1 /////////////////////////////////////////////////////////////////////////////
3 // Purpose: interface of wxEvtHandler, wxEventBlocker and many
4 // wxEvent-derived classes
5 // Author: wxWidgets team
7 // Licence: wxWindows licence
8 /////////////////////////////////////////////////////////////////////////////
13 The predefined constants for the number of times we propagate event
14 upwards window child-parent chain.
16 enum wxEventPropagation
18 /// don't propagate it at all
19 wxEVENT_PROPAGATE_NONE
= 0,
21 /// propagate it until it is processed
22 wxEVENT_PROPAGATE_MAX
= INT_MAX
26 The different categories for a wxEvent; see wxEvent::GetEventCategory.
28 @note They are used as OR-combinable flags by wxEventLoopBase::YieldFor.
33 This is the category for those events which are generated to update
34 the appearance of the GUI but which (usually) do not comport data
35 processing, i.e. which do not provide input or output data
36 (e.g. size events, scroll events, etc).
37 They are events NOT directly generated by the user's input devices.
39 wxEVT_CATEGORY_UI
= 1,
42 This category groups those events which are generated directly from the
43 user through input devices like mouse and keyboard and usually result in
44 data to be processed from the application
45 (e.g. mouse clicks, key presses, etc).
47 wxEVT_CATEGORY_USER_INPUT
= 2,
49 /// This category is for wxSocketEvent
50 wxEVT_CATEGORY_SOCKET
= 4,
52 /// This category is for wxTimerEvent
53 wxEVT_CATEGORY_TIMER
= 8,
56 This category is for any event used to send notifications from the
57 secondary threads to the main one or in general for notifications among
58 different threads (which may or may not be user-generated).
59 See e.g. wxThreadEvent.
61 wxEVT_CATEGORY_THREAD
= 16,
64 This mask is used in wxEventLoopBase::YieldFor to specify that all event
65 categories should be processed.
68 wxEVT_CATEGORY_UI
|wxEVT_CATEGORY_USER_INPUT
|wxEVT_CATEGORY_SOCKET
| \
69 wxEVT_CATEGORY_TIMER
|wxEVT_CATEGORY_THREAD
75 An event is a structure holding information about an event passed to a
76 callback or member function.
78 wxEvent used to be a multipurpose event object, and is an abstract base class
79 for other event classes (see below).
81 For more information about events, see the @ref overview_events overview.
84 In wxPerl custom event classes should be derived from
85 @c Wx::PlEvent and @c Wx::PlCommandEvent.
91 @see wxCommandEvent, wxMouseEvent
93 class wxEvent
: public wxObject
99 Notice that events are usually created by wxWidgets itself and creating
100 e.g. a wxPaintEvent in your code and sending it to e.g. a wxTextCtrl
101 will not usually affect it at all as native controls have no specific
102 knowledge about wxWidgets events. However you may construct objects of
103 specific types and pass them to wxEvtHandler::ProcessEvent() if you
104 want to create your own custom control and want to process its events
105 in the same manner as the standard ones.
107 Also please notice that the order of parameters in this constructor is
108 different from almost all the derived classes which specify the event
109 type as the first argument.
112 The identifier of the object (window, timer, ...) which generated
115 The unique type of event, e.g. @c wxEVT_PAINT, @c wxEVT_SIZE or
118 wxEvent(int id
= 0, wxEventType eventType
= wxEVT_NULL
);
121 Returns a copy of the event.
123 Any event that is posted to the wxWidgets event system for later action
124 (via wxEvtHandler::AddPendingEvent, wxEvtHandler::QueueEvent or wxPostEvent())
125 must implement this method.
127 All wxWidgets events fully implement this method, but any derived events
128 implemented by the user should also implement this method just in case they
129 (or some event derived from them) are ever posted.
131 All wxWidgets events implement a copy constructor, so the easiest way of
132 implementing the Clone function is to implement a copy constructor for
133 a new event (call it MyEvent) and then define the Clone function like this:
136 wxEvent *Clone() const { return new MyEvent(*this); }
139 virtual wxEvent
* Clone() const = 0;
142 Returns the object (usually a window) associated with the event, if any.
144 wxObject
* GetEventObject() const;
147 Returns the identifier of the given event type, such as @c wxEVT_BUTTON.
149 wxEventType
GetEventType() const;
152 Returns a generic category for this event.
153 wxEvent implementation returns @c wxEVT_CATEGORY_UI by default.
155 This function is used to selectively process events in wxEventLoopBase::YieldFor.
157 virtual wxEventCategory
GetEventCategory() const;
160 Returns the identifier associated with this event, such as a button command id.
165 Return the user data associated with a dynamically connected event handler.
167 wxEvtHandler::Connect() and wxEvtHandler::Bind() allow associating
168 optional @c userData pointer with the handler and this method returns
169 the value of this pointer.
171 The returned pointer is owned by wxWidgets and must not be deleted.
175 wxObject
*GetEventUserData() const;
178 Returns @true if the event handler should be skipped, @false otherwise.
180 bool GetSkipped() const;
183 Gets the timestamp for the event. The timestamp is the time in milliseconds
184 since some fixed moment (not necessarily the standard Unix Epoch, so only
185 differences between the timestamps and not their absolute values usually make sense).
188 wxWidgets returns a non-NULL timestamp only for mouse and key events
189 (see wxMouseEvent and wxKeyEvent).
191 long GetTimestamp() const;
194 Returns @true if the event is or is derived from wxCommandEvent else it returns @false.
196 @note exists only for optimization purposes.
198 bool IsCommandEvent() const;
201 Sets the propagation level to the given value (for example returned from an
202 earlier call to wxEvent::StopPropagation).
204 void ResumePropagation(int propagationLevel
);
207 Sets the originating object.
209 void SetEventObject(wxObject
* object
);
214 void SetEventType(wxEventType type
);
217 Sets the identifier associated with this event, such as a button command id.
222 Sets the timestamp for the event.
224 void SetTimestamp(long timeStamp
= 0);
227 Test if this event should be propagated or not, i.e.\ if the propagation level
228 is currently greater than 0.
230 bool ShouldPropagate() const;
233 This method can be used inside an event handler to control whether further
234 event handlers bound to this event will be called after the current one returns.
236 Without Skip() (or equivalently if Skip(@false) is used), the event will not
237 be processed any more. If Skip(@true) is called, the event processing system
238 continues searching for a further handler function for this event, even though
239 it has been processed already in the current handler.
241 In general, it is recommended to skip all non-command events to allow the
242 default handling to take place. The command events are, however, normally not
243 skipped as usually a single command such as a button click or menu item
244 selection must only be processed by one handler.
246 void Skip(bool skip
= true);
249 Stop the event from propagating to its parent window.
251 Returns the old propagation level value which may be later passed to
252 ResumePropagation() to allow propagating the event again.
254 int StopPropagation();
258 Indicates how many levels the event can propagate.
260 This member is protected and should typically only be set in the constructors
261 of the derived classes. It may be temporarily changed by StopPropagation()
262 and ResumePropagation() and tested with ShouldPropagate().
264 The initial value is set to either @c wxEVENT_PROPAGATE_NONE (by default)
265 meaning that the event shouldn't be propagated at all or to
266 @c wxEVENT_PROPAGATE_MAX (for command events) meaning that it should be
267 propagated as much as necessary.
269 Any positive number means that the event should be propagated but no more than
270 the given number of times. E.g. the propagation level may be set to 1 to
271 propagate the event to its parent only, but not to its grandparent.
273 int m_propagationLevel
;
281 @class wxEventBlocker
283 This class is a special event handler which allows to discard
284 any event (or a set of event types) directed to a specific window.
289 void MyWindow::DoSomething()
292 // block all events directed to this window while
293 // we do the 1000 FunctionWhichSendsEvents() calls
294 wxEventBlocker blocker(this);
296 for ( int i = 0; i 1000; i++ )
297 FunctionWhichSendsEvents(i);
299 } // ~wxEventBlocker called, old event handler is restored
301 // the event generated by this call will be processed:
302 FunctionWhichSendsEvents(0)
309 @see @ref overview_events_processing, wxEvtHandler
311 class wxEventBlocker
: public wxEvtHandler
315 Constructs the blocker for the given window and for the given event type.
317 If @a type is @c wxEVT_ANY, then all events for that window are blocked.
318 You can call Block() after creation to add other event types to the list
321 Note that the @a win window @b must remain alive until the
322 wxEventBlocker object destruction.
324 wxEventBlocker(wxWindow
* win
, wxEventType type
= -1);
327 Destructor. The blocker will remove itself from the chain of event handlers for
328 the window provided in the constructor, thus restoring normal processing of events.
330 virtual ~wxEventBlocker();
333 Adds to the list of event types which should be blocked the given @a eventType.
335 void Block(wxEventType eventType
);
341 Helper class to temporarily change an event to not propagate.
343 class wxPropagationDisabler
346 wxPropagationDisabler(wxEvent
& event
);
347 ~wxPropagationDisabler();
352 Helper class to temporarily lower propagation level.
354 class wxPropagateOnce
357 wxPropagateOnce(wxEvent
& event
);
368 A class that can handle events from the windowing system.
369 wxWindow is (and therefore all window classes are) derived from this class.
371 When events are received, wxEvtHandler invokes the method listed in the
372 event table using itself as the object. When using multiple inheritance
373 <b>it is imperative that the wxEvtHandler(-derived) class is the first
374 class inherited</b> such that the @c this pointer for the overall object
375 will be identical to the @c this pointer of the wxEvtHandler portion.
380 @see @ref overview_events_processing, wxEventBlocker, wxEventLoopBase
382 class wxEvtHandler
: public wxObject
, public wxTrackable
393 If the handler is part of a chain, the destructor will unlink itself
396 virtual ~wxEvtHandler();
400 @name Event queuing and processing
405 Queue event for a later processing.
407 This method is similar to ProcessEvent() but while the latter is
408 synchronous, i.e. the event is processed immediately, before the
409 function returns, this one is asynchronous and returns immediately
410 while the event will be processed at some later time (usually during
411 the next event loop iteration).
413 Another important difference is that this method takes ownership of the
414 @a event parameter, i.e. it will delete it itself. This implies that
415 the event should be allocated on the heap and that the pointer can't be
416 used any more after the function returns (as it can be deleted at any
419 QueueEvent() can be used for inter-thread communication from the worker
420 threads to the main thread, it is safe in the sense that it uses
421 locking internally and avoids the problem mentioned in AddPendingEvent()
422 documentation by ensuring that the @a event object is not used by the
423 calling thread any more. Care should still be taken to avoid that some
424 fields of this object are used by it, notably any wxString members of
425 the event object must not be shallow copies of another wxString object
426 as this would result in them still using the same string buffer behind
427 the scenes. For example:
429 void FunctionInAWorkerThread(const wxString& str)
431 wxCommandEvent* evt = new wxCommandEvent;
433 // NOT evt->SetString(str) as this would be a shallow copy
434 evt->SetString(str.c_str()); // make a deep copy
436 wxTheApp->QueueEvent( evt );
440 Note that you can use wxThreadEvent instead of wxCommandEvent
441 to avoid this problem:
443 void FunctionInAWorkerThread(const wxString& str)
448 // wxThreadEvent::Clone() makes sure that the internal wxString
449 // member is not shared by other wxString instances:
450 wxTheApp->QueueEvent( evt.Clone() );
454 Finally notice that this method automatically wakes up the event loop
455 if it is currently idle by calling ::wxWakeUpIdle() so there is no need
456 to do it manually when using it.
461 A heap-allocated event to be queued, QueueEvent() takes ownership
462 of it. This parameter shouldn't be @c NULL.
464 virtual void QueueEvent(wxEvent
*event
);
467 Post an event to be processed later.
469 This function is similar to QueueEvent() but can't be used to post
470 events from worker threads for the event objects with wxString fields
471 (i.e. in practice most of them) because of an unsafe use of the same
472 wxString object which happens because the wxString field in the
473 original @a event object and its copy made internally by this function
474 share the same string buffer internally. Use QueueEvent() to avoid
477 A copy of @a event is made by the function, so the original can be deleted
478 as soon as function returns (it is common that the original is created
479 on the stack). This requires that the wxEvent::Clone() method be
480 implemented by event so that it can be duplicated and stored until it
484 Event to add to the pending events queue.
486 virtual void AddPendingEvent(const wxEvent
& event
);
489 Asynchronously call the given method.
491 Calling this function on an object schedules an asynchronous call to
492 the method specified as CallAfter() argument at a (slightly) later
493 time. This is useful when processing some events as certain actions
494 typically can't be performed inside their handlers, e.g. you shouldn't
495 show a modal dialog from a mouse click event handler as this would
496 break the mouse capture state -- but you can call a method showing
497 this message dialog after the current event handler completes.
499 The method being called must be the method of the object on which
500 CallAfter() itself is called.
502 Notice that it is safe to use CallAfter() from other, non-GUI,
503 threads, but that the method will be always called in the main, GUI,
508 class MyFrame : public wxFrame {
509 void OnClick(wxMouseEvent& event) {
510 CallAfter(&MyFrame::ShowPosition, event.GetPosition());
513 void ShowPosition(const wxPoint& pos) {
515 wxString::Format("Perform click at (%d, %d)?",
516 pos.x, pos.y), "", wxYES_NO) == wxYES )
518 ... do take this click into account ...
524 @param method The method to call.
525 @param x1 The (optional) first parameter to pass to the method.
526 @param x2 The (optional) second parameter to pass to the method.
528 Note that currently only up to 2 arguments can be passed. For more
529 complicated needs, you can use the CallAfter<T>(const T& fn) overload
530 that can call any functor.
532 @note This method is not available with Visual C++ before version 8
533 (Visual Studio 2005) as earlier versions of the compiler don't
534 have the required support for C++ templates to implement it.
538 template<typename T
, typename T1
, ...>
539 void CallAfter(void (T::*method
)(T1
, ...), T1 x1
, ...);
542 Asynchronously call the given functor.
544 Calling this function on an object schedules an asynchronous call to
545 the functor specified as CallAfter() argument at a (slightly) later
546 time. This is useful when processing some events as certain actions
547 typically can't be performed inside their handlers, e.g. you shouldn't
548 show a modal dialog from a mouse click event handler as this would
549 break the mouse capture state -- but you can call a function showing
550 this message dialog after the current event handler completes.
552 Notice that it is safe to use CallAfter() from other, non-GUI,
553 threads, but that the method will be always called in the main, GUI,
556 This overload is particularly useful in combination with C++11 lambdas:
558 wxGetApp().CallAfter([]{
563 @param functor The functor to call.
565 @note This method is not available with Visual C++ before version 8
566 (Visual Studio 2005) as earlier versions of the compiler don't
567 have the required support for C++ templates to implement it.
572 void CallAfter(const T
& functor
);
575 Processes an event, searching event tables and calling zero or more suitable
576 event handler function(s).
578 Normally, your application would not call this function: it is called in the
579 wxWidgets implementation to dispatch incoming user interface events to the
580 framework (and application).
582 However, you might need to call it if implementing new functionality
583 (such as a new control) where you define new event types, as opposed to
584 allowing the user to override virtual functions.
586 Notice that you don't usually need to override ProcessEvent() to
587 customize the event handling, overriding the specially provided
588 TryBefore() and TryAfter() functions is usually enough. For example,
589 wxMDIParentFrame may override TryBefore() to ensure that the menu
590 events are processed in the active child frame before being processed
591 in the parent frame itself.
593 The normal order of event table searching is as follows:
594 -# wxApp::FilterEvent() is called. If it returns anything but @c -1
595 (default) the processing stops here.
596 -# TryBefore() is called (this is where wxValidator are taken into
597 account for wxWindow objects). If this returns @true, the function exits.
598 -# If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled)
599 the function skips to step (7).
600 -# Dynamic event table of the handlers bound using Bind<>() is
601 searched. If a handler is found, it is executed and the function
602 returns @true unless the handler used wxEvent::Skip() to indicate
603 that it didn't handle the event in which case the search continues.
604 -# Static events table of the handlers bound using event table
605 macros is searched for this event handler. If this fails, the base
606 class event table is tried, and so on until no more tables
607 exist or an appropriate function was found. If a handler is found,
608 the same logic as in the previous step applies.
609 -# The search is applied down the entire chain of event handlers (usually the
610 chain has a length of one). This chain can be formed using wxEvtHandler::SetNextHandler():
611 @image html overview_events_chain.png
612 (referring to the image, if @c A->ProcessEvent is called and it doesn't handle
613 the event, @c B->ProcessEvent will be called and so on...).
614 Note that in the case of wxWindow you can build a stack of event handlers
615 (see wxWindow::PushEventHandler() for more info).
616 If any of the handlers of the chain return @true, the function exits.
617 -# TryAfter() is called: for the wxWindow object this may propagate the
618 event to the window parent (recursively). If the event is still not
619 processed, ProcessEvent() on wxTheApp object is called as the last
622 Notice that steps (2)-(6) are performed in ProcessEventLocally()
623 which is called by this function.
628 @true if a suitable event handler function was found and executed,
629 and the function did not call wxEvent::Skip.
631 @see SearchEventTable()
633 virtual bool ProcessEvent(wxEvent
& event
);
636 Try to process the event in this handler and all those chained to it.
638 As explained in ProcessEvent() documentation, the event handlers may be
639 chained in a doubly-linked list. This function tries to process the
640 event in this handler (including performing any pre-processing done in
641 TryBefore(), e.g. applying validators) and all those following it in
642 the chain until the event is processed or the chain is exhausted.
