4  * Copyright (C) 1991-1997, Thomas G. Lane. 
   5  * This file is part of the Independent JPEG Group's software. 
   6  * For conditions of distribution and use, see the accompanying README file. 
   8  * This file contains Huffman entropy decoding routines. 
  10  * Much of the complexity here has to do with supporting input suspension. 
  11  * If the data source module demands suspension, we want to be able to back 
  12  * up to the start of the current MCU.  To do this, we copy state variables 
  13  * into local working storage, and update them back to the permanent 
  14  * storage only upon successful completion of an MCU. 
  17 #define JPEG_INTERNALS 
  20 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */ 
  24  * Expanded entropy decoder object for Huffman decoding. 
  26  * The savable_state subrecord contains fields that change within an MCU, 
  27  * but must not be updated permanently until we complete the MCU. 
  31   int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */ 
  34 /* This macro is to work around compilers with missing or broken 
  35  * structure assignment.  You'll need to fix this code if you have 
  36  * such a compiler and you change MAX_COMPS_IN_SCAN. 
  39 #ifndef NO_STRUCT_ASSIGN 
  40 #define ASSIGN_STATE(dest,src)  ((dest) = (src)) 
  42 #if MAX_COMPS_IN_SCAN == 4 
  43 #define ASSIGN_STATE(dest,src)  \ 
  44         ((dest).last_dc_val[0] = (src).last_dc_val[0], \ 
  45          (dest).last_dc_val[1] = (src).last_dc_val[1], \ 
  46          (dest).last_dc_val[2] = (src).last_dc_val[2], \ 
  47          (dest).last_dc_val[3] = (src).last_dc_val[3]) 
  53   struct jpeg_entropy_decoder pub
; /* public fields */ 
  55   /* These fields are loaded into local variables at start of each MCU. 
  56    * In case of suspension, we exit WITHOUT updating them. 
  58   bitread_perm_state bitstate
;  /* Bit buffer at start of MCU */ 
  59   savable_state saved
;          /* Other state at start of MCU */ 
  61   /* These fields are NOT loaded into local working state. */ 
  62   unsigned int restarts_to_go
;  /* MCUs left in this restart interval */ 
  64   /* Pointers to derived tables (these workspaces have image lifespan) */ 
  65   d_derived_tbl 
* dc_derived_tbls
[NUM_HUFF_TBLS
]; 
  66   d_derived_tbl 
* ac_derived_tbls
[NUM_HUFF_TBLS
]; 
  68   /* Precalculated info set up by start_pass for use in decode_mcu: */ 
  70   /* Pointers to derived tables to be used for each block within an MCU */ 
  71   d_derived_tbl 
* dc_cur_tbls
[D_MAX_BLOCKS_IN_MCU
]; 
  72   d_derived_tbl 
* ac_cur_tbls
[D_MAX_BLOCKS_IN_MCU
]; 
  73   /* Whether we care about the DC and AC coefficient values for each block */ 
  74   boolean dc_needed
[D_MAX_BLOCKS_IN_MCU
]; 
  75   boolean ac_needed
[D_MAX_BLOCKS_IN_MCU
]; 
  76 } huff_entropy_decoder
; 
  78 typedef huff_entropy_decoder 
* huff_entropy_ptr
; 
  82  * Initialize for a Huffman-compressed scan. 
  86 start_pass_huff_decoder (j_decompress_ptr cinfo
) 
  88   huff_entropy_ptr entropy 
= (huff_entropy_ptr
) cinfo
->entropy
; 
  89   int ci
, blkn
, dctbl
, actbl
; 
  90   jpeg_component_info 
* compptr
; 
  92   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. 
  93    * This ought to be an error condition, but we make it a warning because 
  94    * there are some baseline files out there with all zeroes in these bytes. 
