1 /////////////////////////////////////////////////////////////////////////////
3 // Purpose: wxQuantize implementation
4 // Author: Julian Smart
8 // Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart
9 // Licence: wxWindows licence + JPEG library licence
10 /////////////////////////////////////////////////////////////////////////////
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
31 /* modified by Vaclav Slavik for use as jpeglib-independent module */
34 #pragma implementation "quantize.h"
37 // For compilers that support precompilation, includes "wx/wx.h".
38 #include "wx/wxprec.h"
48 #include "wx/quantize.h"
59 #define RGB_GREEN_OS2 1
60 #define RGB_BLUE_OS2 2
66 #define RGB_PIXELSIZE 3
68 #define MAXJSAMPLE 255
69 #define CENTERJSAMPLE 128
70 #define BITS_IN_JSAMPLE 8
71 #define GETJSAMPLE(value) ((int) (value))
73 #define RIGHT_SHIFT(x,shft) ((x) >> (shft))
75 typedef unsigned short UINT16
;
76 typedef signed short INT16
;
77 typedef signed int INT32
;
79 typedef unsigned char JSAMPLE
;
80 typedef JSAMPLE
*JSAMPROW
;
81 typedef JSAMPROW
*JSAMPARRAY
;
82 typedef unsigned int JDIMENSION
;
86 JDIMENSION output_width
;
88 int actual_number_of_colors
;
89 int desired_number_of_colors
;
90 JSAMPLE
*sample_range_limit
, *srl_orig
;
93 #if defined(__WINDOWS__) && !defined(__WXMICROWIN__)
94 #define JMETHOD(type,methodname,arglist) type (__cdecl methodname) arglist
96 #define JMETHOD(type,methodname,arglist) type (methodname) arglist
99 typedef j_decompress
*j_decompress_ptr
;
100 struct jpeg_color_quantizer
{
101 JMETHOD(void, start_pass
, (j_decompress_ptr cinfo
, bool is_pre_scan
));
102 JMETHOD(void, color_quantize
, (j_decompress_ptr cinfo
,
103 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
,
105 JMETHOD(void, finish_pass
, (j_decompress_ptr cinfo
));
106 JMETHOD(void, new_color_map
, (j_decompress_ptr cinfo
));
113 * This module implements the well-known Heckbert paradigm for color
114 * quantization. Most of the ideas used here can be traced back to
115 * Heckbert's seminal paper
116 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
117 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
119 * In the first pass over the image, we accumulate a histogram showing the
120 * usage count of each possible color. To keep the histogram to a reasonable
121 * size, we reduce the precision of the input; typical practice is to retain
122 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
123 * in the same histogram cell.
125 * Next, the color-selection step begins with a box representing the whole
126 * color space, and repeatedly splits the "largest" remaining box until we
127 * have as many boxes as desired colors. Then the mean color in each
128 * remaining box becomes one of the possible output colors.
130 * The second pass over the image maps each input pixel to the closest output
131 * color (optionally after applying a Floyd-Steinberg dithering correction).
132 * This mapping is logically trivial, but making it go fast enough requires
135 * Heckbert-style quantizers vary a good deal in their policies for choosing
136 * the "largest" box and deciding where to cut it. The particular policies
137 * used here have proved out well in experimental comparisons, but better ones
140 * In earlier versions of the IJG code, this module quantized in YCbCr color
141 * space, processing the raw upsampled data without a color conversion step.
142 * This allowed the color conversion math to be done only once per colormap
143 * entry, not once per pixel. However, that optimization precluded other
144 * useful optimizations (such as merging color conversion with upsampling)
145 * and it also interfered with desired capabilities such as quantizing to an
146 * externally-supplied colormap. We have therefore abandoned that approach.
147 * The present code works in the post-conversion color space, typically RGB.
149 * To improve the visual quality of the results, we actually work in scaled
150 * RGB space, giving G distances more weight than R, and R in turn more than
151 * B. To do everything in integer math, we must use integer scale factors.
152 * The 2/3/1 scale factors used here correspond loosely to the relative
153 * weights of the colors in the NTSC grayscale equation.
154 * If you want to use this code to quantize a non-RGB color space, you'll
155 * probably need to change these scale factors.
158 #define R_SCALE 2 /* scale R distances by this much */
159 #define G_SCALE 3 /* scale G distances by this much */
160 #define B_SCALE 1 /* and B by this much */
162 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
163 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
164 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
165 * you'll get compile errors until you extend this logic. In that case
166 * you'll probably want to tweak the histogram sizes too.
172 #define C0_SCALE R_SCALE
174 #if RGB_BLUE_OS2 == 0
175 #define C0_SCALE B_SCALE
177 #if RGB_GREEN_OS2 == 1
178 #define C1_SCALE G_SCALE
181 #define C2_SCALE R_SCALE
183 #if RGB_BLUE_OS2 == 2
184 #define C2_SCALE B_SCALE
190 #define C0_SCALE R_SCALE
193 #define C0_SCALE B_SCALE
196 #define C1_SCALE G_SCALE
199 #define C2_SCALE R_SCALE
202 #define C2_SCALE B_SCALE
208 * First we have the histogram data structure and routines for creating it.
210 * The number of bits of precision can be adjusted by changing these symbols.
211 * We recommend keeping 6 bits for G and 5 each for R and B.
212 * If you have plenty of memory and cycles, 6 bits all around gives marginally
213 * better results; if you are short of memory, 5 bits all around will save
214 * some space but degrade the results.
215 * To maintain a fully accurate histogram, we'd need to allocate a "long"
216 * (preferably unsigned long) for each cell. In practice this is overkill;
217 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
218 * and clamping those that do overflow to the maximum value will give close-
219 * enough results. This reduces the recommended histogram size from 256Kb
220 * to 128Kb, which is a useful savings on PC-class machines.
221 * (In the second pass the histogram space is re-used for pixel mapping data;
222 * in that capacity, each cell must be able to store zero to the number of
223 * desired colors. 16 bits/cell is plenty for that too.)
224 * Since the JPEG code is intended to run in small memory model on 80x86
225 * machines, we can't just allocate the histogram in one chunk. Instead
226 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
227 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
228 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
229 * on 80x86 machines, the pointer row is in near memory but the actual
230 * arrays are in far memory (same arrangement as we use for image arrays).
233 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
235 /* These will do the right thing for either R,G,B or B,G,R color order,
236 * but you may not like the results for other color orders.
238 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
239 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
240 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
242 /* Number of elements along histogram axes. */
243 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
244 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
245 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
247 /* These are the amounts to shift an input value to get a histogram index. */
248 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
249 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
250 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
253 typedef UINT16 histcell
; /* histogram cell; prefer an unsigned type */
255 typedef histcell
* histptr
; /* for pointers to histogram cells */
257 typedef histcell hist1d
[HIST_C2_ELEMS
]; /* typedefs for the array */
258 typedef hist1d
* hist2d
; /* type for the 2nd-level pointers */
259 typedef hist2d
* hist3d
; /* type for top-level pointer */
262 /* Declarations for Floyd-Steinberg dithering.