644 This function is called from ProcessEvent() and, in turn, calls
645 TryBefore() and TryAfter(). It is not virtual and so cannot be
646 overridden but can, and should, be called to forward an event to
647 another handler instead of ProcessEvent() which would result in a
648 duplicate call to TryAfter(), e.g. resulting in all unprocessed events
649 being sent to the application object multiple times.
656 @true if this handler of one of those chained to it processed the
659 bool ProcessEventLocally(wxEvent
& event
);
662 Processes an event by calling ProcessEvent() and handles any exceptions
663 that occur in the process.
664 If an exception is thrown in event handler, wxApp::OnExceptionInMainLoop is called.
669 @return @true if the event was processed, @false if no handler was found
670 or an exception was thrown.
672 @see wxWindow::HandleWindowEvent
674 bool SafelyProcessEvent(wxEvent
& event
);
677 Processes the pending events previously queued using QueueEvent() or
678 AddPendingEvent(); you must call this function only if you are sure
679 there are pending events for this handler, otherwise a @c wxCHECK
682 The real processing still happens in ProcessEvent() which is called by this
685 Note that this function needs a valid application object (see
686 wxAppConsole::GetInstance()) because wxApp holds the list of the event
687 handlers with pending events and this function manipulates that list.
689 void ProcessPendingEvents();
692 Deletes all events queued on this event handler using QueueEvent() or
695 Use with care because the events which are deleted are (obviously) not
696 processed and this may have unwanted consequences (e.g. user actions events
699 void DeletePendingEvents();
702 Searches the event table, executing an event handler function if an appropriate
706 Event table to be searched.
708 Event to be matched against an event table entry.
710 @return @true if a suitable event handler function was found and
711 executed, and the function did not call wxEvent::Skip.
713 @remarks This function looks through the object's event table and tries
714 to find an entry that will match the event.
715 An entry will match if:
716 @li The event type matches, and
717 @li the identifier or identifier range matches, or the event table
718 entry's identifier is zero.
720 If a suitable function is called but calls wxEvent::Skip, this
721 function will fail, and searching will continue.
723 @todo this function in the header is listed as an "implementation only" function;
724 are we sure we want to document it?
728 virtual bool SearchEventTable(wxEventTable
& table
,
735 @name Connecting and disconnecting
740 Connects the given function dynamically with the event handler, id and
743 Notice that Bind() provides a more flexible and safer way to do the
744 same thing as Connect(), please use it in any new code -- while
745 Connect() is not formally deprecated due to its existing widespread
746 usage, it has no advantages compared to Bind().
748 This is an alternative to the use of static event tables. It is more
749 flexible as it allows to connect events generated by some object to an
750 event handler defined in a different object of a different class (which
751 is impossible to do directly with the event tables -- the events can be
752 only handled in another object if they are propagated upwards to it).
753 Do make sure to specify the correct @a eventSink when connecting to an
754 event of a different object.
756 See @ref overview_events_bind for more detailed explanation
757 of this function and the @ref page_samples_event sample for usage
760 This specific overload allows you to connect an event handler to a @e range
762 Do not confuse @e source IDs with event @e types: source IDs identify the
763 event generator objects (typically wxMenuItem or wxWindow objects) while the
764 event @e type identify which type of events should be handled by the
765 given @e function (an event generator object may generate many different
769 The first ID of the identifier range to be associated with the event
772 The last ID of the identifier range to be associated with the event
775 The event type to be associated with this event handler.
777 The event handler function. Note that this function should
778 be explicitly converted to the correct type which can be done using a macro
779 called @c wxFooEventHandler for the handler for any @c wxFooEvent.
781 Optional data to be associated with the event table entry.
782 wxWidgets will take ownership of this pointer, i.e. it will be
783 destroyed when the event handler is disconnected or at the program
784 termination. This pointer can be retrieved using
785 wxEvent::GetEventUserData() later.
787 Object whose member function should be called. It must be specified
788 when connecting an event generated by one object to a member
789 function of a different object. If it is omitted, @c this is used.
792 In wxPerl this function takes 4 arguments: @a id, @a lastid,
793 @a type, @a method; if @a method is undef, the handler is
799 void Connect(int id
, int lastId
, wxEventType eventType
,
800 wxObjectEventFunction function
,
801 wxObject
* userData
= NULL
,
802 wxEvtHandler
* eventSink
= NULL
);
805 See the Connect(int, int, wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
806 overload for more info.
808 This overload can be used to attach an event handler to a single source ID:
812 frame->Connect( wxID_EXIT,
814 wxCommandEventHandler(MyFrame::OnQuit) );
818 Not supported by wxPerl.
821 void Connect(int id
, wxEventType eventType
,
822 wxObjectEventFunction function
,
823 wxObject
* userData
= NULL
,
824 wxEvtHandler
* eventSink
= NULL
);
827 See the Connect(int, int, wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
828 overload for more info.
830 This overload will connect the given event handler so that regardless of the
831 ID of the event source, the handler will be called.
834 Not supported by wxPerl.
837 void Connect(wxEventType eventType
,
838 wxObjectEventFunction function
,
839 wxObject
* userData
= NULL
,
840 wxEvtHandler
* eventSink
= NULL
);
843 Disconnects the given function dynamically from the event handler, using the
844 specified parameters as search criteria and returning @true if a matching
845 function has been found and removed.
847 This method can only disconnect functions which have been added using the
848 Connect() method. There is no way to disconnect functions connected using
849 the (static) event tables.
852 The event type associated with this event handler.
854 The event handler function.
856 Data associated with the event table entry.
858 Object whose member function should be called.
861 Not supported by wxPerl.
864 bool Disconnect(wxEventType eventType
,
865 wxObjectEventFunction function
,
866 wxObject
* userData
= NULL
,
867 wxEvtHandler
* eventSink
= NULL
);
870 See the Disconnect(wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
871 overload for more info.
873 This overload takes the additional @a id parameter.
876 Not supported by wxPerl.
879 bool Disconnect(int id
= wxID_ANY
,
880 wxEventType eventType
= wxEVT_NULL
,
881 wxObjectEventFunction function
= NULL
,
882 wxObject
* userData
= NULL
,
883 wxEvtHandler
* eventSink
= NULL
);
886 See the Disconnect(wxEventType, wxObjectEventFunction, wxObject*, wxEvtHandler*)
887 overload for more info.
889 This overload takes an additional range of source IDs.
892 In wxPerl this function takes 3 arguments: @a id,
896 bool Disconnect(int id
, int lastId
,
897 wxEventType eventType
,
898 wxObjectEventFunction function
= NULL
,
899 wxObject
* userData
= NULL
,
900 wxEvtHandler
* eventSink
= NULL
);
905 @name Binding and Unbinding
910 Binds the given function, functor or method dynamically with the event.
912 This offers basically the same functionality as Connect(), but it is
913 more flexible as it also allows you to use ordinary functions and
914 arbitrary functors as event handlers. It is also less restrictive then
915 Connect() because you can use an arbitrary method as an event handler,
916 whereas Connect() requires a wxEvtHandler derived handler.
918 See @ref overview_events_bind for more detailed explanation
919 of this function and the @ref page_samples_event sample for usage
923 The event type to be associated with this event handler.
925 The event handler functor. This can be an ordinary function but also
926 an arbitrary functor like boost::function<>.
928 The first ID of the identifier range to be associated with the event
931 The last ID of the identifier range to be associated with the event
934 Optional data to be associated with the event table entry.
935 wxWidgets will take ownership of this pointer, i.e. it will be
936 destroyed when the event handler is disconnected or at the program
937 termination. This pointer can be retrieved using
938 wxEvent::GetEventUserData() later.
940 @see @ref overview_cpp_rtti_disabled
944 template <typename EventTag
, typename Functor
>
945 void Bind(const EventTag
& eventType
,
948 int lastId
= wxID_ANY
,
949 wxObject
*userData
= NULL
);
952 See the Bind<>(const EventTag&, Functor, int, int, wxObject*) overload for
955 This overload will bind the given method as the event handler.
958 The event type to be associated with this event handler.
960 The event handler method. This can be an arbitrary method (doesn't need
961 to be from a wxEvtHandler derived class).
963 Object whose method should be called. It must always be specified
964 so it can be checked at compile time whether the given method is an
965 actual member of the given handler.
967 The first ID of the identifier range to be associated with the event
970 The last ID of the identifier range to be associated with the event
973 Optional data to be associated with the event table entry.
974 wxWidgets will take ownership of this pointer, i.e. it will be
975 destroyed when the event handler is disconnected or at the program
976 termination. This pointer can be retrieved using
977 wxEvent::GetEventUserData() later.
979 @see @ref overview_cpp_rtti_disabled
983 template <typename EventTag
, typename Class
, typename EventArg
, typename EventHandler
>
984 void Bind(const EventTag
&eventType
,
985 void (Class::*method
)(EventArg
&),
986 EventHandler
*handler
,
988 int lastId
= wxID_ANY
,
989 wxObject
*userData
= NULL
);
991 Unbinds the given function, functor or method dynamically from the
992 event handler, using the specified parameters as search criteria and
993 returning @true if a matching function has been found and removed.
995 This method can only unbind functions, functors or methods which have
996 been added using the Bind<>() method. There is no way to unbind
997 functions bound using the (static) event tables.
1000 The event type associated with this event handler.
1002 The event handler functor. This can be an ordinary function but also
1003 an arbitrary functor like boost::function<>.
1005 The first ID of the identifier range associated with the event
1008 The last ID of the identifier range associated with the event
1011 Data associated with the event table entry.
1013 @see @ref overview_cpp_rtti_disabled
1017 template <typename EventTag
, typename Functor
>
1018 bool Unbind(const EventTag
& eventType
,
1021 int lastId
= wxID_ANY
,
1022 wxObject
*userData
= NULL
);
1025 See the Unbind<>(const EventTag&, Functor, int, int, wxObject*)
1026 overload for more info.
1028 This overload unbinds the given method from the event..
1031 The event type associated with this event handler.
1033 The event handler method associated with this event.
1035 Object whose method was called.
1037 The first ID of the identifier range associated with the event
1040 The last ID of the identifier range associated with the event
1043 Data associated with the event table entry.
1045 @see @ref overview_cpp_rtti_disabled
1049 template <typename EventTag
, typename Class
, typename EventArg
, typename EventHandler
>
1050 bool Unbind(const EventTag
&eventType
,
1051 void (Class::*method
)(EventArg
&),
1052 EventHandler
*handler
,
1054 int lastId
= wxID_ANY
,
1055 wxObject
*userData
= NULL
);
1058 @name User-supplied data
1063 Returns user-supplied client data.
1065 @remarks Normally, any extra data the programmer wishes to associate with
1066 the object should be made available by deriving a new class with
1069 @see SetClientData()
1071 void* GetClientData() const;
1074 Returns a pointer to the user-supplied client data object.
1076 @see SetClientObject(), wxClientData
1078 wxClientData
* GetClientObject() const;
1081 Sets user-supplied client data.
1084 Data to be associated with the event handler.
1086 @remarks Normally, any extra data the programmer wishes to associate
1087 with the object should be made available by deriving a new
1088 class with new data members. You must not call this method
1089 and SetClientObject on the same class - only one of them.
1091 @see GetClientData()
1093 void SetClientData(void* data
);
1096 Set the client data object. Any previous object will be deleted.
1098 @see GetClientObject(), wxClientData
1100 void SetClientObject(wxClientData
* data
);
1106 @name Event handler chaining
1108 wxEvtHandler can be arranged in a double-linked list of handlers
1109 which is automatically iterated by ProcessEvent() if needed.
1114 Returns @true if the event handler is enabled, @false otherwise.
1116 @see SetEvtHandlerEnabled()
1118 bool GetEvtHandlerEnabled() const;
1121 Returns the pointer to the next handler in the chain.
1123 @see SetNextHandler(), GetPreviousHandler(), SetPreviousHandler(),
1124 wxWindow::PushEventHandler, wxWindow::PopEventHandler
1126 wxEvtHandler
* GetNextHandler() const;
1129 Returns the pointer to the previous handler in the chain.
1131 @see SetPreviousHandler(), GetNextHandler(), SetNextHandler(),
1132 wxWindow::PushEventHandler, wxWindow::PopEventHandler
1134 wxEvtHandler
* GetPreviousHandler() const;
1137 Enables or disables the event handler.
1140 @true if the event handler is to be enabled, @false if it is to be disabled.
1142 @remarks You can use this function to avoid having to remove the event
1143 handler from the chain, for example when implementing a
1144 dialog editor and changing from edit to test mode.
1146 @see GetEvtHandlerEnabled()
1148 void SetEvtHandlerEnabled(bool enabled
);
1151 Sets the pointer to the next handler.
1154 See ProcessEvent() for more info about how the chains of event handlers
1155 are internally used.
1156 Also remember that wxEvtHandler uses double-linked lists and thus if you
1157 use this function, you should also call SetPreviousHandler() on the
1158 argument passed to this function:
1160 handlerA->SetNextHandler(handlerB);
1161 handlerB->SetPreviousHandler(handlerA);
1165 The event handler to be set as the next handler.
1168 @see @ref overview_events_processing
1170 virtual void SetNextHandler(wxEvtHandler
* handler
);
1173 Sets the pointer to the previous handler.
1174 All remarks about SetNextHandler() apply to this function as well.
1177 The event handler to be set as the previous handler.
1180 @see @ref overview_events_processing
1182 virtual void SetPreviousHandler(wxEvtHandler
* handler
);
1185 Unlinks this event handler from the chain it's part of (if any);
1186 then links the "previous" event handler to the "next" one
1187 (so that the chain won't be interrupted).
1189 E.g. if before calling Unlink() you have the following chain:
1190 @image html evthandler_unlink_before.png
1191 then after calling @c B->Unlink() you'll have:
1192 @image html evthandler_unlink_after.png
1199 Returns @true if the next and the previous handler pointers of this
1200 event handler instance are @NULL.
1204 @see SetPreviousHandler(), SetNextHandler()
1206 bool IsUnlinked() const;
1211 @name Global event filters.
1213 Methods for working with the global list of event filters.
1215 Event filters can be defined to pre-process all the events that happen
1216 in an application, see wxEventFilter documentation for more information.
1221 Add an event filter whose FilterEvent() method will be called for each
1222 and every event processed by wxWidgets.
1224 The filters are called in LIFO order and wxApp is registered as an
1225 event filter by default. The pointer must remain valid until it's
1226 removed with RemoveFilter() and is not deleted by wxEvtHandler.
1230 static void AddFilter(wxEventFilter
* filter
);
1233 Remove a filter previously installed with AddFilter().
1235 It's an error to remove a filter that hadn't been previously added or
1236 was already removed.
1240 static void RemoveFilter(wxEventFilter
* filter
);
1246 Method called by ProcessEvent() before examining this object event
1249 This method can be overridden to hook into the event processing logic
1250 as early as possible. You should usually call the base class version
1251 when overriding this method, even if wxEvtHandler itself does nothing
1252 here, some derived classes do use this method, e.g. wxWindow implements
1253 support for wxValidator in it.
1257 class MyClass : public BaseClass // inheriting from wxEvtHandler
1261 virtual bool TryBefore(wxEvent& event)
1263 if ( MyPreProcess(event) )
1266 return BaseClass::TryBefore(event);
1273 virtual bool TryBefore(wxEvent
& event
);
1276 Method called by ProcessEvent() as last resort.
1278 This method can be overridden to implement post-processing for the
1279 events which were not processed anywhere else.
1281 The base class version handles forwarding the unprocessed events to
1282 wxApp at wxEvtHandler level and propagating them upwards the window
1283 child-parent chain at wxWindow level and so should usually be called
1284 when overriding this method:
1286 class MyClass : public BaseClass // inheriting from wxEvtHandler
1290 virtual bool TryAfter(wxEvent& event)
1292 if ( BaseClass::TryAfter(event) )
1295 return MyPostProcess(event);
1302 virtual bool TryAfter(wxEvent
& event
);
1305 #endif // wxUSE_BASE
1310 Flags for categories of keys.
1312 These values are used by wxKeyEvent::IsKeyInCategory(). They may be
1313 combined via the bitwise operators |, &, and ~.
1317 enum wxKeyCategoryFlags
1319 /// arrow keys, on and off numeric keypads
1322 /// page up and page down keys, on and off numeric keypads
1323 WXK_CATEGORY_PAGING
,
1325 /// home and end keys, on and off numeric keypads
1328 /// tab key, on and off numeric keypads
1331 /// backspace and delete keys, on and off numeric keypads
1334 /// union of WXK_CATEGORY_ARROW, WXK_CATEGORY_PAGING, and WXK_CATEGORY_JUMP categories
1335 WXK_CATEGORY_NAVIGATION
1342 This event class contains information about key press and release events.
1344 The main information carried by this event is the key being pressed or
1345 released. It can be accessed using either GetKeyCode() function or
1346 GetUnicodeKey(). For the printable characters, the latter should be used as
1347 it works for any keys, including non-Latin-1 characters that can be entered
1348 when using national keyboard layouts. GetKeyCode() should be used to handle
1349 special characters (such as cursor arrows keys or @c HOME or @c INS and so
1350 on) which correspond to ::wxKeyCode enum elements above the @c WXK_START
1351 constant. While GetKeyCode() also returns the character code for Latin-1
1352 keys for compatibility, it doesn't work for Unicode characters in general
1353 and will return @c WXK_NONE for any non-Latin-1 ones. For this reason, it's
1354 recommended to always use GetUnicodeKey() and only fall back to GetKeyCode()
1355 if GetUnicodeKey() returned @c WXK_NONE meaning that the event corresponds
1356 to a non-printable special keys.
