
.bluex
- xy
.bluey
, blue_scale
,
1126 return 0; /*success*/
1129 int png_XYZ_from_xy_checked(png_structp png_ptr
, png_XYZ
*XYZ
, png_xy xy
)
1131 switch (png_XYZ_from_xy(XYZ
, xy
))
1133 case 0: /* success */
1137 /* The chunk may be technically valid, but we got png_fixed_point
1138 * overflow while trying to get XYZ values out of it. This is
1139 * entirely benign - the cHRM chunk is pretty extreme.
1141 png_warning(png_ptr
,
1142 "extreme cHRM chunk cannot be converted to tristimulus values");
1146 /* libpng is broken; this should be a warning but if it happens we
1147 * want error reports so for the moment it is an error.
1149 png_error(png_ptr
, "internal error in png_XYZ_from_xy");
1159 png_check_IHDR(png_structp png_ptr
,
1160 png_uint_32 width
, png_uint_32 height
, int bit_depth
,
1161 int color_type
, int interlace_type
, int compression_type
,
1166 /* Check for width and height valid values */
1169 png_warning(png_ptr
, "Image width is zero in IHDR");
1175 png_warning(png_ptr
, "Image height is zero in IHDR");
1179 # ifdef PNG_SET_USER_LIMITS_SUPPORTED
1180 if (width
> png_ptr
->user_width_max
)
1183 if (width
> PNG_USER_WIDTH_MAX
)
1186 png_warning(png_ptr
, "Image width exceeds user limit in IHDR");
1190 # ifdef PNG_SET_USER_LIMITS_SUPPORTED
1191 if (height
> png_ptr
->user_height_max
)
1193 if (height
> PNG_USER_HEIGHT_MAX
)
1196 png_warning(png_ptr
, "Image height exceeds user limit in IHDR");
1200 if (width
> PNG_UINT_31_MAX
)
1202 png_warning(png_ptr
, "Invalid image width in IHDR");
1206 if (height
> PNG_UINT_31_MAX
)
1208 png_warning(png_ptr
, "Invalid image height in IHDR");
1212 if (width
> (PNG_UINT_32_MAX
1213 >> 3) /* 8-byte RGBA pixels */
1214 - 48 /* bigrowbuf hack */
1215 - 1 /* filter byte */
1216 - 7*8 /* rounding of width to multiple of 8 pixels */
1217 - 8) /* extra max_pixel_depth pad */
1218 png_warning(png_ptr
, "Width is too large for libpng to process pixels");
1220 /* Check other values */
1221 if (bit_depth
!= 1 && bit_depth
!= 2 && bit_depth
!= 4 &&
1222 bit_depth
!= 8 && bit_depth
!= 16)
1224 png_warning(png_ptr
, "Invalid bit depth in IHDR");
1228 if (color_type
< 0 || color_type
== 1 ||
1229 color_type
== 5 || color_type
> 6)
1231 png_warning(png_ptr
, "Invalid color type in IHDR");
1235 if (((color_type
== PNG_COLOR_TYPE_PALETTE
) && bit_depth
> 8) ||
1236 ((color_type
== PNG_COLOR_TYPE_RGB
||
1237 color_type
== PNG_COLOR_TYPE_GRAY_ALPHA
||
1238 color_type
== PNG_COLOR_TYPE_RGB_ALPHA
) && bit_depth
< 8))
1240 png_warning(png_ptr
, "Invalid color type/bit depth combination in IHDR");
1244 if (interlace_type
>= PNG_INTERLACE_LAST
)
1246 png_warning(png_ptr
, "Unknown interlace method in IHDR");
1250 if (compression_type
!= PNG_COMPRESSION_TYPE_BASE
)
1252 png_warning(png_ptr
, "Unknown compression method in IHDR");
1256 # ifdef PNG_MNG_FEATURES_SUPPORTED
1257 /* Accept filter_method 64 (intrapixel differencing) only if
1258 * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
1259 * 2. Libpng did not read a PNG signature (this filter_method is only
1260 * used in PNG datastreams that are embedded in MNG datastreams) and
1261 * 3. The application called png_permit_mng_features with a mask that
1262 * included PNG_FLAG_MNG_FILTER_64 and
1263 * 4. The filter_method is 64 and
1264 * 5. The color_type is RGB or RGBA
1266 if ((png_ptr
->mode
& PNG_HAVE_PNG_SIGNATURE
) &&
1267 png_ptr
->mng_features_permitted
)
1268 png_warning(png_ptr
, "MNG features are not allowed in a PNG datastream");
1270 if (filter_type
!= PNG_FILTER_TYPE_BASE
)
1272 if (!((png_ptr
->mng_features_permitted
& PNG_FLAG_MNG_FILTER_64
) &&
1273 (filter_type
== PNG_INTRAPIXEL_DIFFERENCING
) &&
1274 ((png_ptr
->mode
& PNG_HAVE_PNG_SIGNATURE
) == 0) &&
1275 (color_type
== PNG_COLOR_TYPE_RGB
||
1276 color_type
== PNG_COLOR_TYPE_RGB_ALPHA
)))
1278 png_warning(png_ptr
, "Unknown filter method in IHDR");
1282 if (png_ptr
->mode
& PNG_HAVE_PNG_SIGNATURE
)
1284 png_warning(png_ptr
, "Invalid filter method in IHDR");
1290 if (filter_type
!= PNG_FILTER_TYPE_BASE
)
1292 png_warning(png_ptr
, "Unknown filter method in IHDR");
1298 png_error(png_ptr
, "Invalid IHDR data");
1301 #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
1302 /* ASCII to fp functions */
1303 /* Check an ASCII formated floating point value, see the more detailed
1304 * comments in pngpriv.h
1306 /* The following is used internally to preserve the sticky flags */
1307 #define png_fp_add(state, flags) ((state) |= (flags))
1308 #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
1311 png_check_fp_number(png_const_charp string
, png_size_t size
, int *statep
,
1312 png_size_tp whereami
)
1314 int state
= *statep
;
1315 png_size_t i
= *whereami
;
1320 /* First find the type of the next character */
1323 case 43: type
= PNG_FP_SAW_SIGN
; break;
1324 case 45: type
= PNG_FP_SAW_SIGN
+ PNG_FP_NEGATIVE
; break;
1325 case 46: type
= PNG_FP_SAW_DOT
; break;
1326 case 48: type
= PNG_FP_SAW_DIGIT
; break;
1327 case 49: case 50: case 51: case 52:
1328 case 53: case 54: case 55: case 56:
1329 case 57: type
= PNG_FP_SAW_DIGIT
+ PNG_FP_NONZERO
; break;
1331 case 101: type
= PNG_FP_SAW_E
; break;
1332 default: goto PNG_FP_End
;
1335 /* Now deal with this type according to the current
1336 * state, the type is arranged to not overlap the
1337 * bits of the PNG_FP_STATE.