264 * Errors are accumulated into the array fserrors[], at a resolution of
265 * 1/16th of a pixel count. The error at a given pixel is propagated
266 * to its not-yet-processed neighbors using the standard F-S fractions,
269 * We work left-to-right on even rows, right-to-left on odd rows.
271 * We can get away with a single array (holding one row's worth of errors)
272 * by using it to store the current row's errors at pixel columns not yet
273 * processed, but the next row's errors at columns already processed. We
274 * need only a few extra variables to hold the errors immediately around the
275 * current column. (If we are lucky, those variables are in registers, but
276 * even if not, they're probably cheaper to access than array elements are.)
278 * The fserrors[] array has (#columns + 2) entries; the extra entry at
279 * each end saves us from special-casing the first and last pixels.
280 * Each entry is three values long, one value for each color component.
282 * Note: on a wide image, we might not have enough room in a PC's near data
283 * segment to hold the error array; so it is allocated with alloc_large.
286 #if BITS_IN_JSAMPLE == 8
287 typedef INT16 FSERROR
; /* 16 bits should be enough */
288 typedef int LOCFSERROR
; /* use 'int' for calculation temps */
290 typedef INT32 FSERROR
; /* may need more than 16 bits */
291 typedef INT32 LOCFSERROR
; /* be sure calculation temps are big enough */
294 typedef FSERROR
*FSERRPTR
; /* pointer to error array (in storage!) */
297 /* Private subobject */
302 void (*finish_pass
)(j_decompress_ptr
);
303 void (*color_quantize
)(j_decompress_ptr
, JSAMPARRAY
, JSAMPARRAY
, int);
304 void (*start_pass
)(j_decompress_ptr
, bool);
305 void (*new_color_map
)(j_decompress_ptr
);
308 /* Space for the eventually created colormap is stashed here */
309 JSAMPARRAY sv_colormap
; /* colormap allocated at init time */
310 int desired
; /* desired # of colors = size of colormap */
312 /* Variables for accumulating image statistics */
313 hist3d histogram
; /* pointer to the histogram */
315 bool needs_zeroed
; /* true if next pass must zero histogram */
317 /* Variables for Floyd-Steinberg dithering */
318 FSERRPTR fserrors
; /* accumulated errors */
319 bool on_odd_row
; /* flag to remember which row we are on */
320 int * error_limiter
; /* table for clamping the applied error */
323 typedef my_cquantizer
* my_cquantize_ptr
;
327 * Prescan some rows of pixels.
328 * In this module the prescan simply updates the histogram, which has been
329 * initialized to zeroes by start_pass.
330 * An output_buf parameter is required by the method signature, but no data
331 * is actually output (in fact the buffer controller is probably passing a
336 prescan_quantize (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
337 JSAMPARRAY output_buf
, int num_rows
)
339 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
340 register JSAMPROW ptr
;
341 register histptr histp
;
342 register hist3d histogram
= cquantize
->histogram
;
345 JDIMENSION width
= cinfo
->output_width
;
347 for (row
= 0; row
< num_rows
; row
++) {
348 ptr
= input_buf
[row
];
349 for (col
= width
; col
> 0; col
--) {
353 /* get pixel value and index into the histogram */
354 histp
= & histogram
[GETJSAMPLE(ptr
[0]) >> C0_SHIFT
]
355 [GETJSAMPLE(ptr
[1]) >> C1_SHIFT
]
356 [GETJSAMPLE(ptr
[2]) >> C2_SHIFT
];
357 /* increment, check for overflow and undo increment if so. */
368 * Next we have the really interesting routines: selection of a colormap
369 * given the completed histogram.
370 * These routines work with a list of "boxes", each representing a rectangular
371 * subset of the input color space (to histogram precision).
375 /* The bounds of the box (inclusive); expressed as histogram indexes */
379 /* The volume (actually 2-norm) of the box */
381 /* The number of nonzero histogram cells within this box */
385 typedef box
* boxptr
;
389 find_biggest_color_pop (boxptr boxlist
, int numboxes
)
390 /* Find the splittable box with the largest color population */
391 /* Returns NULL if no splittable boxes remain */
393 register boxptr boxp
;
395 register long maxc
= 0;
398 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
399 if (boxp
->colorcount
> maxc
&& boxp
->volume
> 0) {
401 maxc
= boxp
->colorcount
;
409 find_biggest_volume (boxptr boxlist
, int numboxes
)
410 /* Find the splittable box with the largest (scaled) volume */
411 /* Returns NULL if no splittable boxes remain */
413 register boxptr boxp
;
415 register INT32 maxv
= 0;
418 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
419 if (boxp
->volume
> maxv
) {
429 update_box (j_decompress_ptr cinfo
, boxptr boxp
)
430 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
431 /* and recompute its volume and population */
433 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
434 hist3d histogram
= cquantize
->histogram
;
437 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
438 INT32 dist0
,dist1
,dist2
;
441 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
442 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
443 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
446 for (c0
= c0min
; c0
<= c0max
; c0
++)
447 for (c1
= c1min
; c1
<= c1max
; c1
++) {
448 histp
= & histogram
[c0
][c1
][c2min
];
449 for (c2
= c2min
; c2
<= c2max
; c2
++)
451 boxp
->c0min
= c0min
= c0
;
457 for (c0
= c0max
; c0
>= c0min
; c0
--)
458 for (c1
= c1min
; c1
<= c1max
; c1
++) {
459 histp
= & histogram
[c0
][c1
][c2min
];
460 for (c2
= c2min
; c2
<= c2max
; c2
++)
462 boxp
->c0max
= c0max
= c0
;
468 for (c1
= c1min
; c1
<= c1max
; c1
++)
469 for (c0
= c0min
; c0
<= c0max
; c0
++) {
470 histp
= & histogram
[c0
][c1
][c2min
];
471 for (c2
= c2min
; c2
<= c2max
; c2
++)
473 boxp
->c1min
= c1min
= c1
;
479 for (c1
= c1max
; c1
>= c1min
; c1
--)
480 for (c0
= c0min
; c0
<= c0max
; c0
++) {
481 histp
= & histogram
[c0
][c1
][c2min
];
482 for (c2
= c2min
; c2
<= c2max
; c2
++)
484 boxp
->c1max
= c1max
= c1
;
490 for (c2
= c2min
; c2
<= c2max
; c2
++)
491 for (c0
= c0min
; c0
<= c0max
; c0
++) {
492 histp
= & histogram
[c0
][c1min
][c2
];
493 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
495 boxp
->c2min
= c2min
= c2
;
501 for (c2
= c2max
; c2
>= c2min
; c2
--)
502 for (c0
= c0min
; c0
<= c0max
; c0
++) {
503 histp
= & histogram
[c0
][c1min
][c2
];
504 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
506 boxp
->c2max
= c2max
= c2
;
512 /* Update box volume.
513 * We use 2-norm rather than real volume here; this biases the method
514 * against making long narrow boxes, and it has the side benefit that
515 * a box is splittable iff norm > 0.
516 * Since the differences are expressed in histogram-cell units,
517 * we have to shift back to JSAMPLE units to get consistent distances;
518 * after which, we scale according to the selected distance scale factors.