1358 While both of these functions can be used with the events of @c
1359 wxEVT_KEY_DOWN, @c wxEVT_KEY_UP and @c wxEVT_CHAR types, the values
1360 returned by them are different for the first two events and the last one.
1361 For the latter, the key returned corresponds to the character that would
1362 appear in e.g. a text zone if the user pressed the key in it. As such, its
1363 value depends on the current state of the Shift key and, for the letters,
1364 on the state of Caps Lock modifier. For example, if @c A key is pressed
1365 without Shift being held down, wxKeyEvent of type @c wxEVT_CHAR generated
1366 for this key press will return (from either GetKeyCode() or GetUnicodeKey()
1367 as their meanings coincide for ASCII characters) key code of 97
1368 corresponding the ASCII value of @c a. And if the same key is pressed but
1369 with Shift being held (or Caps Lock being active), then the key could would
1370 be 65, i.e. ASCII value of capital @c A.
1372 However for the key down and up events the returned key code will instead
1373 be @c A independently of the state of the modifier keys i.e. it depends
1374 only on physical key being pressed and is not translated to its logical
1375 representation using the current keyboard state. Such untranslated key
1376 codes are defined as follows:
1377 - For the letters they correspond to the @e upper case value of the
1379 - For the other alphanumeric keys (e.g. @c 7 or @c +), the untranslated
1380 key code corresponds to the character produced by the key when it is
1381 pressed without Shift. E.g. in standard US keyboard layout the
1382 untranslated key code for the key @c =/+ in the upper right corner of
1383 the keyboard is 61 which is the ASCII value of @c =.
1384 - For the rest of the keys (i.e. special non-printable keys) it is the
1385 same as the normal key code as no translation is used anyhow.
1387 Notice that the first rule applies to all Unicode letters, not just the
1388 usual Latin-1 ones. However for non-Latin-1 letters only GetUnicodeKey()
1389 can be used to retrieve the key code as GetKeyCode() just returns @c
1390 WXK_NONE in this case.
1392 To summarize: you should handle @c wxEVT_CHAR if you need the translated
1393 key and @c wxEVT_KEY_DOWN if you only need the value of the key itself,
1394 independent of the current keyboard state.
1396 @note Not all key down events may be generated by the user. As an example,
1397 @c wxEVT_KEY_DOWN with @c = key code can be generated using the
1398 standard US keyboard layout but not using the German one because the @c
1399 = key corresponds to Shift-0 key combination in this layout and the key
1400 code for it is @c 0, not @c =. Because of this you should avoid
1401 requiring your users to type key events that might be impossible to
1402 enter on their keyboard.
1405 Another difference between key and char events is that another kind of
1406 translation is done for the latter ones when the Control key is pressed:
1407 char events for ASCII letters in this case carry codes corresponding to the
1408 ASCII value of Ctrl-Latter, i.e. 1 for Ctrl-A, 2 for Ctrl-B and so on until
1409 26 for Ctrl-Z. This is convenient for terminal-like applications and can be
1410 completely ignored by all the other ones (if you need to handle Ctrl-A it
1411 is probably a better idea to use the key event rather than the char one).
1412 Notice that currently no translation is done for the presses of @c [, @c
1413 \\, @c ], @c ^ and @c _ keys which might be mapped to ASCII values from 27
1415 Since version 2.9.2, the enum values @c WXK_CONTROL_A - @c WXK_CONTROL_Z
1416 can be used instead of the non-descriptive constant values 1-26.
1418 Finally, modifier keys only generate key events but no char events at all.
1419 The modifiers keys are @c WXK_SHIFT, @c WXK_CONTROL, @c WXK_ALT and various
1420 @c WXK_WINDOWS_XXX from ::wxKeyCode enum.
1422 Modifier keys events are special in one additional aspect: usually the
1423 keyboard state associated with a key press is well defined, e.g.
1424 wxKeyboardState::ShiftDown() returns @c true only if the Shift key was held
1425 pressed when the key that generated this event itself was pressed. There is
1426 an ambiguity for the key press events for Shift key itself however. By
1427 convention, it is considered to be already pressed when it is pressed and
1428 already released when it is released. In other words, @c wxEVT_KEY_DOWN
1429 event for the Shift key itself will have @c wxMOD_SHIFT in GetModifiers()
1430 and ShiftDown() will return true while the @c wxEVT_KEY_UP event for Shift
1431 itself will not have @c wxMOD_SHIFT in its modifiers and ShiftDown() will
1435 @b Tip: You may discover the key codes and modifiers generated by all the
1436 keys on your system interactively by running the @ref
1437 page_samples_keyboard wxWidgets sample and pressing some keys in it.
1439 @note If a key down (@c EVT_KEY_DOWN) event is caught and the event handler
1440 does not call @c event.Skip() then the corresponding char event
1441 (@c EVT_CHAR) will not happen. This is by design and enables the
1442 programs that handle both types of events to avoid processing the
1443 same key twice. As a consequence, if you do not want to suppress the
1444 @c wxEVT_CHAR events for the keys you handle, always call @c
1445 event.Skip() in your @c wxEVT_KEY_DOWN handler. Not doing may also
1446 prevent accelerators defined using this key from working.
1448 @note If a key is maintained in a pressed state, you will typically get a
1449 lot of (automatically generated) key down events but only one key up
1450 one at the end when the key is released so it is wrong to assume that
1451 there is one up event corresponding to each down one.
1453 @note For Windows programmers: The key and char events in wxWidgets are
1454 similar to but slightly different from Windows @c WM_KEYDOWN and
1455 @c WM_CHAR events. In particular, Alt-x combination will generate a
1456 char event in wxWidgets (unless it is used as an accelerator) and
1457 almost all keys, including ones without ASCII equivalents, generate
1461 @beginEventTable{wxKeyEvent}
1462 @event{EVT_KEY_DOWN(func)}
1463 Process a @c wxEVT_KEY_DOWN event (any key has been pressed). If this
1464 event is handled and not skipped, @c wxEVT_CHAR will not be generated
1465 at all for this key press (but @c wxEVT_KEY_UP will be).
1466 @event{EVT_KEY_UP(func)}
1467 Process a @c wxEVT_KEY_UP event (any key has been released).
1468 @event{EVT_CHAR(func)}
1469 Process a @c wxEVT_CHAR event.
1470 @event{EVT_CHAR_HOOK(func)}
1471 Process a @c wxEVT_CHAR_HOOK event. Unlike all the other key events,
1472 this event is propagated upwards the window hierarchy which allows
1473 intercepting it in the parent window of the focused window to which it
1474 is sent initially (if there is no focused window, this event is sent to
1475 the wxApp global object). It is also generated before any other key
1476 events and so gives the parent window an opportunity to modify the
1477 keyboard handling of its children, e.g. it is used internally by
1478 wxWidgets in some ports to intercept pressing Esc key in any child of a
1479 dialog to close the dialog itself when it's pressed. By default, if
1480 this event is handled, i.e. the handler doesn't call wxEvent::Skip(),
1481 neither @c wxEVT_KEY_DOWN nor @c wxEVT_CHAR events will be generated
1482 (although @c wxEVT_KEY_UP still will be), i.e. it replaces the normal
1483 key events. However by calling the special DoAllowNextEvent() method
1484 you can handle @c wxEVT_CHAR_HOOK and still allow normal events
1485 generation. This is something that is rarely useful but can be required
1486 if you need to prevent a parent @c wxEVT_CHAR_HOOK handler from running
1487 without suppressing the normal key events. Finally notice that this
1488 event is not generated when the mouse is captured as it is considered
1489 that the window which has the capture should receive all the keyboard
1490 events too without allowing its parent wxTopLevelWindow to interfere
1491 with their processing.
1494 @see wxKeyboardState
1499 class wxKeyEvent
: public wxEvent
,
1500 public wxKeyboardState
1505 Currently, the only valid event types are @c wxEVT_CHAR and @c wxEVT_CHAR_HOOK.
1507 wxKeyEvent(wxEventType keyEventType
= wxEVT_NULL
);
1510 Returns the key code of the key that generated this event.
1512 ASCII symbols return normal ASCII values, while events from special
1513 keys such as "left cursor arrow" (@c WXK_LEFT) return values outside of
1514 the ASCII range. See ::wxKeyCode for a full list of the virtual key
1517 Note that this method returns a meaningful value only for special
1518 non-alphanumeric keys or if the user entered a Latin-1 character (this
1519 includes ASCII and the accented letters found in Western European
1520 languages but not letters of other alphabets such as e.g. Cyrillic).
1521 Otherwise it simply method returns @c WXK_NONE and GetUnicodeKey()
1522 should be used to obtain the corresponding Unicode character.
1524 Using GetUnicodeKey() is in general the right thing to do if you are
1525 interested in the characters typed by the user, GetKeyCode() should be
1526 only used for special keys (for which GetUnicodeKey() returns @c
1527 WXK_NONE). To handle both kinds of keys you might write:
1529 void MyHandler::OnChar(wxKeyEvent& event)
1531 wxChar uc = event.GetUnicodeKey();
1532 if ( uc != WXK_NONE )
1534 // It's a "normal" character. Notice that this includes
1535 // control characters in 1..31 range, e.g. WXK_RETURN or
1536 // WXK_BACK, so check for them explicitly.
1539 wxLogMessage("You pressed '%c'", uc);
1543 // It's a control character
1547 else // No Unicode equivalent.
1549 // It's a special key, deal with all the known ones:
1550 switch ( event.GetKeyCode() )
1565 int GetKeyCode() const;
1568 Returns true if the key is in the given key category.
1571 A bitwise combination of named ::wxKeyCategoryFlags constants.
1575 bool IsKeyInCategory(int category
) const;
1579 Obtains the position (in client coordinates) at which the key was pressed.
1581 Notice that under most platforms this position is simply the current
1582 mouse pointer position and has no special relationship to the key event
1585 @a x and @a y may be @NULL if the corresponding coordinate is not
1588 wxPoint
GetPosition() const;
1589 void GetPosition(wxCoord
* x
, wxCoord
* y
) const;
1593 Returns the raw key code for this event.
1595 The flags are platform-dependent and should only be used if the
1596 functionality provided by other wxKeyEvent methods is insufficient.
1598 Under MSW, the raw key code is the value of @c wParam parameter of the
1599 corresponding message.
1601 Under GTK, the raw key code is the @c keyval field of the corresponding
1604 Under OS X, the raw key code is the @c keyCode field of the
1605 corresponding NSEvent.
1607 @note Currently the raw key codes are not supported by all ports, use
1608 @ifdef_ wxHAS_RAW_KEY_CODES to determine if this feature is available.
1610 wxUint32
GetRawKeyCode() const;
1613 Returns the low level key flags for this event.
1615 The flags are platform-dependent and should only be used if the
1616 functionality provided by other wxKeyEvent methods is insufficient.
1618 Under MSW, the raw flags are just the value of @c lParam parameter of
1619 the corresponding message.
1621 Under GTK, the raw flags contain the @c hardware_keycode field of the
1622 corresponding GDK event.
1624 Under OS X, the raw flags contain the modifiers state.
1626 @note Currently the raw key flags are not supported by all ports, use
1627 @ifdef_ wxHAS_RAW_KEY_CODES to determine if this feature is available.
1629 wxUint32
GetRawKeyFlags() const;
1632 Returns the Unicode character corresponding to this key event.
1634 If the key pressed doesn't have any character value (e.g. a cursor key)
1635 this method will return @c WXK_NONE. In this case you should use
1636 GetKeyCode() to retrieve the value of the key.
1638 This function is only available in Unicode build, i.e. when
1639 @c wxUSE_UNICODE is 1.
1641 wxChar
GetUnicodeKey() const;
1644 Returns the X position (in client coordinates) of the event.
1648 wxCoord
GetX() const;
1651 Returns the Y position (in client coordinates) of the event.
1655 wxCoord
GetY() const;
1658 Allow normal key events generation.
1660 Can be called from @c wxEVT_CHAR_HOOK handler to indicate that the
1661 generation of normal events should @em not be suppressed, as it happens
1662 by default when this event is handled.
1664 The intended use of this method is to allow some window object to
1665 prevent @c wxEVT_CHAR_HOOK handler in its parent window from running by
1666 defining its own handler for this event. Without calling this method,
1667 this would result in not generating @c wxEVT_KEY_DOWN nor @c wxEVT_CHAR
1668 events at all but by calling it you can ensure that these events would
1669 still be generated, even if @c wxEVT_CHAR_HOOK event was handled.
1673 void DoAllowNextEvent();
1676 Returns @true if DoAllowNextEvent() had been called, @false by default.
1678 This method is used by wxWidgets itself to determine whether the normal
1679 key events should be generated after @c wxEVT_CHAR_HOOK processing.
1683 bool IsNextEventAllowed() const;
1694 // Which button is down?
1697 wxJOY_BUTTON_ANY
= -1,
1706 @class wxJoystickEvent
1708 This event class contains information about joystick events, particularly
1709 events received by windows.
1711 @beginEventTable{wxJoystickEvent}
1712 @event{EVT_JOY_BUTTON_DOWN(func)}
1713 Process a @c wxEVT_JOY_BUTTON_DOWN event.
1714 @event{EVT_JOY_BUTTON_UP(func)}
1715 Process a @c wxEVT_JOY_BUTTON_UP event.
1716 @event{EVT_JOY_MOVE(func)}
1717 Process a @c wxEVT_JOY_MOVE event.
1718 @event{EVT_JOY_ZMOVE(func)}
1719 Process a @c wxEVT_JOY_ZMOVE event.
1720 @event{EVT_JOYSTICK_EVENTS(func)}
1721 Processes all joystick events.
1729 class wxJoystickEvent
: public wxEvent
1735 wxJoystickEvent(wxEventType eventType
= wxEVT_NULL
, int state
= 0,
1736 int joystick
= wxJOYSTICK1
,
1740 Returns @true if the event was a down event from the specified button
1744 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1745 indicate any button down event.
1747 bool ButtonDown(int button
= wxJOY_BUTTON_ANY
) const;
1750 Returns @true if the specified button (or any button) was in a down state.
1753 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1754 indicate any button down event.
1756 bool ButtonIsDown(int button
= wxJOY_BUTTON_ANY
) const;
1759 Returns @true if the event was an up event from the specified button
1763 Can be @c wxJOY_BUTTONn where @c n is 1, 2, 3 or 4; or @c wxJOY_BUTTON_ANY to
1764 indicate any button down event.
1766 bool ButtonUp(int button
= wxJOY_BUTTON_ANY
) const;
1769 Returns the identifier of the button changing state.
1771 This is a @c wxJOY_BUTTONn identifier, where @c n is one of 1, 2, 3, 4.
1773 int GetButtonChange() const;
1776 Returns the down state of the buttons.
1778 This is a @c wxJOY_BUTTONn identifier, where @c n is one of 1, 2, 3, 4.
1780 int GetButtonState() const;
1783 Returns the identifier of the joystick generating the event - one of
1784 wxJOYSTICK1 and wxJOYSTICK2.
1786 int GetJoystick() const;
1789 Returns the x, y position of the joystick event.
1791 These coordinates are valid for all the events except wxEVT_JOY_ZMOVE.
1793 wxPoint
GetPosition() const;
1796 Returns the z position of the joystick event.
1798 This method can only be used for wxEVT_JOY_ZMOVE events.
1800 int GetZPosition() const;
1803 Returns @true if this was a button up or down event
1804 (@e not 'is any button down?').
1806 bool IsButton() const;
1809 Returns @true if this was an x, y move event.
1811 bool IsMove() const;
1814 Returns @true if this was a z move event.
1816 bool IsZMove() const;
1822 @class wxScrollWinEvent
1824 A scroll event holds information about events sent from scrolling windows.
1826 Note that you can use the EVT_SCROLLWIN* macros for intercepting scroll window events
1827 from the receiving window.
1829 @beginEventTable{wxScrollWinEvent}
1830 @event{EVT_SCROLLWIN(func)}
1831 Process all scroll events.
1832 @event{EVT_SCROLLWIN_TOP(func)}
1833 Process @c wxEVT_SCROLLWIN_TOP scroll-to-top events.
1834 @event{EVT_SCROLLWIN_BOTTOM(func)}
1835 Process @c wxEVT_SCROLLWIN_BOTTOM scroll-to-bottom events.
1836 @event{EVT_SCROLLWIN_LINEUP(func)}
1837 Process @c wxEVT_SCROLLWIN_LINEUP line up events.
1838 @event{EVT_SCROLLWIN_LINEDOWN(func)}
1839 Process @c wxEVT_SCROLLWIN_LINEDOWN line down events.
1840 @event{EVT_SCROLLWIN_PAGEUP(func)}
1841 Process @c wxEVT_SCROLLWIN_PAGEUP page up events.
1842 @event{EVT_SCROLLWIN_PAGEDOWN(func)}
1843 Process @c wxEVT_SCROLLWIN_PAGEDOWN page down events.
1844 @event{EVT_SCROLLWIN_THUMBTRACK(func)}
1845 Process @c wxEVT_SCROLLWIN_THUMBTRACK thumbtrack events
1846 (frequent events sent as the user drags the thumbtrack).
