1 /////////////////////////////////////////////////////////////////////////////
3 // Purpose: wxQuantize implementation
4 // Author: Julian Smart
8 // Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart
9 // Licence: wxWindows licence + JPEG library licence
10 /////////////////////////////////////////////////////////////////////////////
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
31 /* modified by Vaclav Slavik for use as jpeglib-independent module */
34 #pragma implementation "quantize.h"
37 // For compilers that support precompilation, includes "wx/wx.h".
38 #include "wx/wxprec.h"
49 #include "wx/quantize.h"
58 #if defined(__VISAGECPP__)
60 #define RGB_GREEN_OS2 1
61 #define RGB_BLUE_OS2 2
67 #define RGB_PIXELSIZE 3
69 #define MAXJSAMPLE 255
70 #define CENTERJSAMPLE 128
71 #define BITS_IN_JSAMPLE 8
72 #define GETJSAMPLE(value) ((int) (value))
74 #define RIGHT_SHIFT(x,shft) ((x) >> (shft))
76 typedef unsigned short UINT16
;
77 typedef signed short INT16
;
78 typedef signed int INT32
;
80 typedef unsigned char JSAMPLE
;
81 typedef JSAMPLE
*JSAMPROW
;
82 typedef JSAMPROW
*JSAMPARRAY
;
83 typedef unsigned int JDIMENSION
;
87 JDIMENSION output_width
;
89 int actual_number_of_colors
;
90 int desired_number_of_colors
;
91 JSAMPLE
*sample_range_limit
, *srl_orig
;
94 typedef j_decompress
*j_decompress_ptr
;
98 * This module implements the well-known Heckbert paradigm for color
99 * quantization. Most of the ideas used here can be traced back to
100 * Heckbert's seminal paper
101 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
102 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
104 * In the first pass over the image, we accumulate a histogram showing the
105 * usage count of each possible color. To keep the histogram to a reasonable
106 * size, we reduce the precision of the input; typical practice is to retain
107 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
108 * in the same histogram cell.
110 * Next, the color-selection step begins with a box representing the whole
111 * color space, and repeatedly splits the "largest" remaining box until we
112 * have as many boxes as desired colors. Then the mean color in each
113 * remaining box becomes one of the possible output colors.
115 * The second pass over the image maps each input pixel to the closest output
116 * color (optionally after applying a Floyd-Steinberg dithering correction).
117 * This mapping is logically trivial, but making it go fast enough requires
120 * Heckbert-style quantizers vary a good deal in their policies for choosing
121 * the "largest" box and deciding where to cut it. The particular policies
122 * used here have proved out well in experimental comparisons, but better ones
125 * In earlier versions of the IJG code, this module quantized in YCbCr color
126 * space, processing the raw upsampled data without a color conversion step.
127 * This allowed the color conversion math to be done only once per colormap
128 * entry, not once per pixel. However, that optimization precluded other
129 * useful optimizations (such as merging color conversion with upsampling)
130 * and it also interfered with desired capabilities such as quantizing to an
131 * externally-supplied colormap. We have therefore abandoned that approach.
132 * The present code works in the post-conversion color space, typically RGB.
134 * To improve the visual quality of the results, we actually work in scaled
135 * RGB space, giving G distances more weight than R, and R in turn more than
136 * B. To do everything in integer math, we must use integer scale factors.
137 * The 2/3/1 scale factors used here correspond loosely to the relative
138 * weights of the colors in the NTSC grayscale equation.
139 * If you want to use this code to quantize a non-RGB color space, you'll
140 * probably need to change these scale factors.
143 #define R_SCALE 2 /* scale R distances by this much */
144 #define G_SCALE 3 /* scale G distances by this much */
145 #define B_SCALE 1 /* and B by this much */
147 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
148 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
149 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
150 * you'll get compile errors until you extend this logic. In that case
151 * you'll probably want to tweak the histogram sizes too.
154 #if defined(__VISAGECPP__)
157 #define C0_SCALE R_SCALE
159 #if RGB_BLUE_OS2 == 0
160 #define C0_SCALE B_SCALE
162 #if RGB_GREEN_OS2 == 1
163 #define C1_SCALE G_SCALE
166 #define C2_SCALE R_SCALE
168 #if RGB_BLUE_OS2 == 2
169 #define C2_SCALE B_SCALE
175 #define C0_SCALE R_SCALE
178 #define C0_SCALE B_SCALE
181 #define C1_SCALE G_SCALE
184 #define C2_SCALE R_SCALE
187 #define C2_SCALE B_SCALE
193 * First we have the histogram data structure and routines for creating it.
195 * The number of bits of precision can be adjusted by changing these symbols.
196 * We recommend keeping 6 bits for G and 5 each for R and B.
197 * If you have plenty of memory and cycles, 6 bits all around gives marginally
198 * better results; if you are short of memory, 5 bits all around will save
199 * some space but degrade the results.
200 * To maintain a fully accurate histogram, we'd need to allocate a "long"
201 * (preferably unsigned long) for each cell. In practice this is overkill;
202 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
203 * and clamping those that do overflow to the maximum value will give close-
204 * enough results. This reduces the recommended histogram size from 256Kb
205 * to 128Kb, which is a useful savings on PC-class machines.
206 * (In the second pass the histogram space is re-used for pixel mapping data;
207 * in that capacity, each cell must be able to store zero to the number of
208 * desired colors. 16 bits/cell is plenty for that too.)
209 * Since the JPEG code is intended to run in small memory model on 80x86
210 * machines, we can't just allocate the histogram in one chunk. Instead
211 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
212 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
213 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
214 * on 80x86 machines, the pointer row is in near memory but the actual
215 * arrays are in far memory (same arrangement as we use for image arrays).
218 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
220 /* These will do the right thing for either R,G,B or B,G,R color order,
221 * but you may not like the results for other color orders.
223 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
224 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
225 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
227 /* Number of elements along histogram axes. */
228 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
229 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
230 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
232 /* These are the amounts to shift an input value to get a histogram index. */
233 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
234 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
235 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
238 typedef UINT16 histcell
; /* histogram cell; prefer an unsigned type */
240 typedef histcell
* histptr
; /* for pointers to histogram cells */
242 typedef histcell hist1d
[HIST_C2_ELEMS
]; /* typedefs for the array */
243 typedef hist1d
* hist2d
; /* type for the 2nd-level pointers */
244 typedef hist2d
* hist3d
; /* type for top-level pointer */
247 /* Declarations for Floyd-Steinberg dithering.
249 * Errors are accumulated into the array fserrors[], at a resolution of
250 * 1/16th of a pixel count. The error at a given pixel is propagated
251 * to its not-yet-processed neighbors using the standard F-S fractions,
254 * We work left-to-right on even rows, right-to-left on odd rows.
256 * We can get away with a single array (holding one row's worth of errors)
257 * by using it to store the current row's errors at pixel columns not yet
258 * processed, but the next row's errors at columns already processed. We
259 * need only a few extra variables to hold the errors immediately around the
260 * current column. (If we are lucky, those variables are in registers, but
261 * even if not, they're probably cheaper to access than array elements are.)