1339 switch ((state
& PNG_FP_STATE
) + (type
& PNG_FP_SAW_ANY
))
1341 case PNG_FP_INTEGER
+ PNG_FP_SAW_SIGN
:
1342 if (state
& PNG_FP_SAW_ANY
)
1343 goto PNG_FP_End
; /* not a part of the number */
1345 png_fp_add(state
, type
);
1348 case PNG_FP_INTEGER
+ PNG_FP_SAW_DOT
:
1349 /* Ok as trailer, ok as lead of fraction. */
1350 if (state
& PNG_FP_SAW_DOT
) /* two dots */
1353 else if (state
& PNG_FP_SAW_DIGIT
) /* trailing dot? */
1354 png_fp_add(state
, type
);
1357 png_fp_set(state
, PNG_FP_FRACTION
| type
);
1361 case PNG_FP_INTEGER
+ PNG_FP_SAW_DIGIT
:
1362 if (state
& PNG_FP_SAW_DOT
) /* delayed fraction */
1363 png_fp_set(state
, PNG_FP_FRACTION
| PNG_FP_SAW_DOT
);
1365 png_fp_add(state
, type
| PNG_FP_WAS_VALID
);
1369 case PNG_FP_INTEGER
+ PNG_FP_SAW_E
:
1370 if ((state
& PNG_FP_SAW_DIGIT
) == 0)
1373 png_fp_set(state
, PNG_FP_EXPONENT
);
1377 /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
1378 goto PNG_FP_End; ** no sign in fraction */
1380 /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
1381 goto PNG_FP_End; ** Because SAW_DOT is always set */
1383 case PNG_FP_FRACTION
+ PNG_FP_SAW_DIGIT
:
1384 png_fp_add(state
, type
| PNG_FP_WAS_VALID
);
1387 case PNG_FP_FRACTION
+ PNG_FP_SAW_E
:
1388 /* This is correct because the trailing '.' on an
1389 * integer is handled above - so we can only get here
1390 * with the sequence ".E" (with no preceding digits).
1392 if ((state
& PNG_FP_SAW_DIGIT
) == 0)
1395 png_fp_set(state
, PNG_FP_EXPONENT
);
1399 case PNG_FP_EXPONENT
+ PNG_FP_SAW_SIGN
:
1400 if (state
& PNG_FP_SAW_ANY
)
1401 goto PNG_FP_End
; /* not a part of the number */
1403 png_fp_add(state
, PNG_FP_SAW_SIGN
);
1407 /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
1410 case PNG_FP_EXPONENT
+ PNG_FP_SAW_DIGIT
:
1411 png_fp_add(state
, PNG_FP_SAW_DIGIT
| PNG_FP_WAS_VALID
);
1415 /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
1418 default: goto PNG_FP_End
; /* I.e. break 2 */
1421 /* The character seems ok, continue. */
1426 /* Here at the end, update the state and return the correct
1432 return (state
& PNG_FP_SAW_DIGIT
) != 0;
1436 /* The same but for a complete string. */
1438 png_check_fp_string(png_const_charp string
, png_size_t size
)
1441 png_size_t char_index
=0;
1443 if (png_check_fp_number(string
, size
, &state
, &char_index
) &&
1444 (char_index
== size
|| string
[char_index
] == 0))
1445 return state
/* must be non-zero - see above */;
1447 return 0; /* i.e. fail */
1449 #endif /* pCAL or sCAL */
1451 #ifdef PNG_READ_sCAL_SUPPORTED
1452 # ifdef PNG_FLOATING_POINT_SUPPORTED
1453 /* Utility used below - a simple accurate power of ten from an integral
1457 png_pow10(int power
)
1462 /* Handle negative exponent with a reciprocal at the end because
1463 * 10 is exact whereas .1 is inexact in base 2
1467 if (power
< DBL_MIN_10_EXP
) return 0;
1468 recip
= 1, power
= -power
;
1473 /* Decompose power bitwise. */
1477 if (power
& 1) d
*= mult
;
1485 /* else power is 0 and d is 1 */
1490 /* Function to format a floating point value in ASCII with a given
1494 png_ascii_from_fp(png_structp png_ptr
, png_charp ascii
, png_size_t size
,
1495 double fp
, unsigned int precision
)
1497 /* We use standard functions from math.h, but not printf because
1498 * that would require stdio. The caller must supply a buffer of
1499 * sufficient size or we will png_error. The tests on size and
1500 * the space in ascii[] consumed are indicated below.
1503 precision
= DBL_DIG
;
1505 /* Enforce the limit of the implementation precision too. */
1506 if (precision
> DBL_DIG
+1)
1507 precision
= DBL_DIG
+1;
1509 /* Basic sanity checks */
1510 if (size
>= precision
+5) /* See the requirements below. */
1515 *ascii
++ = 45; /* '-' PLUS 1 TOTAL 1 */
1519 if (fp
>= DBL_MIN
&& fp
<= DBL_MAX
)
1521 int exp_b10
; /* A base 10 exponent */
1522 double base
; /* 10^exp_b10 */
1524 /* First extract a base 10 exponent of the number,
1525 * the calculation below rounds down when converting
1526 * from base 2 to base 10 (multiply by log10(2) -
1527 * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
1528 * be increased. Note that the arithmetic shift
1529 * performs a floor() unlike C arithmetic - using a
1530 * C multiply would break the following for negative
1533 (void)frexp(fp
, &exp_b10
); /* exponent to base 2 */
1535 exp_b10
= (exp_b10
* 77) >> 8; /* <= exponent to base 10 */
1537 /* Avoid underflow here. */
1538 base
= png_pow10(exp_b10
); /* May underflow */
1540 while (base
< DBL_MIN
|| base
< fp
)
1542 /* And this may overflow. */
1543 double test
= png_pow10(exp_b10
+1);
1545 if (test
<= DBL_MAX
)
1546 ++exp_b10
, base
= test
;
1552 /* Normalize fp and correct exp_b10, after this fp is in the
1553 * range [.1,1) and exp_b10 is both the exponent and the digit
1554 * *before* which the decimal point should be inserted
1555 * (starting with 0 for the first digit). Note that this
1556 * works even if 10^exp_b10 is out of range because of the
1557 * test on DBL_MAX above.