1847 @event{EVT_SCROLLWIN_THUMBRELEASE(func)}
1848 Process @c wxEVT_SCROLLWIN_THUMBRELEASE thumb release events.
1855 @see wxScrollEvent, @ref overview_events
1857 class wxScrollWinEvent
: public wxEvent
1863 wxScrollWinEvent(wxEventType commandType
= wxEVT_NULL
, int pos
= 0,
1864 int orientation
= 0);
1867 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
1870 @todo wxHORIZONTAL and wxVERTICAL should go in their own enum
1872 int GetOrientation() const;
1875 Returns the position of the scrollbar for the thumb track and release events.
1877 Note that this field can't be used for the other events, you need to query
1878 the window itself for the current position in that case.
1880 int GetPosition() const;
1882 void SetOrientation(int orient
);
1883 void SetPosition(int pos
);
1889 @class wxSysColourChangedEvent
1891 This class is used for system colour change events, which are generated
1892 when the user changes the colour settings using the control panel.
1893 This is only appropriate under Windows.
1896 The default event handler for this event propagates the event to child windows,
1897 since Windows only sends the events to top-level windows.
1898 If intercepting this event for a top-level window, remember to call the base
1899 class handler, or to pass the event on to the window's children explicitly.
1901 @beginEventTable{wxSysColourChangedEvent}
1902 @event{EVT_SYS_COLOUR_CHANGED(func)}
1903 Process a @c wxEVT_SYS_COLOUR_CHANGED event.
1909 @see @ref overview_events
1911 class wxSysColourChangedEvent
: public wxEvent
1917 wxSysColourChangedEvent();
1923 @class wxCommandEvent
1925 This event class contains information about command events, which originate
1926 from a variety of simple controls.
1928 Note that wxCommandEvents and wxCommandEvent-derived event classes by default
1929 and unlike other wxEvent-derived classes propagate upward from the source
1930 window (the window which emits the event) up to the first parent which processes
1931 the event. Be sure to read @ref overview_events_propagation.
1933 More complex controls, such as wxTreeCtrl, have separate command event classes.
1935 @beginEventTable{wxCommandEvent}
1936 @event{EVT_COMMAND(id, event, func)}
1937 Process a command, supplying the window identifier, command event identifier,
1938 and member function.
1939 @event{EVT_COMMAND_RANGE(id1, id2, event, func)}
1940 Process a command for a range of window identifiers, supplying the minimum and
1941 maximum window identifiers, command event identifier, and member function.
1942 @event{EVT_BUTTON(id, func)}
1943 Process a @c wxEVT_BUTTON command, which is generated by a wxButton control.
1944 @event{EVT_CHECKBOX(id, func)}
1945 Process a @c wxEVT_CHECKBOX command, which is generated by a wxCheckBox control.
1946 @event{EVT_CHOICE(id, func)}
1947 Process a @c wxEVT_CHOICE command, which is generated by a wxChoice control.
1948 @event{EVT_COMBOBOX(id, func)}
1949 Process a @c wxEVT_COMBOBOX command, which is generated by a wxComboBox control.
1950 @event{EVT_LISTBOX(id, func)}
1951 Process a @c wxEVT_LISTBOX command, which is generated by a wxListBox control.
1952 @event{EVT_LISTBOX_DCLICK(id, func)}
1953 Process a @c wxEVT_LISTBOX_DCLICK command, which is generated by a wxListBox control.
1954 @event{EVT_CHECKLISTBOX(id, func)}
1955 Process a @c wxEVT_CHECKLISTBOX command, which is generated by a wxCheckListBox control.
1956 @event{EVT_MENU(id, func)}
1957 Process a @c wxEVT_MENU command, which is generated by a menu item.
1958 @event{EVT_MENU_RANGE(id1, id2, func)}
1959 Process a @c wxEVT_MENU command, which is generated by a range of menu items.
1960 @event{EVT_CONTEXT_MENU(func)}
1961 Process the event generated when the user has requested a popup menu to appear by
1962 pressing a special keyboard key (under Windows) or by right clicking the mouse.
1963 @event{EVT_RADIOBOX(id, func)}
1964 Process a @c wxEVT_RADIOBOX command, which is generated by a wxRadioBox control.
1965 @event{EVT_RADIOBUTTON(id, func)}
1966 Process a @c wxEVT_RADIOBUTTON command, which is generated by a wxRadioButton control.
1967 @event{EVT_SCROLLBAR(id, func)}
1968 Process a @c wxEVT_SCROLLBAR command, which is generated by a wxScrollBar
1969 control. This is provided for compatibility only; more specific scrollbar event macros
1970 should be used instead (see wxScrollEvent).
1971 @event{EVT_SLIDER(id, func)}
1972 Process a @c wxEVT_SLIDER command, which is generated by a wxSlider control.
1973 @event{EVT_TEXT(id, func)}
1974 Process a @c wxEVT_TEXT command, which is generated by a wxTextCtrl control.
1975 @event{EVT_TEXT_ENTER(id, func)}
1976 Process a @c wxEVT_TEXT_ENTER command, which is generated by a wxTextCtrl control.
1977 Note that you must use wxTE_PROCESS_ENTER flag when creating the control if you want it
1978 to generate such events.
1979 @event{EVT_TEXT_MAXLEN(id, func)}
1980 Process a @c wxEVT_TEXT_MAXLEN command, which is generated by a wxTextCtrl control
1981 when the user tries to enter more characters into it than the limit previously set
1982 with SetMaxLength().
1983 @event{EVT_TOGGLEBUTTON(id, func)}
1984 Process a @c wxEVT_TOGGLEBUTTON event.
1985 @event{EVT_TOOL(id, func)}
1986 Process a @c wxEVT_TOOL event (a synonym for @c wxEVT_MENU).
1987 Pass the id of the tool.
1988 @event{EVT_TOOL_RANGE(id1, id2, func)}
1989 Process a @c wxEVT_TOOL event for a range of identifiers. Pass the ids of the tools.
1990 @event{EVT_TOOL_RCLICKED(id, func)}
1991 Process a @c wxEVT_TOOL_RCLICKED event. Pass the id of the tool. (Not available on wxOSX.)
1992 @event{EVT_TOOL_RCLICKED_RANGE(id1, id2, func)}
1993 Process a @c wxEVT_TOOL_RCLICKED event for a range of ids. Pass the ids of the tools. (Not available on wxOSX.)
1994 @event{EVT_TOOL_ENTER(id, func)}
1995 Process a @c wxEVT_TOOL_ENTER event. Pass the id of the toolbar itself.
1996 The value of wxCommandEvent::GetSelection() is the tool id, or -1 if the mouse cursor
1997 has moved off a tool. (Not available on wxOSX.)
1998 @event{EVT_COMMAND_LEFT_CLICK(id, func)}
1999 Process a @c wxEVT_COMMAND_LEFT_CLICK command, which is generated by a control (wxMSW only).
2000 @event{EVT_COMMAND_LEFT_DCLICK(id, func)}
2001 Process a @c wxEVT_COMMAND_LEFT_DCLICK command, which is generated by a control (wxMSW only).
2002 @event{EVT_COMMAND_RIGHT_CLICK(id, func)}
2003 Process a @c wxEVT_COMMAND_RIGHT_CLICK command, which is generated by a control (wxMSW only).
2004 @event{EVT_COMMAND_SET_FOCUS(id, func)}
2005 Process a @c wxEVT_COMMAND_SET_FOCUS command, which is generated by a control (wxMSW only).
2006 @event{EVT_COMMAND_KILL_FOCUS(id, func)}
2007 Process a @c wxEVT_COMMAND_KILL_FOCUS command, which is generated by a control (wxMSW only).
2008 @event{EVT_COMMAND_ENTER(id, func)}
2009 Process a @c wxEVT_COMMAND_ENTER command, which is generated by a control.
2015 class wxCommandEvent
: public wxEvent
2021 wxCommandEvent(wxEventType commandEventType
= wxEVT_NULL
, int id
= 0);
2024 Returns client data pointer for a listbox or choice selection event
2025 (not valid for a deselection).
2027 void* GetClientData() const;
2030 Returns client object pointer for a listbox or choice selection event
2031 (not valid for a deselection).
2033 wxClientData
* GetClientObject() const;
2036 Returns extra information dependent on the event objects type.
2038 If the event comes from a listbox selection, it is a boolean
2039 determining whether the event was a selection (@true) or a
2040 deselection (@false). A listbox deselection only occurs for
2041 multiple-selection boxes, and in this case the index and string values
2042 are indeterminate and the listbox must be examined by the application.
2044 long GetExtraLong() const;
2047 Returns the integer identifier corresponding to a listbox, choice or
2048 radiobox selection (only if the event was a selection, not a deselection),
2049 or a boolean value representing the value of a checkbox.
2051 For a menu item, this method returns -1 if the item is not checkable or
2052 a boolean value (true or false) for checkable items indicating the new
2058 Returns item index for a listbox or choice selection event (not valid for
2061 int GetSelection() const;
2064 Returns item string for a listbox or choice selection event. If one
2065 or several items have been deselected, returns the index of the first
2066 deselected item. If some items have been selected and others deselected
2067 at the same time, it will return the index of the first selected item.
2069 wxString
GetString() const;
2072 This method can be used with checkbox and menu events: for the checkboxes, the
2073 method returns @true for a selection event and @false for a deselection one.
2074 For the menu events, this method indicates if the menu item just has become
2075 checked or unchecked (and thus only makes sense for checkable menu items).
2077 Notice that this method cannot be used with wxCheckListBox currently.
2079 bool IsChecked() const;
2082 For a listbox or similar event, returns @true if it is a selection, @false
2083 if it is a deselection. If some items have been selected and others deselected
2084 at the same time, it will return @true.
2086 bool IsSelection() const;
2089 Sets the client data for this event.
2091 void SetClientData(void* clientData
);
2094 Sets the client object for this event. The client object is not owned by the
2095 event object and the event object will not delete the client object in its destructor.
2097 The client object must be owned and deleted by another object (e.g. a control)
2098 that has longer life time than the event object.
2100 void SetClientObject(wxClientData
* clientObject
);
2103 Sets the @b m_extraLong member.
2105 void SetExtraLong(long extraLong
);
2108 Sets the @b m_commandInt member.
2110 void SetInt(int intCommand
);
2113 Sets the @b m_commandString member.
2115 void SetString(const wxString
& string
);
2121 @class wxWindowCreateEvent
2123 This event is sent just after the actual window associated with a wxWindow
2124 object has been created.
2126 Since it is derived from wxCommandEvent, the event propagates up
2127 the window hierarchy.
2129 @beginEventTable{wxWindowCreateEvent}
2130 @event{EVT_WINDOW_CREATE(func)}
2131 Process a @c wxEVT_CREATE event.
2137 @see @ref overview_events, wxWindowDestroyEvent
2139 class wxWindowCreateEvent
: public wxCommandEvent
2145 wxWindowCreateEvent(wxWindow
* win
= NULL
);
2147 /// Return the window being created.
2148 wxWindow
*GetWindow() const;
2156 A paint event is sent when a window's contents needs to be repainted.
2158 The handler of this event must create a wxPaintDC object and use it for
2159 painting the window contents. For example:
2161 void MyWindow::OnPaint(wxPaintEvent& event)
2169 Notice that you must @e not create other kinds of wxDC (e.g. wxClientDC or
2170 wxWindowDC) in EVT_PAINT handlers and also don't create wxPaintDC outside
2171 of this event handlers.
2174 You can optimize painting by retrieving the rectangles that have been damaged
2175 and only repainting these. The rectangles are in terms of the client area,
2176 and are unscrolled, so you will need to do some calculations using the current
2177 view position to obtain logical, scrolled units.
2178 Here is an example of using the wxRegionIterator class:
2180 // Called when window needs to be repainted.
2181 void MyWindow::OnPaint(wxPaintEvent& event)
2185 // Find Out where the window is scrolled to
2186 int vbX,vbY; // Top left corner of client
2187 GetViewStart(&vbX,&vbY);
2189 int vX,vY,vW,vH; // Dimensions of client area in pixels
2190 wxRegionIterator upd(GetUpdateRegion()); // get the update rect list
2199 // Alternatively we can do this:
2200 // wxRect rect(upd.GetRect());
2202 // Repaint this rectangle
2211 Please notice that in general it is impossible to change the drawing of a
2212 standard control (such as wxButton) and so you shouldn't attempt to handle
2213 paint events for them as even if it might work on some platforms, this is
2214 inherently not portable and won't work everywhere.
2217 @beginEventTable{wxPaintEvent}
2218 @event{EVT_PAINT(func)}
2219 Process a @c wxEVT_PAINT event.
2225 @see @ref overview_events
2227 class wxPaintEvent
: public wxEvent
2233 wxPaintEvent(int id
= 0);
2239 @class wxMaximizeEvent
2241 An event being sent when a top level window is maximized. Notice that it is
2242 not sent when the window is restored to its original size after it had been
2243 maximized, only a normal wxSizeEvent is generated in this case.
2245 Currently this event is only generated in wxMSW, wxGTK, wxOSX/Cocoa and wxOS2
2246 ports so portable programs should only rely on receiving @c wxEVT_SIZE and
2247 not necessarily this event when the window is maximized.
2249 @beginEventTable{wxMaximizeEvent}
2250 @event{EVT_MAXIMIZE(func)}
2251 Process a @c wxEVT_MAXIMIZE event.
2257 @see @ref overview_events, wxTopLevelWindow::Maximize,
2258 wxTopLevelWindow::IsMaximized
2260 class wxMaximizeEvent
: public wxEvent
2264 Constructor. Only used by wxWidgets internally.
2266 wxMaximizeEvent(int id
= 0);
2270 The possibles modes to pass to wxUpdateUIEvent::SetMode().
2274 /** Send UI update events to all windows. */
2275 wxUPDATE_UI_PROCESS_ALL
,
2277 /** Send UI update events to windows that have
2278 the wxWS_EX_PROCESS_UI_UPDATES flag specified. */
2279 wxUPDATE_UI_PROCESS_SPECIFIED
2284 @class wxUpdateUIEvent
2286 This class is used for pseudo-events which are called by wxWidgets
2287 to give an application the chance to update various user interface elements.
2289 Without update UI events, an application has to work hard to check/uncheck,
2290 enable/disable, show/hide, and set the text for elements such as menu items
2291 and toolbar buttons. The code for doing this has to be mixed up with the code
2292 that is invoked when an action is invoked for a menu item or button.
2294 With update UI events, you define an event handler to look at the state of the
2295 application and change UI elements accordingly. wxWidgets will call your member
2296 functions in idle time, so you don't have to worry where to call this code.
2298 In addition to being a clearer and more declarative method, it also means you don't
2299 have to worry whether you're updating a toolbar or menubar identifier. The same
2300 handler can update a menu item and toolbar button, if the identifier is the same.
2301 Instead of directly manipulating the menu or button, you call functions in the event
2302 object, such as wxUpdateUIEvent::Check. wxWidgets will determine whether such a
2303 call has been made, and which UI element to update.
2305 These events will work for popup menus as well as menubars. Just before a menu is
2306 popped up, wxMenu::UpdateUI is called to process any UI events for the window that
2309 If you find that the overhead of UI update processing is affecting your application,
2310 you can do one or both of the following:
2311 @li Call wxUpdateUIEvent::SetMode with a value of wxUPDATE_UI_PROCESS_SPECIFIED,
2312 and set the extra style wxWS_EX_PROCESS_UI_UPDATES for every window that should
2313 receive update events. No other windows will receive update events.
2314 @li Call wxUpdateUIEvent::SetUpdateInterval with a millisecond value to set the delay
2315 between updates. You may need to call wxWindow::UpdateWindowUI at critical points,
2316 for example when a dialog is about to be shown, in case the user sees a slight
2317 delay before windows are updated.
2319 Note that although events are sent in idle time, defining a wxIdleEvent handler
2320 for a window does not affect this because the events are sent from wxWindow::OnInternalIdle
2321 which is always called in idle time.
2323 wxWidgets tries to optimize update events on some platforms.
2324 On Windows and GTK+, events for menubar items are only sent when the menu is about
2325 to be shown, and not in idle time.
2328 @beginEventTable{wxUpdateUIEvent}
2329 @event{EVT_UPDATE_UI(id, func)}
2330 Process a @c wxEVT_UPDATE_UI event for the command with the given id.
2331 @event{EVT_UPDATE_UI_RANGE(id1, id2, func)}
2332 Process a @c wxEVT_UPDATE_UI event for any command with id included in the given range.
2338 @see @ref overview_events
2340 class wxUpdateUIEvent
: public wxCommandEvent
2346 wxUpdateUIEvent(wxWindowID commandId
= 0);
2349 Returns @true if it is appropriate to update (send UI update events to)
2352 This function looks at the mode used (see wxUpdateUIEvent::SetMode),
2353 the wxWS_EX_PROCESS_UI_UPDATES flag in @a window, the time update events
2354 were last sent in idle time, and the update interval, to determine whether
2355 events should be sent to this window now. By default this will always
2356 return @true because the update mode is initially wxUPDATE_UI_PROCESS_ALL
2357 and the interval is set to 0; so update events will be sent as often as
2358 possible. You can reduce the frequency that events are sent by changing the
2359 mode and/or setting an update interval.
