]> git.saurik.com Git - wxWidgets.git/blob - include/wx/thread.h
Avoid dropping events in wxDocParentFrameAnyBase in some circumstances.
[wxWidgets.git] / include / wx / thread.h
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: wx/thread.h
3 // Purpose: Thread API
4 // Author: Guilhem Lavaux
5 // Modified by: Vadim Zeitlin (modifications partly inspired by omnithreads
6 // package from Olivetti & Oracle Research Laboratory)
7 // Created: 04/13/98
8 // Copyright: (c) Guilhem Lavaux
9 // Licence: wxWindows licence
10 /////////////////////////////////////////////////////////////////////////////
11
12 #ifndef _WX_THREAD_H_
13 #define _WX_THREAD_H_
14
15 // ----------------------------------------------------------------------------
16 // headers
17 // ----------------------------------------------------------------------------
18
19 // get the value of wxUSE_THREADS configuration flag
20 #include "wx/defs.h"
21
22 #if wxUSE_THREADS
23
24 // ----------------------------------------------------------------------------
25 // constants
26 // ----------------------------------------------------------------------------
27
28 enum wxMutexError
29 {
30 wxMUTEX_NO_ERROR = 0, // operation completed successfully
31 wxMUTEX_INVALID, // mutex hasn't been initialized
32 wxMUTEX_DEAD_LOCK, // mutex is already locked by the calling thread
33 wxMUTEX_BUSY, // mutex is already locked by another thread
34 wxMUTEX_UNLOCKED, // attempt to unlock a mutex which is not locked
35 wxMUTEX_TIMEOUT, // LockTimeout() has timed out
36 wxMUTEX_MISC_ERROR // any other error
37 };
38
39 enum wxCondError
40 {
41 wxCOND_NO_ERROR = 0,
42 wxCOND_INVALID,
43 wxCOND_TIMEOUT, // WaitTimeout() has timed out
44 wxCOND_MISC_ERROR
45 };
46
47 enum wxSemaError
48 {
49 wxSEMA_NO_ERROR = 0,
50 wxSEMA_INVALID, // semaphore hasn't been initialized successfully
51 wxSEMA_BUSY, // returned by TryWait() if Wait() would block
52 wxSEMA_TIMEOUT, // returned by WaitTimeout()
53 wxSEMA_OVERFLOW, // Post() would increase counter past the max
54 wxSEMA_MISC_ERROR
55 };
56
57 enum wxThreadError
58 {
59 wxTHREAD_NO_ERROR = 0, // No error
60 wxTHREAD_NO_RESOURCE, // No resource left to create a new thread
61 wxTHREAD_RUNNING, // The thread is already running
62 wxTHREAD_NOT_RUNNING, // The thread isn't running
63 wxTHREAD_KILLED, // Thread we waited for had to be killed
64 wxTHREAD_MISC_ERROR // Some other error
65 };
66
67 enum wxThreadKind
68 {
69 wxTHREAD_DETACHED,
70 wxTHREAD_JOINABLE
71 };
72
73 enum wxThreadWait
74 {
75 wxTHREAD_WAIT_BLOCK,
76 wxTHREAD_WAIT_YIELD, // process events while waiting; MSW only
77
78 // For compatibility reasons we use wxTHREAD_WAIT_YIELD by default as this
79 // was the default behaviour of wxMSW 2.8 but it should be avoided as it's
80 // dangerous and not portable.
81 #if WXWIN_COMPATIBILITY_2_8
82 wxTHREAD_WAIT_DEFAULT = wxTHREAD_WAIT_YIELD
83 #else
84 wxTHREAD_WAIT_DEFAULT = wxTHREAD_WAIT_BLOCK
85 #endif
86 };
87
88 // Obsolete synonyms for wxPRIORITY_XXX for backwards compatibility-only
89 enum
90 {
91 WXTHREAD_MIN_PRIORITY = wxPRIORITY_MIN,
92 WXTHREAD_DEFAULT_PRIORITY = wxPRIORITY_DEFAULT,
93 WXTHREAD_MAX_PRIORITY = wxPRIORITY_MAX
94 };
95
96 // There are 2 types of mutexes: normal mutexes and recursive ones. The attempt
97 // to lock a normal mutex by a thread which already owns it results in
98 // undefined behaviour (it always works under Windows, it will almost always
99 // result in a deadlock under Unix). Locking a recursive mutex in such
100 // situation always succeeds and it must be unlocked as many times as it has
101 // been locked.