  96   if (cinfo
->Ss 
!= 0 || cinfo
->Se 
!= DCTSIZE2
-1 || 
  97       cinfo
->Ah 
!= 0 || cinfo
->Al 
!= 0) 
  98     WARNMS(cinfo
, JWRN_NOT_SEQUENTIAL
); 
 100   for (ci 
= 0; ci 
< cinfo
->comps_in_scan
; ci
++) { 
 101     compptr 
= cinfo
->cur_comp_info
[ci
]; 
 102     dctbl 
= compptr
->dc_tbl_no
; 
 103     actbl 
= compptr
->ac_tbl_no
; 
 104     /* Compute derived values for Huffman tables */ 
 105     /* We may do this more than once for a table, but it's not expensive */ 
 106     jpeg_make_d_derived_tbl(cinfo
, TRUE
, dctbl
, 
 107                             & entropy
->dc_derived_tbls
[dctbl
]); 
 108     jpeg_make_d_derived_tbl(cinfo
, FALSE
, actbl
, 
 109                             & entropy
->ac_derived_tbls
[actbl
]); 
 110     /* Initialize DC predictions to 0 */ 
 111     entropy
->saved
.last_dc_val
[ci
] = 0; 
 114   /* Precalculate decoding info for each block in an MCU of this scan */ 
 115   for (blkn 
= 0; blkn 
< cinfo
->blocks_in_MCU
; blkn
++) { 
 116     ci 
= cinfo
->MCU_membership
[blkn
]; 
 117     compptr 
= cinfo
->cur_comp_info
[ci
]; 
 118     /* Precalculate which table to use for each block */ 
 119     entropy
->dc_cur_tbls
[blkn
] = entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
]; 
 120     entropy
->ac_cur_tbls
[blkn
] = entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]; 
 121     /* Decide whether we really care about the coefficient values */ 
 122     if (compptr
->component_needed
) { 
 123       entropy
->dc_needed
[blkn
] = TRUE
; 
 124       /* we don't need the ACs if producing a 1/8th-size image */ 
 125       entropy
->ac_needed
[blkn
] = (compptr
->DCT_scaled_size 
> 1); 
 127       entropy
->dc_needed
[blkn
] = entropy
->ac_needed
[blkn
] = FALSE
; 
 131   /* Initialize bitread state variables */ 
 132   entropy
->bitstate
.bits_left 
= 0; 
 133   entropy
->bitstate
.get_buffer 
= 0; /* unnecessary, but keeps Purify quiet */ 
 134   entropy
->pub
.insufficient_data 
= FALSE
; 
 136   /* Initialize restart counter */ 
 137   entropy
->restarts_to_go 
= cinfo
->restart_interval
; 
 142  * Compute the derived values for a Huffman table. 
 143  * This routine also performs some validation checks on the table. 
 145  * Note this is also used by jdphuff.c. 
 149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo
, boolean isDC
, int tblno
, 
 150                          d_derived_tbl 
** pdtbl
) 
 154   int p
, i
, l
, si
, numsymbols
; 
 157   unsigned int huffcode
[257]; 
 160   /* Note that huffsize[] and huffcode[] are filled in code-length order, 
 161    * paralleling the order of the symbols themselves in htbl->huffval[]. 
 164   /* Find the input Huffman table */ 
 165   if (tblno 
< 0 || tblno 
>= NUM_HUFF_TBLS
) 
 166     ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
); 
 168     isDC 
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
]; 
 170     ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
); 
 172   /* Allocate a workspace if we haven't already done so. */ 
 174     *pdtbl 
= (d_derived_tbl 
*) 
 175       (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 176                                   SIZEOF(d_derived_tbl
)); 
 178   dtbl
->pub 
= htbl
;             /* fill in back link */ 
 180   /* Figure C.1: make table of Huffman code length for each symbol */ 
 183   for (l 
= 1; l 
<= 16; l
++) { 
 184     i 
= (int) htbl
->bits
[l
]; 
 185     if (i 
< 0 || p 
+ i 
> 256)   /* protect against table overrun */ 
 186       ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
); 
 188       huffsize
[p
++] = (char) l
; 
 193   /* Figure C.2: generate the codes themselves */ 
 194   /* We also validate that the counts represent a legal Huffman code tree. */ 
 199   while (huffsize
[p
]) { 
 200     while (((int) huffsize
[p
]) == si
) { 
 201       huffcode
[p
++] = code
; 
 204     /* code is now 1 more than the last code used for codelength si; but 
 205      * it must still fit in si bits, since no code is allowed to be all ones. 