2361 @see ResetUpdateTime(), SetUpdateInterval(), SetMode()
2363 static bool CanUpdate(wxWindow
* window
);
2366 Check or uncheck the UI element.
2368 void Check(bool check
);
2371 Enable or disable the UI element.
2373 void Enable(bool enable
);
2376 Returns @true if the UI element should be checked.
2378 bool GetChecked() const;
2381 Returns @true if the UI element should be enabled.
2383 bool GetEnabled() const;
2386 Static function returning a value specifying how wxWidgets will send update
2387 events: to all windows, or only to those which specify that they will process
2392 static wxUpdateUIMode
GetMode();
2395 Returns @true if the application has called Check().
2396 For wxWidgets internal use only.
2398 bool GetSetChecked() const;
2401 Returns @true if the application has called Enable().
2402 For wxWidgets internal use only.
2404 bool GetSetEnabled() const;
2407 Returns @true if the application has called Show().
2408 For wxWidgets internal use only.
2410 bool GetSetShown() const;
2413 Returns @true if the application has called SetText().
2414 For wxWidgets internal use only.
2416 bool GetSetText() const;
2419 Returns @true if the UI element should be shown.
2421 bool GetShown() const;
2424 Returns the text that should be set for the UI element.
2426 wxString
GetText() const;
2429 Returns the current interval between updates in milliseconds.
2430 The value -1 disables updates, 0 updates as frequently as possible.
2432 @see SetUpdateInterval().
2434 static long GetUpdateInterval();
2437 Used internally to reset the last-updated time to the current time.
2439 It is assumed that update events are normally sent in idle time, so this
2440 is called at the end of idle processing.
2442 @see CanUpdate(), SetUpdateInterval(), SetMode()
2444 static void ResetUpdateTime();
2447 Specify how wxWidgets will send update events: to all windows, or only to
2448 those which specify that they will process the events.
2451 this parameter may be one of the ::wxUpdateUIMode enumeration values.
2452 The default mode is wxUPDATE_UI_PROCESS_ALL.
2454 static void SetMode(wxUpdateUIMode mode
);
2457 Sets the text for this UI element.
2459 void SetText(const wxString
& text
);
2462 Sets the interval between updates in milliseconds.
2464 Set to -1 to disable updates, or to 0 to update as frequently as possible.
2467 Use this to reduce the overhead of UI update events if your application
2468 has a lot of windows. If you set the value to -1 or greater than 0,
2469 you may also need to call wxWindow::UpdateWindowUI at appropriate points
2470 in your application, such as when a dialog is about to be shown.
2472 static void SetUpdateInterval(long updateInterval
);
2475 Show or hide the UI element.
2477 void Show(bool show
);
2483 @class wxClipboardTextEvent
2485 This class represents the events generated by a control (typically a
2486 wxTextCtrl but other windows can generate these events as well) when its
2487 content gets copied or cut to, or pasted from the clipboard.
2489 There are three types of corresponding events @c wxEVT_TEXT_COPY,
2490 @c wxEVT_TEXT_CUT and @c wxEVT_TEXT_PASTE.
2492 If any of these events is processed (without being skipped) by an event
2493 handler, the corresponding operation doesn't take place which allows to
2494 prevent the text from being copied from or pasted to a control. It is also
2495 possible to examine the clipboard contents in the PASTE event handler and
2496 transform it in some way before inserting in a control -- for example,
2497 changing its case or removing invalid characters.
2499 Finally notice that a CUT event is always preceded by the COPY event which
2500 makes it possible to only process the latter if it doesn't matter if the
2501 text was copied or cut.
2504 These events are currently only generated by wxTextCtrl in wxGTK and wxOSX
2505 but are also generated by wxComboBox without wxCB_READONLY style in wxMSW.
2507 @beginEventTable{wxClipboardTextEvent}
2508 @event{EVT_TEXT_COPY(id, func)}
2509 Some or all of the controls content was copied to the clipboard.
2510 @event{EVT_TEXT_CUT(id, func)}
2511 Some or all of the controls content was cut (i.e. copied and
2513 @event{EVT_TEXT_PASTE(id, func)}
2514 Clipboard content was pasted into the control.
2523 class wxClipboardTextEvent
: public wxCommandEvent
2529 wxClipboardTextEvent(wxEventType commandType
= wxEVT_NULL
, int id
= 0);
2533 Possible axis values for mouse wheel scroll events.
2537 enum wxMouseWheelAxis
2539 wxMOUSE_WHEEL_VERTICAL
, ///< Vertical scroll event.
2540 wxMOUSE_WHEEL_HORIZONTAL
///< Horizontal scroll event.
2547 This event class contains information about the events generated by the mouse:
2548 they include mouse buttons press and release events and mouse move events.
2550 All mouse events involving the buttons use @c wxMOUSE_BTN_LEFT for the
2551 left mouse button, @c wxMOUSE_BTN_MIDDLE for the middle one and
2552 @c wxMOUSE_BTN_RIGHT for the right one. And if the system supports more
2553 buttons, the @c wxMOUSE_BTN_AUX1 and @c wxMOUSE_BTN_AUX2 events
2554 can also be generated. Note that not all mice have even a middle button so a
2555 portable application should avoid relying on the events from it (but the right
2556 button click can be emulated using the left mouse button with the control key
2557 under Mac platforms with a single button mouse).
2559 For the @c wxEVT_ENTER_WINDOW and @c wxEVT_LEAVE_WINDOW events
2560 purposes, the mouse is considered to be inside the window if it is in the
2561 window client area and not inside one of its children. In other words, the
2562 parent window receives @c wxEVT_LEAVE_WINDOW event not only when the
2563 mouse leaves the window entirely but also when it enters one of its children.
2565 The position associated with a mouse event is expressed in the window
2566 coordinates of the window which generated the event, you can use
2567 wxWindow::ClientToScreen() to convert it to screen coordinates and possibly
2568 call wxWindow::ScreenToClient() next to convert it to window coordinates of
2571 @note Note that under Windows CE mouse enter and leave events are not natively
2572 supported by the system but are generated by wxWidgets itself. This has several
2573 drawbacks: the LEAVE_WINDOW event might be received some time after the mouse
2574 left the window and the state variables for it may have changed during this time.
2576 @note Note the difference between methods like wxMouseEvent::LeftDown and
2577 the inherited wxMouseState::LeftIsDown: the former returns @true when
2578 the event corresponds to the left mouse button click while the latter
2579 returns @true if the left mouse button is currently being pressed.
2580 For example, when the user is dragging the mouse you can use
2581 wxMouseEvent::LeftIsDown to test whether the left mouse button is
2582 (still) depressed. Also, by convention, if wxMouseEvent::LeftDown
2583 returns @true, wxMouseEvent::LeftIsDown will also return @true in
2584 wxWidgets whatever the underlying GUI behaviour is (which is
2585 platform-dependent). The same applies, of course, to other mouse
2589 @beginEventTable{wxMouseEvent}
2590 @event{EVT_LEFT_DOWN(func)}
2591 Process a @c wxEVT_LEFT_DOWN event. The handler of this event should normally
2592 call event.Skip() to allow the default processing to take place as otherwise
2593 the window under mouse wouldn't get the focus.
2594 @event{EVT_LEFT_UP(func)}
2595 Process a @c wxEVT_LEFT_UP event.
2596 @event{EVT_LEFT_DCLICK(func)}
2597 Process a @c wxEVT_LEFT_DCLICK event.
2598 @event{EVT_MIDDLE_DOWN(func)}
2599 Process a @c wxEVT_MIDDLE_DOWN event.
2600 @event{EVT_MIDDLE_UP(func)}
2601 Process a @c wxEVT_MIDDLE_UP event.
2602 @event{EVT_MIDDLE_DCLICK(func)}
2603 Process a @c wxEVT_MIDDLE_DCLICK event.
2604 @event{EVT_RIGHT_DOWN(func)}
2605 Process a @c wxEVT_RIGHT_DOWN event.
2606 @event{EVT_RIGHT_UP(func)}
2607 Process a @c wxEVT_RIGHT_UP event.
2608 @event{EVT_RIGHT_DCLICK(func)}
2609 Process a @c wxEVT_RIGHT_DCLICK event.
2610 @event{EVT_MOUSE_AUX1_DOWN(func)}
2611 Process a @c wxEVT_AUX1_DOWN event.
2612 @event{EVT_MOUSE_AUX1_UP(func)}
2613 Process a @c wxEVT_AUX1_UP event.
2614 @event{EVT_MOUSE_AUX1_DCLICK(func)}
2615 Process a @c wxEVT_AUX1_DCLICK event.
2616 @event{EVT_MOUSE_AUX2_DOWN(func)}
2617 Process a @c wxEVT_AUX2_DOWN event.
2618 @event{EVT_MOUSE_AUX2_UP(func)}
2619 Process a @c wxEVT_AUX2_UP event.
2620 @event{EVT_MOUSE_AUX2_DCLICK(func)}
2621 Process a @c wxEVT_AUX2_DCLICK event.
2622 @event{EVT_MOTION(func)}
2623 Process a @c wxEVT_MOTION event.
2624 @event{EVT_ENTER_WINDOW(func)}
2625 Process a @c wxEVT_ENTER_WINDOW event.
2626 @event{EVT_LEAVE_WINDOW(func)}
2627 Process a @c wxEVT_LEAVE_WINDOW event.
2628 @event{EVT_MOUSEWHEEL(func)}
2629 Process a @c wxEVT_MOUSEWHEEL event.
2630 @event{EVT_MOUSE_EVENTS(func)}
2631 Process all mouse events.
2639 class wxMouseEvent
: public wxEvent
,
2644 Constructor. Valid event types are:
2646 @li @c wxEVT_ENTER_WINDOW
2647 @li @c wxEVT_LEAVE_WINDOW
2648 @li @c wxEVT_LEFT_DOWN
2649 @li @c wxEVT_LEFT_UP
2650 @li @c wxEVT_LEFT_DCLICK
2651 @li @c wxEVT_MIDDLE_DOWN
2652 @li @c wxEVT_MIDDLE_UP
2653 @li @c wxEVT_MIDDLE_DCLICK
2654 @li @c wxEVT_RIGHT_DOWN
2655 @li @c wxEVT_RIGHT_UP
2656 @li @c wxEVT_RIGHT_DCLICK
2657 @li @c wxEVT_AUX1_DOWN
2658 @li @c wxEVT_AUX1_UP
2659 @li @c wxEVT_AUX1_DCLICK
2660 @li @c wxEVT_AUX2_DOWN
2661 @li @c wxEVT_AUX2_UP
2662 @li @c wxEVT_AUX2_DCLICK
2664 @li @c wxEVT_MOUSEWHEEL
2666 wxMouseEvent(wxEventType mouseEventType
= wxEVT_NULL
);
2669 Returns @true if the event was a first extra button double click.
2671 bool Aux1DClick() const;
2674 Returns @true if the first extra button mouse button changed to down.
2676 bool Aux1Down() const;
2679 Returns @true if the first extra button mouse button changed to up.
2681 bool Aux1Up() const;
2684 Returns @true if the event was a second extra button double click.
2686 bool Aux2DClick() const;
2689 Returns @true if the second extra button mouse button changed to down.
2691 bool Aux2Down() const;
2694 Returns @true if the second extra button mouse button changed to up.
2696 bool Aux2Up() const;
2699 Returns @true if the event was generated by the specified button.
2701 @see wxMouseState::ButtoinIsDown()
2703 bool Button(wxMouseButton but
) const;
2706 If the argument is omitted, this returns @true if the event was a mouse
2707 double click event. Otherwise the argument specifies which double click event
2708 was generated (see Button() for the possible values).
2710 bool ButtonDClick(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2713 If the argument is omitted, this returns @true if the event was a mouse
2714 button down event. Otherwise the argument specifies which button-down event
2715 was generated (see Button() for the possible values).
2717 bool ButtonDown(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2720 If the argument is omitted, this returns @true if the event was a mouse
2721 button up event. Otherwise the argument specifies which button-up event
2722 was generated (see Button() for the possible values).
2724 bool ButtonUp(wxMouseButton but
= wxMOUSE_BTN_ANY
) const;
2727 Returns @true if this was a dragging event (motion while a button is depressed).
2731 bool Dragging() const;
2734 Returns @true if the mouse was entering the window.
2738 bool Entering() const;
2741 Returns the mouse button which generated this event or @c wxMOUSE_BTN_NONE
2742 if no button is involved (for mouse move, enter or leave event, for example).
2743 Otherwise @c wxMOUSE_BTN_LEFT is returned for the left button down, up and
2744 double click events, @c wxMOUSE_BTN_MIDDLE and @c wxMOUSE_BTN_RIGHT
2745 for the same events for the middle and the right buttons respectively.
2747 int GetButton() const;
2750 Returns the number of mouse clicks for this event: 1 for a simple click, 2
2751 for a double-click, 3 for a triple-click and so on.
2753 Currently this function is implemented only in wxMac and returns -1 for the
2754 other platforms (you can still distinguish simple clicks from double-clicks as
2755 they generate different kinds of events however).
2759 int GetClickCount() const;
2762 Returns the configured number of lines (or whatever) to be scrolled per
2765 Default value under most platforms is three.
2767 @see GetColumnsPerAction()
2769 int GetLinesPerAction() const;
2772 Returns the configured number of columns (or whatever) to be scrolled per
2775 Default value under most platforms is three.
2777 @see GetLinesPerAction()
2781 int GetColumnsPerAction() const;
2784 Returns the logical mouse position in pixels (i.e.\ translated according to the
2785 translation set for the DC, which usually indicates that the window has been
2788 wxPoint
GetLogicalPosition(const wxDC
& dc
) const;
2791 Get wheel delta, normally 120.
2793 This is the threshold for action to be taken, and one such action
2794 (for example, scrolling one increment) should occur for each delta.
2796 int GetWheelDelta() const;
2799 Get wheel rotation, positive or negative indicates direction of rotation.
2801 Current devices all send an event when rotation is at least +/-WheelDelta, but
2802 finer resolution devices can be created in the future.
2804 Because of this you shouldn't assume that one event is equal to 1 line, but you
2805 should be able to either do partial line scrolling or wait until several
2806 events accumulate before scrolling.
2808 int GetWheelRotation() const;
2811 Gets the axis the wheel operation concerns.
2813 Usually the mouse wheel is used to scroll vertically so @c
2814 wxMOUSE_WHEEL_VERTICAL is returned but some mice (and most trackpads)
2815 also allow to use the wheel to scroll horizontally in which case
2816 @c wxMOUSE_WHEEL_HORIZONTAL is returned.
2818 Notice that before wxWidgets 2.9.4 this method returned @c int.
2820 wxMouseWheelAxis
GetWheelAxis() const;
2823 Returns @true if the event was a mouse button event (not necessarily a button
2824 down event - that may be tested using ButtonDown()).
2826 bool IsButton() const;
2829 Returns @true if the system has been setup to do page scrolling with
2830 the mouse wheel instead of line scrolling.
2832 bool IsPageScroll() const;
2835 Returns @true if the mouse was leaving the window.
2839 bool Leaving() const;
2842 Returns @true if the event was a left double click.
2844 bool LeftDClick() const;
2847 Returns @true if the left mouse button changed to down.
2849 bool LeftDown() const;
2852 Returns @true if the left mouse button changed to up.
2854 bool LeftUp() const;
2857 Returns @true if the Meta key was down at the time of the event.
2859 bool MetaDown() const;
2862 Returns @true if the event was a middle double click.
2864 bool MiddleDClick() const;
2867 Returns @true if the middle mouse button changed to down.
2869 bool MiddleDown() const;
2872 Returns @true if the middle mouse button changed to up.
2874 bool MiddleUp() const;
2877 Returns @true if this was a motion event and no mouse buttons were pressed.
2878 If any mouse button is held pressed, then this method returns @false and
2879 Dragging() returns @true.
2881 bool Moving() const;
2884 Returns @true if the event was a right double click.
2886 bool RightDClick() const;
2889 Returns @true if the right mouse button changed to down.
2891 bool RightDown() const;
2894 Returns @true if the right mouse button changed to up.
2896 bool RightUp() const;
2902 @class wxDropFilesEvent
2904 This class is used for drop files events, that is, when files have been dropped
2905 onto the window. This functionality is currently only available under Windows.
2907 The window must have previously been enabled for dropping by calling
2908 wxWindow::DragAcceptFiles().
2910 Important note: this is a separate implementation to the more general drag and drop
2911 implementation documented in the @ref overview_dnd. It uses the older, Windows
2912 message-based approach of dropping files.
2914 @beginEventTable{wxDropFilesEvent}
2915 @event{EVT_DROP_FILES(func)}
2916 Process a @c wxEVT_DROP_FILES event.
2924 @see @ref overview_events
2926 class wxDropFilesEvent
: public wxEvent
2932 wxDropFilesEvent(wxEventType id
= 0, int noFiles
= 0,
2933 wxString
* files
= NULL
);
2936 Returns an array of filenames.
2938 wxString
* GetFiles() const;
2941 Returns the number of files dropped.
2943 int GetNumberOfFiles() const;
2946 Returns the position at which the files were dropped.
2947 Returns an array of filenames.
2949 wxPoint
GetPosition() const;
2955 @class wxActivateEvent
2957 An activate event is sent when a window or application is being activated
2960 @beginEventTable{wxActivateEvent}
2961 @event{EVT_ACTIVATE(func)}
2962 Process a @c wxEVT_ACTIVATE event.
2963 @event{EVT_ACTIVATE_APP(func)}
2964 Process a @c wxEVT_ACTIVATE_APP event.
2965 This event is received by the wxApp-derived instance only.
2966 @event{EVT_HIBERNATE(func)}
2967 Process a hibernate event, supplying the member function. This event applies
2968 to wxApp only, and only on Windows SmartPhone and PocketPC.
2969 It is generated when the system is low on memory; the application should free
2970 up as much memory as possible, and restore full working state when it receives
2971 a @c wxEVT_ACTIVATE or @c wxEVT_ACTIVATE_APP event.