102 //
103 // However recursive mutexes have several important drawbacks: first, in the
104 // POSIX implementation, they're less efficient. Second, and more importantly,
105 // they CAN NOT BE USED WITH CONDITION VARIABLES under Unix! Using them with
106 // wxCondition will work under Windows and some Unices (notably Linux) but will
107 // deadlock under other Unix versions (e.g. Solaris). As it might be difficult
108 // to ensure that a recursive mutex is not used with wxCondition, it is a good
109 // idea to avoid using recursive mutexes at all. Also, the last problem with
110 // them is that some (older) Unix versions don't support this at all -- which
111 // results in a configure warning when building and a deadlock when using them.
112 enum wxMutexType
113 {
114 // normal mutex: try to always use this one
115 wxMUTEX_DEFAULT,
116
117 // recursive mutex: don't use these ones with wxCondition
118 wxMUTEX_RECURSIVE
119 };
120
121 // forward declarations
122 class WXDLLIMPEXP_FWD_BASE wxThreadHelper;
123 class WXDLLIMPEXP_FWD_BASE wxConditionInternal;
124 class WXDLLIMPEXP_FWD_BASE wxMutexInternal;
125 class WXDLLIMPEXP_FWD_BASE wxSemaphoreInternal;
126 class WXDLLIMPEXP_FWD_BASE wxThreadInternal;
127
128 // ----------------------------------------------------------------------------
129 // A mutex object is a synchronization object whose state is set to signaled
130 // when it is not owned by any thread, and nonsignaled when it is owned. Its
131 // name comes from its usefulness in coordinating mutually-exclusive access to
132 // a shared resource. Only one thread at a time can own a mutex object.
133 // ----------------------------------------------------------------------------
134
135 // you should consider wxMutexLocker whenever possible instead of directly
136 // working with wxMutex class - it is safer
137 class WXDLLIMPEXP_BASE wxMutex
138 {
139 public:
140 // constructor & destructor
141 // ------------------------
142
143 // create either default (always safe) or recursive mutex
144 wxMutex(wxMutexType mutexType = wxMUTEX_DEFAULT);
145
146 // destroys the mutex kernel object
147 ~wxMutex();
148
149 // test if the mutex has been created successfully
150 bool IsOk() const;
151
152 // mutex operations
153 // ----------------
154
155 // Lock the mutex, blocking on it until it is unlocked by the other thread.
156 // The result of locking a mutex already locked by the current thread
157 // depend on the mutex type.
158 //
159 // The caller must call Unlock() later if Lock() returned wxMUTEX_NO_ERROR.
160 wxMutexError Lock();
161
162 // Same as Lock() but return wxMUTEX_TIMEOUT if the mutex can't be locked
163 // during the given number of milliseconds
164 wxMutexError LockTimeout(unsigned long ms);
165
166 // Try to lock the mutex: if it is currently locked, return immediately
167 // with an error. Otherwise the caller must call Unlock().
168 wxMutexError TryLock();
169
170 // Unlock the mutex. It is an error to unlock an already unlocked mutex
171 wxMutexError Unlock();
172
173 protected:
174 wxMutexInternal *m_internal;
175
176 friend class wxConditionInternal;
177
178 wxDECLARE_NO_COPY_CLASS(wxMutex);
179 };
180
181 // a helper class which locks the mutex in the ctor and unlocks it in the dtor:
182 // this ensures that mutex is always unlocked, even if the function returns or
183 // throws an exception before it reaches the end
184 class WXDLLIMPEXP_BASE wxMutexLocker
185 {
186 public:
187 // lock the mutex in the ctor
188 wxMutexLocker(wxMutex& mutex)
189 : m_isOk(false), m_mutex(mutex)
190 { m_isOk = ( m_mutex.Lock() == wxMUTEX_NO_ERROR ); }
191
192 // returns true if mutex was successfully locked in ctor
193 bool IsOk() const
194 { return m_isOk; }
195
196 // unlock the mutex in dtor
197 ~wxMutexLocker()
198 { if ( IsOk() ) m_mutex.Unlock(); }
199
200 private:
201 // no assignment operator nor copy ctor
202 wxMutexLocker(const wxMutexLocker&);
203 wxMutexLocker& operator=(const wxMutexLocker&);
204
205 bool m_isOk;
206 wxMutex& m_mutex;
207 };
208
209 // ----------------------------------------------------------------------------
210 // Critical section: this is the same as mutex but is only visible to the
211 // threads of the same process. For the platforms which don't have native
212 // support for critical sections, they're implemented entirely in terms of
213 // mutexes.