1560 while (fp
>= 1) fp
/= 10, ++exp_b10
;
1562 /* Because of the code above fp may, at this point, be
1563 * less than .1, this is ok because the code below can
1564 * handle the leading zeros this generates, so no attempt
1565 * is made to correct that here.
1569 int czero
, clead
, cdigits
;
1572 /* Allow up to two leading zeros - this will not lengthen
1573 * the number compared to using E-n.
1575 if (exp_b10
< 0 && exp_b10
> -3) /* PLUS 3 TOTAL 4 */
1577 czero
= -exp_b10
; /* PLUS 2 digits: TOTAL 3 */
1578 exp_b10
= 0; /* Dot added below before first output. */
1581 czero
= 0; /* No zeros to add */
1583 /* Generate the digit list, stripping trailing zeros and
1584 * inserting a '.' before a digit if the exponent is 0.
1586 clead
= czero
; /* Count of leading zeros */
1587 cdigits
= 0; /* Count of digits in list. */
1594 /* Use modf here, not floor and subtract, so that
1595 * the separation is done in one step. At the end
1596 * of the loop don't break the number into parts so
1597 * that the final digit is rounded.
1599 if (cdigits
+czero
-clead
+1 < (int)precision
)
1608 /* Rounding up to 10, handle that here. */
1612 if (cdigits
== 0) --clead
;
1616 while (cdigits
> 0 && d
> 9)
1620 if (exp_b10
!= (-1))
1625 ch
= *--ascii
, ++size
;
1626 /* Advance exp_b10 to '1', so that the
1627 * decimal point happens after the
1634 d
= ch
- 47; /* I.e. 1+(ch-48) */
1637 /* Did we reach the beginning? If so adjust the
1638 * exponent but take into account the leading
1641 if (d
> 9) /* cdigits == 0 */
1643 if (exp_b10
== (-1))
1645 /* Leading decimal point (plus zeros?), if
1646 * we lose the decimal point here it must
1647 * be reentered below.
1652 ++size
, exp_b10
= 1;
1654 /* Else lost a leading zero, so 'exp_b10' is
1661 /* In all cases we output a '1' */
1666 fp
= 0; /* Guarantees termination below. */
1672 if (cdigits
== 0) ++clead
;
1676 /* Included embedded zeros in the digit count. */
1677 cdigits
+= czero
- clead
;
1682 /* exp_b10 == (-1) means we just output the decimal
1683 * place - after the DP don't adjust 'exp_b10' any
1686 if (exp_b10
!= (-1))
1688 if (exp_b10
== 0) *ascii
++ = 46, --size
;
1689 /* PLUS 1: TOTAL 4 */
1692 *ascii
++ = 48, --czero
;
1695 if (exp_b10
!= (-1))
1697 if (exp_b10
== 0) *ascii
++ = 46, --size
; /* counted
1701 *ascii
++ = (char)(48 + (int)d
), ++cdigits
;
1704 while (cdigits
+czero
-clead
< (int)precision
&& fp
> DBL_MIN
);
1706 /* The total output count (max) is now 4+precision */
1708 /* Check for an exponent, if we don't need one we are
1709 * done and just need to terminate the string. At
1710 * this point exp_b10==(-1) is effectively if flag - it got
1711 * to '-1' because of the decrement after outputing
1712 * the decimal point above (the exponent required is
1715 if (exp_b10
>= (-1) && exp_b10
<= 2)
1717 /* The following only happens if we didn't output the
1718 * leading zeros above for negative exponent, so this
1719 * doest add to the digit requirement. Note that the
1720 * two zeros here can only be output if the two leading
1721 * zeros were *not* output, so this doesn't increase
1724 while (--exp_b10
>= 0) *ascii
++ = 48;
1728 /* Total buffer requirement (including the '\0') is
1729 * 5+precision - see check at the start.
1734 /* Here if an exponent is required, adjust size for
1735 * the digits we output but did not count. The total
1736 * digit output here so far is at most 1+precision - no
1737 * decimal point and no leading or trailing zeros have
1742 *ascii
++ = 69, --size
; /* 'E': PLUS 1 TOTAL 2+precision */
1744 /* The following use of an unsigned temporary avoids ambiguities in
1745 * the signed arithmetic on exp_b10 and permits GCC at least to do
1746 * better optimization.
1749 unsigned int uexp_b10
;
1753 *ascii
++ = 45, --size
; /* '-': PLUS 1 TOTAL 3+precision */
1754 uexp_b10
= -exp_b10
;
1762 while (uexp_b10
> 0)
1764 exponent
[cdigits
++] = (char)(48 + uexp_b10
% 10);
1769 /* Need another size check here for the exponent digits, so
1770 * this need not be considered above.
1772 if ((int)size
> cdigits
)
1774 while (cdigits
> 0) *ascii
++ = exponent
[--cdigits
];
1782 else if (!(fp
>= DBL_MIN
))
1784 *ascii
++ = 48; /* '0' */
1790 *ascii
++ = 105; /* 'i' */
1791 *ascii
++ = 110; /* 'n' */
1792 *ascii
++ = 102; /* 'f' */
1798 /* Here on buffer too small. */
1799 png_error(png_ptr
, "ASCII conversion buffer too small");
1802 # endif /* FLOATING_POINT */
1804 # ifdef PNG_FIXED_POINT_SUPPORTED
1805 /* Function to format a fixed point value in ASCII.