 207     if (((JPEG_INT32
) code
) >= (((JPEG_INT32
) 1) << si
)) 
 208       ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
); 
 213   /* Figure F.15: generate decoding tables for bit-sequential decoding */ 
 216   for (l 
= 1; l 
<= 16; l
++) { 
 218       /* valoffset[l] = huffval[] index of 1st symbol of code length l, 
 219        * minus the minimum code of length l 
 221       dtbl
->valoffset
[l
] = (JPEG_INT32
) p 
- (JPEG_INT32
) huffcode
[p
]; 
 223       dtbl
->maxcode
[l
] = huffcode
[p
-1]; /* maximum code of length l */ 
 225       dtbl
->maxcode
[l
] = -1;    /* -1 if no codes of this length */ 
 228   dtbl
->maxcode
[17] = 0xFFFFFL
; /* ensures jpeg_huff_decode terminates */ 
 230   /* Compute lookahead tables to speed up decoding. 
 231    * First we set all the table entries to 0, indicating "too long"; 
 232    * then we iterate through the Huffman codes that are short enough and 
 233    * fill in all the entries that correspond to bit sequences starting 
 237   MEMZERO(dtbl
->look_nbits
, SIZEOF(dtbl
->look_nbits
)); 
 240   for (l 
= 1; l 
<= HUFF_LOOKAHEAD
; l
++) { 
 241     for (i 
= 1; i 
<= (int) htbl
->bits
[l
]; i
++, p
++) { 
 242       /* l = current code's length, p = its index in huffcode[] & huffval[]. */ 
 243       /* Generate left-justified code followed by all possible bit sequences */ 
 244       lookbits 
= huffcode
[p
] << (HUFF_LOOKAHEAD
-l
); 
 245       for (ctr 
= 1 << (HUFF_LOOKAHEAD
-l
); ctr 
> 0; ctr
--) { 
 246         dtbl
->look_nbits
[lookbits
] = l
; 
 247         dtbl
->look_sym
[lookbits
] = htbl
->huffval
[p
]; 
 253   /* Validate symbols as being reasonable. 
 254    * For AC tables, we make no check, but accept all byte values 0..255. 
 255    * For DC tables, we require the symbols to be in range 0..15. 
 256    * (Tighter bounds could be applied depending on the data depth and mode, 
 257    * but this is sufficient to ensure safe decoding.) 
 260     for (i 
= 0; i 
< numsymbols
; i
++) { 
 261       int sym 
= htbl
->huffval
[i
]; 
 262       if (sym 
< 0 || sym 
> 15) 
 263         ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
); 
 270  * Out-of-line code for bit fetching (shared with jdphuff.c). 
 271  * See jdhuff.h for info about usage. 
 272  * Note: current values of get_buffer and bits_left are passed as parameters, 
 273  * but are returned in the corresponding fields of the state struct. 
 275  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width 
 276  * of get_buffer to be used.  (On machines with wider words, an even larger 
 277  * buffer could be used.)  However, on some machines 32-bit shifts are 
 278  * quite slow and take time proportional to the number of places shifted. 
 279  * (This is true with most PC compilers, for instance.)  In this case it may 
 280  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the 
 281  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. 
 285 #define MIN_GET_BITS  15        /* minimum allowable value */ 
 287 #define MIN_GET_BITS  (BIT_BUF_SIZE-7) 
 292 jpeg_fill_bit_buffer (bitread_working_state 
* state
, 
 293                       register bit_buf_type get_buffer
, register int bits_left
, 
 295 /* Load up the bit buffer to a depth of at least nbits */ 
 297   /* Copy heavily used state fields into locals (hopefully registers) */ 
 298   register const JOCTET 
* next_input_byte 
= state
->next_input_byte
; 
 299   register size_t bytes_in_buffer 
= state
->bytes_in_buffer
; 
 300   j_decompress_ptr cinfo 
= state
->cinfo
; 
 302   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ 
 303   /* (It is assumed that no request will be for more than that many bits.) */ 
 304   /* We fail to do so only if we hit a marker or are forced to suspend. */ 
 306   if (cinfo
->unread_marker 
== 0) {      /* cannot advance past a marker */ 
 307     while (bits_left 
< MIN_GET_BITS
) { 
 310       /* Attempt to read a byte */ 
 311       if (bytes_in_buffer 
== 0) { 
 312         if (! (*cinfo
->src
->fill_input_buffer
) (cinfo
)) 
 314         next_input_byte 
= cinfo
->src
->next_input_byte
; 
 315         bytes_in_buffer 
= cinfo
->src
->bytes_in_buffer
; 
 318       c 
= GETJOCTET(*next_input_byte
++); 
 320       /* If it's 0xFF, check and discard stuffed zero byte */ 
 322         /* Loop here to discard any padding FF's on terminating marker, 
 323          * so that we can save a valid unread_marker value.  NOTE: we will 
 324          * accept multiple FF's followed by a 0 as meaning a single FF data 
 325          * byte.  This data pattern is not valid according to the standard. 