2977 @see @ref overview_events, wxApp::IsActive
2979 class wxActivateEvent
: public wxEvent
2985 wxActivateEvent(wxEventType eventType
= wxEVT_NULL
, bool active
= true,
2989 Returns @true if the application or window is being activated, @false otherwise.
2991 bool GetActive() const;
2997 @class wxContextMenuEvent
2999 This class is used for context menu events, sent to give
3000 the application a chance to show a context (popup) menu for a wxWindow.
3002 Note that if wxContextMenuEvent::GetPosition returns wxDefaultPosition, this
3003 means that the event originated from a keyboard context button event, and you
3004 should compute a suitable position yourself, for example by calling wxGetMousePosition().
3006 Notice that the exact sequence of mouse events is different across the
3007 platforms. For example, under MSW the context menu event is generated after
3008 @c EVT_RIGHT_UP event and only if it was not handled but under GTK the
3009 context menu event is generated after @c EVT_RIGHT_DOWN event. This is
3010 correct in the sense that it ensures that the context menu is shown
3011 according to the current platform UI conventions and also means that you
3012 must not handle (or call wxEvent::Skip() in your handler if you do have
3013 one) neither right mouse down nor right mouse up event if you plan on
3014 handling @c EVT_CONTEXT_MENU event.
3016 @beginEventTable{wxContextMenuEvent}
3017 @event{EVT_CONTEXT_MENU(func)}
3018 A right click (or other context menu command depending on platform) has been detected.
3025 @see wxCommandEvent, @ref overview_events
3027 class wxContextMenuEvent
: public wxCommandEvent
3033 wxContextMenuEvent(wxEventType type
= wxEVT_NULL
, int id
= 0,
3034 const wxPoint
& pos
= wxDefaultPosition
);
3037 Returns the position in screen coordinates at which the menu should be shown.
3038 Use wxWindow::ScreenToClient to convert to client coordinates.
3040 You can also omit a position from wxWindow::PopupMenu in order to use
3041 the current mouse pointer position.
3043 If the event originated from a keyboard event, the value returned from this
3044 function will be wxDefaultPosition.
3046 const wxPoint
& GetPosition() const;
3049 Sets the position at which the menu should be shown.
3051 void SetPosition(const wxPoint
& point
);
3059 An erase event is sent when a window's background needs to be repainted.
3061 On some platforms, such as GTK+, this event is simulated (simply generated just
3062 before the paint event) and may cause flicker. It is therefore recommended that
3063 you set the text background colour explicitly in order to prevent flicker.
3064 The default background colour under GTK+ is grey.
3066 To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
3069 You must use the device context returned by GetDC() to draw on, don't create
3070 a wxPaintDC in the event handler.
3072 @beginEventTable{wxEraseEvent}
3073 @event{EVT_ERASE_BACKGROUND(func)}
3074 Process a @c wxEVT_ERASE_BACKGROUND event.
3080 @see @ref overview_events
3082 class wxEraseEvent
: public wxEvent
3088 wxEraseEvent(int id
= 0, wxDC
* dc
= NULL
);
3091 Returns the device context associated with the erase event to draw on.
3093 The returned pointer is never @NULL.
3095 wxDC
* GetDC() const;
3103 A focus event is sent when a window's focus changes. The window losing focus
3104 receives a "kill focus" event while the window gaining it gets a "set focus" one.
3106 Notice that the set focus event happens both when the user gives focus to the
3107 window (whether using the mouse or keyboard) and when it is done from the
3108 program itself using wxWindow::SetFocus.
3110 The focus event handlers should almost invariably call wxEvent::Skip() on
3111 their event argument to allow the default handling to take place. Failure
3112 to do this may result in incorrect behaviour of the native controls. Also
3113 note that wxEVT_KILL_FOCUS handler must not call wxWindow::SetFocus() as
3114 this, again, is not supported by all native controls. If you need to do
3115 this, consider using the @ref sec_delayed_action described in wxIdleEvent
3118 @beginEventTable{wxFocusEvent}
3119 @event{EVT_SET_FOCUS(func)}
3120 Process a @c wxEVT_SET_FOCUS event.
3121 @event{EVT_KILL_FOCUS(func)}
3122 Process a @c wxEVT_KILL_FOCUS event.
3128 @see @ref overview_events
3130 class wxFocusEvent
: public wxEvent
3136 wxFocusEvent(wxEventType eventType
= wxEVT_NULL
, int id
= 0);
3139 Returns the window associated with this event, that is the window which had the
3140 focus before for the @c wxEVT_SET_FOCUS event and the window which is
3141 going to receive focus for the @c wxEVT_KILL_FOCUS one.
3143 Warning: the window pointer may be @NULL!
3145 wxWindow
*GetWindow() const;
3147 void SetWindow(wxWindow
*win
);
3153 @class wxChildFocusEvent
3155 A child focus event is sent to a (parent-)window when one of its child windows
3156 gains focus, so that the window could restore the focus back to its corresponding
3157 child if it loses it now and regains later.
3159 Notice that child window is the direct child of the window receiving event.
3160 Use wxWindow::FindFocus() to retrieve the window which is actually getting focus.
3162 @beginEventTable{wxChildFocusEvent}
3163 @event{EVT_CHILD_FOCUS(func)}
3164 Process a @c wxEVT_CHILD_FOCUS event.
3170 @see @ref overview_events
3172 class wxChildFocusEvent
: public wxCommandEvent
3179 The direct child which is (or which contains the window which is) receiving
3182 wxChildFocusEvent(wxWindow
* win
= NULL
);
3185 Returns the direct child which receives the focus, or a (grand-)parent of the
3186 control receiving the focus.
3188 To get the actually focused control use wxWindow::FindFocus.
3190 wxWindow
*GetWindow() const;
3196 @class wxMouseCaptureLostEvent
3198 A mouse capture lost event is sent to a window that had obtained mouse capture,
3199 which was subsequently lost due to an "external" event (for example, when a dialog
3200 box is shown or if another application captures the mouse).
3202 If this happens, this event is sent to all windows that are on the capture stack
3203 (i.e. called CaptureMouse, but didn't call ReleaseMouse yet). The event is
3204 not sent if the capture changes because of a call to CaptureMouse or
3207 This event is currently emitted under Windows only.
3209 @beginEventTable{wxMouseCaptureLostEvent}
3210 @event{EVT_MOUSE_CAPTURE_LOST(func)}
3211 Process a @c wxEVT_MOUSE_CAPTURE_LOST event.
3219 @see wxMouseCaptureChangedEvent, @ref overview_events,
3220 wxWindow::CaptureMouse, wxWindow::ReleaseMouse, wxWindow::GetCapture
3222 class wxMouseCaptureLostEvent
: public wxEvent
3228 wxMouseCaptureLostEvent(wxWindowID windowId
= 0);
3233 class wxDisplayChangedEvent
: public wxEvent
3236 wxDisplayChangedEvent();
3240 class wxPaletteChangedEvent
: public wxEvent
3243 wxPaletteChangedEvent(wxWindowID winid
= 0);
3245 void SetChangedWindow(wxWindow
* win
);
3246 wxWindow
* GetChangedWindow() const;
3250 class wxQueryNewPaletteEvent
: public wxEvent
3253 wxQueryNewPaletteEvent(wxWindowID winid
= 0);
3255 void SetPaletteRealized(bool realized
);
3256 bool GetPaletteRealized();
3263 @class wxNotifyEvent
3265 This class is not used by the event handlers by itself, but is a base class
3266 for other event classes (such as wxBookCtrlEvent).
3268 It (or an object of a derived class) is sent when the controls state is being
3269 changed and allows the program to wxNotifyEvent::Veto() this change if it wants
3270 to prevent it from happening.
3275 @see wxBookCtrlEvent
3277 class wxNotifyEvent
: public wxCommandEvent
3281 Constructor (used internally by wxWidgets only).
3283 wxNotifyEvent(wxEventType eventType
= wxEVT_NULL
, int id
= 0);
3286 This is the opposite of Veto(): it explicitly allows the event to be processed.
3287 For most events it is not necessary to call this method as the events are allowed
3288 anyhow but some are forbidden by default (this will be mentioned in the corresponding
3294 Returns @true if the change is allowed (Veto() hasn't been called) or @false
3295 otherwise (if it was).
3297 bool IsAllowed() const;
3300 Prevents the change announced by this event from happening.
3302 It is in general a good idea to notify the user about the reasons for vetoing
3303 the change because otherwise the applications behaviour (which just refuses to
3304 do what the user wants) might be quite surprising.
3311 @class wxThreadEvent
3313 This class adds some simple functionality to wxEvent to facilitate
3314 inter-thread communication.
3316 This event is not natively emitted by any control/class: it is just
3317 a helper class for the user.
3318 Its most important feature is the GetEventCategory() implementation which
3319 allows thread events @b NOT to be processed by wxEventLoopBase::YieldFor calls
3320 (unless the @c wxEVT_CATEGORY_THREAD is specified - which is never in wx code).
3323 @category{events,threading}
3325 @see @ref overview_thread, wxEventLoopBase::YieldFor
3329 class wxThreadEvent
: public wxEvent
3335 wxThreadEvent(wxEventType eventType
= wxEVT_THREAD
, int id
= wxID_ANY
);
3338 Clones this event making sure that all internal members which use
3339 COW (only @c m_commandString for now; see @ref overview_refcount)
3340 are unshared (see wxObject::UnShare).
3342 virtual wxEvent
*Clone() const;
3345 Returns @c wxEVT_CATEGORY_THREAD.
3347 This is important to avoid unwanted processing of thread events
3348 when calling wxEventLoopBase::YieldFor().
3350 virtual wxEventCategory
GetEventCategory() const;
3353 Sets custom data payload.
3355 The @a payload argument may be of any type that wxAny can handle
3356 (i.e. pretty much anything). Note that T's copy constructor must be
3357 thread-safe, i.e. create a copy that doesn't share anything with
3358 the original (see Clone()).
3360 @note This method is not available with Visual C++ 6.
3364 @see GetPayload(), wxAny
3366 template<typename T
>
3367 void SetPayload(const T
& payload
);
3370 Get custom data payload.
3372 Correct type is checked in debug builds.
3374 @note This method is not available with Visual C++ 6.
3378 @see SetPayload(), wxAny
3380 template<typename T
>
3381 T
GetPayload() const;
3384 Returns extra information integer value.
3386 long GetExtraLong() const;
3389 Returns stored integer value.
3394 Returns stored string value.
3396 wxString
GetString() const;
3400 Sets the extra information value.
3402 void SetExtraLong(long extraLong
);
3405 Sets the integer value.
3407 void SetInt(int intCommand
);
3410 Sets the string value.
3412 void SetString(const wxString
& string
);
3419 A help event is sent when the user has requested context-sensitive help.
3420 This can either be caused by the application requesting context-sensitive help mode
3421 via wxContextHelp, or (on MS Windows) by the system generating a WM_HELP message when
3422 the user pressed F1 or clicked on the query button in a dialog caption.
3424 A help event is sent to the window that the user clicked on, and is propagated
3425 up the window hierarchy until the event is processed or there are no more event
3428 The application should call wxEvent::GetId to check the identity of the
3429 clicked-on window, and then either show some suitable help or call wxEvent::Skip()
3430 if the identifier is unrecognised.
3432 Calling Skip is important because it allows wxWidgets to generate further
3433 events for ancestors of the clicked-on window. Otherwise it would be impossible to
3434 show help for container windows, since processing would stop after the first window
3437 @beginEventTable{wxHelpEvent}
3438 @event{EVT_HELP(id, func)}
3439 Process a @c wxEVT_HELP event.
3440 @event{EVT_HELP_RANGE(id1, id2, func)}
3441 Process a @c wxEVT_HELP event for a range of ids.
3447 @see wxContextHelp, wxDialog, @ref overview_events
3449 class wxHelpEvent
: public wxCommandEvent
3453 Indicates how a wxHelpEvent was generated.
3457 Origin_Unknown
, /**< unrecognized event source. */
3458 Origin_Keyboard
, /**< event generated from F1 key press. */
3460 /** event generated by wxContextHelp or from the [?] button on
3461 the title bar (Windows). */
3468 wxHelpEvent(wxEventType type
= wxEVT_NULL
,
3469 wxWindowID winid
= 0,
3470 const wxPoint
& pt
= wxDefaultPosition
,
3471 wxHelpEvent::Origin origin
= Origin_Unknown
);
3474 Returns the origin of the help event which is one of the ::wxHelpEventOrigin
3477 The application may handle events generated using the keyboard or mouse
3478 differently, e.g. by using wxGetMousePosition() for the mouse events.
3482 wxHelpEvent::Origin
GetOrigin() const;
3485 Returns the left-click position of the mouse, in screen coordinates.
3486 This allows the application to position the help appropriately.
3488 const wxPoint
& GetPosition() const;
3491 Set the help event origin, only used internally by wxWidgets normally.
3495 void SetOrigin(wxHelpEvent::Origin origin
);
3498 Sets the left-click position of the mouse, in screen coordinates.
3500 void SetPosition(const wxPoint
& pt
);
3506 @class wxScrollEvent
3508 A scroll event holds information about events sent from stand-alone
3509 scrollbars (see wxScrollBar) and sliders (see wxSlider).
3511 Note that scrolled windows send the wxScrollWinEvent which does not derive from
3512 wxCommandEvent, but from wxEvent directly - don't confuse these two kinds of
3513 events and use the event table macros mentioned below only for the scrollbar-like
3516 @section scrollevent_diff The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
3518 The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb
3519 using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed
3520 by an EVT_SCROLL_CHANGED event).
3522 The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb
3523 position, and when clicking next to the thumb (In all these cases the EVT_SCROLL_THUMBRELEASE
3524 event does not happen).
3526 In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has finished
3527 independently of the way it had started. Please see the widgets sample ("Slider" page)
3528 to see the difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
3531 Note that unless specifying a scroll control identifier, you will need to test for scrollbar
3532 orientation with wxScrollEvent::GetOrientation, since horizontal and vertical scroll events
3533 are processed using the same event handler.
3535 @beginEventTable{wxScrollEvent}
3536 You can use EVT_COMMAND_SCROLL... macros with window IDs for when intercepting
3537 scroll events from controls, or EVT_SCROLL... macros without window IDs for
3538 intercepting scroll events from the receiving window -- except for this, the
3539 macros behave exactly the same.
3540 @event{EVT_SCROLL(func)}
3541 Process all scroll events.
3542 @event{EVT_SCROLL_TOP(func)}
3543 Process @c wxEVT_SCROLL_TOP scroll-to-top events (minimum position).
3544 @event{EVT_SCROLL_BOTTOM(func)}
3545 Process @c wxEVT_SCROLL_BOTTOM scroll-to-bottom events (maximum position).
3546 @event{EVT_SCROLL_LINEUP(func)}
3547 Process @c wxEVT_SCROLL_LINEUP line up events.
3548 @event{EVT_SCROLL_LINEDOWN(func)}
3549 Process @c wxEVT_SCROLL_LINEDOWN line down events.
3550 @event{EVT_SCROLL_PAGEUP(func)}
3551 Process @c wxEVT_SCROLL_PAGEUP page up events.
3552 @event{EVT_SCROLL_PAGEDOWN(func)}
3553 Process @c wxEVT_SCROLL_PAGEDOWN page down events.
3554 @event{EVT_SCROLL_THUMBTRACK(func)}
3555 Process @c wxEVT_SCROLL_THUMBTRACK thumbtrack events (frequent events sent as the
3556 user drags the thumbtrack).
3557 @event{EVT_SCROLL_THUMBRELEASE(func)}
3558 Process @c wxEVT_SCROLL_THUMBRELEASE thumb release events.
3559 @event{EVT_SCROLL_CHANGED(func)}
3560 Process @c wxEVT_SCROLL_CHANGED end of scrolling events (MSW only).
3561 @event{EVT_COMMAND_SCROLL(id, func)}
3562 Process all scroll events.
3563 @event{EVT_COMMAND_SCROLL_TOP(id, func)}
3564 Process @c wxEVT_SCROLL_TOP scroll-to-top events (minimum position).
3565 @event{EVT_COMMAND_SCROLL_BOTTOM(id, func)}
3566 Process @c wxEVT_SCROLL_BOTTOM scroll-to-bottom events (maximum position).
3567 @event{EVT_COMMAND_SCROLL_LINEUP(id, func)}
3568 Process @c wxEVT_SCROLL_LINEUP line up events.
3569 @event{EVT_COMMAND_SCROLL_LINEDOWN(id, func)}
3570 Process @c wxEVT_SCROLL_LINEDOWN line down events.
3571 @event{EVT_COMMAND_SCROLL_PAGEUP(id, func)}
3572 Process @c wxEVT_SCROLL_PAGEUP page up events.
3573 @event{EVT_COMMAND_SCROLL_PAGEDOWN(id, func)}
3574 Process @c wxEVT_SCROLL_PAGEDOWN page down events.
3575 @event{EVT_COMMAND_SCROLL_THUMBTRACK(id, func)}
3576 Process @c wxEVT_SCROLL_THUMBTRACK thumbtrack events (frequent events sent
3577 as the user drags the thumbtrack).