214 //
215 // NB: wxCriticalSection object does not allocate any memory in its ctor
216 // which makes it possible to have static globals of this class
217 // ----------------------------------------------------------------------------
218
219 // in order to avoid any overhead under platforms where critical sections are
220 // just mutexes make all wxCriticalSection class functions inline
221 #if !defined(__WINDOWS__)
222 #define wxCRITSECT_IS_MUTEX 1
223
224 #define wxCRITSECT_INLINE WXEXPORT inline
225 #else // MSW
226 #define wxCRITSECT_IS_MUTEX 0
227
228 #define wxCRITSECT_INLINE
229 #endif // MSW/!MSW
230
231 enum wxCriticalSectionType
232 {
233 // recursive critical section
234 wxCRITSEC_DEFAULT,
235
236 // non-recursive critical section
237 wxCRITSEC_NON_RECURSIVE
238 };
239
240 // you should consider wxCriticalSectionLocker whenever possible instead of
241 // directly working with wxCriticalSection class - it is safer
242 class WXDLLIMPEXP_BASE wxCriticalSection
243 {
244 public:
245 // ctor & dtor
246 wxCRITSECT_INLINE wxCriticalSection( wxCriticalSectionType critSecType = wxCRITSEC_DEFAULT );
247 wxCRITSECT_INLINE ~wxCriticalSection();
248 // enter the section (the same as locking a mutex)
249 wxCRITSECT_INLINE void Enter();
250
251 // try to enter the section (the same as trying to lock a mutex)
252 wxCRITSECT_INLINE bool TryEnter();
253
254 // leave the critical section (same as unlocking a mutex)
255 wxCRITSECT_INLINE void Leave();
256
257 private:
258 #if wxCRITSECT_IS_MUTEX
259 wxMutex m_mutex;
260 #elif defined(__WINDOWS__)
261 // we can't allocate any memory in the ctor, so use placement new -
262 // unfortunately, we have to hardcode the sizeof() here because we can't
263 // include windows.h from this public header and we also have to use the
264 // union to force the correct (i.e. maximal) alignment
265 //
266 // if CRITICAL_SECTION size changes in Windows, you'll get an assert from
267 // thread.cpp and will need to increase the buffer size
268 #ifdef __WIN64__
269 typedef char wxCritSectBuffer[40];
270 #else // __WIN32__
271 typedef char wxCritSectBuffer[24];
272 #endif
273 union
274 {
275 unsigned long m_dummy1;
276 void *m_dummy2;
277
278 wxCritSectBuffer m_buffer;
279 };
280 #endif // Unix&OS2/Win32
281
282 wxDECLARE_NO_COPY_CLASS(wxCriticalSection);
283 };
284
285 #if wxCRITSECT_IS_MUTEX
286 // implement wxCriticalSection using mutexes
287 inline wxCriticalSection::wxCriticalSection( wxCriticalSectionType critSecType )
288 : m_mutex( critSecType == wxCRITSEC_DEFAULT ? wxMUTEX_RECURSIVE : wxMUTEX_DEFAULT ) { }
289 inline wxCriticalSection::~wxCriticalSection() { }
290
291 inline void wxCriticalSection::Enter() { (void)m_mutex.Lock(); }
292 inline bool wxCriticalSection::TryEnter() { return m_mutex.TryLock() == wxMUTEX_NO_ERROR; }
293 inline void wxCriticalSection::Leave() { (void)m_mutex.Unlock(); }
294 #endif // wxCRITSECT_IS_MUTEX
295
296 #undef wxCRITSECT_INLINE
297 #undef wxCRITSECT_IS_MUTEX
298
299 // wxCriticalSectionLocker is the same to critical sections as wxMutexLocker is
300 // to mutexes
301 class WXDLLIMPEXP_BASE wxCriticalSectionLocker
302 {
303 public:
304 wxCriticalSectionLocker(wxCriticalSection& cs)
305 : m_critsect(cs)
306 {
307 m_critsect.Enter();
308 }
309
310 ~wxCriticalSectionLocker()
311 {
312 m_critsect.Leave();
313 }
314
315 private:
316 wxCriticalSection& m_critsect;
317
318 wxDECLARE_NO_COPY_CLASS(wxCriticalSectionLocker);
319 };
320
321 // ----------------------------------------------------------------------------
322 // wxCondition models a POSIX condition variable which allows one (or more)
323 // thread(s) to wait until some condition is fulfilled
324 // ----------------------------------------------------------------------------
325
326 class WXDLLIMPEXP_BASE wxCondition
327 {
328 public:
329 // Each wxCondition object is associated with a (single) wxMutex object.