1808 png_ascii_from_fixed(png_structp png_ptr
, png_charp ascii
, png_size_t size
,
1811 /* Require space for 10 decimal digits, a decimal point, a minus sign and a
1812 * trailing \0, 13 characters:
1818 /* Avoid overflow here on the minimum integer. */
1820 *ascii
++ = 45, --size
, num
= -fp
;
1824 if (num
<= 0x80000000) /* else overflowed */
1826 unsigned int ndigits
= 0, first
= 16 /* flag value */;
1831 /* Split the low digit off num: */
1832 unsigned int tmp
= num
/10;
1834 digits
[ndigits
++] = (char)(48 + num
);
1835 /* Record the first non-zero digit, note that this is a number
1836 * starting at 1, it's not actually the array index.
1838 if (first
== 16 && num
> 0)
1845 while (ndigits
> 5) *ascii
++ = digits
[--ndigits
];
1846 /* The remaining digits are fractional digits, ndigits is '5' or
1847 * smaller at this point. It is certainly not zero. Check for a
1848 * non-zero fractional digit:
1853 *ascii
++ = 46; /* decimal point */
1854 /* ndigits may be <5 for small numbers, output leading zeros
1855 * then ndigits digits to first:
1858 while (ndigits
< i
) *ascii
++ = 48, --i
;
1859 while (ndigits
>= first
) *ascii
++ = digits
[--ndigits
];
1860 /* Don't output the trailing zeros! */
1866 /* And null terminate the string: */
1872 /* Here on buffer too small. */
1873 png_error(png_ptr
, "ASCII conversion buffer too small");
1875 # endif /* FIXED_POINT */
1876 #endif /* READ_SCAL */
1878 #if defined(PNG_FLOATING_POINT_SUPPORTED) && \
1879 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
1881 png_fixed(png_structp png_ptr
, double fp
, png_const_charp text
)
1883 double r
= floor(100000 * fp
+ .5);
1885 if (r
> 2147483647. || r
< -2147483648.)
1886 png_fixed_error(png_ptr
, text
);
1888 return (png_fixed_point
)r
;
1892 #if defined(PNG_READ_GAMMA_SUPPORTED) || \
1893 defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
1894 /* muldiv functions */
1895 /* This API takes signed arguments and rounds the result to the nearest
1896 * integer (or, for a fixed point number - the standard argument - to
1897 * the nearest .00001). Overflow and divide by zero are signalled in
1898 * the result, a boolean - true on success, false on overflow.
1901 png_muldiv(png_fixed_point_p res
, png_fixed_point a
, png_int_32 times
,
1904 /* Return a * times / divisor, rounded. */
1907 if (a
== 0 || times
== 0)
1914 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
1920 /* A png_fixed_point is a 32-bit integer. */
1921 if (r
<= 2147483647. && r
>= -2147483648.)
1923 *res
= (png_fixed_point
)r
;
1928 png_uint_32 A
, T
, D
;
1929 png_uint_32 s16
, s32
, s00
;
1932 negative
= 1, A
= -a
;
1937 negative
= !negative
, T
= -times
;
1942 negative
= !negative
, D
= -divisor
;
1946 /* Following can't overflow because the arguments only
1947 * have 31 bits each, however the result may be 32 bits.
1949 s16
= (A
>> 16) * (T
& 0xffff) +
1950 (A
& 0xffff) * (T
>> 16);
1951 /* Can't overflow because the a*times bit is only 30
1954 s32
= (A
>> 16) * (T
>> 16) + (s16
>> 16);
1955 s00
= (A
& 0xffff) * (T
& 0xffff);
1957 s16
= (s16
& 0xffff) << 16;
1963 if (s32
< D
) /* else overflow */
1965 /* s32.s00 is now the 64-bit product, do a standard
1966 * division, we know that s32 < D, so the maximum
1967 * required shift is 31.
1970 png_fixed_point result
= 0; /* NOTE: signed */
1972 while (--bitshift
>= 0)
1974 png_uint_32 d32
, d00
;
1977 d32
= D
>> (32-bitshift
), d00
= D
<< bitshift
;
1984 if (s00
< d00
) --s32
; /* carry */
1985 s32
-= d32
, s00
-= d00
, result
+= 1<<bitshift
;
1989 if (s32
== d32
&& s00
>= d00
)
1990 s32
= 0, s00
-= d00
, result
+= 1<<bitshift
;
1993 /* Handle the rounding. */
1994 if (s00
>= (D
>> 1))
2000 /* Check for overflow. */
2001 if ((negative
&& result
<= 0) || (!negative
&& result
>= 0))
2013 #endif /* READ_GAMMA || INCH_CONVERSIONS */
2015 #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
2016 /* The following is for when the caller doesn't much care about the
2020 png_muldiv_warn(png_structp png_ptr
, png_fixed_point a
, png_int_32 times
,
2023 png_fixed_point result
;
2025 if (png_muldiv(&result
, a
, times
, divisor
))
2028 png_warning(png_ptr
, "fixed point overflow ignored");
2033 #ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */
2034 /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
2036 png_reciprocal(png_fixed_point a
)
2038 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2039 double r
= floor(1E10
/a
+.5);
2041 if (r
<= 2147483647. && r
>= -2147483648.)
2042 return (png_fixed_point
)r
;
2044 png_fixed_point res
;
2046 if (png_muldiv(&res
, 100000, 100000, a
))
2050 return 0; /* error/overflow */
2053 /* A local convenience routine. */
2054 static png_fixed_point
2055 png_product2(png_fixed_point a
, png_fixed_point b
)
2057 /* The required result is 1/a * 1/b; the following preserves accuracy. */
2058 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2059 double r
= a
* 1E-5;
2063 if (r
<= 2147483647. && r
>= -2147483648.)
2064 return (png_fixed_point
)r
;
2066 png_fixed_point res
;
2068 if (png_muldiv(&res
, a
, b
, 100000))
2072 return 0; /* overflow */
2075 /* The inverse of the above. */
2077 png_reciprocal2(png_fixed_point a
, png_fixed_point b
)
2079 /* The required result is 1/a * 1/b; the following preserves accuracy. */
2080 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2085 if (r
<= 2147483647. && r
>= -2147483648.)