3578 @event{EVT_COMMAND_SCROLL_THUMBRELEASE(func)}
3579 Process @c wxEVT_SCROLL_THUMBRELEASE thumb release events.
3580 @event{EVT_COMMAND_SCROLL_CHANGED(func)}
3581 Process @c wxEVT_SCROLL_CHANGED end of scrolling events (MSW only).
3587 @see wxScrollBar, wxSlider, wxSpinButton, wxScrollWinEvent, @ref overview_events
3589 class wxScrollEvent
: public wxCommandEvent
3595 wxScrollEvent(wxEventType commandType
= wxEVT_NULL
, int id
= 0, int pos
= 0,
3596 int orientation
= 0);
3599 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
3602 int GetOrientation() const;
3605 Returns the position of the scrollbar.
3607 int GetPosition() const;
3610 void SetOrientation(int orient
);
3611 void SetPosition(int pos
);
3619 See wxIdleEvent::SetMode() for more info.
3623 /** Send idle events to all windows */
3626 /** Send idle events to windows that have the wxWS_EX_PROCESS_IDLE flag specified */
3627 wxIDLE_PROCESS_SPECIFIED
3634 This class is used for idle events, which are generated when the system becomes
3635 idle. Note that, unless you do something specifically, the idle events are not
3636 sent if the system remains idle once it has become it, e.g. only a single idle
3637 event will be generated until something else resulting in more normal events
3638 happens and only then is the next idle event sent again.
3640 If you need to ensure a continuous stream of idle events, you can either use
3641 wxIdleEvent::RequestMore method in your handler or call wxWakeUpIdle() periodically
3642 (for example from a timer event handler), but note that both of these approaches
3643 (and especially the first one) increase the system load and so should be avoided
3646 By default, idle events are sent to all windows, including even the hidden
3647 ones because they may be shown if some condition is met from their @c
3648 wxEVT_IDLE (or related @c wxEVT_UPDATE_UI) handler. The children of hidden
3649 windows do not receive idle events however as they can't change their state
3650 in any way noticeable by the user. Finally, the global wxApp object also
3651 receives these events, as usual, so it can be used for any global idle time
3654 If sending idle events to all windows is causing a significant overhead in
3655 your application, you can call wxIdleEvent::SetMode with the value
3656 wxIDLE_PROCESS_SPECIFIED, and set the wxWS_EX_PROCESS_IDLE extra window
3657 style for every window which should receive idle events, all the other ones
3658 will not receive them in this case.
3660 @beginEventTable{wxIdleEvent}
3661 @event{EVT_IDLE(func)}
3662 Process a @c wxEVT_IDLE event.
3668 @section sec_delayed_action Delayed Action Mechanism
3670 wxIdleEvent can be used to perform some action "at slightly later time".
3671 This can be necessary in several circumstances when, for whatever reason,
3672 something can't be done in the current event handler. For example, if a
3673 mouse event handler is called with the mouse button pressed, the mouse can
3674 be currently captured and some operations with it -- notably capturing it
3675 again -- might be impossible or lead to undesirable results. If you still
3676 want to capture it, you can do it from @c wxEVT_IDLE handler when it is
3677 called the next time instead of doing it immediately.
3679 This can be achieved in two different ways: when using static event tables,
3680 you will need a flag indicating to the (always connected) idle event
3681 handler whether the desired action should be performed. The originally
3682 called handler would then set it to indicate that it should indeed be done
3683 and the idle handler itself would reset it to prevent it from doing the
3686 Using dynamically connected event handlers things are even simpler as the
3687 original event handler can simply wxEvtHandler::Connect() or
3688 wxEvtHandler::Bind() the idle event handler which would only be executed
3689 then and could wxEvtHandler::Disconnect() or wxEvtHandler::Unbind() itself.
3692 @see @ref overview_events, wxUpdateUIEvent, wxWindow::OnInternalIdle
3694 class wxIdleEvent
: public wxEvent
3703 Static function returning a value specifying how wxWidgets will send idle
3704 events: to all windows, or only to those which specify that they
3705 will process the events.
3709 static wxIdleMode
GetMode();
3712 Returns @true if the OnIdle function processing this event requested more
3717 bool MoreRequested() const;
3720 Tells wxWidgets that more processing is required.
3722 This function can be called by an OnIdle handler for a window or window event
3723 handler to indicate that wxApp::OnIdle should forward the OnIdle event once
3724 more to the application windows.
3726 If no window calls this function during OnIdle, then the application will
3727 remain in a passive event loop (not calling OnIdle) until a new event is
3728 posted to the application by the windowing system.
3730 @see MoreRequested()
3732 void RequestMore(bool needMore
= true);
3735 Static function for specifying how wxWidgets will send idle events: to
3736 all windows, or only to those which specify that they will process the events.
3739 Can be one of the ::wxIdleMode values.
3740 The default is wxIDLE_PROCESS_ALL.
3742 static void SetMode(wxIdleMode mode
);
3745 #endif // wxUSE_BASE
3750 @class wxInitDialogEvent
3752 A wxInitDialogEvent is sent as a dialog or panel is being initialised.
3753 Handlers for this event can transfer data to the window.
3755 The default handler calls wxWindow::TransferDataToWindow.
3757 @beginEventTable{wxInitDialogEvent}
3758 @event{EVT_INIT_DIALOG(func)}
3759 Process a @c wxEVT_INIT_DIALOG event.
3765 @see @ref overview_events
3767 class wxInitDialogEvent
: public wxEvent
3773 wxInitDialogEvent(int id
= 0);
3779 @class wxWindowDestroyEvent
3781 This event is sent as early as possible during the window destruction
3784 For the top level windows, as early as possible means that this is done by
3785 wxFrame or wxDialog destructor, i.e. after the destructor of the derived
3786 class was executed and so any methods specific to the derived class can't
3787 be called any more from this event handler. If you need to do this, you
3788 must call wxWindow::SendDestroyEvent() from your derived class destructor.
3790 For the child windows, this event is generated just before deleting the
3791 window from wxWindow::Destroy() (which is also called when the parent
3792 window is deleted) or from the window destructor if operator @c delete was
3793 used directly (which is not recommended for this very reason).
3795 It is usually pointless to handle this event in the window itself but it ca
3796 be very useful to receive notifications about the window destruction in the
3797 parent window or in any other object interested in this window.
3802 @see @ref overview_events, wxWindowCreateEvent
3804 class wxWindowDestroyEvent
: public wxCommandEvent
3810 wxWindowDestroyEvent(wxWindow
* win
= NULL
);
3812 /// Return the window being destroyed.
3813 wxWindow
*GetWindow() const;
3818 @class wxNavigationKeyEvent
3820 This event class contains information about navigation events,
3821 generated by navigation keys such as tab and page down.
3823 This event is mainly used by wxWidgets implementations.
3824 A wxNavigationKeyEvent handler is automatically provided by wxWidgets
3825 when you enable keyboard navigation inside a window by inheriting it from
3826 wxNavigationEnabled<>.
3828 @beginEventTable{wxNavigationKeyEvent}
3829 @event{EVT_NAVIGATION_KEY(func)}
3830 Process a navigation key event.
3836 @see wxWindow::Navigate, wxWindow::NavigateIn
3838 class wxNavigationKeyEvent
: public wxEvent
3842 Flags which can be used with wxNavigationKeyEvent.
3844 enum wxNavigationKeyEventFlags
3846 IsBackward
= 0x0000,
3852 wxNavigationKeyEvent();
3853 wxNavigationKeyEvent(const wxNavigationKeyEvent
& event
);
3856 Returns the child that has the focus, or @NULL.
3858 wxWindow
* GetCurrentFocus() const;
3861 Returns @true if the navigation was in the forward direction.
3863 bool GetDirection() const;
3866 Returns @true if the navigation event was from a tab key.
3867 This is required for proper navigation over radio buttons.
3869 bool IsFromTab() const;
3872 Returns @true if the navigation event represents a window change
3873 (for example, from Ctrl-Page Down in a notebook).
3875 bool IsWindowChange() const;
3878 Sets the current focus window member.
3880 void SetCurrentFocus(wxWindow
* currentFocus
);
3883 Sets the direction to forward if @a direction is @true, or backward
3886 void SetDirection(bool direction
);
3889 Sets the flags for this event.
3890 The @a flags can be a combination of the ::wxNavigationKeyEventFlags values.
3892 void SetFlags(long flags
);
3895 Marks the navigation event as from a tab key.
3897 void SetFromTab(bool fromTab
);
3900 Marks the event as a window change event.
3902 void SetWindowChange(bool windowChange
);
3908 @class wxMouseCaptureChangedEvent
3910 An mouse capture changed event is sent to a window that loses its
3911 mouse capture. This is called even if wxWindow::ReleaseMouse
3912 was called by the application code. Handling this event allows
3913 an application to cater for unexpected capture releases which
3914 might otherwise confuse mouse handling code.
3918 @beginEventTable{wxMouseCaptureChangedEvent}
3919 @event{EVT_MOUSE_CAPTURE_CHANGED(func)}
3920 Process a @c wxEVT_MOUSE_CAPTURE_CHANGED event.
3926 @see wxMouseCaptureLostEvent, @ref overview_events,
3927 wxWindow::CaptureMouse, wxWindow::ReleaseMouse, wxWindow::GetCapture
3929 class wxMouseCaptureChangedEvent
: public wxEvent
3935 wxMouseCaptureChangedEvent(wxWindowID windowId
= 0,
3936 wxWindow
* gainedCapture
= NULL
);
3939 Returns the window that gained the capture, or @NULL if it was a
3940 non-wxWidgets window.
3942 wxWindow
* GetCapturedWindow() const;
3950 This event class contains information about window and session close events.
3952 The handler function for EVT_CLOSE is called when the user has tried to close a
3953 a frame or dialog box using the window manager (X) or system menu (Windows).
3954 It can also be invoked by the application itself programmatically, for example by
3955 calling the wxWindow::Close function.
3957 You should check whether the application is forcing the deletion of the window
3958 using wxCloseEvent::CanVeto. If this is @false, you @e must destroy the window
3959 using wxWindow::Destroy.
3961 If the return value is @true, it is up to you whether you respond by destroying
3964 If you don't destroy the window, you should call wxCloseEvent::Veto to
3965 let the calling code know that you did not destroy the window.
3966 This allows the wxWindow::Close function to return @true or @false depending
3967 on whether the close instruction was honoured or not.
3969 Example of a wxCloseEvent handler:
3972 void MyFrame::OnClose(wxCloseEvent& event)
3974 if ( event.CanVeto() && m_bFileNotSaved )
3976 if ( wxMessageBox("The file has not been saved... continue closing?",
3978 wxICON_QUESTION | wxYES_NO) != wxYES )
3985 Destroy(); // you may also do: event.Skip();
3986 // since the default event handler does call Destroy(), too
3990 The EVT_END_SESSION event is slightly different as it is sent by the system
3991 when the user session is ending (e.g. because of log out or shutdown) and
3992 so all windows are being forcefully closed. At least under MSW, after the
3993 handler for this event is executed the program is simply killed by the
3994 system. Because of this, the default handler for this event provided by
3995 wxWidgets calls all the usual cleanup code (including wxApp::OnExit()) so
3996 that it could still be executed and exit()s the process itself, without
3997 waiting for being killed. If this behaviour is for some reason undesirable,
3998 make sure that you define a handler for this event in your wxApp-derived
3999 class and do not call @c event.Skip() in it (but be aware that the system
4000 will still kill your application).
4002 @beginEventTable{wxCloseEvent}
4003 @event{EVT_CLOSE(func)}
4004 Process a @c wxEVT_CLOSE_WINDOW command event, supplying the member function.
4005 This event applies to wxFrame and wxDialog classes.
4006 @event{EVT_QUERY_END_SESSION(func)}
4007 Process a @c wxEVT_QUERY_END_SESSION session event, supplying the member function.
4008 This event can be handled in wxApp-derived class only.
4009 @event{EVT_END_SESSION(func)}
4010 Process a @c wxEVT_END_SESSION session event, supplying the member function.
4011 This event can be handled in wxApp-derived class only.
4017 @see wxWindow::Close, @ref overview_windowdeletion
4019 class wxCloseEvent
: public wxEvent
4025 wxCloseEvent(wxEventType commandEventType
= wxEVT_NULL
, int id
= 0);
4028 Returns @true if you can veto a system shutdown or a window close event.
4029 Vetoing a window close event is not possible if the calling code wishes to
4030 force the application to exit, and so this function must be called to check this.
4032 bool CanVeto() const;
4035 Returns @true if the user is just logging off or @false if the system is
4036 shutting down. This method can only be called for end session and query end
4037 session events, it doesn't make sense for close window event.
4039 bool GetLoggingOff() const;
4042 Sets the 'can veto' flag.
4044 void SetCanVeto(bool canVeto
);
4047 Sets the 'logging off' flag.
4049 void SetLoggingOff(bool loggingOff
);
4052 Call this from your event handler to veto a system shutdown or to signal
4053 to the calling application that a window close did not happen.
4055 You can only veto a shutdown if CanVeto() returns @true.
4057 void Veto(bool veto
= true);
4065 This class is used for a variety of menu-related events. Note that
4066 these do not include menu command events, which are
4067 handled using wxCommandEvent objects.
4069 The default handler for @c wxEVT_MENU_HIGHLIGHT displays help
4070 text in the first field of the status bar.
4072 @beginEventTable{wxMenuEvent}
4073 @event{EVT_MENU_OPEN(func)}
4074 A menu is about to be opened. On Windows, this is only sent once for each
4075 navigation of the menubar (up until all menus have closed).
4076 @event{EVT_MENU_CLOSE(func)}
4077 A menu has been just closed.
4078 @event{EVT_MENU_HIGHLIGHT(id, func)}
4079 The menu item with the specified id has been highlighted: used to show
4080 help prompts in the status bar by wxFrame
4081 @event{EVT_MENU_HIGHLIGHT_ALL(func)}
4082 A menu item has been highlighted, i.e. the currently selected menu item has changed.
4088 @see wxCommandEvent, @ref overview_events
4090 class wxMenuEvent
: public wxEvent
4096 wxMenuEvent(wxEventType type
= wxEVT_NULL
, int id
= 0, wxMenu
* menu
= NULL
);
4099 Returns the menu which is being opened or closed.
4101 This method can only be used with the @c OPEN and @c CLOSE events.
4103 The returned value is never @NULL in the ports implementing this
4104 function, which currently includes all the major ones.
4106 wxMenu
* GetMenu() const;
4109 Returns the menu identifier associated with the event.
4110 This method should be only used with the @c HIGHLIGHT events.
4112 int GetMenuId() const;
4115 Returns @true if the menu which is being opened or closed is a popup menu,
4116 @false if it is a normal one.
4118 This method should only be used with the @c OPEN and @c CLOSE events.
4120 bool IsPopup() const;
4126 An event being sent when the window is shown or hidden.
4127 The event is triggered by calls to wxWindow::Show(), and any user
4128 action showing a previously hidden window or vice versa (if allowed by
4129 the current platform and/or window manager).
4130 Notice that the event is not triggered when the application is iconized
4131 (minimized) or restored under wxMSW.
4133 @onlyfor{wxmsw,wxgtk,wxos2}
4135 @beginEventTable{wxShowEvent}
4136 @event{EVT_SHOW(func)}
4137 Process a @c wxEVT_SHOW event.
4143 @see @ref overview_events, wxWindow::Show,
4147 class wxShowEvent
: public wxEvent
4153 wxShowEvent(int winid
= 0, bool show
= false);
4156 Set whether the windows was shown or hidden.
4158 void SetShow(bool show
);
4161 Return @true if the window has been shown, @false if it has been
4164 bool IsShown() const;
4167 @deprecated This function is deprecated in favour of IsShown().
4169 bool GetShow() const;
4175 @class wxIconizeEvent
4177 An event being sent when the frame is iconized (minimized) or restored.
4179 Currently only wxMSW and wxGTK generate such events.
4181 @onlyfor{wxmsw,wxgtk}
4183 @beginEventTable{wxIconizeEvent}
4184 @event{EVT_ICONIZE(func)}
4185 Process a @c wxEVT_ICONIZE event.
4191 @see @ref overview_events, wxTopLevelWindow::Iconize,
4192 wxTopLevelWindow::IsIconized
4194 class wxIconizeEvent
: public wxEvent
4200 wxIconizeEvent(int id
= 0, bool iconized
= true);
4203 Returns @true if the frame has been iconized, @false if it has been
4206 bool IsIconized() const;
4209 @deprecated This function is deprecated in favour of IsIconized().
4211 bool Iconized() const;
4219 A move event holds information about wxTopLevelWindow move change events.
4221 These events are currently only generated by wxMSW port.
4223 @beginEventTable{wxMoveEvent}
4224 @event{EVT_MOVE(func)}
4225 Process a @c wxEVT_MOVE event, which is generated when a window is moved.
4226 @event{EVT_MOVE_START(func)}
4227 Process a @c wxEVT_MOVE_START event, which is generated when the user starts
4228 to move or size a window. wxMSW only.
4229 @event{EVT_MOVING(func)}
4230 Process a @c wxEVT_MOVING event, which is generated while the user is
4231 moving the window. wxMSW only.
4232 @event{EVT_MOVE_END(func)}
4233 Process a @c wxEVT_MOVE_END event, which is generated when the user stops
4234 moving or sizing a window. wxMSW only.
4240 @see wxPoint, @ref overview_events
4242 class wxMoveEvent
: public wxEvent
4248 wxMoveEvent(const wxPoint
& pt
, int id
= 0);
4251 Returns the position of the window generating the move change event.
4253 wxPoint
GetPosition() const;
4255 wxRect
GetRect() const;
4256 void SetRect(const wxRect
& rect
);
4257 void SetPosition(const wxPoint
& pos
);
4264 A size event holds information about size change events of wxWindow.
4266 The EVT_SIZE handler function will be called when the window has been resized.
4268 You may wish to use this for frames to resize their child windows as appropriate.
4270 Note that the size passed is of the whole window: call wxWindow::GetClientSize()
4271 for the area which may be used by the application.