330 // The mutex object MUST be locked before calling Wait()
331 wxCondition(wxMutex& mutex);
332
333 // dtor is not virtual, don't use this class polymorphically
334 ~wxCondition();
335
336 // return true if the condition has been created successfully
337 bool IsOk() const;
338
339 // NB: the associated mutex MUST be locked beforehand by the calling thread
340 //
341 // it atomically releases the lock on the associated mutex
342 // and starts waiting to be woken up by a Signal()/Broadcast()
343 // once its signaled, then it will wait until it can reacquire
344 // the lock on the associated mutex object, before returning.
345 wxCondError Wait();
346
347 // std::condition_variable-like variant that evaluates the associated condition
348 template<typename Functor>
349 wxCondError Wait(const Functor& predicate)
350 {
351 while ( !predicate() )
352 {
353 wxCondError e = Wait();
354 if ( e != wxCOND_NO_ERROR )
355 return e;
356 }
357 return wxCOND_NO_ERROR;
358 }
359
360 // exactly as Wait() except that it may also return if the specified
361 // timeout elapses even if the condition hasn't been signalled: in this
362 // case, the return value is wxCOND_TIMEOUT, otherwise (i.e. in case of a
363 // normal return) it is wxCOND_NO_ERROR.
364 //
365 // the timeout parameter specifies an interval that needs to be waited for
366 // in milliseconds
367 wxCondError WaitTimeout(unsigned long milliseconds);
368
369 // NB: the associated mutex may or may not be locked by the calling thread
370 //
371 // this method unblocks one thread if any are blocking on the condition.
372 // if no thread is blocking in Wait(), then the signal is NOT remembered
373 // The thread which was blocking on Wait() will then reacquire the lock
374 // on the associated mutex object before returning
375 wxCondError Signal();
376
377 // NB: the associated mutex may or may not be locked by the calling thread
378 //
379 // this method unblocks all threads if any are blocking on the condition.
380 // if no thread is blocking in Wait(), then the signal is NOT remembered
381 // The threads which were blocking on Wait() will then reacquire the lock
382 // on the associated mutex object before returning.
383 wxCondError Broadcast();
384
385
386 #if WXWIN_COMPATIBILITY_2_6
387 // deprecated version, don't use
388 wxDEPRECATED( bool Wait(unsigned long milliseconds) );
389 #endif // WXWIN_COMPATIBILITY_2_6
390
391 private:
392 wxConditionInternal *m_internal;
393
394 wxDECLARE_NO_COPY_CLASS(wxCondition);
395 };
396
397 #if WXWIN_COMPATIBILITY_2_6
398 inline bool wxCondition::Wait(unsigned long milliseconds)
399 { return WaitTimeout(milliseconds) == wxCOND_NO_ERROR; }
400 #endif // WXWIN_COMPATIBILITY_2_6
401
402 // ----------------------------------------------------------------------------
403 // wxSemaphore: a counter limiting the number of threads concurrently accessing
404 // a shared resource
405 // ----------------------------------------------------------------------------
406
407 class WXDLLIMPEXP_BASE wxSemaphore
408 {
409 public:
410 // specifying a maxcount of 0 actually makes wxSemaphore behave as if there
411 // is no upper limit, if maxcount is 1 the semaphore behaves as a mutex
412 wxSemaphore( int initialcount = 0, int maxcount = 0 );
413
414 // dtor is not virtual, don't use this class polymorphically
415 ~wxSemaphore();
416
417 // return true if the semaphore has been created successfully
418 bool IsOk() const;
419
420 // wait indefinitely, until the semaphore count goes beyond 0
421 // and then decrement it and return (this method might have been called
422 // Acquire())
423 wxSemaError Wait();
424
425 // same as Wait(), but does not block, returns wxSEMA_NO_ERROR if
426 // successful and wxSEMA_BUSY if the count is currently zero
427 wxSemaError TryWait();
428
429 // same as Wait(), but as a timeout limit, returns wxSEMA_NO_ERROR if the
430 // semaphore was acquired and wxSEMA_TIMEOUT if the timeout has elapsed
431 wxSemaError WaitTimeout(unsigned long milliseconds);
432
433 // increments the semaphore count and signals one of the waiting threads
434 wxSemaError Post();
435
436 private:
437 wxSemaphoreInternal *m_internal;
438
439 wxDECLARE_NO_COPY_CLASS(wxSemaphore);
440 };
441
442 // ----------------------------------------------------------------------------
443 // wxThread: class encapsulating a thread of execution
444 // ----------------------------------------------------------------------------
445
446 // there are two different kinds of threads: joinable and detached (default)
447 // ones. Only joinable threads can return a return code and only detached
448 // threads auto-delete themselves - the user should delete the joinable
449 // threads manually.