2086 return (png_fixed_point
)r
;
2088 /* This may overflow because the range of png_fixed_point isn't symmetric,
2089 * but this API is only used for the product of file and screen gamma so it
2090 * doesn't matter that the smallest number it can produce is 1/21474, not
2093 png_fixed_point res
= png_product2(a
, b
);
2096 return png_reciprocal(res
);
2099 return 0; /* overflow */
2101 #endif /* READ_GAMMA */
2103 #ifdef PNG_CHECK_cHRM_SUPPORTED
2104 /* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
2105 * 2010: moved from pngset.c) */
2107 * Multiply two 32-bit numbers, V1 and V2, using 32-bit
2108 * arithmetic, to produce a 64-bit result in the HI/LO words.
2116 * where A and B are the high and low 16-bit words of V1,
2117 * C and D are the 16-bit words of V2, AD is the product of
2118 * A and D, and X || Y is (X << 16) + Y.
2122 png_64bit_product (long v1
, long v2
, unsigned long *hi_product
,
2123 unsigned long *lo_product
)
2128 a
= (v1
>> 16) & 0xffff;
2130 c
= (v2
>> 16) & 0xffff;
2133 lo
= b
* d
; /* BD */
2134 x
= a
* d
+ c
* b
; /* AD + CB */
2135 y
= ((lo
>> 16) & 0xffff) + x
;
2137 lo
= (lo
& 0xffff) | ((y
& 0xffff) << 16);
2138 hi
= (y
>> 16) & 0xffff;
2140 hi
+= a
* c
; /* AC */
2142 *hi_product
= (unsigned long)hi
;
2143 *lo_product
= (unsigned long)lo
;
2145 #endif /* CHECK_cHRM */
2147 #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
2148 #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2149 /* Fixed point gamma.
2151 * To calculate gamma this code implements fast log() and exp() calls using only
2152 * fixed point arithmetic. This code has sufficient precision for either 8-bit
2153 * or 16-bit sample values.
2155 * The tables used here were calculated using simple 'bc' programs, but C double
2156 * precision floating point arithmetic would work fine. The programs are given
2157 * at the head of each table.
2160 * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2161 * 255, so it's the base 2 logarithm of a normalized 8-bit floating point
2162 * mantissa. The numbers are 32-bit fractions.
2168 for (i
=128;i
<256;++i
) { .5 - l(i
/255)/l(2)*65536*65536; }
2170 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
2171 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
2172 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
2173 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
2174 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
2175 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
2176 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
2177 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
2178 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
2179 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
2180 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
2181 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
2182 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
2183 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
2184 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
2185 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
2186 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
2187 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
2188 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
2189 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
2190 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
2193 /* The following are the values for 16-bit tables - these work fine for the
2194 * 8-bit conversions but produce very slightly larger errors in the 16-bit
2195 * log (about 1.2 as opposed to 0.7 absolute error in the final value). To
2196 * use these all the shifts below must be adjusted appropriately.
2198 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
2199 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
2200 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
2201 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
2202 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
2203 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
2204 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
2205 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
2206 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
2207 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
2208 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
2213 PNG_STATIC png_int_32
2214 png_log8bit(unsigned int x
)
2216 unsigned int lg2
= 0;
2217 /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
2218 * because the log is actually negate that means adding 1. The final
2219 * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
2220 * input), return 7.99998 for the overflow (log 0) case - so the result is
2221 * always at most 19 bits.
2223 if ((x
&= 0xff) == 0)
2226 if ((x
& 0xf0) == 0)
2229 if ((x
& 0xc0) == 0)
2232 if ((x
& 0x80) == 0)
2235 /* result is at most 19 bits, so this cast is safe: */
2236 return (png_int_32
)((lg2
<< 16) + ((png_8bit_l2
[x
-128]+32768)>>16));
2239 /* The above gives exact (to 16 binary places) log2 values for 8-bit images,
2240 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
2241 * get an approximation then multiply the approximation by a correction factor
2242 * determined by the remaining up to 8 bits. This requires an additional step
2243 * in the 16-bit case.
2245 * We want log2(value/65535), we have log2(v'/255), where:
2247 * value = v' * 256 + v''
2250 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
2251 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
2252 * than 258. The final factor also needs to correct for the fact that our 8-bit
2253 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
2255 * This gives a final formula using a calculated value 'x' which is value/v' and
2256 * scaling by 65536 to match the above table:
2258 * log2(x/257) * 65536
2260 * Since these numbers are so close to '1' we can use simple linear
2261 * interpolation between the two end values 256/257 (result -368.61) and 258/257
2262 * (result 367.179). The values used below are scaled by a further 64 to give
2263 * 16-bit precision in the interpolation:
2265 * Start (256): -23591
2269 PNG_STATIC png_int_32
2270 png_log16bit(png_uint_32 x
)
2272 unsigned int lg2
= 0;
2274 /* As above, but now the input has 16 bits. */
2275 if ((x
&= 0xffff) == 0)
2278 if ((x
& 0xff00) == 0)
2281 if ((x
& 0xf000) == 0)
2284 if ((x
& 0xc000) == 0)
2287 if ((x
& 0x8000) == 0)
2290 /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
2294 lg2
+= (png_8bit_l2
[(x
>>8)-128]+8) >> 4;
2296 /* Now we need to interpolate the factor, this requires a division by the top
2297 * 8 bits. Do this with maximum precision.
2299 x
= ((x
<< 16) + (x
>> 9)) / (x
>> 8);
2301 /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
2302 * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
2303 * 16 bits to interpolate to get the low bits of the result. Round the
2304 * answer. Note that the end point values are scaled by 64 to retain overall
2305 * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
2306 * the overall scaling by 6-12. Round at every step.
2310 if (x
<= 65536U) /* <= '257' */
2311 lg2
+= ((23591U * (65536U-x
)) + (1U << (16+6-12-1))) >> (16+6-12);
2314 lg2
-= ((23499U * (x
-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
2316 /* Safe, because the result can't have more than 20 bits: */
2317 return (png_int_32
)((lg2
+ 2048) >> 12);
2320 /* The 'exp()' case must invert the above, taking a 20-bit fixed point
2321 * logarithmic value and returning a 16 or 8-bit number as appropriate. In
2322 * each case only the low 16 bits are relevant - the fraction - since the
2323 * integer bits (the top 4) simply determine a shift.