263 * The fserrors[] array has (#columns + 2) entries; the extra entry at
264 * each end saves us from special-casing the first and last pixels.
265 * Each entry is three values long, one value for each color component.
267 * Note: on a wide image, we might not have enough room in a PC's near data
268 * segment to hold the error array; so it is allocated with alloc_large.
271 #if BITS_IN_JSAMPLE == 8
272 typedef INT16 FSERROR
; /* 16 bits should be enough */
273 typedef int LOCFSERROR
; /* use 'int' for calculation temps */
275 typedef INT32 FSERROR
; /* may need more than 16 bits */
276 typedef INT32 LOCFSERROR
; /* be sure calculation temps are big enough */
279 typedef FSERROR
*FSERRPTR
; /* pointer to error array (in storage!) */
282 /* Private subobject */
287 void (*finish_pass
)(j_decompress_ptr
);
288 void (*color_quantize
)(j_decompress_ptr
, JSAMPARRAY
, JSAMPARRAY
, int);
289 void (*start_pass
)(j_decompress_ptr
, bool);
290 void (*new_color_map
)(j_decompress_ptr
);
293 /* Space for the eventually created colormap is stashed here */
294 JSAMPARRAY sv_colormap
; /* colormap allocated at init time */
295 int desired
; /* desired # of colors = size of colormap */
297 /* Variables for accumulating image statistics */
298 hist3d histogram
; /* pointer to the histogram */
300 bool needs_zeroed
; /* true if next pass must zero histogram */
302 /* Variables for Floyd-Steinberg dithering */
303 FSERRPTR fserrors
; /* accumulated errors */
304 bool on_odd_row
; /* flag to remember which row we are on */
305 int * error_limiter
; /* table for clamping the applied error */
308 typedef my_cquantizer
* my_cquantize_ptr
;
312 * Prescan some rows of pixels.
313 * In this module the prescan simply updates the histogram, which has been
314 * initialized to zeroes by start_pass.
315 * An output_buf parameter is required by the method signature, but no data
316 * is actually output (in fact the buffer controller is probably passing a
321 prescan_quantize (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
322 JSAMPARRAY output_buf
, int num_rows
)
324 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
325 register JSAMPROW ptr
;
326 register histptr histp
;
327 register hist3d histogram
= cquantize
->histogram
;
330 JDIMENSION width
= cinfo
->output_width
;
332 for (row
= 0; row
< num_rows
; row
++) {
333 ptr
= input_buf
[row
];
334 for (col
= width
; col
> 0; col
--) {
338 /* get pixel value and index into the histogram */
339 histp
= & histogram
[GETJSAMPLE(ptr
[0]) >> C0_SHIFT
]
340 [GETJSAMPLE(ptr
[1]) >> C1_SHIFT
]
341 [GETJSAMPLE(ptr
[2]) >> C2_SHIFT
];
342 /* increment, check for overflow and undo increment if so. */
353 * Next we have the really interesting routines: selection of a colormap
354 * given the completed histogram.
355 * These routines work with a list of "boxes", each representing a rectangular
356 * subset of the input color space (to histogram precision).
360 /* The bounds of the box (inclusive); expressed as histogram indexes */
364 /* The volume (actually 2-norm) of the box */
366 /* The number of nonzero histogram cells within this box */
370 typedef box
* boxptr
;
374 find_biggest_color_pop (boxptr boxlist
, int numboxes
)
375 /* Find the splittable box with the largest color population */
376 /* Returns NULL if no splittable boxes remain */
378 register boxptr boxp
;
380 register long maxc
= 0;
383 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
384 if (boxp
->colorcount
> maxc
&& boxp
->volume
> 0) {
386 maxc
= boxp
->colorcount
;
394 find_biggest_volume (boxptr boxlist
, int numboxes
)
395 /* Find the splittable box with the largest (scaled) volume */
396 /* Returns NULL if no splittable boxes remain */
398 register boxptr boxp
;
400 register INT32 maxv
= 0;
403 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
404 if (boxp
->volume
> maxv
) {
414 update_box (j_decompress_ptr cinfo
, boxptr boxp
)
415 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
416 /* and recompute its volume and population */
418 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
419 hist3d histogram
= cquantize
->histogram
;
422 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
423 INT32 dist0
,dist1
,dist2
;
426 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
427 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
428 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
431 for (c0
= c0min
; c0
<= c0max
; c0
++)
432 for (c1
= c1min
; c1
<= c1max
; c1
++) {
433 histp
= & histogram
[c0
][c1
][c2min
];
434 for (c2
= c2min
; c2
<= c2max
; c2
++)
436 boxp
->c0min
= c0min
= c0
;
442 for (c0
= c0max
; c0
>= c0min
; c0
--)
443 for (c1
= c1min
; c1
<= c1max
; c1
++) {
444 histp
= & histogram
[c0
][c1
][c2min
];
445 for (c2
= c2min
; c2
<= c2max
; c2
++)
447 boxp
->c0max
= c0max
= c0
;
453 for (c1
= c1min
; c1
<= c1max
; c1
++)
454 for (c0
= c0min
; c0
<= c0max
; c0
++) {
455 histp
= & histogram
[c0
][c1
][c2min
];
456 for (c2
= c2min
; c2
<= c2max
; c2
++)
458 boxp
->c1min
= c1min
= c1
;
464 for (c1
= c1max
; c1
>= c1min
; c1
--)
465 for (c0
= c0min
; c0
<= c0max
; c0
++) {
466 histp
= & histogram
[c0
][c1
][c2min
];
467 for (c2
= c2min
; c2
<= c2max
; c2
++)
469 boxp
->c1max
= c1max
= c1
;
475 for (c2
= c2min
; c2
<= c2max
; c2
++)
476 for (c0
= c0min
; c0
<= c0max
; c0
++) {
477 histp
= & histogram
[c0
][c1min
][c2
];
478 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
480 boxp
->c2min
= c2min
= c2
;
486 for (c2
= c2max
; c2
>= c2min
; c2
--)
487 for (c0
= c0min
; c0
<= c0max
; c0
++) {
488 histp
= & histogram
[c0
][c1min
][c2
];
489 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
491 boxp
->c2max
= c2max
= c2
;
497 /* Update box volume.
498 * We use 2-norm rather than real volume here; this biases the method
499 * against making long narrow boxes, and it has the side benefit that
500 * a box is splittable iff norm > 0.
501 * Since the differences are expressed in histogram-cell units,
502 * we have to shift back to JSAMPLE units to get consistent distances;
503 * after which, we scale according to the selected distance scale factors.