450
451 // NB: in the function descriptions the words "this thread" mean the thread
452 // created by the wxThread object while "main thread" is the thread created
453 // during the process initialization (a.k.a. the GUI thread)
454
455 // On VMS thread pointers are 64 bits (also needed for other systems???
456 #ifdef __VMS
457 typedef unsigned long long wxThreadIdType;
458 #else
459 typedef unsigned long wxThreadIdType;
460 #endif
461
462 class WXDLLIMPEXP_BASE wxThread
463 {
464 public:
465 // the return type for the thread function
466 typedef void *ExitCode;
467
468 // static functions
469 // Returns the wxThread object for the calling thread. NULL is returned
470 // if the caller is the main thread (but it's recommended to use
471 // IsMain() and only call This() for threads other than the main one
472 // because NULL is also returned on error). If the thread wasn't
473 // created with wxThread class, the returned value is undefined.
474 static wxThread *This();
475
476 // Returns true if current thread is the main thread.
477 //
478 // Notice that it also returns true if main thread id hadn't been
479 // initialized yet on the assumption that it's too early in wx startup
480 // process for any other threads to have been created in this case.
481 static bool IsMain()
482 {
483 return !ms_idMainThread || GetCurrentId() == ms_idMainThread;
484 }
485
486 // Return the main thread id
487 static wxThreadIdType GetMainId() { return ms_idMainThread; }
488
489 // Release the rest of our time slice letting the other threads run
490 static void Yield();
491
492 // Sleep during the specified period of time in milliseconds
493 //
494 // This is the same as wxMilliSleep().
495 static void Sleep(unsigned long milliseconds);
496
497 // get the number of system CPUs - useful with SetConcurrency()
498 // (the "best" value for it is usually number of CPUs + 1)
499 //
500 // Returns -1 if unknown, number of CPUs otherwise
501 static int GetCPUCount();
502
503 // Get the platform specific thread ID and return as a long. This
504 // can be used to uniquely identify threads, even if they are not
505 // wxThreads. This is used by wxPython.
506 static wxThreadIdType GetCurrentId();
507
508 // sets the concurrency level: this is, roughly, the number of threads
509 // the system tries to schedule to run in parallel. 0 means the
510 // default value (usually acceptable, but may not yield the best
511 // performance for this process)
512 //
513 // Returns true on success, false otherwise (if not implemented, for
514 // example)
515 static bool SetConcurrency(size_t level);
516
517 // constructor only creates the C++ thread object and doesn't create (or
518 // start) the real thread
519 wxThread(wxThreadKind kind = wxTHREAD_DETACHED);
520
521 // functions that change the thread state: all these can only be called
522 // from _another_ thread (typically the thread that created this one, e.g.
523 // the main thread), not from the thread itself
524
525 // create a new thread and optionally set the stack size on
526 // platforms that support that - call Run() to start it
527 // (special cased for watcom which won't accept 0 default)
528
529 wxThreadError Create(unsigned int stackSize = 0);
530
531 // starts execution of the thread - from the moment Run() is called
532 // the execution of wxThread::Entry() may start at any moment, caller
533 // shouldn't suppose that it starts after (or before) Run() returns.