 328           if (bytes_in_buffer 
== 0) { 
 329             if (! (*cinfo
->src
->fill_input_buffer
) (cinfo
)) 
 331             next_input_byte 
= cinfo
->src
->next_input_byte
; 
 332             bytes_in_buffer 
= cinfo
->src
->bytes_in_buffer
; 
 335           c 
= GETJOCTET(*next_input_byte
++); 
 339           /* Found FF/00, which represents an FF data byte */ 
 342           /* Oops, it's actually a marker indicating end of compressed data. 
 343            * Save the marker code for later use. 
 344            * Fine point: it might appear that we should save the marker into 
 345            * bitread working state, not straight into permanent state.  But 
 346            * once we have hit a marker, we cannot need to suspend within the 
 347            * current MCU, because we will read no more bytes from the data 
 348            * source.  So it is OK to update permanent state right away. 
 350           cinfo
->unread_marker 
= c
; 
 351           /* See if we need to insert some fake zero bits. */ 
 356       /* OK, load c into get_buffer */ 
 357       get_buffer 
= (get_buffer 
<< 8) | c
; 
 362     /* We get here if we've read the marker that terminates the compressed 
 363      * data segment.  There should be enough bits in the buffer register 
 364      * to satisfy the request; if so, no problem. 
 366     if (nbits 
> bits_left
) { 
 367       /* Uh-oh.  Report corrupted data to user and stuff zeroes into 
 368        * the data stream, so that we can produce some kind of image. 
 369        * We use a nonvolatile flag to ensure that only one warning message 
 370        * appears per data segment. 
 372       if (! cinfo
->entropy
->insufficient_data
) { 
 373         WARNMS(cinfo
, JWRN_HIT_MARKER
); 
 374         cinfo
->entropy
->insufficient_data 
= TRUE
; 
 376       /* Fill the buffer with zero bits */ 
 377       get_buffer 
<<= MIN_GET_BITS 
- bits_left
; 
 378       bits_left 
= MIN_GET_BITS
; 
 382   /* Unload the local registers */ 
 383   state
->next_input_byte 
= next_input_byte
; 
 384   state
->bytes_in_buffer 
= bytes_in_buffer
; 
 385   state
->get_buffer 
= get_buffer
; 
 386   state
->bits_left 
= bits_left
; 
 393  * Out-of-line code for Huffman code decoding. 
 394  * See jdhuff.h for info about usage. 
 398 jpeg_huff_decode (bitread_working_state 
* state
, 
 399                   register bit_buf_type get_buffer
, register int bits_left
, 
 400                   d_derived_tbl 
* htbl
, int min_bits
) 
 402   register int l 
= min_bits
; 
 403   register JPEG_INT32 code
; 
 405   /* HUFF_DECODE has determined that the code is at least min_bits */ 
 406   /* bits long, so fetch that many bits in one swoop. */ 
 408   CHECK_BIT_BUFFER(*state
, l
, return -1); 
 411   /* Collect the rest of the Huffman code one bit at a time. */ 
 412   /* This is per Figure F.16 in the JPEG spec. */ 
 414   while (code 
> htbl
->maxcode
[l
]) { 
 416     CHECK_BIT_BUFFER(*state
, 1, return -1); 
 421   /* Unload the local registers */ 
 422   state
->get_buffer 
= get_buffer
; 
 423   state
->bits_left 
= bits_left
; 
 425   /* With garbage input we may reach the sentinel value l = 17. */ 
 428     WARNMS(state
->cinfo
, JWRN_HUFF_BAD_CODE
); 
 429     return 0;                   /* fake a zero as the safest result */ 
 432   return htbl
->pub
->huffval
[ (int) (code 
+ htbl
->valoffset
[l
]) ]; 
 437  * Figure F.12: extend sign bit. 
 438  * On some machines, a shift and add will be faster than a table lookup. 