505 dist0
= ((c0max
- c0min
) << C0_SHIFT
) * C0_SCALE
;
506 dist1
= ((c1max
- c1min
) << C1_SHIFT
) * C1_SCALE
;
507 dist2
= ((c2max
- c2min
) << C2_SHIFT
) * C2_SCALE
;
508 boxp
->volume
= dist0
*dist0
+ dist1
*dist1
+ dist2
*dist2
;
510 /* Now scan remaining volume of box and compute population */
512 for (c0
= c0min
; c0
<= c0max
; c0
++)
513 for (c1
= c1min
; c1
<= c1max
; c1
++) {
514 histp
= & histogram
[c0
][c1
][c2min
];
515 for (c2
= c2min
; c2
<= c2max
; c2
++, histp
++)
520 boxp
->colorcount
= ccount
;
525 median_cut (j_decompress_ptr cinfo
, boxptr boxlist
, int numboxes
,
527 /* Repeatedly select and split the largest box until we have enough boxes */
531 register boxptr b1
,b2
;
533 while (numboxes
< desired_colors
) {
534 /* Select box to split.
535 * Current algorithm: by population for first half, then by volume.
537 if (numboxes
*2 <= desired_colors
) {
538 b1
= find_biggest_color_pop(boxlist
, numboxes
);
540 b1
= find_biggest_volume(boxlist
, numboxes
);
542 if (b1
== NULL
) /* no splittable boxes left! */
544 b2
= &boxlist
[numboxes
]; /* where new box will go */
545 /* Copy the color bounds to the new box. */
546 b2
->c0max
= b1
->c0max
; b2
->c1max
= b1
->c1max
; b2
->c2max
= b1
->c2max
;
547 b2
->c0min
= b1
->c0min
; b2
->c1min
= b1
->c1min
; b2
->c2min
= b1
->c2min
;
548 /* Choose which axis to split the box on.
549 * Current algorithm: longest scaled axis.
550 * See notes in update_box about scaling distances.
552 c0
= ((b1
->c0max
- b1
->c0min
) << C0_SHIFT
) * C0_SCALE
;
553 c1
= ((b1
->c1max
- b1
->c1min
) << C1_SHIFT
) * C1_SCALE
;
554 c2
= ((b1
->c2max
- b1
->c2min
) << C2_SHIFT
) * C2_SCALE
;
555 /* We want to break any ties in favor of green, then red, blue last.
556 * This code does the right thing for R,G,B or B,G,R color orders only.
558 #if defined(__VISAGECPP__)
562 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
563 if (c2
> cmax
) { n
= 2; }
566 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
567 if (c0
> cmax
) { n
= 0; }
574 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
575 if (c2
> cmax
) { n
= 2; }
578 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
579 if (c0
> cmax
) { n
= 0; }
583 /* Choose split point along selected axis, and update box bounds.
584 * Current algorithm: split at halfway point.
585 * (Since the box has been shrunk to minimum volume,
586 * any split will produce two nonempty subboxes.)
587 * Note that lb value is max for lower box, so must be < old max.
591 lb
= (b1
->c0max
+ b1
->c0min
) / 2;
596 lb
= (b1
->c1max
+ b1
->c1min
) / 2;
601 lb
= (b1
->c2max
+ b1
->c2min
) / 2;
606 /* Update stats for boxes */
607 update_box(cinfo
, b1
);
608 update_box(cinfo
, b2
);
616 compute_color (j_decompress_ptr cinfo
, boxptr boxp
, int icolor
)
617 /* Compute representative color for a box, put it in colormap[icolor] */
619 /* Current algorithm: mean weighted by pixels (not colors) */
620 /* Note it is important to get the rounding correct! */
621 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
622 hist3d histogram
= cquantize
->histogram
;
625 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
632 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
633 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
634 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
636 for (c0
= c0min
; c0
<= c0max
; c0
++)
637 for (c1
= c1min
; c1
<= c1max
; c1
++) {
638 histp
= & histogram
[c0
][c1
][c2min
];
639 for (c2
= c2min
; c2
<= c2max
; c2
++) {
640 if ((count
= *histp
++) != 0) {
642 c0total
+= ((c0
<< C0_SHIFT
) + ((1<<C0_SHIFT
)>>1)) * count
;
643 c1total
+= ((c1
<< C1_SHIFT
) + ((1<<C1_SHIFT
)>>1)) * count
;
644 c2total
+= ((c2
<< C2_SHIFT
) + ((1<<C2_SHIFT
)>>1)) * count
;
649 cinfo
->colormap
[0][icolor
] = (JSAMPLE
) ((c0total
+ (total
>>1)) / total
);
650 cinfo
->colormap
[1][icolor
] = (JSAMPLE
) ((c1total
+ (total
>>1)) / total
);
651 cinfo
->colormap
[2][icolor
] = (JSAMPLE
) ((c2total
+ (total
>>1)) / total
);
656 select_colors (j_decompress_ptr cinfo
, int desired_colors
)
657 /* Master routine for color selection */
663 /* Allocate workspace for box list */
664 boxlist
= (boxptr
) malloc(desired_colors
* sizeof(box
));
665 /* Initialize one box containing whole space */
667 boxlist
[0].c0min
= 0;
668 boxlist
[0].c0max
= MAXJSAMPLE
>> C0_SHIFT
;
669 boxlist
[0].c1min
= 0;
670 boxlist
[0].c1max
= MAXJSAMPLE
>> C1_SHIFT
;
671 boxlist
[0].c2min
= 0;
672 boxlist
[0].c2max
= MAXJSAMPLE
>> C2_SHIFT
;
673 /* Shrink it to actually-used volume and set its statistics */
674 update_box(cinfo
, & boxlist
[0]);
675 /* Perform median-cut to produce final box list */
676 numboxes
= median_cut(cinfo
, boxlist
, numboxes
, desired_colors
);
677 /* Compute the representative color for each box, fill colormap */
678 for (i
= 0; i
< numboxes
; i
++)
679 compute_color(cinfo
, & boxlist
[i
], i
);
680 cinfo
->actual_number_of_colors
= numboxes
;
682 free(boxlist
); //FIXME?? I don't know if this is correct - VS
687 * These routines are concerned with the time-critical task of mapping input
688 * colors to the nearest color in the selected colormap.
690 * We re-use the histogram space as an "inverse color map", essentially a
691 * cache for the results of nearest-color searches. All colors within a
692 * histogram cell will be mapped to the same colormap entry, namely the one
693 * closest to the cell's center. This may not be quite the closest entry to
694 * the actual input color, but it's almost as good. A zero in the cache
695 * indicates we haven't found the nearest color for that cell yet; the array
696 * is cleared to zeroes before starting the mapping pass. When we find the
697 * nearest color for a cell, its colormap index plus one is recorded in the
698 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
699 * when they need to use an unfilled entry in the cache.
701 * Our method of efficiently finding nearest colors is based on the "locally
702 * sorted search" idea described by Heckbert and on the incremental distance
703 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
704 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
705 * the distances from a given colormap entry to each cell of the histogram can
706 * be computed quickly using an incremental method: the differences between
707 * distances to adjacent cells themselves differ by a constant. This allows a
708 * fairly fast implementation of the "brute force" approach of computing the
709 * distance from every colormap entry to every histogram cell. Unfortunately,
710 * it needs a work array to hold the best-distance-so-far for each histogram
711 * cell (because the inner loop has to be over cells, not colormap entries).
712 * The work array elements have to be INT32s, so the work array would need
713 * 256Kb at our recommended precision. This is not feasible in DOS machines.