534 wxThreadError Run();
535
536 // stops the thread if it's running and deletes the wxThread object if
537 // this is a detached thread freeing its memory - otherwise (for
538 // joinable threads) you still need to delete wxThread object
539 // yourself.
540 //
541 // this function only works if the thread calls TestDestroy()
542 // periodically - the thread will only be deleted the next time it
543 // does it!
544 //
545 // will fill the rc pointer with the thread exit code if it's !NULL
546 wxThreadError Delete(ExitCode *rc = NULL,
547 wxThreadWait waitMode = wxTHREAD_WAIT_DEFAULT);
548
549 // waits for a joinable thread to finish and returns its exit code
550 //
551 // Returns (ExitCode)-1 on error (for example, if the thread is not
552 // joinable)
553 ExitCode Wait(wxThreadWait waitMode = wxTHREAD_WAIT_DEFAULT);
554
555 // kills the thread without giving it any chance to clean up - should
556 // not be used under normal circumstances, use Delete() instead.
557 // It is a dangerous function that should only be used in the most
558 // extreme cases!
559 //
560 // The wxThread object is deleted by Kill() if the thread is
561 // detachable, but you still have to delete it manually for joinable
562 // threads.
563 wxThreadError Kill();
564
565 // pause a running thread: as Delete(), this only works if the thread
566 // calls TestDestroy() regularly
567 wxThreadError Pause();
568
569 // resume a paused thread
570 wxThreadError Resume();
571
572 // priority
573 // Sets the priority to "prio" which must be in 0..100 range (see
574 // also wxPRIORITY_XXX constants).
575 //
576 // NB: the priority can only be set before the thread is created
577 void SetPriority(unsigned int prio);
578
579 // Get the current priority.
580 unsigned int GetPriority() const;
581
582 // thread status inquiries
583 // Returns true if the thread is alive: i.e. running or suspended
584 bool IsAlive() const;
585 // Returns true if the thread is running (not paused, not killed).
586 bool IsRunning() const;
587 // Returns true if the thread is suspended
588 bool IsPaused() const;
589
590 // is the thread of detached kind?
591 bool IsDetached() const { return m_isDetached; }
592
593 // Get the thread ID - a platform dependent number which uniquely
594 // identifies a thread inside a process
595 wxThreadIdType GetId() const;
596
597 wxThreadKind GetKind() const
598 { return m_isDetached ? wxTHREAD_DETACHED : wxTHREAD_JOINABLE; }
599
600 // Returns true if the thread was asked to terminate: this function should
601 // be called by the thread from time to time, otherwise the main thread
602 // will be left forever in Delete()!
603 virtual bool TestDestroy();
604
605 // dtor is public, but the detached threads should never be deleted - use
606 // Delete() instead (or leave the thread terminate by itself)
607 virtual ~wxThread();
608
609 protected:
610 // exits from the current thread - can be called only from this thread
611 void Exit(ExitCode exitcode = 0);
612
613 // entry point for the thread - called by Run() and executes in the context
614 // of this thread.
615 virtual void *Entry() = 0;
616
617 // use this to call the Entry() virtual method
618 void *CallEntry();
619
620 // Callbacks which may be overridden by the derived class to perform some
621 // specific actions when the thread is deleted or killed. By default they
622 // do nothing.
623
624 // This one is called by Delete() before actually deleting the thread and
625 // is executed in the context of the thread that called Delete().
626 virtual void OnDelete() {}
627
628 // This one is called by Kill() before killing the thread and is executed
629 // in the context of the thread that called Kill().
630 virtual void OnKill() {}
631
632 private:
633 // no copy ctor/assignment operator
634 wxThread(const wxThread&);
635 wxThread& operator=(const wxThread&);
636
637 // called when the thread exits - in the context of this thread
638 //
639 // NB: this function will not be called if the thread is Kill()ed
640 virtual void OnExit() { }
641
642 friend class wxThreadInternal;
643 friend class wxThreadModule;
644
645
646 // the main thread identifier, should be set on startup
647 static wxThreadIdType ms_idMainThread;
648
649 // the (platform-dependent) thread class implementation
650 wxThreadInternal *m_internal;
651
652 // protects access to any methods of wxThreadInternal object
653 wxCriticalSection m_critsect;
654
655 // true if the thread is detached, false if it is joinable
656 bool m_isDetached;
657 };
658
659 // wxThreadHelperThread class
660 // --------------------------
661
662 class WXDLLIMPEXP_BASE wxThreadHelperThread : public wxThread
663 {
664 public:
665 // constructor only creates the C++ thread object and doesn't create (or
666 // start) the real thread
667 wxThreadHelperThread(wxThreadHelper& owner, wxThreadKind kind)
668 : wxThread(kind), m_owner(owner)
669 { }
670
671 protected:
672 // entry point for the thread -- calls Entry() in owner.