4273 When a window is resized, usually only a small part of the window is damaged
4274 and you may only need to repaint that area. However, if your drawing depends on the
4275 size of the window, you may need to clear the DC explicitly and repaint the whole window.
4276 In which case, you may need to call wxWindow::Refresh to invalidate the entire window.
4278 @b Important : Sizers ( see @ref overview_sizer ) rely on size events to function
4279 correctly. Therefore, in a sizer-based layout, do not forget to call Skip on all
4280 size events you catch (and don't catch size events at all when you don't need to).
4282 @beginEventTable{wxSizeEvent}
4283 @event{EVT_SIZE(func)}
4284 Process a @c wxEVT_SIZE event.
4290 @see wxSize, @ref overview_events
4292 class wxSizeEvent
: public wxEvent
4298 wxSizeEvent(const wxSize
& sz
, int id
= 0);
4301 Returns the entire size of the window generating the size change event.
4303 This is the new total size of the window, i.e. the same size as would
4304 be returned by wxWindow::GetSize() if it were called now. Use
4305 wxWindow::GetClientSize() if you catch this event in a top level window
4306 such as wxFrame to find the size available for the window contents.
4308 wxSize
GetSize() const;
4309 void SetSize(wxSize size
);
4311 wxRect
GetRect() const;
4312 void SetRect(wxRect rect
);
4318 @class wxSetCursorEvent
4320 A wxSetCursorEvent is generated from wxWindow when the mouse cursor is about
4321 to be set as a result of mouse motion.
4323 This event gives the application the chance to perform specific mouse cursor
4324 processing based on the current position of the mouse within the window.
4325 Use wxSetCursorEvent::SetCursor to specify the cursor you want to be displayed.
4327 @beginEventTable{wxSetCursorEvent}
4328 @event{EVT_SET_CURSOR(func)}
4329 Process a @c wxEVT_SET_CURSOR event.
4335 @see ::wxSetCursor, wxWindow::SetCursor
4337 class wxSetCursorEvent
: public wxEvent
4341 Constructor, used by the library itself internally to initialize the event
4344 wxSetCursorEvent(wxCoord x
= 0, wxCoord y
= 0);
4347 Returns a reference to the cursor specified by this event.
4349 const wxCursor
& GetCursor() const;
4352 Returns the X coordinate of the mouse in client coordinates.
4354 wxCoord
GetX() const;
4357 Returns the Y coordinate of the mouse in client coordinates.
4359 wxCoord
GetY() const;
4362 Returns @true if the cursor specified by this event is a valid cursor.
4364 @remarks You cannot specify wxNullCursor with this event, as it is not
4365 considered a valid cursor.
4367 bool HasCursor() const;
4370 Sets the cursor associated with this event.
4372 void SetCursor(const wxCursor
& cursor
);
4377 // ============================================================================
4378 // Global functions/macros
4379 // ============================================================================
4381 /** @addtogroup group_funcmacro_events */
4387 A value uniquely identifying the type of the event.
4389 The values of this type should only be created using wxNewEventType().
4391 See the macro DEFINE_EVENT_TYPE() for more info.
4393 @see @ref overview_events
4395 typedef int wxEventType
;
4398 A special event type usually used to indicate that some wxEvent has yet
4401 wxEventType wxEVT_NULL
;
4403 wxEventType wxEVT_ANY
;
4406 Generates a new unique event type.
4408 Usually this function is only used by wxDEFINE_EVENT() and not called
4411 wxEventType
wxNewEventType();
4414 Define a new event type associated with the specified event class.
4416 This macro defines a new unique event type @a name associated with the
4421 wxDEFINE_EVENT(MY_COMMAND_EVENT, wxCommandEvent);
4423 class MyCustomEvent : public wxEvent { ... };
4424 wxDEFINE_EVENT(MY_CUSTOM_EVENT, MyCustomEvent);
4427 @see wxDECLARE_EVENT(), @ref overview_events_custom
4429 #define wxDEFINE_EVENT(name, cls) \
4430 const wxEventTypeTag< cls > name(wxNewEventType())
4433 Declares a custom event type.
4435 This macro declares a variable called @a name which must be defined
4436 elsewhere using wxDEFINE_EVENT().
4438 The class @a cls must be the wxEvent-derived class associated with the
4439 events of this type and its full declaration must be visible from the point
4440 of use of this macro.
4444 wxDECLARE_EVENT(MY_COMMAND_EVENT, wxCommandEvent);
4446 class MyCustomEvent : public wxEvent { ... };
4447 wxDECLARE_EVENT(MY_CUSTOM_EVENT, MyCustomEvent);
4450 #define wxDECLARE_EVENT(name, cls) \
4451 wxDECLARE_EXPORTED_EVENT(wxEMPTY_PARAMETER_VALUE, name, cls)
4454 Variant of wxDECLARE_EVENT() used for event types defined inside a shared
4457 This is mostly used by wxWidgets internally, e.g.
4459 wxDECLARE_EXPORTED_EVENT(WXDLLIMPEXP_CORE, wxEVT_BUTTON, wxCommandEvent)
4462 #define wxDECLARE_EXPORTED_EVENT( expdecl, name, cls ) \
4463 extern const expdecl wxEventTypeTag< cls > name;
4466 Helper macro for definition of custom event table macros.
4468 This macro must only be used if wxEVENTS_COMPATIBILITY_2_8 is 1, otherwise
4469 it is better and more clear to just use the address of the function
4470 directly as this is all this macro does in this case. However it needs to
4471 explicitly cast @a func to @a functype, which is the type of wxEvtHandler
4472 member function taking the custom event argument when
4473 wxEVENTS_COMPATIBILITY_2_8 is 0.
4475 See wx__DECLARE_EVT0 for an example of use.
4477 @see @ref overview_events_custom_ownclass
4479 #define wxEVENT_HANDLER_CAST(functype, func) (&func)
4482 This macro is used to define event table macros for handling custom
4487 class MyEvent : public wxEvent { ... };
4489 // note that this is not necessary unless using old compilers: for the
4490 // reasonably new ones just use &func instead of MyEventHandler(func)
4491 typedef void (wxEvtHandler::*MyEventFunction)(MyEvent&);
4492 #define MyEventHandler(func) wxEVENT_HANDLER_CAST(MyEventFunction, func)
4494 wxDEFINE_EVENT(MY_EVENT_TYPE, MyEvent);
4496 #define EVT_MY(id, func) \
4497 wx__DECLARE_EVT1(MY_EVENT_TYPE, id, MyEventHandler(func))
4501 wxBEGIN_EVENT_TABLE(MyFrame, wxFrame)
4502 EVT_MY(wxID_ANY, MyFrame::OnMyEvent)
4507 The event type to handle.
4509 The identifier of events to handle.
4511 The event handler method.
4513 #define wx__DECLARE_EVT1(evt, id, fn) \
4514 wx__DECLARE_EVT2(evt, id, wxID_ANY, fn)
4517 Generalized version of the wx__DECLARE_EVT1() macro taking a range of
4518 IDs instead of a single one.
4519 Argument @a id1 is the first identifier of the range, @a id2 is the
4520 second identifier of the range.
4522 #define wx__DECLARE_EVT2(evt, id1, id2, fn) \
4523 DECLARE_EVENT_TABLE_ENTRY(evt, id1, id2, fn, NULL),
4526 Simplified version of the wx__DECLARE_EVT1() macro, to be used when the
4527 event type must be handled regardless of the ID associated with the
4528 specific event instances.
4530 #define wx__DECLARE_EVT0(evt, fn) \
4531 wx__DECLARE_EVT1(evt, wxID_ANY, fn)
4534 Use this macro inside a class declaration to declare a @e static event table
4537 In the implementation file you'll need to use the wxBEGIN_EVENT_TABLE()
4538 and the wxEND_EVENT_TABLE() macros, plus some additional @c EVT_xxx macro
4541 Note that this macro requires a final semicolon.
4543 @see @ref overview_events_eventtables
4545 #define wxDECLARE_EVENT_TABLE()
4548 Use this macro in a source file to start listing @e static event handlers
4549 for a specific class.
4551 Use wxEND_EVENT_TABLE() to terminate the event-declaration block.
4553 @see @ref overview_events_eventtables
4555 #define wxBEGIN_EVENT_TABLE(theClass, baseClass)
4558 Use this macro in a source file to end listing @e static event handlers
4559 for a specific class.
4561 Use wxBEGIN_EVENT_TABLE() to start the event-declaration block.
4563 @see @ref overview_events_eventtables
4565 #define wxEND_EVENT_TABLE()
4568 In a GUI application, this function posts @a event to the specified @e dest
4569 object using wxEvtHandler::AddPendingEvent().
4571 Otherwise, it dispatches @a event immediately using
4572 wxEvtHandler::ProcessEvent(). See the respective documentation for details
4573 (and caveats). Because of limitation of wxEvtHandler::AddPendingEvent()
4574 this function is not thread-safe for event objects having wxString fields,
4575 use wxQueueEvent() instead.
4579 void wxPostEvent(wxEvtHandler
* dest
, const wxEvent
& event
);
4582 Queue an event for processing on the given object.
4584 This is a wrapper around wxEvtHandler::QueueEvent(), see its documentation
4590 The object to queue the event on, can't be @c NULL.
4592 The heap-allocated and non-@c NULL event to queue, the function takes
4595 void wxQueueEvent(wxEvtHandler
* dest
, wxEvent
*event
);
4597 #endif // wxUSE_BASE
4601 wxEventType wxEVT_BUTTON
;
4602 wxEventType wxEVT_CHECKBOX
;
4603 wxEventType wxEVT_CHOICE
;
4604 wxEventType wxEVT_LISTBOX
;
4605 wxEventType wxEVT_LISTBOX_DCLICK
;
4606 wxEventType wxEVT_CHECKLISTBOX
;
4607 wxEventType wxEVT_MENU
;
4608 wxEventType wxEVT_SLIDER
;
4609 wxEventType wxEVT_RADIOBOX
;
4610 wxEventType wxEVT_RADIOBUTTON
;
4611 wxEventType wxEVT_SCROLLBAR
;
4612 wxEventType wxEVT_VLBOX
;
4613 wxEventType wxEVT_COMBOBOX
;
4614 wxEventType wxEVT_TOOL_RCLICKED
;
4615 wxEventType wxEVT_TOOL_DROPDOWN
;
4616 wxEventType wxEVT_TOOL_ENTER
;
4617 wxEventType wxEVT_COMBOBOX_DROPDOWN
;
4618 wxEventType wxEVT_COMBOBOX_CLOSEUP
;
4619 wxEventType wxEVT_THREAD
;
4620 wxEventType wxEVT_LEFT_DOWN
;
4621 wxEventType wxEVT_LEFT_UP
;
4622 wxEventType wxEVT_MIDDLE_DOWN
;
4623 wxEventType wxEVT_MIDDLE_UP
;
4624 wxEventType wxEVT_RIGHT_DOWN
;
4625 wxEventType wxEVT_RIGHT_UP
;
4626 wxEventType wxEVT_MOTION
;
4627 wxEventType wxEVT_ENTER_WINDOW
;
4628 wxEventType wxEVT_LEAVE_WINDOW
;
4629 wxEventType wxEVT_LEFT_DCLICK
;
4630 wxEventType wxEVT_MIDDLE_DCLICK
;
4631 wxEventType wxEVT_RIGHT_DCLICK
;
4632 wxEventType wxEVT_SET_FOCUS
;
4633 wxEventType wxEVT_KILL_FOCUS
;
4634 wxEventType wxEVT_CHILD_FOCUS
;
4635 wxEventType wxEVT_MOUSEWHEEL
;
4636 wxEventType wxEVT_AUX1_DOWN
;
4637 wxEventType wxEVT_AUX1_UP
;
4638 wxEventType wxEVT_AUX1_DCLICK
;
4639 wxEventType wxEVT_AUX2_DOWN
;
4640 wxEventType wxEVT_AUX2_UP
;
4641 wxEventType wxEVT_AUX2_DCLICK
;
4642 wxEventType wxEVT_CHAR
;
4643 wxEventType wxEVT_CHAR_HOOK
;
4644 wxEventType wxEVT_NAVIGATION_KEY
;
4645 wxEventType wxEVT_KEY_DOWN
;
4646 wxEventType wxEVT_KEY_UP
;
4647 wxEventType wxEVT_HOTKEY
;
4648 wxEventType wxEVT_SET_CURSOR
;
4649 wxEventType wxEVT_SCROLL_TOP
;
4650 wxEventType wxEVT_SCROLL_BOTTOM
;
4651 wxEventType wxEVT_SCROLL_LINEUP
;
4652 wxEventType wxEVT_SCROLL_LINEDOWN
;
4653 wxEventType wxEVT_SCROLL_PAGEUP
;
4654 wxEventType wxEVT_SCROLL_PAGEDOWN
;
4655 wxEventType wxEVT_SCROLL_THUMBTRACK
;
4656 wxEventType wxEVT_SCROLL_THUMBRELEASE
;
4657 wxEventType wxEVT_SCROLL_CHANGED
;
4658 wxEventType wxEVT_SPIN_UP
;
4659 wxEventType wxEVT_SPIN_DOWN
;
4660 wxEventType wxEVT_SPIN
;
4661 wxEventType wxEVT_SCROLLWIN_TOP
;
4662 wxEventType wxEVT_SCROLLWIN_BOTTOM
;
4663 wxEventType wxEVT_SCROLLWIN_LINEUP
;
4664 wxEventType wxEVT_SCROLLWIN_LINEDOWN
;
4665 wxEventType wxEVT_SCROLLWIN_PAGEUP
;
4666 wxEventType wxEVT_SCROLLWIN_PAGEDOWN
;
4667 wxEventType wxEVT_SCROLLWIN_THUMBTRACK
;
4668 wxEventType wxEVT_SCROLLWIN_THUMBRELEASE
;
4669 wxEventType wxEVT_SIZE
;
4670 wxEventType wxEVT_MOVE
;
4671 wxEventType wxEVT_CLOSE_WINDOW
;
4672 wxEventType wxEVT_END_SESSION
;
4673 wxEventType wxEVT_QUERY_END_SESSION
;
4674 wxEventType wxEVT_ACTIVATE_APP
;
4675 wxEventType wxEVT_ACTIVATE
;
4676 wxEventType wxEVT_CREATE
;
4677 wxEventType wxEVT_DESTROY
;
4678 wxEventType wxEVT_SHOW
;
4679 wxEventType wxEVT_ICONIZE
;
4680 wxEventType wxEVT_MAXIMIZE
;
4681 wxEventType wxEVT_MOUSE_CAPTURE_CHANGED
;
4682 wxEventType wxEVT_MOUSE_CAPTURE_LOST
;
4683 wxEventType wxEVT_PAINT
;
4684 wxEventType wxEVT_ERASE_BACKGROUND
;
4685 wxEventType wxEVT_NC_PAINT
;
4686 wxEventType wxEVT_MENU_OPEN
;
4687 wxEventType wxEVT_MENU_CLOSE
;
4688 wxEventType wxEVT_MENU_HIGHLIGHT
;
4689 wxEventType wxEVT_CONTEXT_MENU
;
4690 wxEventType wxEVT_SYS_COLOUR_CHANGED
;
4691 wxEventType wxEVT_DISPLAY_CHANGED
;
4692 wxEventType wxEVT_QUERY_NEW_PALETTE
;
4693 wxEventType wxEVT_PALETTE_CHANGED
;
4694 wxEventType wxEVT_JOY_BUTTON_DOWN
;
4695 wxEventType wxEVT_JOY_BUTTON_UP
;
4696 wxEventType wxEVT_JOY_MOVE
;
4697 wxEventType wxEVT_JOY_ZMOVE
;
4698 wxEventType wxEVT_DROP_FILES
;
4699 wxEventType wxEVT_INIT_DIALOG
;
4700 wxEventType wxEVT_IDLE
;
4701 wxEventType wxEVT_UPDATE_UI
;
4702 wxEventType wxEVT_SIZING
;
4703 wxEventType wxEVT_MOVING
;
4704 wxEventType wxEVT_MOVE_START
;
4705 wxEventType wxEVT_MOVE_END
;
4706 wxEventType wxEVT_HIBERNATE
;
4707 wxEventType wxEVT_TEXT_COPY
;
4708 wxEventType wxEVT_TEXT_CUT
;
4709 wxEventType wxEVT_TEXT_PASTE
;
4710 wxEventType wxEVT_COMMAND_LEFT_CLICK
;
4711 wxEventType wxEVT_COMMAND_LEFT_DCLICK
;
4712 wxEventType wxEVT_COMMAND_RIGHT_CLICK
;
4713 wxEventType wxEVT_COMMAND_RIGHT_DCLICK
;
4714 wxEventType wxEVT_COMMAND_SET_FOCUS
;
4715 wxEventType wxEVT_COMMAND_KILL_FOCUS
;
4716 wxEventType wxEVT_COMMAND_ENTER
;
4717 wxEventType wxEVT_HELP
;
4718 wxEventType wxEVT_DETAILED_HELP
;
4719 wxEventType wxEVT_TOOL
;
4720 wxEventType wxEVT_WINDOW_MODAL_DIALOG_CLOSED
;