715 * To get around these problems, we apply Thomas' method to compute the
716 * nearest colors for only the cells within a small subbox of the histogram.
717 * The work array need be only as big as the subbox, so the memory usage
718 * problem is solved. Furthermore, we need not fill subboxes that are never
719 * referenced in pass2; many images use only part of the color gamut, so a
720 * fair amount of work is saved. An additional advantage of this
721 * approach is that we can apply Heckbert's locality criterion to quickly
722 * eliminate colormap entries that are far away from the subbox; typically
723 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
724 * and we need not compute their distances to individual cells in the subbox.
725 * The speed of this approach is heavily influenced by the subbox size: too
726 * small means too much overhead, too big loses because Heckbert's criterion
727 * can't eliminate as many colormap entries. Empirically the best subbox
728 * size seems to be about 1/512th of the histogram (1/8th in each direction).
730 * Thomas' article also describes a refined method which is asymptotically
731 * faster than the brute-force method, but it is also far more complex and
732 * cannot efficiently be applied to small subboxes. It is therefore not
733 * useful for programs intended to be portable to DOS machines. On machines
734 * with plenty of memory, filling the whole histogram in one shot with Thomas'
735 * refined method might be faster than the present code --- but then again,
736 * it might not be any faster, and it's certainly more complicated.
740 /* log2(histogram cells in update box) for each axis; this can be adjusted */
741 #define BOX_C0_LOG (HIST_C0_BITS-3)
742 #define BOX_C1_LOG (HIST_C1_BITS-3)
743 #define BOX_C2_LOG (HIST_C2_BITS-3)
745 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
746 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
747 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
749 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
750 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
751 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
755 * The next three routines implement inverse colormap filling. They could
756 * all be folded into one big routine, but splitting them up this way saves
757 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
758 * and may allow some compilers to produce better code by registerizing more
759 * inner-loop variables.
763 find_nearby_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
765 /* Locate the colormap entries close enough to an update box to be candidates
766 * for the nearest entry to some cell(s) in the update box. The update box
767 * is specified by the center coordinates of its first cell. The number of
768 * candidate colormap entries is returned, and their colormap indexes are
769 * placed in colorlist[].
770 * This routine uses Heckbert's "locally sorted search" criterion to select
771 * the colors that need further consideration.
774 int numcolors
= cinfo
->actual_number_of_colors
;
775 int maxc0
, maxc1
, maxc2
;
776 int centerc0
, centerc1
, centerc2
;
778 INT32 minmaxdist
, min_dist
, max_dist
, tdist
;
779 INT32 mindist
[MAXNUMCOLORS
]; /* min distance to colormap entry i */
781 /* Compute true coordinates of update box's upper corner and center.
782 * Actually we compute the coordinates of the center of the upper-corner
783 * histogram cell, which are the upper bounds of the volume we care about.
784 * Note that since ">>" rounds down, the "center" values may be closer to
785 * min than to max; hence comparisons to them must be "<=", not "<".
787 maxc0
= minc0
+ ((1 << BOX_C0_SHIFT
) - (1 << C0_SHIFT
));
788 centerc0
= (minc0
+ maxc0
) >> 1;
789 maxc1
= minc1
+ ((1 << BOX_C1_SHIFT
) - (1 << C1_SHIFT
));
790 centerc1
= (minc1
+ maxc1
) >> 1;
791 maxc2
= minc2
+ ((1 << BOX_C2_SHIFT
) - (1 << C2_SHIFT
));
792 centerc2
= (minc2
+ maxc2
) >> 1;
794 /* For each color in colormap, find:
795 * 1. its minimum squared-distance to any point in the update box
796 * (zero if color is within update box);
797 * 2. its maximum squared-distance to any point in the update box.
798 * Both of these can be found by considering only the corners of the box.
799 * We save the minimum distance for each color in mindist[];
800 * only the smallest maximum distance is of interest.
802 minmaxdist
= 0x7FFFFFFFL
;
804 for (i
= 0; i
< numcolors
; i
++) {
805 /* We compute the squared-c0-distance term, then add in the other two. */
806 x
= GETJSAMPLE(cinfo
->colormap
[0][i
]);
808 tdist
= (x
- minc0
) * C0_SCALE
;
809 min_dist
= tdist
*tdist
;
810 tdist
= (x
- maxc0
) * C0_SCALE
;
811 max_dist
= tdist
*tdist
;
812 } else if (x
> maxc0
) {
813 tdist
= (x
- maxc0
) * C0_SCALE
;
814 min_dist
= tdist
*tdist
;
815 tdist
= (x
- minc0
) * C0_SCALE
;
816 max_dist
= tdist
*tdist
;
818 /* within cell range so no contribution to min_dist */
821 tdist
= (x
- maxc0
) * C0_SCALE
;
822 max_dist
= tdist
*tdist
;
824 tdist
= (x
- minc0
) * C0_SCALE
;
825 max_dist
= tdist
*tdist
;
829 x
= GETJSAMPLE(cinfo
->colormap
[1][i
]);
831 tdist
= (x
- minc1
) * C1_SCALE
;
832 min_dist
+= tdist
*tdist
;
833 tdist
= (x
- maxc1
) * C1_SCALE
;
834 max_dist
+= tdist
*tdist
;
835 } else if (x
> maxc1
) {
836 tdist
= (x
- maxc1
) * C1_SCALE
;
837 min_dist
+= tdist
*tdist
;
838 tdist
= (x
- minc1
) * C1_SCALE
;
839 max_dist
+= tdist
*tdist
;
841 /* within cell range so no contribution to min_dist */
843 tdist
= (x
- maxc1
) * C1_SCALE
;
844 max_dist
+= tdist
*tdist
;
846 tdist
= (x
- minc1
) * C1_SCALE
;
847 max_dist
+= tdist
*tdist
;
851 x
= GETJSAMPLE(cinfo
->colormap
[2][i
]);
853 tdist
= (x
- minc2
) * C2_SCALE
;
854 min_dist
+= tdist
*tdist
;
855 tdist
= (x
- maxc2
) * C2_SCALE
;
856 max_dist
+= tdist
*tdist
;
857 } else if (x
> maxc2
) {
858 tdist
= (x
- maxc2
) * C2_SCALE
;
859 min_dist
+= tdist
*tdist
;
860 tdist
= (x
- minc2
) * C2_SCALE
;
861 max_dist
+= tdist
*tdist
;
863 /* within cell range so no contribution to min_dist */
865 tdist
= (x
- maxc2
) * C2_SCALE
;
866 max_dist
+= tdist
*tdist
;
868 tdist
= (x
- minc2
) * C2_SCALE
;
869 max_dist
+= tdist
*tdist
;
873 mindist
[i
] = min_dist
; /* save away the results */
874 if (max_dist
< minmaxdist
)
875 minmaxdist
= max_dist
;
878 /* Now we know that no cell in the update box is more than minmaxdist
879 * away from some colormap entry. Therefore, only colors that are
880 * within minmaxdist of some part of the box need be considered.