673 virtual void *Entry();
674
675 private:
676 // the owner of the thread
677 wxThreadHelper& m_owner;
678
679 // no copy ctor/assignment operator
680 wxThreadHelperThread(const wxThreadHelperThread&);
681 wxThreadHelperThread& operator=(const wxThreadHelperThread&);
682 };
683
684 // ----------------------------------------------------------------------------
685 // wxThreadHelper: this class implements the threading logic to run a
686 // background task in another object (such as a window). It is a mix-in: just
687 // derive from it to implement a threading background task in your class.
688 // ----------------------------------------------------------------------------
689
690 class WXDLLIMPEXP_BASE wxThreadHelper
691 {
692 private:
693 void KillThread()
694 {
695 // If wxThreadHelperThread is detached and is about to finish, it will
696 // set m_thread to NULL so don't delete it then.
697 // But if KillThread is called before wxThreadHelperThread (in detached mode)
698 // sets it to NULL, then the thread object still exists and can be killed
699 wxCriticalSectionLocker locker(m_critSection);
700
701 if ( m_thread )
702 {
703 m_thread->Kill();
704
705 if ( m_kind == wxTHREAD_JOINABLE )
706 delete m_thread;
707
708 m_thread = NULL;
709 }
710 }
711
712 public:
713 // constructor only initializes m_thread to NULL
714 wxThreadHelper(wxThreadKind kind = wxTHREAD_JOINABLE)
715 : m_thread(NULL), m_kind(kind) { }
716
717 // destructor deletes m_thread
718 virtual ~wxThreadHelper() { KillThread(); }
719
720 #if WXWIN_COMPATIBILITY_2_8
721 wxDEPRECATED( wxThreadError Create(unsigned int stackSize = 0) );
722 #endif
723
724 // create a new thread (and optionally set the stack size on platforms that
725 // support/need that), call Run() to start it
726 wxThreadError CreateThread(wxThreadKind kind = wxTHREAD_JOINABLE,
727 unsigned int stackSize = 0)
728 {
729 KillThread();
730
731 m_kind = kind;
732 m_thread = new wxThreadHelperThread(*this, m_kind);
733
734 return m_thread->Create(stackSize);
735 }
736
737 // entry point for the thread - called by Run() and executes in the context
738 // of this thread.
739 virtual void *Entry() = 0;
740
741 // returns a pointer to the thread which can be used to call Run()
742 wxThread *GetThread() const
743 {
744 wxCriticalSectionLocker locker((wxCriticalSection&)m_critSection);
745
746 wxThread* thread = m_thread;
747
748 return thread;
749 }
750
751 protected:
752 wxThread *m_thread;
753 wxThreadKind m_kind;
754 wxCriticalSection m_critSection; // To guard the m_thread variable
755
756 friend class wxThreadHelperThread;
757 };
758
759 #if WXWIN_COMPATIBILITY_2_8
760 inline wxThreadError wxThreadHelper::Create(unsigned int stackSize)
761 { return CreateThread(m_kind, stackSize); }
762 #endif
763
764 // call Entry() in owner, put it down here to avoid circular declarations
765 inline void *wxThreadHelperThread::Entry()
766 {
767 void * const result = m_owner.Entry();
768
769 wxCriticalSectionLocker locker(m_owner.m_critSection);
770
771 // Detached thread will be deleted after returning, so make sure
772 // wxThreadHelper::GetThread will not return an invalid pointer.
773 // And that wxThreadHelper::KillThread will not try to kill
774 // an already deleted thread
775 if ( m_owner.m_kind == wxTHREAD_DETACHED )
776 m_owner.m_thread = NULL;
777
778 return result;
779 }
780
781 // ----------------------------------------------------------------------------
782 // Automatic initialization
783 // ----------------------------------------------------------------------------
784
785 // GUI mutex handling.