2325 * The worst case is the 16-bit distinction between 65535 and 65534, this
2326 * requires perhaps spurious accuracty in the decoding of the logarithm to
2327 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
2328 * of getting this accuracy in practice.
2330 * To deal with this the following exp() function works out the exponent of the
2331 * frational part of the logarithm by using an accurate 32-bit value from the
2332 * top four fractional bits then multiplying in the remaining bits.
2338 for (i
=0;i
<16;++i
) { .5 + e(-i
/16*l(2))*2^32; }
2340 /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
2341 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
2342 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
2343 2553802834U, 2445529972U, 2341847524U, 2242560872U
2346 /* Adjustment table; provided to explain the numbers in the code below. */
2348 for (i
=11;i
>=0;--i
){ print i
, " ", (1 - e(-(2^i
)/65536*l(2))) * 2^(32-i
), "\n"}
2349 11 44937.64284865548751208448
2350 10 45180.98734845585101160448
2351 9 45303.31936980687359311872
2352 8 45364.65110595323018870784
2353 7 45395.35850361789624614912
2354 6 45410.72259715102037508096
2355 5 45418.40724413220722311168
2356 4 45422.25021786898173001728
2357 3 45424.17186732298419044352
2358 2 45425.13273269940811464704
2359 1 45425.61317555035558641664
2360 0 45425.85339951654943850496
2363 PNG_STATIC png_uint_32
2364 png_exp(png_fixed_point x
)
2366 if (x
> 0 && x
<= 0xfffff) /* Else overflow or zero (underflow) */
2368 /* Obtain a 4-bit approximation */
2369 png_uint_32 e
= png_32bit_exp
[(x
>> 12) & 0xf];
2371 /* Incorporate the low 12 bits - these decrease the returned value by
2372 * multiplying by a number less than 1 if the bit is set. The multiplier
2373 * is determined by the above table and the shift. Notice that the values
2374 * converge on 45426 and this is used to allow linear interpolation of the
2378 e
-= (((e
>> 16) * 44938U) + 16U) >> 5;
2381 e
-= (((e
>> 16) * 45181U) + 32U) >> 6;
2384 e
-= (((e
>> 16) * 45303U) + 64U) >> 7;
2387 e
-= (((e
>> 16) * 45365U) + 128U) >> 8;
2390 e
-= (((e
>> 16) * 45395U) + 256U) >> 9;
2393 e
-= (((e
>> 16) * 45410U) + 512U) >> 10;
2395 /* And handle the low 6 bits in a single block. */
2396 e
-= (((e
>> 16) * 355U * (x
& 0x3fU
)) + 256U) >> 9;
2398 /* Handle the upper bits of x. */
2403 /* Check for overflow */
2405 return png_32bit_exp
[0];
2407 /* Else underflow */
2412 png_exp8bit(png_fixed_point lg2
)
2414 /* Get a 32-bit value: */
2415 png_uint_32 x
= png_exp(lg2
);
2417 /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
2418 * second, rounding, step can't overflow because of the first, subtraction,
2422 return (png_byte
)((x
+ 0x7fffffU
) >> 24);
2425 PNG_STATIC png_uint_16
2426 png_exp16bit(png_fixed_point lg2
)
2428 /* Get a 32-bit value: */
2429 png_uint_32 x
= png_exp(lg2
);
2431 /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
2433 return (png_uint_16
)((x
+ 32767U) >> 16);
2435 #endif /* FLOATING_ARITHMETIC */
2438 png_gamma_8bit_correct(unsigned int value
, png_fixed_point gamma_val
)
2440 if (value
> 0 && value
< 255)
2442 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2443 double r
= floor(255*pow(value
/255.,gamma_val
*.00001)+.5);
2446 png_int_32 lg2
= png_log8bit(value
);
2447 png_fixed_point res
;
2449 if (png_muldiv(&res
, gamma_val
, lg2
, PNG_FP_1
))
2450 return png_exp8bit(res
);
2457 return (png_byte
)value
;
2461 png_gamma_16bit_correct(unsigned int value
, png_fixed_point gamma_val
)
2463 if (value
> 0 && value
< 65535)
2465 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2466 double r
= floor(65535*pow(value
/65535.,gamma_val
*.00001)+.5);
2467 return (png_uint_16
)r
;
2469 png_int_32 lg2
= png_log16bit(value
);
2470 png_fixed_point res
;
2472 if (png_muldiv(&res
, gamma_val
, lg2
, PNG_FP_1
))
2473 return png_exp16bit(res
);
2480 return (png_uint_16
)value
;
2483 /* This does the right thing based on the bit_depth field of the
2484 * png_struct, interpreting values as 8-bit or 16-bit. While the result
2485 * is nominally a 16-bit value if bit depth is 8 then the result is
2486 * 8-bit (as are the arguments.)
2488 png_uint_16
/* PRIVATE */
2489 png_gamma_correct(png_structp png_ptr
, unsigned int value
,
2490 png_fixed_point gamma_val
)
2492 if (png_ptr
->bit_depth
== 8)
2493 return png_gamma_8bit_correct(value
, gamma_val
);
2496 return png_gamma_16bit_correct(value
, gamma_val
);
2499 /* This is the shared test on whether a gamma value is 'significant' - whether
2500 * it is worth doing gamma correction.
2503 png_gamma_significant(png_fixed_point gamma_val
)
2505 return gamma_val
< PNG_FP_1
- PNG_GAMMA_THRESHOLD_FIXED
||
2506 gamma_val
> PNG_FP_1
+ PNG_GAMMA_THRESHOLD_FIXED
;
2509 /* Internal function to build a single 16-bit table - the table consists of
2510 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
2511 * to shift the input values right (or 16-number_of_signifiant_bits).
2513 * The caller is responsible for ensuring that the table gets cleaned up on
2514 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
2515 * should be somewhere that will be cleaned.