883 for (i
= 0; i
< numcolors
; i
++) {
884 if (mindist
[i
] <= minmaxdist
)
885 colorlist
[ncolors
++] = (JSAMPLE
) i
;
892 find_best_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
893 int numcolors
, JSAMPLE colorlist
[], JSAMPLE bestcolor
[])
894 /* Find the closest colormap entry for each cell in the update box,
895 * given the list of candidate colors prepared by find_nearby_colors.
896 * Return the indexes of the closest entries in the bestcolor[] array.
897 * This routine uses Thomas' incremental distance calculation method to
898 * find the distance from a colormap entry to successive cells in the box.
903 register INT32
* bptr
; /* pointer into bestdist[] array */
904 JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
905 INT32 dist0
, dist1
; /* initial distance values */
906 register INT32 dist2
; /* current distance in inner loop */
907 INT32 xx0
, xx1
; /* distance increments */
909 INT32 inc0
, inc1
, inc2
; /* initial values for increments */
910 /* This array holds the distance to the nearest-so-far color for each cell */
911 INT32 bestdist
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
913 /* Initialize best-distance for each cell of the update box */
915 for (i
= BOX_C0_ELEMS
*BOX_C1_ELEMS
*BOX_C2_ELEMS
-1; i
>= 0; i
--)
916 *bptr
++ = 0x7FFFFFFFL
;
918 /* For each color selected by find_nearby_colors,
919 * compute its distance to the center of each cell in the box.
920 * If that's less than best-so-far, update best distance and color number.
923 /* Nominal steps between cell centers ("x" in Thomas article) */
924 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
925 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
926 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
928 for (i
= 0; i
< numcolors
; i
++) {
929 icolor
= GETJSAMPLE(colorlist
[i
]);
930 /* Compute (square of) distance from minc0/c1/c2 to this color */
931 inc0
= (minc0
- GETJSAMPLE(cinfo
->colormap
[0][icolor
])) * C0_SCALE
;
933 inc1
= (minc1
- GETJSAMPLE(cinfo
->colormap
[1][icolor
])) * C1_SCALE
;
935 inc2
= (minc2
- GETJSAMPLE(cinfo
->colormap
[2][icolor
])) * C2_SCALE
;
937 /* Form the initial difference increments */
938 inc0
= inc0
* (2 * STEP_C0
) + STEP_C0
* STEP_C0
;
939 inc1
= inc1
* (2 * STEP_C1
) + STEP_C1
* STEP_C1
;
940 inc2
= inc2
* (2 * STEP_C2
) + STEP_C2
* STEP_C2
;
941 /* Now loop over all cells in box, updating distance per Thomas method */
945 for (ic0
= BOX_C0_ELEMS
-1; ic0
>= 0; ic0
--) {
948 for (ic1
= BOX_C1_ELEMS
-1; ic1
>= 0; ic1
--) {
951 for (ic2
= BOX_C2_ELEMS
-1; ic2
>= 0; ic2
--) {
954 *cptr
= (JSAMPLE
) icolor
;
957 xx2
+= 2 * STEP_C2
* STEP_C2
;
962 xx1
+= 2 * STEP_C1
* STEP_C1
;
965 xx0
+= 2 * STEP_C0
* STEP_C0
;
972 fill_inverse_cmap (j_decompress_ptr cinfo
, int c0
, int c1
, int c2
)
973 /* Fill the inverse-colormap entries in the update box that contains */
974 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
975 /* we can fill as many others as we wish.) */
977 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
978 hist3d histogram
= cquantize
->histogram
;
979 int minc0
, minc1
, minc2
; /* lower left corner of update box */
981 register JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
982 register histptr cachep
; /* pointer into main cache array */
983 /* This array lists the candidate colormap indexes. */
984 JSAMPLE colorlist
[MAXNUMCOLORS
];
985 int numcolors
; /* number of candidate colors */
986 /* This array holds the actually closest colormap index for each cell. */
987 JSAMPLE bestcolor
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
989 /* Convert cell coordinates to update box ID */
994 /* Compute true coordinates of update box's origin corner.
995 * Actually we compute the coordinates of the center of the corner
996 * histogram cell, which are the lower bounds of the volume we care about.
998 minc0
= (c0
<< BOX_C0_SHIFT
) + ((1 << C0_SHIFT
) >> 1);
999 minc1
= (c1
<< BOX_C1_SHIFT
) + ((1 << C1_SHIFT
) >> 1);
1000 minc2
= (c2
<< BOX_C2_SHIFT
) + ((1 << C2_SHIFT
) >> 1);
1002 /* Determine which colormap entries are close enough to be candidates
1003 * for the nearest entry to some cell in the update box.
1005 numcolors
= find_nearby_colors(cinfo
, minc0
, minc1
, minc2
, colorlist
);
1007 /* Determine the actually nearest colors. */
1008 find_best_colors(cinfo
, minc0
, minc1
, minc2
, numcolors
, colorlist
,
1011 /* Save the best color numbers (plus 1) in the main cache array */
1012 c0
<<= BOX_C0_LOG
; /* convert ID back to base cell indexes */
1016 for (ic0
= 0; ic0
< BOX_C0_ELEMS
; ic0
++) {
1017 for (ic1
= 0; ic1
< BOX_C1_ELEMS
; ic1
++) {
1018 cachep
= & histogram
[c0
+ic0
][c1
+ic1
][c2
];
1019 for (ic2
= 0; ic2
< BOX_C2_ELEMS
; ic2
++) {
1020 *cachep
++ = (histcell
) (GETJSAMPLE(*cptr
++) + 1);
1028 * Map some rows of pixels to the output colormapped representation.