786 void WXDLLIMPEXP_BASE wxMutexGuiEnter();
787 void WXDLLIMPEXP_BASE wxMutexGuiLeave();
788
789 // macros for entering/leaving critical sections which may be used without
790 // having to take them inside "#if wxUSE_THREADS"
791 #define wxENTER_CRIT_SECT(cs) (cs).Enter()
792 #define wxLEAVE_CRIT_SECT(cs) (cs).Leave()
793 #define wxCRIT_SECT_DECLARE(cs) static wxCriticalSection cs
794 #define wxCRIT_SECT_DECLARE_MEMBER(cs) wxCriticalSection cs
795 #define wxCRIT_SECT_LOCKER(name, cs) wxCriticalSectionLocker name(cs)
796
797 // function for checking if we're in the main thread which may be used whether
798 // wxUSE_THREADS is 0 or 1
799 inline bool wxIsMainThread() { return wxThread::IsMain(); }
800
801 #else // !wxUSE_THREADS
802
803 // no thread support
804 inline void wxMutexGuiEnter() { }
805 inline void wxMutexGuiLeave() { }
806
807 // macros for entering/leaving critical sections which may be used without
808 // having to take them inside "#if wxUSE_THREADS"
809 // (the implementation uses dummy structs to force semicolon after the macro;
810 // also notice that Watcom doesn't like declaring a struct as a member so we
811 // need to actually define it in wxCRIT_SECT_DECLARE_MEMBER)
812 #define wxENTER_CRIT_SECT(cs) do {} while (0)
813 #define wxLEAVE_CRIT_SECT(cs) do {} while (0)
814 #define wxCRIT_SECT_DECLARE(cs) struct wxDummyCS##cs
815 #define wxCRIT_SECT_DECLARE_MEMBER(cs) struct wxDummyCSMember##cs { }
816 #define wxCRIT_SECT_LOCKER(name, cs) struct wxDummyCSLocker##name
817
818 // if there is only one thread, it is always the main one
819 inline bool wxIsMainThread() { return true; }
820
821 #endif // wxUSE_THREADS/!wxUSE_THREADS
822
823 // mark part of code as being a critical section: this macro declares a
824 // critical section with the given name and enters it immediately and leaves
825 // it at the end of the current scope
826 //
827 // example:
828 //
829 // int Count()
830 // {
831 // static int s_counter = 0;
832 //
833 // wxCRITICAL_SECTION(counter);
834 //
835 // return ++s_counter;
836 // }
837 //
838 // this function is MT-safe in presence of the threads but there is no
839 // overhead when the library is compiled without threads
840 #define wxCRITICAL_SECTION(name) \
841 wxCRIT_SECT_DECLARE(s_cs##name); \
842 wxCRIT_SECT_LOCKER(cs##name##Locker, s_cs##name)
843
844 // automatically lock GUI mutex in ctor and unlock it in dtor
845 class WXDLLIMPEXP_BASE wxMutexGuiLocker
846 {
847 public:
848 wxMutexGuiLocker() { wxMutexGuiEnter(); }
849 ~wxMutexGuiLocker() { wxMutexGuiLeave(); }
850 };
851
852 // -----------------------------------------------------------------------------
853 // implementation only until the end of file
854 // -----------------------------------------------------------------------------
855
856 #if wxUSE_THREADS
857
858 #if defined(__WINDOWS__) || defined(__OS2__) || defined(__EMX__) || defined(__DARWIN__)
859 // unlock GUI if there are threads waiting for and lock it back when
860 // there are no more of them - should be called periodically by the main
861 // thread
862 extern void WXDLLIMPEXP_BASE wxMutexGuiLeaveOrEnter();
863
864 // returns true if the main thread has GUI lock
865 extern bool WXDLLIMPEXP_BASE wxGuiOwnedByMainThread();
866
867 // wakes up the main thread if it's sleeping inside ::GetMessage()
868 extern void WXDLLIMPEXP_BASE wxWakeUpMainThread();
869
870 #ifndef __DARWIN__
871 // return true if the main thread is waiting for some other to terminate:
872 // wxApp then should block all "dangerous" messages
873 extern bool WXDLLIMPEXP_BASE wxIsWaitingForThread();
874 #endif
875 #endif // MSW, OS/2
876
877 #endif // wxUSE_THREADS
878
879 #endif // _WX_THREAD_H_