2518 png_build_16bit_table(png_structp png_ptr
, png_uint_16pp
*ptable
,
2519 PNG_CONST
unsigned int shift
, PNG_CONST png_fixed_point gamma_val
)
2521 /* Various values derived from 'shift': */
2522 PNG_CONST
unsigned int num
= 1U << (8U - shift
);
2523 PNG_CONST
unsigned int max
= (1U << (16U - shift
))-1U;
2524 PNG_CONST
unsigned int max_by_2
= 1U << (15U-shift
);
2527 png_uint_16pp table
= *ptable
=
2528 (png_uint_16pp
)png_calloc(png_ptr
, num
* png_sizeof(png_uint_16p
));
2530 for (i
= 0; i
< num
; i
++)
2532 png_uint_16p sub_table
= table
[i
] =
2533 (png_uint_16p
)png_malloc(png_ptr
, 256 * png_sizeof(png_uint_16
));
2535 /* The 'threshold' test is repeated here because it can arise for one of
2536 * the 16-bit tables even if the others don't hit it.
2538 if (png_gamma_significant(gamma_val
))
2540 /* The old code would overflow at the end and this would cause the
2541 * 'pow' function to return a result >1, resulting in an
2542 * arithmetic error. This code follows the spec exactly; ig is
2543 * the recovered input sample, it always has 8-16 bits.
2545 * We want input * 65535/max, rounded, the arithmetic fits in 32
2546 * bits (unsigned) so long as max <= 32767.
2549 for (j
= 0; j
< 256; j
++)
2551 png_uint_32 ig
= (j
<< (8-shift
)) + i
;
2552 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2553 /* Inline the 'max' scaling operation: */
2554 double d
= floor(65535*pow(ig
/(double)max
, gamma_val
*.00001)+.5);
2555 sub_table
[j
] = (png_uint_16
)d
;
2558 ig
= (ig
* 65535U + max_by_2
)/max
;
2560 sub_table
[j
] = png_gamma_16bit_correct(ig
, gamma_val
);
2566 /* We must still build a table, but do it the fast way. */
2569 for (j
= 0; j
< 256; j
++)
2571 png_uint_32 ig
= (j
<< (8-shift
)) + i
;
2574 ig
= (ig
* 65535U + max_by_2
)/max
;
2576 sub_table
[j
] = (png_uint_16
)ig
;
2582 /* NOTE: this function expects the *inverse* of the overall gamma transformation
2586 png_build_16to8_table(png_structp png_ptr
, png_uint_16pp
*ptable
,
2587 PNG_CONST
unsigned int shift
, PNG_CONST png_fixed_point gamma_val
)
2589 PNG_CONST
unsigned int num
= 1U << (8U - shift
);
2590 PNG_CONST
unsigned int max
= (1U << (16U - shift
))-1U;
2594 png_uint_16pp table
= *ptable
=
2595 (png_uint_16pp
)png_calloc(png_ptr
, num
* png_sizeof(png_uint_16p
));
2597 /* 'num' is the number of tables and also the number of low bits of low
2598 * bits of the input 16-bit value used to select a table. Each table is
2599 * itself index by the high 8 bits of the value.
2601 for (i
= 0; i
< num
; i
++)
2602 table
[i
] = (png_uint_16p
)png_malloc(png_ptr
,
2603 256 * png_sizeof(png_uint_16
));
2605 /* 'gamma_val' is set to the reciprocal of the value calculated above, so
2606 * pow(out,g) is an *input* value. 'last' is the last input value set.
2608 * In the loop 'i' is used to find output values. Since the output is
2609 * 8-bit there are only 256 possible values. The tables are set up to
2610 * select the closest possible output value for each input by finding
2611 * the input value at the boundary between each pair of output values
2612 * and filling the table up to that boundary with the lower output
2615 * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
2616 * values the code below uses a 16-bit value in i; the values start at
2617 * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
2618 * entries are filled with 255). Start i at 128 and fill all 'last'
2619 * table entries <= 'max'
2622 for (i
= 0; i
< 255; ++i
) /* 8-bit output value */
2624 /* Find the corresponding maximum input value */
2625 png_uint_16 out
= (png_uint_16
)(i
* 257U); /* 16-bit output value */
2627 /* Find the boundary value in 16 bits: */
2628 png_uint_32 bound
= png_gamma_16bit_correct(out
+128U, gamma_val
);
2630 /* Adjust (round) to (16-shift) bits: */
2631 bound
= (bound
* max
+ 32768U)/65535U + 1U;
2633 while (last
< bound
)
2635 table
[last
& (0xffU
>> shift
)][last
>> (8U - shift
)] = out
;
2640 /* And fill in the final entries. */
2641 while (last
< (num
<< 8))
2643 table
[last
& (0xff >> shift
)][last
>> (8U - shift
)] = 65535U;
2648 /* Build a single 8-bit table: same as the 16-bit case but much simpler (and
2649 * typically much faster). Note that libpng currently does no sBIT processing
2650 * (apparently contrary to the spec) so a 256 entry table is always generated.
2653 png_build_8bit_table(png_structp png_ptr
, png_bytepp ptable
,
2654 PNG_CONST png_fixed_point gamma_val
)
2657 png_bytep table
= *ptable
= (png_bytep
)png_malloc(png_ptr
, 256);
2659 if (png_gamma_significant(gamma_val
)) for (i
=0; i
<256; i
++)
2660 table
[i
] = png_gamma_8bit_correct(i
, gamma_val
);
2662 else for (i
=0; i
<256; ++i
)
2663 table
[i
] = (png_byte
)i
;
2666 /* Used from png_read_destroy and below to release the memory used by the gamma
2670 png_destroy_gamma_table(png_structp png_ptr
)
2672 png_free(png_ptr
, png_ptr
->gamma_table
);
2673 png_ptr
->gamma_table
= NULL
;
2675 if (png_ptr
->gamma_16_table
!= NULL
)
2678 int istop
= (1 << (8 - png_ptr
->gamma_shift
));
2679 for (i
= 0; i
< istop
; i
++)
2681 png_free(png_ptr
, png_ptr
->gamma_16_table
[i
]);
2683 png_free(png_ptr
, png_ptr
->gamma_16_table
);
2684 png_ptr
->gamma_16_table
= NULL
;
2687 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2688 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2689 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2690 png_free(png_ptr
, png_ptr
->gamma_from_1
);
2691 png_ptr
->gamma_from_1
= NULL
;
2692 png_free(png_ptr
, png_ptr
->gamma_to_1
);
2693 png_ptr
->gamma_to_1
= NULL
;
2695 if (png_ptr
->gamma_16_from_1
!= NULL
)
2698 int istop
= (1 << (8 - png_ptr
->gamma_shift
));
2699 for (i
= 0; i
< istop
; i
++)
2701 png_free(png_ptr
, png_ptr
->gamma_16_from_1
[i
]);
2703 png_free(png_ptr
, png_ptr
->gamma_16_from_1
);
2704 png_ptr
->gamma_16_from_1
= NULL
;
2706 if (png_ptr
->gamma_16_to_1
!= NULL
)
2709 int istop
= (1 << (8 - png_ptr
->gamma_shift
));
2710 for (i
= 0; i
< istop
; i
++)
2712 png_free(png_ptr
, png_ptr
->gamma_16_to_1
[i
]);
2714 png_free(png_ptr
, png_ptr
->gamma_16_to_1
);
2715 png_ptr
->gamma_16_to_1
= NULL
;
2717 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2720 /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
2721 * tables, we don't make a full table if we are reducing to 8-bit in
2722 * the future. Note also how the gamma_16 tables are segmented so that
2723 * we don't need to allocate > 64K chunks for a full 16-bit table.