520 dist0
= ((c0max
- c0min
) << C0_SHIFT
) * C0_SCALE
;
521 dist1
= ((c1max
- c1min
) << C1_SHIFT
) * C1_SCALE
;
522 dist2
= ((c2max
- c2min
) << C2_SHIFT
) * C2_SCALE
;
523 boxp
->volume
= dist0
*dist0
+ dist1
*dist1
+ dist2
*dist2
;
525 /* Now scan remaining volume of box and compute population */
527 for (c0
= c0min
; c0
<= c0max
; c0
++)
528 for (c1
= c1min
; c1
<= c1max
; c1
++) {
529 histp
= & histogram
[c0
][c1
][c2min
];
530 for (c2
= c2min
; c2
<= c2max
; c2
++, histp
++)
535 boxp
->colorcount
= ccount
;
540 median_cut (j_decompress_ptr cinfo
, boxptr boxlist
, int numboxes
,
542 /* Repeatedly select and split the largest box until we have enough boxes */
546 register boxptr b1
,b2
;
548 while (numboxes
< desired_colors
) {
549 /* Select box to split.
550 * Current algorithm: by population for first half, then by volume.
552 if ((numboxes
*2) <= desired_colors
) {
553 b1
= find_biggest_color_pop(boxlist
, numboxes
);
555 b1
= find_biggest_volume(boxlist
, numboxes
);
557 if (b1
== NULL
) /* no splittable boxes left! */
559 b2
= &boxlist
[numboxes
]; /* where new box will go */
560 /* Copy the color bounds to the new box. */
561 b2
->c0max
= b1
->c0max
; b2
->c1max
= b1
->c1max
; b2
->c2max
= b1
->c2max
;
562 b2
->c0min
= b1
->c0min
; b2
->c1min
= b1
->c1min
; b2
->c2min
= b1
->c2min
;
563 /* Choose which axis to split the box on.
564 * Current algorithm: longest scaled axis.
565 * See notes in update_box about scaling distances.
567 c0
= ((b1
->c0max
- b1
->c0min
) << C0_SHIFT
) * C0_SCALE
;
568 c1
= ((b1
->c1max
- b1
->c1min
) << C1_SHIFT
) * C1_SCALE
;
569 c2
= ((b1
->c2max
- b1
->c2min
) << C2_SHIFT
) * C2_SCALE
;
570 /* We want to break any ties in favor of green, then red, blue last.
571 * This code does the right thing for R,G,B or B,G,R color orders only.
573 #if defined(__VISAGECPP__)
577 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
578 if (c2
> cmax
) { n
= 2; }
581 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
582 if (c0
> cmax
) { n
= 0; }
589 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
590 if (c2
> cmax
) { n
= 2; }
593 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
594 if (c0
> cmax
) { n
= 0; }
598 /* Choose split point along selected axis, and update box bounds.
599 * Current algorithm: split at halfway point.
600 * (Since the box has been shrunk to minimum volume,
601 * any split will produce two nonempty subboxes.)
602 * Note that lb value is max for lower box, so must be < old max.
606 lb
= (b1
->c0max
+ b1
->c0min
) / 2;
611 lb
= (b1
->c1max
+ b1
->c1min
) / 2;
616 lb
= (b1
->c2max
+ b1
->c2min
) / 2;
621 /* Update stats for boxes */
622 update_box(cinfo
, b1
);
623 update_box(cinfo
, b2
);
631 compute_color (j_decompress_ptr cinfo
, boxptr boxp
, int icolor
)
632 /* Compute representative color for a box, put it in colormap[icolor] */
634 /* Current algorithm: mean weighted by pixels (not colors) */
635 /* Note it is important to get the rounding correct! */
636 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
637 hist3d histogram
= cquantize
->histogram
;
640 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
647 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
648 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
649 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
651 for (c0
= c0min
; c0
<= c0max
; c0
++)
652 for (c1
= c1min
; c1
<= c1max
; c1
++) {
653 histp
= & histogram
[c0
][c1
][c2min
];
654 for (c2
= c2min
; c2
<= c2max
; c2
++) {
655 if ((count
= *histp
++) != 0) {
657 c0total
+= ((c0
<< C0_SHIFT
) + ((1<<C0_SHIFT
)>>1)) * count
;
658 c1total
+= ((c1
<< C1_SHIFT
) + ((1<<C1_SHIFT
)>>1)) * count
;
659 c2total
+= ((c2
<< C2_SHIFT
) + ((1<<C2_SHIFT
)>>1)) * count
;
664 cinfo
->colormap
[0][icolor
] = (JSAMPLE
) ((c0total
+ (total
>>1)) / total
);
665 cinfo
->colormap
[1][icolor
] = (JSAMPLE
) ((c1total
+ (total
>>1)) / total
);
666 cinfo
->colormap
[2][icolor
] = (JSAMPLE
) ((c2total
+ (total
>>1)) / total
);
671 select_colors (j_decompress_ptr cinfo
, int desired_colors
)
672 /* Master routine for color selection */
678 /* Allocate workspace for box list */
679 boxlist
= (boxptr
) malloc(desired_colors
* sizeof(box
));
680 /* Initialize one box containing whole space */
682 boxlist
[0].c0min
= 0;
683 boxlist
[0].c0max
= MAXJSAMPLE
>> C0_SHIFT
;
684 boxlist
[0].c1min
= 0;
685 boxlist
[0].c1max
= MAXJSAMPLE
>> C1_SHIFT
;
686 boxlist
[0].c2min
= 0;
687 boxlist
[0].c2max
= MAXJSAMPLE
>> C2_SHIFT
;
688 /* Shrink it to actually-used volume and set its statistics */
689 update_box(cinfo
, & boxlist
[0]);
690 /* Perform median-cut to produce final box list */
691 numboxes
= median_cut(cinfo
, boxlist
, numboxes
, desired_colors
);
692 /* Compute the representative color for each box, fill colormap */
693 for (i
= 0; i
< numboxes
; i
++)
694 compute_color(cinfo
, & boxlist
[i
], i
);
695 cinfo
->actual_number_of_colors
= numboxes
;
697 free(boxlist
); //FIXME?? I don't know if this is correct - VS
702 * These routines are concerned with the time-critical task of mapping input
703 * colors to the nearest color in the selected colormap.
705 * We re-use the histogram space as an "inverse color map", essentially a
706 * cache for the results of nearest-color searches. All colors within a
707 * histogram cell will be mapped to the same colormap entry, namely the one
708 * closest to the cell's center. This may not be quite the closest entry to
709 * the actual input color, but it's almost as good. A zero in the cache
710 * indicates we haven't found the nearest color for that cell yet; the array
711 * is cleared to zeroes before starting the mapping pass. When we find the
712 * nearest color for a cell, its colormap index plus one is recorded in the
713 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
714 * when they need to use an unfilled entry in the cache.
716 * Our method of efficiently finding nearest colors is based on the "locally
717 * sorted search" idea described by Heckbert and on the incremental distance
718 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
719 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
720 * the distances from a given colormap entry to each cell of the histogram can
721 * be computed quickly using an incremental method: the differences between
722 * distances to adjacent cells themselves differ by a constant. This allows a
723 * fairly fast implementation of the "brute force" approach of computing the
724 * distance from every colormap entry to every histogram cell. Unfortunately,
725 * it needs a work array to hold the best-distance-so-far for each histogram
726 * cell (because the inner loop has to be over cells, not colormap entries).
727 * The work array elements have to be INT32s, so the work array would need
728 * 256Kb at our recommended precision. This is not feasible in DOS machines.
730 * To get around these problems, we apply Thomas' method to compute the
731 * nearest colors for only the cells within a small subbox of the histogram.
732 * The work array need be only as big as the subbox, so the memory usage
733 * problem is solved. Furthermore, we need not fill subboxes that are never
734 * referenced in pass2; many images use only part of the color gamut, so a
735 * fair amount of work is saved. An additional advantage of this
736 * approach is that we can apply Heckbert's locality criterion to quickly
737 * eliminate colormap entries that are far away from the subbox; typically
738 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
739 * and we need not compute their distances to individual cells in the subbox.
740 * The speed of this approach is heavily influenced by the subbox size: too
741 * small means too much overhead, too big loses because Heckbert's criterion
742 * can't eliminate as many colormap entries. Empirically the best subbox
743 * size seems to be about 1/512th of the histogram (1/8th in each direction).
745 * Thomas' article also describes a refined method which is asymptotically
746 * faster than the brute-force method, but it is also far more complex and
747 * cannot efficiently be applied to small subboxes. It is therefore not
748 * useful for programs intended to be portable to DOS machines. On machines
749 * with plenty of memory, filling the whole histogram in one shot with Thomas'
750 * refined method might be faster than the present code --- but then again,
751 * it might not be any faster, and it's certainly more complicated.
755 /* log2(histogram cells in update box) for each axis; this can be adjusted */
756 #define BOX_C0_LOG (HIST_C0_BITS-3)
757 #define BOX_C1_LOG (HIST_C1_BITS-3)
758 #define BOX_C2_LOG (HIST_C2_BITS-3)
760 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
761 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
762 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
764 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
765 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
766 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
770 * The next three routines implement inverse colormap filling. They could
771 * all be folded into one big routine, but splitting them up this way saves
772 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
773 * and may allow some compilers to produce better code by registerizing more
774 * inner-loop variables.
778 find_nearby_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
780 /* Locate the colormap entries close enough to an update box to be candidates
781 * for the nearest entry to some cell(s) in the update box. The update box
782 * is specified by the center coordinates of its first cell. The number of
783 * candidate colormap entries is returned, and their colormap indexes are
784 * placed in colorlist[].
785 * This routine uses Heckbert's "locally sorted search" criterion to select
786 * the colors that need further consideration.
789 int numcolors
= cinfo
->actual_number_of_colors
;
790 int maxc0
, maxc1
, maxc2
;
791 int centerc0
, centerc1
, centerc2
;
793 INT32 minmaxdist
, min_dist
, max_dist
, tdist
;
794 INT32 mindist
[MAXNUMCOLORS
]; /* min distance to colormap entry i */
796 /* Compute true coordinates of update box's upper corner and center.
797 * Actually we compute the coordinates of the center of the upper-corner
798 * histogram cell, which are the upper bounds of the volume we care about.
799 * Note that since ">>" rounds down, the "center" values may be closer to
800 * min than to max; hence comparisons to them must be "<=", not "<".
802 maxc0
= minc0
+ ((1 << BOX_C0_SHIFT
) - (1 << C0_SHIFT
));
803 centerc0
= (minc0
+ maxc0
) >> 1;
804 maxc1
= minc1
+ ((1 << BOX_C1_SHIFT
) - (1 << C1_SHIFT
));
805 centerc1
= (minc1
+ maxc1
) >> 1;
806 maxc2
= minc2
+ ((1 << BOX_C2_SHIFT
) - (1 << C2_SHIFT
));
807 centerc2
= (minc2
+ maxc2
) >> 1;
809 /* For each color in colormap, find:
810 * 1. its minimum squared-distance to any point in the update box
811 * (zero if color is within update box);
812 * 2. its maximum squared-distance to any point in the update box.
813 * Both of these can be found by considering only the corners of the box.
814 * We save the minimum distance for each color in mindist[];
815 * only the smallest maximum distance is of interest.
817 minmaxdist
= 0x7FFFFFFFL
;
819 for (i
= 0; i
< numcolors
; i
++) {
820 /* We compute the squared-c0-distance term, then add in the other two. */
821 x
= GETJSAMPLE(cinfo
->colormap
[0][i
]);
823 tdist
= (x
- minc0
) * C0_SCALE
;
824 min_dist
= tdist
*tdist
;
825 tdist
= (x
- maxc0
) * C0_SCALE
;
826 max_dist
= tdist
*tdist
;
827 } else if (x
> maxc0
) {
828 tdist
= (x
- maxc0
) * C0_SCALE
;
829 min_dist
= tdist
*tdist
;
830 tdist
= (x
- minc0
) * C0_SCALE
;
831 max_dist
= tdist
*tdist
;
833 /* within cell range so no contribution to min_dist */
836 tdist
= (x
- maxc0
) * C0_SCALE
;
837 max_dist
= tdist
*tdist
;
839 tdist
= (x
- minc0
) * C0_SCALE
;
840 max_dist
= tdist
*tdist
;
844 x
= GETJSAMPLE(cinfo
->colormap
[1][i
]);
846 tdist
= (x
- minc1
) * C1_SCALE
;
847 min_dist
+= tdist
*tdist
;
848 tdist
= (x
- maxc1
) * C1_SCALE
;
849 max_dist
+= tdist
*tdist
;
850 } else if (x
> maxc1
) {
851 tdist
= (x
- maxc1
) * C1_SCALE
;
852 min_dist
+= tdist
*tdist
;
853 tdist
= (x
- minc1
) * C1_SCALE
;
854 max_dist
+= tdist
*tdist
;
856 /* within cell range so no contribution to min_dist */
858 tdist
= (x
- maxc1
) * C1_SCALE
;
859 max_dist
+= tdist
*tdist
;
861 tdist
= (x
- minc1
) * C1_SCALE
;
862 max_dist
+= tdist
*tdist
;
866 x
= GETJSAMPLE(cinfo
->colormap
[2][i
]);
868 tdist
= (x
- minc2
) * C2_SCALE
;
869 min_dist
+= tdist
*tdist
;
870 tdist
= (x
- maxc2
) * C2_SCALE
;
871 max_dist
+= tdist
*tdist
;
872 } else if (x
> maxc2
) {
873 tdist
= (x
- maxc2
) * C2_SCALE
;
874 min_dist
+= tdist
*tdist
;
875 tdist
= (x
- minc2
) * C2_SCALE
;
876 max_dist
+= tdist
*tdist
;
878 /* within cell range so no contribution to min_dist */
880 tdist
= (x
- maxc2
) * C2_SCALE
;
881 max_dist
+= tdist
*tdist
;
883 tdist
= (x
- minc2
) * C2_SCALE
;
884 max_dist
+= tdist
*tdist
;
888 mindist
[i
] = min_dist
; /* save away the results */
889 if (max_dist
< minmaxdist
)
890 minmaxdist
= max_dist
;
893 /* Now we know that no cell in the update box is more than minmaxdist
894 * away from some colormap entry. Therefore, only colors that are
895 * within minmaxdist of some part of the box need be considered.
898 for (i
= 0; i
< numcolors
; i
++) {
899 if (mindist
[i
] <= minmaxdist
)
900 colorlist
[ncolors
++] = (JSAMPLE
) i
;
907 find_best_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
908 int numcolors
, JSAMPLE colorlist
[], JSAMPLE bestcolor
[])
909 /* Find the closest colormap entry for each cell in the update box,
910 * given the list of candidate colors prepared by find_nearby_colors.
911 * Return the indexes of the closest entries in the bestcolor[] array.
912 * This routine uses Thomas' incremental distance calculation method to
913 * find the distance from a colormap entry to successive cells in the box.
918 register INT32
* bptr
; /* pointer into bestdist[] array */
919 JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
920 INT32 dist0
, dist1
; /* initial distance values */
921 register INT32 dist2
; /* current distance in inner loop */
922 INT32 xx0
, xx1
; /* distance increments */
924 INT32 inc0
, inc1
, inc2
; /* initial values for increments */
925 /* This array holds the distance to the nearest-so-far color for each cell */
926 INT32 bestdist
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
928 /* Initialize best-distance for each cell of the update box */
930 for (i
= BOX_C0_ELEMS
*BOX_C1_ELEMS
*BOX_C2_ELEMS
-1; i
>= 0; i
--)
931 *bptr
++ = 0x7FFFFFFFL
;
933 /* For each color selected by find_nearby_colors,
934 * compute its distance to the center of each cell in the box.
935 * If that's less than best-so-far, update best distance and color number.
938 /* Nominal steps between cell centers ("x" in Thomas article) */
939 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
940 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
941 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
943 for (i
= 0; i
< numcolors
; i
++) {
944 icolor
= GETJSAMPLE(colorlist
[i
]);
945 /* Compute (square of) distance from minc0/c1/c2 to this color */
946 inc0
= (minc0
- GETJSAMPLE(cinfo
->colormap
[0][icolor
])) * C0_SCALE
;
948 inc1
= (minc1
- GETJSAMPLE(cinfo
->colormap
[1][icolor
])) * C1_SCALE
;
950 inc2
= (minc2
- GETJSAMPLE(cinfo
->colormap
[2][icolor
])) * C2_SCALE
;
952 /* Form the initial difference increments */
953 inc0
= inc0
* (2 * STEP_C0
) + STEP_C0
* STEP_C0
;
954 inc1
= inc1
* (2 * STEP_C1
) + STEP_C1
* STEP_C1
;
955 inc2
= inc2
* (2 * STEP_C2
) + STEP_C2
* STEP_C2
;
956 /* Now loop over all cells in box, updating distance per Thomas method */
960 for (ic0
= BOX_C0_ELEMS
-1; ic0
>= 0; ic0
--) {
963 for (ic1
= BOX_C1_ELEMS
-1; ic1
>= 0; ic1
--) {
966 for (ic2
= BOX_C2_ELEMS
-1; ic2
>= 0; ic2
--) {
969 *cptr
= (JSAMPLE
) icolor
;
972 xx2
+= 2 * STEP_C2
* STEP_C2
;
977 xx1
+= 2 * STEP_C1
* STEP_C1
;
980 xx0
+= 2 * STEP_C0
* STEP_C0
;
987 fill_inverse_cmap (j_decompress_ptr cinfo
, int c0
, int c1
, int c2
)
988 /* Fill the inverse-colormap entries in the update box that contains */
989 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
990 /* we can fill as many others as we wish.) */
992 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
993 hist3d histogram
= cquantize
->histogram
;
994 int minc0
, minc1
, minc2
; /* lower left corner of update box */
996 register JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
997 register histptr cachep
; /* pointer into main cache array */
998 /* This array lists the candidate colormap indexes. */
999 JSAMPLE colorlist
[MAXNUMCOLORS
];
1000 int numcolors
; /* number of candidate colors */
1001 /* This array holds the actually closest colormap index for each cell. */
1002 JSAMPLE bestcolor
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
1004 /* Convert cell coordinates to update box ID */
1009 /* Compute true coordinates of update box's origin corner.
1010 * Actually we compute the coordinates of the center of the corner
1011 * histogram cell, which are the lower bounds of the volume we care about.
1013 minc0
= (c0
<< BOX_C0_SHIFT
) + ((1 << C0_SHIFT
) >> 1);
1014 minc1
= (c1
<< BOX_C1_SHIFT
) + ((1 << C1_SHIFT
) >> 1);
1015 minc2
= (c2
<< BOX_C2_SHIFT
) + ((1 << C2_SHIFT
) >> 1);
1017 /* Determine which colormap entries are close enough to be candidates
1018 * for the nearest entry to some cell in the update box.
1020 numcolors
= find_nearby_colors(cinfo
, minc0
, minc1
, minc2
, colorlist
);
1022 /* Determine the actually nearest colors. */
1023 find_best_colors(cinfo
, minc0
, minc1
, minc2
, numcolors
, colorlist
,
1026 /* Save the best color numbers (plus 1) in the main cache array */
1027 c0
<<= BOX_C0_LOG
; /* convert ID back to base cell indexes */
1031 for (ic0
= 0; ic0
< BOX_C0_ELEMS
; ic0
++) {
1032 for (ic1
= 0; ic1
< BOX_C1_ELEMS
; ic1
++) {
1033 cachep
= & histogram
[c0
+ic0
][c1
+ic1
][c2
];
1034 for (ic2
= 0; ic2
< BOX_C2_ELEMS
; ic2
++) {
1035 *cachep
++ = (histcell
) (GETJSAMPLE(*cptr
++) + 1);
1043 * Map some rows of pixels to the output colormapped representation.
1047 pass2_no_dither (j_decompress_ptr cinfo
,
1048 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
1049 /* This version performs no dithering */
1051 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1052 hist3d histogram
= cquantize
->histogram
;
1053 register JSAMPROW inptr
, outptr
;
1054 register histptr cachep
;
1055 register int c0
, c1
, c2
;
1058 JDIMENSION width
= cinfo
->output_width
;
1060 for (row
= 0; row
< num_rows
; row
++) {
1061 inptr
= input_buf
[row
];
1062 outptr
= output_buf
[row
];
1063 for (col
= width
; col
> 0; col
--) {
1064 /* get pixel value and index into the cache */
1065 c0
= GETJSAMPLE(*inptr
++) >> C0_SHIFT
;
1066 c1
= GETJSAMPLE(*inptr
++) >> C1_SHIFT
;
1067 c2
= GETJSAMPLE(*inptr
++) >> C2_SHIFT
;
1068 cachep
= & histogram
[c0
][c1
][c2
];
1069 /* If we have not seen this color before, find nearest colormap entry */
1070 /* and update the cache */
1072 fill_inverse_cmap(cinfo
, c0
,c1
,c2
);
1073 /* Now emit the colormap index for this cell */
1074 *outptr
++ = (JSAMPLE
) (*cachep
- 1);
1081 pass2_fs_dither (j_decompress_ptr cinfo
,
1082 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
1083 /* This version performs Floyd-Steinberg dithering */
1085 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1086 hist3d histogram
= cquantize
->histogram
;
1087 register LOCFSERROR cur0
, cur1
, cur2
; /* current error or pixel value */
1088 LOCFSERROR belowerr0
, belowerr1
, belowerr2
; /* error for pixel below cur */
1089 LOCFSERROR bpreverr0
, bpreverr1
, bpreverr2
; /* error for below/prev col */
1090 register FSERRPTR errorptr
; /* => fserrors[] at column before current */
1091 JSAMPROW inptr
; /* => current input pixel */
1092 JSAMPROW outptr
; /* => current output pixel */
1094 int dir
; /* +1 or -1 depending on direction */
1095 int dir3
; /* 3*dir, for advancing inptr & errorptr */
1098 JDIMENSION width
= cinfo
->output_width
;
1099 JSAMPLE
*range_limit
= cinfo
->sample_range_limit
;
1100 int *error_limit
= cquantize
->error_limiter
;
1101 JSAMPROW colormap0
= cinfo
->colormap
[0];
1102 JSAMPROW colormap1
= cinfo
->colormap
[1];
1103 JSAMPROW colormap2
= cinfo
->colormap
[2];
1106 for (row
= 0; row
< num_rows
; row
++) {
1107 inptr
= input_buf
[row
];
1108 outptr
= output_buf
[row
];
1109 if (cquantize
->on_odd_row
) {
1110 /* work right to left in this row */
1111 inptr
+= (width
-1) * 3; /* so point to rightmost pixel */
1115 errorptr
= cquantize
->fserrors
+ (width
+1)*3; /* => entry after last column */
1116 cquantize
->on_odd_row
= FALSE
; /* flip for next time */
1118 /* work left to right in this row */
1121 errorptr
= cquantize
->fserrors
; /* => entry before first real column */
1122 cquantize
->on_odd_row
= TRUE
; /* flip for next time */
1124 /* Preset error values: no error propagated to first pixel from left */
1125 cur0
= cur1
= cur2
= 0;
1126 /* and no error propagated to row below yet */
1127 belowerr0
= belowerr1
= belowerr2
= 0;
1128 bpreverr0
= bpreverr1
= bpreverr2
= 0;
1130 for (col
= width
; col
> 0; col
--) {
1131 /* curN holds the error propagated from the previous pixel on the
1132 * current line. Add the error propagated from the previous line
1133 * to form the complete error correction term for this pixel, and
1134 * round the error term (which is expressed * 16) to an integer.
1135 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1136 * for either sign of the error value.
1137 * Note: errorptr points to *previous* column's array entry.
1139 cur0
= RIGHT_SHIFT(cur0
+ errorptr
[dir3
+0] + 8, 4);
1140 cur1
= RIGHT_SHIFT(cur1
+ errorptr
[dir3
+1] + 8, 4);
1141 cur2
= RIGHT_SHIFT(cur2
+ errorptr
[dir3
+2] + 8, 4);
1142 /* Limit the error using transfer function set by init_error_limit.
1143 * See comments with init_error_limit for rationale.
1145 cur0
= error_limit
[cur0
];
1146 cur1
= error_limit
[cur1
];
1147 cur2
= error_limit
[cur2
];
1148 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1149 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1150 * this sets the required size of the range_limit array.
1152 cur0
+= GETJSAMPLE(inptr
[0]);
1153 cur1
+= GETJSAMPLE(inptr
[1]);
1154 cur2
+= GETJSAMPLE(inptr
[2]);
1155 cur0
= GETJSAMPLE(range_limit
[cur0
]);
1156 cur1
= GETJSAMPLE(range_limit
[cur1
]);
1157 cur2
= GETJSAMPLE(range_limit
[cur2
]);
1158 /* Index into the cache with adjusted pixel value */
1159 cachep
= & histogram
[cur0
>>C0_SHIFT
][cur1
>>C1_SHIFT
][cur2
>>C2_SHIFT
];
1160 /* If we have not seen this color before, find nearest colormap */
1161 /* entry and update the cache */
1163 fill_inverse_cmap(cinfo
, cur0
>>C0_SHIFT
,cur1
>>C1_SHIFT
,cur2
>>C2_SHIFT
);
1164 /* Now emit the colormap index for this cell */
1165 { register int pixcode
= *cachep
- 1;
1166 *outptr
= (JSAMPLE
) pixcode
;
1167 /* Compute representation error for this pixel */
1168 cur0
-= GETJSAMPLE(colormap0
[pixcode
]);
1169 cur1
-= GETJSAMPLE(colormap1
[pixcode
]);
1170 cur2
-= GETJSAMPLE(colormap2
[pixcode
]);
1172 /* Compute error fractions to be propagated to adjacent pixels.
1173 * Add these into the running sums, and simultaneously shift the
1174 * next-line error sums left by 1 column.
1176 { register LOCFSERROR bnexterr
, delta
;
1178 bnexterr
= cur0
; /* Process component 0 */
1180 cur0
+= delta
; /* form error * 3 */
1181 errorptr
[0] = (FSERROR
) (bpreverr0
+ cur0
);
1182 cur0
+= delta
; /* form error * 5 */
1183 bpreverr0
= belowerr0
+ cur0
;
1184 belowerr0
= bnexterr
;
1185 cur0
+= delta
; /* form error * 7 */
1186 bnexterr
= cur1
; /* Process component 1 */
1188 cur1
+= delta
; /* form error * 3 */
1189 errorptr
[1] = (FSERROR
) (bpreverr1
+ cur1
);
1190 cur1
+= delta
; /* form error * 5 */
1191 bpreverr1
= belowerr1
+ cur1
;
1192 belowerr1
= bnexterr
;
1193 cur1
+= delta
; /* form error * 7 */
1194 bnexterr
= cur2
; /* Process component 2 */
1196 cur2
+= delta
; /* form error * 3 */
1197 errorptr
[2] = (FSERROR
) (bpreverr2
+ cur2
);
1198 cur2
+= delta
; /* form error * 5 */
1199 bpreverr2
= belowerr2
+ cur2
;
1200 belowerr2
= bnexterr
;
1201 cur2
+= delta
; /* form error * 7 */
1203 /* At this point curN contains the 7/16 error value to be propagated
1204 * to the next pixel on the current line, and all the errors for the
1205 * next line have been shifted over. We are therefore ready to move on.
1207 inptr
+= dir3
; /* Advance pixel pointers to next column */
1209 errorptr
+= dir3
; /* advance errorptr to current column */
1211 /* Post-loop cleanup: we must unload the final error values into the
1212 * final fserrors[] entry. Note we need not unload belowerrN because
1213 * it is for the dummy column before or after the actual array.
1215 errorptr
[0] = (FSERROR
) bpreverr0
; /* unload prev errs into array */
1216 errorptr
[1] = (FSERROR
) bpreverr1
;
1217 errorptr
[2] = (FSERROR
) bpreverr2
;
1223 * Initialize the error-limiting transfer function (lookup table).
1224 * The raw F-S error computation can potentially compute error values of up to
1225 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1226 * much less, otherwise obviously wrong pixels will be created. (Typical
1227 * effects include weird fringes at color-area boundaries, isolated bright
1228 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1229 * is to ensure that the "corners" of the color cube are allocated as output
1230 * colors; then repeated errors in the same direction cannot cause cascading
1231 * error buildup. However, that only prevents the error from getting
1232 * completely out of hand; Aaron Giles reports that error limiting improves
1233 * the results even with corner colors allocated.
1234 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1235 * well, but the smoother transfer function used below is even better. Thanks
1236 * to Aaron Giles for this idea.
1240 init_error_limit (j_decompress_ptr cinfo
)
1241 /* Allocate and fill in the error_limiter table */
1243 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1247 table
= (int *) malloc((MAXJSAMPLE
*2+1) * sizeof(int));
1248 table
+= MAXJSAMPLE
; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1249 cquantize
->error_limiter
= table
;
1251 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1252 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1254 for (in
= 0; in
< STEPSIZE
; in
++, out
++) {
1255 table
[in
] = out
; table
[-in
] = -out
;
1257 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1258 for (; in
< STEPSIZE
*3; in
++, out
+= (in
&1) ? 0 : 1) {
1259 table
[in
] = out
; table
[-in
] = -out
;
1261 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1262 for (; in
<= MAXJSAMPLE
; in
++) {
1263 table
[in
] = out
; table
[-in
] = -out
;
1270 * Finish up at the end of each pass.
1274 finish_pass1 (j_decompress_ptr cinfo
)
1276 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1278 /* Select the representative colors and fill in cinfo->colormap */
1279 cinfo
->colormap
= cquantize
->sv_colormap
;
1280 select_colors(cinfo
, cquantize
->desired
);
1281 /* Force next pass to zero the color index table */
1282 cquantize
->needs_zeroed
= TRUE
;
1287 finish_pass2 (j_decompress_ptr cinfo
)
1294 * Initialize for each processing pass.
1298 start_pass_2_quant (j_decompress_ptr cinfo
, bool is_pre_scan
)
1300 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1301 hist3d histogram
= cquantize
->histogram
;
1305 /* Set up method pointers */
1306 cquantize
->pub
.color_quantize
= prescan_quantize
;
1307 cquantize
->pub
.finish_pass
= finish_pass1
;
1308 cquantize
->needs_zeroed
= TRUE
; /* Always zero histogram */
1310 /* Set up method pointers */
1311 cquantize
->pub
.color_quantize
= pass2_fs_dither
;
1312 cquantize
->pub
.finish_pass
= finish_pass2
;
1314 /* Make sure color count is acceptable */
1315 i
= cinfo
->actual_number_of_colors
;
1318 size_t arraysize
= (size_t) ((cinfo
->output_width
+ 2) *
1319 (3 * sizeof(FSERROR
)));
1320 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1321 if (cquantize
->fserrors
== NULL
)
1322 cquantize
->fserrors
= (INT16
*) malloc(arraysize
);
1323 /* Initialize the propagated errors to zero. */
1324 memset((void *) cquantize
->fserrors
, 0, arraysize
);
1325 /* Make the error-limit table if we didn't already. */
1326 if (cquantize
->error_limiter
== NULL
)
1327 init_error_limit(cinfo
);
1328 cquantize
->on_odd_row
= FALSE
;
1332 /* Zero the histogram or inverse color map, if necessary */
1333 if (cquantize
->needs_zeroed
) {
1334 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1335 memset((void *) histogram
[i
], 0,
1336 HIST_C1_ELEMS
*HIST_C2_ELEMS
* sizeof(histcell
));
1338 cquantize
->needs_zeroed
= FALSE
;
1344 * Switch to a new external colormap between output passes.
1348 new_color_map_2_quant (j_decompress_ptr cinfo
)
1350 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1352 /* Reset the inverse color map */
1353 cquantize
->needs_zeroed
= TRUE
;
1358 * Module initialization routine for 2-pass color quantization.
1362 jinit_2pass_quantizer (j_decompress_ptr cinfo
)
1364 my_cquantize_ptr cquantize
;
1367 cquantize
= (my_cquantize_ptr
) malloc(sizeof(my_cquantizer
));
1368 cinfo
->cquantize
= (jpeg_color_quantizer
*) cquantize
;
1369 cquantize
->pub
.start_pass
= start_pass_2_quant
;
1370 cquantize
->pub
.new_color_map
= new_color_map_2_quant
;
1371 cquantize
->fserrors
= NULL
; /* flag optional arrays not allocated */
1372 cquantize
->error_limiter
= NULL
;
1375 /* Allocate the histogram/inverse colormap storage */
1376 cquantize
->histogram
= (hist3d
) malloc(HIST_C0_ELEMS
* sizeof(hist2d
));
1377 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1378 cquantize
->histogram
[i
] = (hist2d
) malloc(HIST_C1_ELEMS
*HIST_C2_ELEMS
* sizeof(histcell
));
1380 cquantize
->needs_zeroed
= TRUE
; /* histogram is garbage now */
1382 /* Allocate storage for the completed colormap, if required.
1383 * We do this now since it is storage and may affect
1384 * the memory manager's space calculations.
1387 /* Make sure color count is acceptable */
1388 int desired
= cinfo
->desired_number_of_colors
;
1390 cquantize
->sv_colormap
= (JSAMPARRAY
) malloc(sizeof(JSAMPROW
) * 3);
1391 cquantize
->sv_colormap
[0] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1392 cquantize
->sv_colormap
[1] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1393 cquantize
->sv_colormap
[2] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1395 cquantize
->desired
= desired
;
1398 /* Allocate Floyd-Steinberg workspace if necessary.
1399 * This isn't really needed until pass 2, but again it is storage.
1400 * Although we will cope with a later change in dither_mode,
1401 * we do not promise to honor max_memory_to_use if dither_mode changes.