1032 pass2_no_dither (j_decompress_ptr cinfo
,
1033 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
1034 /* This version performs no dithering */
1036 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1037 hist3d histogram
= cquantize
->histogram
;
1038 register JSAMPROW inptr
, outptr
;
1039 register histptr cachep
;
1040 register int c0
, c1
, c2
;
1043 JDIMENSION width
= cinfo
->output_width
;
1045 for (row
= 0; row
< num_rows
; row
++) {
1046 inptr
= input_buf
[row
];
1047 outptr
= output_buf
[row
];
1048 for (col
= width
; col
> 0; col
--) {
1049 /* get pixel value and index into the cache */
1050 c0
= GETJSAMPLE(*inptr
++) >> C0_SHIFT
;
1051 c1
= GETJSAMPLE(*inptr
++) >> C1_SHIFT
;
1052 c2
= GETJSAMPLE(*inptr
++) >> C2_SHIFT
;
1053 cachep
= & histogram
[c0
][c1
][c2
];
1054 /* If we have not seen this color before, find nearest colormap entry */
1055 /* and update the cache */
1057 fill_inverse_cmap(cinfo
, c0
,c1
,c2
);
1058 /* Now emit the colormap index for this cell */
1059 *outptr
++ = (JSAMPLE
) (*cachep
- 1);
1066 pass2_fs_dither (j_decompress_ptr cinfo
,
1067 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
1068 /* This version performs Floyd-Steinberg dithering */
1070 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1071 hist3d histogram
= cquantize
->histogram
;
1072 register LOCFSERROR cur0
, cur1
, cur2
; /* current error or pixel value */
1073 LOCFSERROR belowerr0
, belowerr1
, belowerr2
; /* error for pixel below cur */
1074 LOCFSERROR bpreverr0
, bpreverr1
, bpreverr2
; /* error for below/prev col */
1075 register FSERRPTR errorptr
; /* => fserrors[] at column before current */
1076 JSAMPROW inptr
; /* => current input pixel */
1077 JSAMPROW outptr
; /* => current output pixel */
1079 int dir
; /* +1 or -1 depending on direction */
1080 int dir3
; /* 3*dir, for advancing inptr & errorptr */
1083 JDIMENSION width
= cinfo
->output_width
;
1084 JSAMPLE
*range_limit
= cinfo
->sample_range_limit
;
1085 int *error_limit
= cquantize
->error_limiter
;
1086 JSAMPROW colormap0
= cinfo
->colormap
[0];
1087 JSAMPROW colormap1
= cinfo
->colormap
[1];
1088 JSAMPROW colormap2
= cinfo
->colormap
[2];
1091 for (row
= 0; row
< num_rows
; row
++) {
1092 inptr
= input_buf
[row
];
1093 outptr
= output_buf
[row
];
1094 if (cquantize
->on_odd_row
) {
1095 /* work right to left in this row */
1096 inptr
+= (width
-1) * 3; /* so point to rightmost pixel */
1100 errorptr
= cquantize
->fserrors
+ (width
+1)*3; /* => entry after last column */
1101 cquantize
->on_odd_row
= FALSE
; /* flip for next time */
1103 /* work left to right in this row */
1106 errorptr
= cquantize
->fserrors
; /* => entry before first real column */
1107 cquantize
->on_odd_row
= TRUE
; /* flip for next time */
1109 /* Preset error values: no error propagated to first pixel from left */
1110 cur0
= cur1
= cur2
= 0;
1111 /* and no error propagated to row below yet */
1112 belowerr0
= belowerr1
= belowerr2
= 0;
1113 bpreverr0
= bpreverr1
= bpreverr2
= 0;
1115 for (col
= width
; col
> 0; col
--) {
1116 /* curN holds the error propagated from the previous pixel on the
1117 * current line. Add the error propagated from the previous line
1118 * to form the complete error correction term for this pixel, and
1119 * round the error term (which is expressed * 16) to an integer.
1120 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1121 * for either sign of the error value.
1122 * Note: errorptr points to *previous* column's array entry.
1124 cur0
= RIGHT_SHIFT(cur0
+ errorptr
[dir3
+0] + 8, 4);
1125 cur1
= RIGHT_SHIFT(cur1
+ errorptr
[dir3
+1] + 8, 4);
1126 cur2
= RIGHT_SHIFT(cur2
+ errorptr
[dir3
+2] + 8, 4);
1127 /* Limit the error using transfer function set by init_error_limit.
1128 * See comments with init_error_limit for rationale.
1130 cur0
= error_limit
[cur0
];
1131 cur1
= error_limit
[cur1
];
1132 cur2
= error_limit
[cur2
];
1133 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1134 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1135 * this sets the required size of the range_limit array.
1137 cur0
+= GETJSAMPLE(inptr
[0]);
1138 cur1
+= GETJSAMPLE(inptr
[1]);
1139 cur2
+= GETJSAMPLE(inptr
[2]);
1140 cur0
= GETJSAMPLE(range_limit
[cur0
]);
1141 cur1
= GETJSAMPLE(range_limit
[cur1
]);
1142 cur2
= GETJSAMPLE(range_limit
[cur2
]);
1143 /* Index into the cache with adjusted pixel value */
1144 cachep
= & histogram
[cur0
>>C0_SHIFT
][cur1
>>C1_SHIFT
][cur2
>>C2_SHIFT
];
1145 /* If we have not seen this color before, find nearest colormap */
1146 /* entry and update the cache */
1148 fill_inverse_cmap(cinfo
, cur0
>>C0_SHIFT
,cur1
>>C1_SHIFT
,cur2
>>C2_SHIFT
);
1149 /* Now emit the colormap index for this cell */
1150 { register int pixcode
= *cachep
- 1;
1151 *outptr
= (JSAMPLE
) pixcode
;
1152 /* Compute representation error for this pixel */
1153 cur0
-= GETJSAMPLE(colormap0
[pixcode
]);
1154 cur1
-= GETJSAMPLE(colormap1
[pixcode
]);
1155 cur2
-= GETJSAMPLE(colormap2
[pixcode
]);
1157 /* Compute error fractions to be propagated to adjacent pixels.
1158 * Add these into the running sums, and simultaneously shift the
1159 * next-line error sums left by 1 column.
1161 { register LOCFSERROR bnexterr
, delta
;
1163 bnexterr
= cur0
; /* Process component 0 */
1165 cur0
+= delta
; /* form error * 3 */
1166 errorptr
[0] = (FSERROR
) (bpreverr0
+ cur0
);
1167 cur0
+= delta
; /* form error * 5 */
1168 bpreverr0
= belowerr0
+ cur0
;
1169 belowerr0
= bnexterr
;
1170 cur0
+= delta
; /* form error * 7 */
1171 bnexterr
= cur1
; /* Process component 1 */
1173 cur1
+= delta
; /* form error * 3 */
1174 errorptr
[1] = (FSERROR
) (bpreverr1
+ cur1
);
1175 cur1
+= delta
; /* form error * 5 */
1176 bpreverr1
= belowerr1
+ cur1
;
1177 belowerr1
= bnexterr
;
1178 cur1
+= delta
; /* form error * 7 */
1179 bnexterr
= cur2
; /* Process component 2 */
1181 cur2
+= delta
; /* form error * 3 */
1182 errorptr
[2] = (FSERROR
) (bpreverr2
+ cur2
);
1183 cur2
+= delta
; /* form error * 5 */
1184 bpreverr2
= belowerr2
+ cur2
;
1185 belowerr2
= bnexterr
;
1186 cur2
+= delta
; /* form error * 7 */
1188 /* At this point curN contains the 7/16 error value to be propagated
1189 * to the next pixel on the current line, and all the errors for the
1190 * next line have been shifted over. We are therefore ready to move on.
1192 inptr
+= dir3
; /* Advance pixel pointers to next column */
1194 errorptr
+= dir3
; /* advance errorptr to current column */
1196 /* Post-loop cleanup: we must unload the final error values into the
1197 * final fserrors[] entry. Note we need not unload belowerrN because
1198 * it is for the dummy column before or after the actual array.
1200 errorptr
[0] = (FSERROR
) bpreverr0
; /* unload prev errs into array */
1201 errorptr
[1] = (FSERROR
) bpreverr1
;
1202 errorptr
[2] = (FSERROR
) bpreverr2
;
1208 * Initialize the error-limiting transfer function (lookup table).