2726 png_build_gamma_table(png_structp png_ptr
, int bit_depth
)
2728 png_debug(1, "in png_build_gamma_table");
2730 /* Remove any existing table; this copes with multiple calls to
2731 * png_read_update_info. The warning is because building the gamma tables
2732 * multiple times is a performance hit - it's harmless but the ability to call
2733 * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
2734 * to warn if the app introduces such a hit.
2736 if (png_ptr
->gamma_table
!= NULL
|| png_ptr
->gamma_16_table
!= NULL
)
2738 png_warning(png_ptr
, "gamma table being rebuilt");
2739 png_destroy_gamma_table(png_ptr
);
2744 png_build_8bit_table(png_ptr
, &png_ptr
->gamma_table
,
2745 png_ptr
->screen_gamma
> 0 ? png_reciprocal2(png_ptr
->gamma
,
2746 png_ptr
->screen_gamma
) : PNG_FP_1
);
2748 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2749 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2750 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2751 if (png_ptr
->transformations
& (PNG_COMPOSE
| PNG_RGB_TO_GRAY
))
2753 png_build_8bit_table(png_ptr
, &png_ptr
->gamma_to_1
,
2754 png_reciprocal(png_ptr
->gamma
));
2756 png_build_8bit_table(png_ptr
, &png_ptr
->gamma_from_1
,
2757 png_ptr
->screen_gamma
> 0 ? png_reciprocal(png_ptr
->screen_gamma
) :
2758 png_ptr
->gamma
/* Probably doing rgb_to_gray */);
2760 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2764 png_byte shift
, sig_bit
;
2766 if (png_ptr
->color_type
& PNG_COLOR_MASK_COLOR
)
2768 sig_bit
= png_ptr
->sig_bit
.red
;
2770 if (png_ptr
->sig_bit
.green
> sig_bit
)
2771 sig_bit
= png_ptr
->sig_bit
.green
;
2773 if (png_ptr
->sig_bit
.blue
> sig_bit
)
2774 sig_bit
= png_ptr
->sig_bit
.blue
;
2777 sig_bit
= png_ptr
->sig_bit
.gray
;
2779 /* 16-bit gamma code uses this equation:
2781 * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
2783 * Where 'iv' is the input color value and 'ov' is the output value -
2786 * Thus the gamma table consists of up to 256 256 entry tables. The table
2787 * is selected by the (8-gamma_shift) most significant of the low 8 bits of
2788 * the color value then indexed by the upper 8 bits:
2790 * table[low bits][high 8 bits]
2792 * So the table 'n' corresponds to all those 'iv' of:
2794 * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
2797 if (sig_bit
> 0 && sig_bit
< 16U)
2798 shift
= (png_byte
)(16U - sig_bit
); /* shift == insignificant bits */
2801 shift
= 0; /* keep all 16 bits */
2803 if (png_ptr
->transformations
& (PNG_16_TO_8
| PNG_SCALE_16_TO_8
))
2805 /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
2806 * the significant bits in the *input* when the output will
2807 * eventually be 8 bits. By default it is 11.
2809 if (shift
< (16U - PNG_MAX_GAMMA_8
))
2810 shift
= (16U - PNG_MAX_GAMMA_8
);
2814 shift
= 8U; /* Guarantees at least one table! */
2816 png_ptr
->gamma_shift
= shift
;
2818 #ifdef PNG_16BIT_SUPPORTED
2819 /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
2820 * PNG_COMPOSE). This effectively smashed the background calculation for
2821 * 16-bit output because the 8-bit table assumes the result will be reduced
2824 if (png_ptr
->transformations
& (PNG_16_TO_8
| PNG_SCALE_16_TO_8
))
2826 png_build_16to8_table(png_ptr
, &png_ptr
->gamma_16_table
, shift
,
2827 png_ptr
->screen_gamma
> 0 ? png_product2(png_ptr
->gamma
,
2828 png_ptr
->screen_gamma
) : PNG_FP_1
);
2830 #ifdef PNG_16BIT_SUPPORTED
2832 png_build_16bit_table(png_ptr
, &png_ptr
->gamma_16_table
, shift
,
2833 png_ptr
->screen_gamma
> 0 ? png_reciprocal2(png_ptr
->gamma
,
2834 png_ptr
->screen_gamma
) : PNG_FP_1
);
2837 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2838 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2839 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2840 if (png_ptr
->transformations
& (PNG_COMPOSE
| PNG_RGB_TO_GRAY
))
2842 png_build_16bit_table(png_ptr
, &png_ptr
->gamma_16_to_1
, shift
,
2843 png_reciprocal(png_ptr
->gamma
));
2845 /* Notice that the '16 from 1' table should be full precision, however
2846 * the lookup on this table still uses gamma_shift, so it can't be.
2849 png_build_16bit_table(png_ptr
, &png_ptr
->gamma_16_from_1
, shift
,
2850 png_ptr
->screen_gamma
> 0 ? png_reciprocal(png_ptr
->screen_gamma
) :
2851 png_ptr
->gamma
/* Probably doing rgb_to_gray */);
2853 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2856 #endif /* READ_GAMMA */
2857 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */