]>
git.saurik.com Git - wxWidgets.git/blob - src/jpeg/jidctred.c
   4  * Copyright (C) 1994-1998, Thomas G. Lane. 
   5  * This file is part of the Independent JPEG Group's software. 
   6  * For conditions of distribution and use, see the accompanying README file. 
   8  * This file contains inverse-DCT routines that produce reduced-size output: 
   9  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. 
  11  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) 
  12  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step 
  13  * with an 8-to-4 step that produces the four averages of two adjacent outputs 
  14  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). 
  15  * These steps were derived by computing the corresponding values at the end 
  16  * of the normal LL&M code, then simplifying as much as possible. 
  18  * 1x1 is trivial: just take the DC coefficient divided by 8. 
  20  * See jidctint.c for additional comments. 
  23 #define JPEG_INTERNALS 
  26 #include "jdct.h"               /* Private declarations for DCT subsystem */ 
  28 #ifdef IDCT_SCALING_SUPPORTED 
  32  * This module is specialized to the case DCTSIZE = 8. 
  36   Sorry
, this code only copes with 
8x8 DCTs
. /* deliberate syntax err */ 
  40 /* Scaling is the same as in jidctint.c. */ 
  42 #if BITS_IN_JSAMPLE == 8 
  47 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */ 
  50 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 
  51  * causing a lot of useless floating-point operations at run time. 
  52  * To get around this we use the following pre-calculated constants. 
  53  * If you change CONST_BITS you may want to add appropriate values. 
  54  * (With a reasonable C compiler, you can just rely on the FIX() macro...) 
  58 #define FIX_0_211164243  ((JPEG_INT32)  1730)   /* FIX(0.211164243) */ 
  59 #define FIX_0_509795579  ((JPEG_INT32)  4176)   /* FIX(0.509795579) */ 
  60 #define FIX_0_601344887  ((JPEG_INT32)  4926)   /* FIX(0.601344887) */ 
  61 #define FIX_0_720959822  ((JPEG_INT32)  5906)   /* FIX(0.720959822) */ 
  62 #define FIX_0_765366865  ((JPEG_INT32)  6270)   /* FIX(0.765366865) */ 
  63 #define FIX_0_850430095  ((JPEG_INT32)  6967)   /* FIX(0.850430095) */ 
  64 #define FIX_0_899976223  ((JPEG_INT32)  7373)   /* FIX(0.899976223) */ 
  65 #define FIX_1_061594337  ((JPEG_INT32)  8697)   /* FIX(1.061594337) */ 
  66 #define FIX_1_272758580  ((JPEG_INT32)  10426)  /* FIX(1.272758580) */ 
  67 #define FIX_1_451774981  ((JPEG_INT32)  11893)  /* FIX(1.451774981) */ 
  68 #define FIX_1_847759065  ((JPEG_INT32)  15137)  /* FIX(1.847759065) */ 
  69 #define FIX_2_172734803  ((JPEG_INT32)  17799)  /* FIX(2.172734803) */ 
  70 #define FIX_2_562915447  ((JPEG_INT32)  20995)  /* FIX(2.562915447) */ 
  71 #define FIX_3_624509785  ((JPEG_INT32)  29692)  /* FIX(3.624509785) */ 
  73 #define FIX_0_211164243  FIX(0.211164243) 
  74 #define FIX_0_509795579  FIX(0.509795579) 
  75 #define FIX_0_601344887  FIX(0.601344887) 
  76 #define FIX_0_720959822  FIX(0.720959822) 
  77 #define FIX_0_765366865  FIX(0.765366865) 
  78 #define FIX_0_850430095  FIX(0.850430095) 
  79 #define FIX_0_899976223  FIX(0.899976223) 
  80 #define FIX_1_061594337  FIX(1.061594337) 
  81 #define FIX_1_272758580  FIX(1.272758580) 
  82 #define FIX_1_451774981  FIX(1.451774981) 
  83 #define FIX_1_847759065  FIX(1.847759065) 
  84 #define FIX_2_172734803  FIX(2.172734803) 
  85 #define FIX_2_562915447  FIX(2.562915447) 
  86 #define FIX_3_624509785  FIX(3.624509785) 
  90 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. 
  91  * For 8-bit samples with the recommended scaling, all the variable 
  92  * and constant values involved are no more than 16 bits wide, so a 
  93  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. 
  94  * For 12-bit samples, a full 32-bit multiplication will be needed. 
  97 #if BITS_IN_JSAMPLE == 8 
  98 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const) 
 100 #define MULTIPLY(var,const)  ((var) * (const)) 
 104 /* Dequantize a coefficient by multiplying it by the multiplier-table 
 105  * entry; produce an int result.  In this module, both inputs and result 
 106  * are 16 bits or less, so either int or short multiply will work. 
 109 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval)) 
 113  * Perform dequantization and inverse DCT on one block of coefficients, 
 114  * producing a reduced-size 4x4 output block. 
 118 jpeg_idct_4x4 (j_decompress_ptr cinfo
, jpeg_component_info 
* compptr
, 
 120                JSAMPARRAY output_buf
, JDIMENSION output_col
) 
 122   JPEG_INT32 tmp0
, tmp2
, tmp10
, tmp12
; 
 123   JPEG_INT32 z1
, z2
, z3
, z4
; 
 125   ISLOW_MULT_TYPE 
* quantptr
; 
 128   JSAMPLE 
*range_limit 
= IDCT_range_limit(cinfo
); 
 130   int workspace
[DCTSIZE
*4];     /* buffers data between passes */ 
 133   /* Pass 1: process columns from input, store into work array. */ 
 136   quantptr 
= (ISLOW_MULT_TYPE 
*) compptr
->dct_table
; 
 138   for (ctr 
= DCTSIZE
; ctr 
> 0; inptr
++, quantptr
++, wsptr
++, ctr
--) { 
 139     /* Don't bother to process column 4, because second pass won't use it */ 
 140     if (ctr 
== DCTSIZE
-4) 
 142     if (inptr
[DCTSIZE
*1] == 0 && inptr
[DCTSIZE
*2] == 0 && 
 143         inptr
[DCTSIZE
*3] == 0 && inptr
[DCTSIZE
*5] == 0 && 
 144         inptr
[DCTSIZE
*6] == 0 && inptr
[DCTSIZE
*7] == 0) { 
 145       /* AC terms all zero; we need not examine term 4 for 4x4 output */ 
 146       int dcval 
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]) << PASS1_BITS
; 
 148       wsptr
[DCTSIZE
*0] = dcval
; 
 149       wsptr
[DCTSIZE
*1] = dcval
; 
 150       wsptr
[DCTSIZE
*2] = dcval
; 
 151       wsptr
[DCTSIZE
*3] = dcval
; 
 158     tmp0 
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]); 
 159     tmp0 
<<= (CONST_BITS
+1); 
 161     z2 
= DEQUANTIZE(inptr
[DCTSIZE
*2], quantptr
[DCTSIZE
*2]); 
 162     z3 
= DEQUANTIZE(inptr
[DCTSIZE
*6], quantptr
[DCTSIZE
*6]); 
 164     tmp2 
= MULTIPLY(z2
, FIX_1_847759065
) + MULTIPLY(z3
, - FIX_0_765366865
); 
 171     z1 
= DEQUANTIZE(inptr
[DCTSIZE
*7], quantptr
[DCTSIZE
*7]); 
 172     z2 
= DEQUANTIZE(inptr
[DCTSIZE
*5], quantptr
[DCTSIZE
*5]); 
 173     z3 
= DEQUANTIZE(inptr
[DCTSIZE
*3], quantptr
[DCTSIZE
*3]); 
 174     z4 
= DEQUANTIZE(inptr
[DCTSIZE
*1], quantptr
[DCTSIZE
*1]); 
 176     tmp0 
= MULTIPLY(z1
, - FIX_0_211164243
) /* sqrt(2) * (c3-c1) */ 
 177          + MULTIPLY(z2
, FIX_1_451774981
) /* sqrt(2) * (c3+c7) */ 
 178          + MULTIPLY(z3
, - FIX_2_172734803
) /* sqrt(2) * (-c1-c5) */ 
 179          + MULTIPLY(z4
, FIX_1_061594337
); /* sqrt(2) * (c5+c7) */ 
 181     tmp2 
= MULTIPLY(z1
, - FIX_0_509795579
) /* sqrt(2) * (c7-c5) */ 
 182          + MULTIPLY(z2
, - FIX_0_601344887
) /* sqrt(2) * (c5-c1) */ 
 183          + MULTIPLY(z3
, FIX_0_899976223
) /* sqrt(2) * (c3-c7) */ 
 184          + MULTIPLY(z4
, FIX_2_562915447
); /* sqrt(2) * (c1+c3) */ 
 186     /* Final output stage */ 
 188     wsptr
[DCTSIZE
*0] = (int) DESCALE(tmp10 
+ tmp2
, CONST_BITS
-PASS1_BITS
+1); 
 189     wsptr
[DCTSIZE
*3] = (int) DESCALE(tmp10 
- tmp2
, CONST_BITS
-PASS1_BITS
+1); 
 190     wsptr
[DCTSIZE
*1] = (int) DESCALE(tmp12 
+ tmp0
, CONST_BITS
-PASS1_BITS
+1); 
 191     wsptr
[DCTSIZE
*2] = (int) DESCALE(tmp12 
- tmp0
, CONST_BITS
-PASS1_BITS
+1); 
 194   /* Pass 2: process 4 rows from work array, store into output array. */ 
 197   for (ctr 
= 0; ctr 
< 4; ctr
++) { 
 198     outptr 
= output_buf
[ctr
] + output_col
; 
 199     /* It's not clear whether a zero row test is worthwhile here ... */ 
 201 #ifndef NO_ZERO_ROW_TEST 
 202     if (wsptr
[1] == 0 && wsptr
[2] == 0 && wsptr
[3] == 0 && 
 203         wsptr
[5] == 0 && wsptr
[6] == 0 && wsptr
[7] == 0) { 
 204       /* AC terms all zero */ 
 205       JSAMPLE dcval 
= range_limit
[(int) DESCALE((JPEG_INT32
) wsptr
[0], PASS1_BITS
+3) 
 213       wsptr 
+= DCTSIZE
;         /* advance pointer to next row */ 
 220     tmp0 
= ((JPEG_INT32
) wsptr
[0]) << (CONST_BITS
+1); 
 222     tmp2 
= MULTIPLY((JPEG_INT32
) wsptr
[2], FIX_1_847759065
) 
 223          + MULTIPLY((JPEG_INT32
) wsptr
[6], - FIX_0_765366865
); 
 230     z1 
= (JPEG_INT32
) wsptr
[7]; 
 231     z2 
= (JPEG_INT32
) wsptr
[5]; 
 232     z3 
= (JPEG_INT32
) wsptr
[3]; 
 233     z4 
= (JPEG_INT32
) wsptr
[1]; 
 235     tmp0 
= MULTIPLY(z1
, - FIX_0_211164243
) /* sqrt(2) * (c3-c1) */ 
 236          + MULTIPLY(z2
, FIX_1_451774981
) /* sqrt(2) * (c3+c7) */ 
 237          + MULTIPLY(z3
, - FIX_2_172734803
) /* sqrt(2) * (-c1-c5) */ 
 238          + MULTIPLY(z4
, FIX_1_061594337
); /* sqrt(2) * (c5+c7) */ 
 240     tmp2 
= MULTIPLY(z1
, - FIX_0_509795579
) /* sqrt(2) * (c7-c5) */ 
 241          + MULTIPLY(z2
, - FIX_0_601344887
) /* sqrt(2) * (c5-c1) */ 
 242          + MULTIPLY(z3
, FIX_0_899976223
) /* sqrt(2) * (c3-c7) */ 
 243          + MULTIPLY(z4
, FIX_2_562915447
); /* sqrt(2) * (c1+c3) */ 
 245     /* Final output stage */ 
 247     outptr
[0] = range_limit
[(int) DESCALE(tmp10 
+ tmp2
, 
 248                                           CONST_BITS
+PASS1_BITS
+3+1) 
 250     outptr
[3] = range_limit
[(int) DESCALE(tmp10 
- tmp2
, 
 251                                           CONST_BITS
+PASS1_BITS
+3+1) 
 253     outptr
[1] = range_limit
[(int) DESCALE(tmp12 
+ tmp0
, 
 254                                           CONST_BITS
+PASS1_BITS
+3+1) 
 256     outptr
[2] = range_limit
[(int) DESCALE(tmp12 
- tmp0
, 
 257                                           CONST_BITS
+PASS1_BITS
+3+1) 
 260     wsptr 
+= DCTSIZE
;           /* advance pointer to next row */ 
 266  * Perform dequantization and inverse DCT on one block of coefficients, 
 267  * producing a reduced-size 2x2 output block. 
 271 jpeg_idct_2x2 (j_decompress_ptr cinfo
, jpeg_component_info 
* compptr
, 
 273                JSAMPARRAY output_buf
, JDIMENSION output_col
) 
 275   JPEG_INT32 tmp0
, tmp10
, z1
; 
 277   ISLOW_MULT_TYPE 
* quantptr
; 
 280   JSAMPLE 
*range_limit 
= IDCT_range_limit(cinfo
); 
 282   int workspace
[DCTSIZE
*2];     /* buffers data between passes */ 
 285   /* Pass 1: process columns from input, store into work array. */ 
 288   quantptr 
= (ISLOW_MULT_TYPE 
*) compptr
->dct_table
; 
 290   for (ctr 
= DCTSIZE
; ctr 
> 0; inptr
++, quantptr
++, wsptr
++, ctr
--) { 
 291     /* Don't bother to process columns 2,4,6 */ 
 292     if (ctr 
== DCTSIZE
-2 || ctr 
== DCTSIZE
-4 || ctr 
== DCTSIZE
-6) 
 294     if (inptr
[DCTSIZE
*1] == 0 && inptr
[DCTSIZE
*3] == 0 && 
 295         inptr
[DCTSIZE
*5] == 0 && inptr
[DCTSIZE
*7] == 0) { 
 296       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ 
 297       int dcval 
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]) << PASS1_BITS
; 
 299       wsptr
[DCTSIZE
*0] = dcval
; 
 300       wsptr
[DCTSIZE
*1] = dcval
; 
 307     z1 
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]); 
 308     tmp10 
= z1 
<< (CONST_BITS
+2); 
 312     z1 
= DEQUANTIZE(inptr
[DCTSIZE
*7], quantptr
[DCTSIZE
*7]); 
 313     tmp0 
= MULTIPLY(z1
, - FIX_0_720959822
); /* sqrt(2) * (c7-c5+c3-c1) */ 
 314     z1 
= DEQUANTIZE(inptr
[DCTSIZE
*5], quantptr
[DCTSIZE
*5]); 
 315     tmp0 
+= MULTIPLY(z1
, FIX_0_850430095
); /* sqrt(2) * (-c1+c3+c5+c7) */ 
 316     z1 
= DEQUANTIZE(inptr
[DCTSIZE
*3], quantptr
[DCTSIZE
*3]); 
 317     tmp0 
+= MULTIPLY(z1
, - FIX_1_272758580
); /* sqrt(2) * (-c1+c3-c5-c7) */ 
 318     z1 
= DEQUANTIZE(inptr
[DCTSIZE
*1], quantptr
[DCTSIZE
*1]); 
 319     tmp0 
+= MULTIPLY(z1
, FIX_3_624509785
); /* sqrt(2) * (c1+c3+c5+c7) */ 
 321     /* Final output stage */ 
 323     wsptr
[DCTSIZE
*0] = (int) DESCALE(tmp10 
+ tmp0
, CONST_BITS
-PASS1_BITS
+2); 
 324     wsptr
[DCTSIZE
*1] = (int) DESCALE(tmp10 
- tmp0
, CONST_BITS
-PASS1_BITS
+2); 
 327   /* Pass 2: process 2 rows from work array, store into output array. */ 
 330   for (ctr 
= 0; ctr 
< 2; ctr
++) { 
 331     outptr 
= output_buf
[ctr
] + output_col
; 
 332     /* It's not clear whether a zero row test is worthwhile here ... */ 
 334 #ifndef NO_ZERO_ROW_TEST 
 335     if (wsptr
[1] == 0 && wsptr
[3] == 0 && wsptr
[5] == 0 && wsptr
[7] == 0) { 
 336       /* AC terms all zero */ 
 337       JSAMPLE dcval 
= range_limit
[(int) DESCALE((JPEG_INT32
) wsptr
[0], PASS1_BITS
+3) 
 343       wsptr 
+= DCTSIZE
;         /* advance pointer to next row */ 
 350     tmp10 
= ((JPEG_INT32
) wsptr
[0]) << (CONST_BITS
+2); 
 354     tmp0 
= MULTIPLY((JPEG_INT32
) wsptr
[7], - FIX_0_720959822
) /* sqrt(2) * (c7-c5+c3-c1) */ 
 355          + MULTIPLY((JPEG_INT32
) wsptr
[5], FIX_0_850430095
) /* sqrt(2) * (-c1+c3+c5+c7) */ 
 356          + MULTIPLY((JPEG_INT32
) wsptr
[3], - FIX_1_272758580
) /* sqrt(2) * (-c1+c3-c5-c7) */ 
 357          + MULTIPLY((JPEG_INT32
) wsptr
[1], FIX_3_624509785
); /* sqrt(2) * (c1+c3+c5+c7) */ 
 359     /* Final output stage */ 
 361     outptr
[0] = range_limit
[(int) DESCALE(tmp10 
+ tmp0
, 
 362                                           CONST_BITS
+PASS1_BITS
+3+2) 
 364     outptr
[1] = range_limit
[(int) DESCALE(tmp10 
- tmp0
, 
 365                                           CONST_BITS
+PASS1_BITS
+3+2) 
 368     wsptr 
+= DCTSIZE
;           /* advance pointer to next row */ 
 374  * Perform dequantization and inverse DCT on one block of coefficients, 
 375  * producing a reduced-size 1x1 output block. 
 379 jpeg_idct_1x1 (j_decompress_ptr cinfo
, jpeg_component_info 
* compptr
, 
 381                JSAMPARRAY output_buf
, JDIMENSION output_col
) 
 384   ISLOW_MULT_TYPE 
* quantptr
; 
 385   JSAMPLE 
*range_limit 
= IDCT_range_limit(cinfo
); 
 388   /* We hardly need an inverse DCT routine for this: just take the 
 389    * average pixel value, which is one-eighth of the DC coefficient. 
 391   quantptr 
= (ISLOW_MULT_TYPE 
*) compptr
->dct_table
; 
 392   dcval 
= DEQUANTIZE(coef_block
[0], quantptr
[0]); 
 393   dcval 
= (int) DESCALE((JPEG_INT32
) dcval
, 3); 
 395   output_buf
[0][output_col
] = range_limit
[dcval 
& RANGE_MASK
]; 
 398 #endif /* IDCT_SCALING_SUPPORTED */