1209 * The raw F-S error computation can potentially compute error values of up to
1210 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1211 * much less, otherwise obviously wrong pixels will be created. (Typical
1212 * effects include weird fringes at color-area boundaries, isolated bright
1213 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1214 * is to ensure that the "corners" of the color cube are allocated as output
1215 * colors; then repeated errors in the same direction cannot cause cascading
1216 * error buildup. However, that only prevents the error from getting
1217 * completely out of hand; Aaron Giles reports that error limiting improves
1218 * the results even with corner colors allocated.
1219 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1220 * well, but the smoother transfer function used below is even better. Thanks
1221 * to Aaron Giles for this idea.
1225 init_error_limit (j_decompress_ptr cinfo
)
1226 /* Allocate and fill in the error_limiter table */
1228 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1232 table
= (int *) malloc((MAXJSAMPLE
*2+1) * sizeof(int));
1233 table
+= MAXJSAMPLE
; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1234 cquantize
->error_limiter
= table
;
1236 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1237 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1239 for (in
= 0; in
< STEPSIZE
; in
++, out
++) {
1240 table
[in
] = out
; table
[-in
] = -out
;
1242 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1243 for (; in
< STEPSIZE
*3; in
++, out
+= (in
&1) ? 0 : 1) {
1244 table
[in
] = out
; table
[-in
] = -out
;
1246 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1247 for (; in
<= MAXJSAMPLE
; in
++) {
1248 table
[in
] = out
; table
[-in
] = -out
;
1255 * Finish up at the end of each pass.
1259 finish_pass1 (j_decompress_ptr cinfo
)
1261 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1263 /* Select the representative colors and fill in cinfo->colormap */
1264 cinfo
->colormap
= cquantize
->sv_colormap
;
1265 select_colors(cinfo
, cquantize
->desired
);
1266 /* Force next pass to zero the color index table */
1267 cquantize
->needs_zeroed
= TRUE
;
1272 finish_pass2 (j_decompress_ptr cinfo
)
1279 * Initialize for each processing pass.
1283 start_pass_2_quant (j_decompress_ptr cinfo
, bool is_pre_scan
)
1285 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1286 hist3d histogram
= cquantize
->histogram
;
1290 /* Set up method pointers */
1291 cquantize
->pub
.color_quantize
= prescan_quantize
;
1292 cquantize
->pub
.finish_pass
= finish_pass1
;
1293 cquantize
->needs_zeroed
= TRUE
; /* Always zero histogram */
1295 /* Set up method pointers */
1296 cquantize
->pub
.color_quantize
= pass2_fs_dither
;
1297 cquantize
->pub
.finish_pass
= finish_pass2
;
1299 /* Make sure color count is acceptable */
1300 i
= cinfo
->actual_number_of_colors
;
1303 size_t arraysize
= (size_t) ((cinfo
->output_width
+ 2) *
1304 (3 * sizeof(FSERROR
)));
1305 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1306 if (cquantize
->fserrors
== NULL
)
1307 cquantize
->fserrors
= (INT16
*) malloc(arraysize
);
1308 /* Initialize the propagated errors to zero. */
1309 memset((void *) cquantize
->fserrors
, 0, arraysize
);
1310 /* Make the error-limit table if we didn't already. */
1311 if (cquantize
->error_limiter
== NULL
)
1312 init_error_limit(cinfo
);
1313 cquantize
->on_odd_row
= FALSE
;
1317 /* Zero the histogram or inverse color map, if necessary */
1318 if (cquantize
->needs_zeroed
) {
1319 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1320 memset((void *) histogram
[i
], 0,
1321 HIST_C1_ELEMS
*HIST_C2_ELEMS
* sizeof(histcell
));
1323 cquantize
->needs_zeroed
= FALSE
;
1329 * Switch to a new external colormap between output passes.
1333 new_color_map_2_quant (j_decompress_ptr cinfo
)
1335 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1337 /* Reset the inverse color map */
1338 cquantize
->needs_zeroed
= TRUE
;
1343 * Module initialization routine for 2-pass color quantization.
1347 jinit_2pass_quantizer (j_decompress_ptr cinfo
)
1349 my_cquantize_ptr cquantize
;
1352 cquantize
= (my_cquantize_ptr
) malloc(sizeof(my_cquantizer
));
1353 cinfo
->cquantize
= (struct jpeg_color_quantizer
*) cquantize
;
1354 cquantize
->pub
.start_pass
= start_pass_2_quant
;
1355 cquantize
->pub
.new_color_map
= new_color_map_2_quant
;
1356 cquantize
->fserrors
= NULL
; /* flag optional arrays not allocated */
1357 cquantize
->error_limiter
= NULL
;
1360 /* Allocate the histogram/inverse colormap storage */
1361 cquantize
->histogram
= (hist3d
) malloc(HIST_C0_ELEMS
* sizeof(hist2d
));
1362 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1363 cquantize
->histogram
[i
] = (hist2d
) malloc(HIST_C1_ELEMS
*HIST_C2_ELEMS
* sizeof(histcell
));
1365 cquantize
->needs_zeroed
= TRUE
; /* histogram is garbage now */
1367 /* Allocate storage for the completed colormap, if required.
1368 * We do this now since it is storage and may affect
1369 * the memory manager's space calculations.
1372 /* Make sure color count is acceptable */
1373 int desired
= cinfo
->desired_number_of_colors
;
1375 cquantize
->sv_colormap
= (JSAMPARRAY
) malloc(sizeof(JSAMPROW
) * 3);
1376 cquantize
->sv_colormap
[0] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1377 cquantize
->sv_colormap
[1] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1378 cquantize
->sv_colormap
[2] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1380 cquantize
->desired
= desired
;
1383 /* Allocate Floyd-Steinberg workspace if necessary.
1384 * This isn't really needed until pass 2, but again it is storage.
1385 * Although we will cope with a later change in dither_mode,
1386 * we do not promise to honor max_memory_to_use if dither_mode changes.