1404 cquantize
->fserrors
= (FSERRPTR
) malloc(
1405 (size_t) ((cinfo
->output_width
+ 2) * (3 * sizeof(FSERROR
))));
1406 /* Might as well create the error-limiting table too. */
1407 init_error_limit(cinfo
);
1421 prepare_range_limit_table (j_decompress_ptr cinfo
)
1422 /* Allocate and fill in the sample_range_limit table */
1427 table
= (JSAMPLE
*) malloc((5 * (MAXJSAMPLE
+1) + CENTERJSAMPLE
) * sizeof(JSAMPLE
));
1428 cinfo
->srl_orig
= table
;
1429 table
+= (MAXJSAMPLE
+1); /* allow negative subscripts of simple table */
1430 cinfo
->sample_range_limit
= table
;
1431 /* First segment of "simple" table: limit[x] = 0 for x < 0 */
1432 memset(table
- (MAXJSAMPLE
+1), 0, (MAXJSAMPLE
+1) * sizeof(JSAMPLE
));
1433 /* Main part of "simple" table: limit[x] = x */
1434 for (i
= 0; i
<= MAXJSAMPLE
; i
++)
1435 table
[i
] = (JSAMPLE
) i
;
1436 table
+= CENTERJSAMPLE
; /* Point to where post-IDCT table starts */
1437 /* End of simple table, rest of first half of post-IDCT table */
1438 for (i
= CENTERJSAMPLE
; i
< 2*(MAXJSAMPLE
+1); i
++)
1439 table
[i
] = MAXJSAMPLE
;
1440 /* Second half of post-IDCT table */
1441 memset(table
+ (2 * (MAXJSAMPLE
+1)), 0,
1442 (2 * (MAXJSAMPLE
+1) - CENTERJSAMPLE
) * sizeof(JSAMPLE
));
1443 memcpy(table
+ (4 * (MAXJSAMPLE
+1) - CENTERJSAMPLE
),
1444 cinfo
->sample_range_limit
, CENTERJSAMPLE
* sizeof(JSAMPLE
));
1454 IMPLEMENT_DYNAMIC_CLASS(wxQuantize
, wxObject
)
1456 void wxQuantize::DoQuantize(unsigned w
, unsigned h
, unsigned char **in_rows
, unsigned char **out_rows
,
1457 unsigned char *palette
, int desiredNoColours
)
1460 my_cquantize_ptr cquantize
;
1462 dec
.output_width
= w
;
1463 dec
.desired_number_of_colors
= desiredNoColours
;
1464 prepare_range_limit_table(&dec
);
1465 jinit_2pass_quantizer(&dec
);
1466 cquantize
= (my_cquantize_ptr
) dec
.cquantize
;
1469 cquantize
->pub
.start_pass(&dec
, TRUE
);
1470 cquantize
->pub
.color_quantize(&dec
, in_rows
, out_rows
, h
);
1471 cquantize
->pub
.finish_pass(&dec
);
1473 cquantize
->pub
.start_pass(&dec
, FALSE
);
1474 cquantize
->pub
.color_quantize(&dec
, in_rows
, out_rows
, h
);
1475 cquantize
->pub
.finish_pass(&dec
);
1478 for (int i
= 0; i
< dec
.desired_number_of_colors
; i
++) {
1479 palette
[3 * i
+ 0] = dec
.colormap
[0][i
];
1480 palette
[3 * i
+ 1] = dec
.colormap
[1][i
];
1481 palette
[3 * i
+ 2] = dec
.colormap
[2][i
];
1484 for (int ii
= 0; ii
< HIST_C0_ELEMS
; ii
++) free(cquantize
->histogram
[ii
]);
1485 free(cquantize
->histogram
);
1486 free(dec
.colormap
[0]);
1487 free(dec
.colormap
[1]);
1488 free(dec
.colormap
[2]);
1492 //free(cquantize->error_limiter);
1493 free((void*)(cquantize
->error_limiter
- MAXJSAMPLE
)); // To reverse what was done to it
1495 free(cquantize
->fserrors
);
1499 // TODO: somehow make use of the Windows system colours, rather than ignoring them for the
1500 // purposes of quantization.
1502 bool wxQuantize::Quantize(const wxImage
& src
, wxImage
& dest
,
1503 wxPalette
** pPalette
,
1504 int desiredNoColours
,
1505 unsigned char** eightBitData
,
1510 int w
= src
.GetWidth();
1511 int h
= src
.GetHeight();
1513 int windowsSystemColourCount
= 20;
1515 int paletteShift
= 0;
1517 // Shift the palette up by the number of Windows system colours,
1519 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1520 paletteShift
= windowsSystemColourCount
;
1522 // Make room for the Windows system colours
1524 if ((flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
) && (desiredNoColours
> (256 - windowsSystemColourCount
)))
1525 desiredNoColours
= 256 - windowsSystemColourCount
;
1528 // create rows info:
1529 unsigned char **rows
= new unsigned char *[h
];
1530 h
= src
.GetHeight(), w
= src
.GetWidth();
1531 unsigned char *imgdt
= src
.GetData();
1532 for (i
= 0; i
< h
; i
++)
1533 rows
[i
] = imgdt
+ 3/*RGB*/ * w
* i
;
1535 unsigned char palette
[3*256];
1537 // This is the image as represented by palette indexes.
1538 unsigned char *data8bit
= new unsigned char[w
* h
];
1539 unsigned char **outrows
= new unsigned char *[h
];
1540 for (i
= 0; i
< h
; i
++)
1541 outrows
[i
] = data8bit
+ w
* i
;
1544 DoQuantize(w
, h
, rows
, outrows
, palette
, desiredNoColours
);
1549 // palette->RGB(max.256)
1551 if (flags
& wxQUANTIZE_FILL_DESTINATION_IMAGE
)
1556 imgdt
= dest
.GetData();
1557 for (i
= 0; i
< w
* h
; i
++)
1559 unsigned char c
= data8bit
[i
];
1560 imgdt
[3 * i
+ 0/*R*/] = palette
[3 * c
+ 0];
1561 imgdt
[3 * i
+ 1/*G*/] = palette
[3 * c
+ 1];
1562 imgdt
[3 * i
+ 2/*B*/] = palette
[3 * c
+ 2];
1566 if (eightBitData
&& (flags
& wxQUANTIZE_RETURN_8BIT_DATA
))
1569 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1571 // We need to shift the palette entries up
1572 // to make room for the Windows system colours.
1573 for (i
= 0; i
< w
* h
; i
++)
1574 data8bit
[i
] = data8bit
[i
] + paletteShift
;
1577 *eightBitData
= data8bit
;
1583 // Make a wxWindows palette
1586 unsigned char* r
= new unsigned char[256];
1587 unsigned char* g
= new unsigned char[256];
1588 unsigned char* b
= new unsigned char[256];
1591 // Fill the first 20 entries with Windows system colours
1592 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1594 HDC hDC
= ::GetDC(NULL
);
1595 PALETTEENTRY
* entries
= new PALETTEENTRY
[windowsSystemColourCount
];
1596 ::GetSystemPaletteEntries(hDC
, 0, windowsSystemColourCount
, entries
);
1597 ::ReleaseDC(NULL
, hDC
);
1599 for (i
= 0; i
< windowsSystemColourCount
; i
++)
1601 r
[i
] = entries
[i
].peRed
;
1602 g
[i
] = entries
[i
].peGreen
;
1603 b
[i
] = entries
[i
].peBlue
;
1609 for (i
= 0; i
< desiredNoColours
; i
++)
1611 r
[i
+paletteShift
] = palette
[i
*3 + 0];
1612 g
[i
+paletteShift
] = palette
[i
*3 + 1];
1613 b
[i
+paletteShift
] = palette
[i
*3 + 2];
1616 // Blank out any remaining palette entries
1617 for (i
= desiredNoColours
+paletteShift
; i
< 256; i
++)
1623 *pPalette
= new wxPalette(256, r
, g
, b
);
1628 #endif // wxUSE_PALETTE
1633 // This version sets a palette in the destination image so you don't
1634 // have to manage it yourself.
1636 bool wxQuantize::Quantize(const wxImage
& src
,
1638 int desiredNoColours
,
1639 unsigned char** eightBitData
,
1642 wxPalette
* palette
= NULL
;
1643 if ( !Quantize(src
, dest
, & palette
, desiredNoColours
, eightBitData
, flags
) )
1649 dest
.SetPalette(* palette
);
1652 #endif // wxUSE_PALETTE