1389 cquantize
->fserrors
= (FSERRPTR
) malloc(
1390 (size_t) ((cinfo
->output_width
+ 2) * (3 * sizeof(FSERROR
))));
1391 /* Might as well create the error-limiting table too. */
1392 init_error_limit(cinfo
);
1406 prepare_range_limit_table (j_decompress_ptr cinfo
)
1407 /* Allocate and fill in the sample_range_limit table */
1412 table
= (JSAMPLE
*) malloc((5 * (MAXJSAMPLE
+1) + CENTERJSAMPLE
) * sizeof(JSAMPLE
));
1413 cinfo
->srl_orig
= table
;
1414 table
+= (MAXJSAMPLE
+1); /* allow negative subscripts of simple table */
1415 cinfo
->sample_range_limit
= table
;
1416 /* First segment of "simple" table: limit[x] = 0 for x < 0 */
1417 memset(table
- (MAXJSAMPLE
+1), 0, (MAXJSAMPLE
+1) * sizeof(JSAMPLE
));
1418 /* Main part of "simple" table: limit[x] = x */
1419 for (i
= 0; i
<= MAXJSAMPLE
; i
++)
1420 table
[i
] = (JSAMPLE
) i
;
1421 table
+= CENTERJSAMPLE
; /* Point to where post-IDCT table starts */
1422 /* End of simple table, rest of first half of post-IDCT table */
1423 for (i
= CENTERJSAMPLE
; i
< 2*(MAXJSAMPLE
+1); i
++)
1424 table
[i
] = MAXJSAMPLE
;
1425 /* Second half of post-IDCT table */
1426 memset(table
+ (2 * (MAXJSAMPLE
+1)), 0,
1427 (2 * (MAXJSAMPLE
+1) - CENTERJSAMPLE
) * sizeof(JSAMPLE
));
1428 memcpy(table
+ (4 * (MAXJSAMPLE
+1) - CENTERJSAMPLE
),
1429 cinfo
->sample_range_limit
, CENTERJSAMPLE
* sizeof(JSAMPLE
));
1439 IMPLEMENT_DYNAMIC_CLASS(wxQuantize
, wxObject
)
1441 void wxQuantize::DoQuantize(unsigned w
, unsigned h
, unsigned char **in_rows
, unsigned char **out_rows
,
1442 unsigned char *palette
, int desiredNoColours
)
1445 my_cquantize_ptr cquantize
;
1447 dec
.output_width
= w
;
1448 dec
.desired_number_of_colors
= desiredNoColours
;
1449 prepare_range_limit_table(&dec
);
1450 jinit_2pass_quantizer(&dec
);
1451 cquantize
= (my_cquantize_ptr
) dec
.cquantize
;
1454 cquantize
->pub
.start_pass(&dec
, TRUE
);
1455 cquantize
->pub
.color_quantize(&dec
, in_rows
, out_rows
, h
);
1456 cquantize
->pub
.finish_pass(&dec
);
1458 cquantize
->pub
.start_pass(&dec
, FALSE
);
1459 cquantize
->pub
.color_quantize(&dec
, in_rows
, out_rows
, h
);
1460 cquantize
->pub
.finish_pass(&dec
);
1463 for (int i
= 0; i
< dec
.desired_number_of_colors
; i
++) {
1464 palette
[3 * i
+ 0] = dec
.colormap
[0][i
];
1465 palette
[3 * i
+ 1] = dec
.colormap
[1][i
];
1466 palette
[3 * i
+ 2] = dec
.colormap
[2][i
];
1469 for (int ii
= 0; ii
< HIST_C0_ELEMS
; ii
++) free(cquantize
->histogram
[ii
]);
1470 free(cquantize
->histogram
);
1471 free(dec
.colormap
[0]);
1472 free(dec
.colormap
[1]);
1473 free(dec
.colormap
[2]);
1477 //free(cquantize->error_limiter);
1478 free((void*)(cquantize
->error_limiter
- MAXJSAMPLE
)); // To reverse what was done to it
1480 free(cquantize
->fserrors
);
1484 // TODO: somehow make use of the Windows system colours, rather than ignoring them for the
1485 // purposes of quantization.
1487 bool wxQuantize::Quantize(const wxImage
& src
, wxImage
& dest
, wxPalette
** pPalette
, int desiredNoColours
,
1488 unsigned char** eightBitData
, int flags
)
1492 int w
= src
.GetWidth();
1493 int h
= src
.GetHeight();
1495 int windowsSystemColourCount
= 20;
1496 int paletteShift
= 0;
1498 // Shift the palette up by the number of Windows system colours,
1500 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1501 paletteShift
= windowsSystemColourCount
;
1503 // Make room for the Windows system colours
1505 if ((flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
) && (desiredNoColours
> (256 - windowsSystemColourCount
)))
1506 desiredNoColours
= 256 - windowsSystemColourCount
;
1509 // create rows info:
1510 unsigned char **rows
= new unsigned char *[h
];
1511 h
= src
.GetHeight(), w
= src
.GetWidth();
1512 unsigned char *imgdt
= src
.GetData();
1513 for (i
= 0; i
< h
; i
++)
1514 rows
[i
] = imgdt
+ 3/*RGB*/ * w
* i
;
1516 unsigned char palette
[3*256];
1518 // This is the image as represented by palette indexes.
1519 unsigned char *data8bit
= new unsigned char[w
* h
];
1520 unsigned char **outrows
= new unsigned char *[h
];
1521 for (i
= 0; i
< h
; i
++)
1522 outrows
[i
] = data8bit
+ w
* i
;
1525 DoQuantize(w
, h
, rows
, outrows
, palette
, desiredNoColours
);
1530 // palette->RGB(max.256)
1532 if (flags
& wxQUANTIZE_FILL_DESTINATION_IMAGE
)
1537 imgdt
= dest
.GetData();
1538 for (i
= 0; i
< w
* h
; i
++)
1540 unsigned char c
= data8bit
[i
];
1541 imgdt
[3 * i
+ 0/*R*/] = palette
[3 * c
+ 0];
1542 imgdt
[3 * i
+ 1/*G*/] = palette
[3 * c
+ 1];
1543 imgdt
[3 * i
+ 2/*B*/] = palette
[3 * c
+ 2];
1547 if (eightBitData
&& (flags
& wxQUANTIZE_RETURN_8BIT_DATA
))
1550 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1552 // We need to shift the palette entries up
1553 // to make room for the Windows system colours.
1554 for (i
= 0; i
< w
* h
; i
++)
1555 data8bit
[i
] = data8bit
[i
] + paletteShift
;
1558 *eightBitData
= data8bit
;
1563 // Make a wxWindows palette
1566 unsigned char* r
= new unsigned char[256];
1567 unsigned char* g
= new unsigned char[256];
1568 unsigned char* b
= new unsigned char[256];
1571 // Fill the first 20 entries with Windows system colours
1572 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1574 HDC hDC
= ::GetDC(NULL
);
1575 PALETTEENTRY
* entries
= new PALETTEENTRY
[windowsSystemColourCount
];
1576 ::GetSystemPaletteEntries(hDC
, 0, windowsSystemColourCount
, entries
);
1577 ::ReleaseDC(NULL
, hDC
);
1579 for (i
= 0; i
< windowsSystemColourCount
; i
++)
1581 r
[i
] = entries
[i
].peRed
;
1582 g
[i
] = entries
[i
].peGreen
;
1583 b
[i
] = entries
[i
].peBlue
;
1589 for (i
= 0; i
< desiredNoColours
; i
++)
1591 r
[i
+paletteShift
] = palette
[i
*3 + 0];
1592 g
[i
+paletteShift
] = palette
[i
*3 + 1];
1593 b
[i
+paletteShift
] = palette
[i
*3 + 2];
1596 // Blank out any remaining palette entries
1597 for (i
= desiredNoColours
+paletteShift
; i
< 256; i
++)
1603 *pPalette
= new wxPalette(256, r
, g
, b
);
1612 // This version sets a palette in the destination image so you don't
1613 // have to manage it yourself.
1615 bool wxQuantize::Quantize(const wxImage
& src
, wxImage
& dest
, int desiredNoColours
,
1616 unsigned char** eightBitData
, int flags
)
1618 wxPalette
* palette
= NULL
;
1619 if (Quantize(src
, dest
, & palette
, desiredNoColours
, eightBitData
, flags
))
1623 dest
.SetPalette(* palette
);