 443 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) 
 447 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) 
 449 static const int extend_test
[16] =   /* entry n is 2**(n-1) */ 
 450   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 
 451     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; 
 453 static const int extend_offset
[16] = /* entry n is (-1 << n) + 1 */ 
 454   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, 
 455     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, 
 456     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, 
 457     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; 
 459 #endif /* AVOID_TABLES */ 
 463  * Check for a restart marker & resynchronize decoder. 
 464  * Returns FALSE if must suspend. 
 468 process_restart (j_decompress_ptr cinfo
) 
 470   huff_entropy_ptr entropy 
= (huff_entropy_ptr
) cinfo
->entropy
; 
 473   /* Throw away any unused bits remaining in bit buffer; */ 
 474   /* include any full bytes in next_marker's count of discarded bytes */ 
 475   cinfo
->marker
->discarded_bytes 
+= entropy
->bitstate
.bits_left 
/ 8; 
 476   entropy
->bitstate
.bits_left 
= 0; 
 478   /* Advance past the RSTn marker */ 
 479   if (! (*cinfo
->marker
->read_restart_marker
) (cinfo
)) 
 482   /* Re-initialize DC predictions to 0 */ 
 483   for (ci 
= 0; ci 
< cinfo
->comps_in_scan
; ci
++) 
 484     entropy
->saved
.last_dc_val
[ci
] = 0; 
 486   /* Reset restart counter */ 
 487   entropy
->restarts_to_go 
= cinfo
->restart_interval
; 
 489   /* Reset out-of-data flag, unless read_restart_marker left us smack up 
 490    * against a marker.  In that case we will end up treating the next data 
 491    * segment as empty, and we can avoid producing bogus output pixels by 
 492    * leaving the flag set. 
 494   if (cinfo
->unread_marker 
== 0) 
 495     entropy
->pub
.insufficient_data 
= FALSE
; 
 502  * Decode and return one MCU's worth of Huffman-compressed coefficients. 
 503  * The coefficients are reordered from zigzag order into natural array order, 
 504  * but are not dequantized. 
 506  * The i'th block of the MCU is stored into the block pointed to by 
 507  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. 
 508  * (Wholesale zeroing is usually a little faster than retail...) 
 510  * Returns FALSE if data source requested suspension.  In that case no 
 511  * changes have been made to permanent state.  (Exception: some output 
 512  * coefficients may already have been assigned.  This is harmless for 
 513  * this module, since we'll just re-assign them on the next call.) 
 517 decode_mcu (j_decompress_ptr cinfo
, JBLOCKROW 
*MCU_data
) 
 519   huff_entropy_ptr entropy 
= (huff_entropy_ptr
) cinfo
->entropy
; 
 524   /* Process restart marker if needed; may have to suspend */ 
 525   if (cinfo
->restart_interval
) { 
 526     if (entropy
->restarts_to_go 
== 0) 
 527       if (! process_restart(cinfo
)) 
 531   /* If we've run out of data, just leave the MCU set to zeroes. 
 532    * This way, we return uniform gray for the remainder of the segment. 
 534   if (! entropy
->pub
.insufficient_data
) { 
 536     /* Load up working state */ 
 537     BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
); 
 538     ASSIGN_STATE(state
, entropy
->saved
); 
 540     /* Outer loop handles each block in the MCU */ 
 542     for (blkn 
= 0; blkn 
< cinfo
->blocks_in_MCU
; blkn
++) { 
 543       JBLOCKROW block 
= MCU_data
[blkn
]; 
 544       d_derived_tbl 
* dctbl 
= entropy
->dc_cur_tbls
[blkn
]; 
 545       d_derived_tbl 
* actbl 
= entropy
->ac_cur_tbls
[blkn
]; 
 546       register int s
, k
, r
; 
 548       /* Decode a single block's worth of coefficients */ 
 550       /* Section F.2.2.1: decode the DC coefficient difference */ 
 551       HUFF_DECODE(s
, br_state
, dctbl
, return FALSE
, label1
); 
 553         CHECK_BIT_BUFFER(br_state
, s
, return FALSE
); 
 555         s 
= HUFF_EXTEND(r
, s
); 
 558       if (entropy
->dc_needed
[blkn
]) { 
 559         /* Convert DC difference to actual value, update last_dc_val */ 
 560         int ci 
= cinfo
->MCU_membership
[blkn
]; 
 561         s 
+= state
.last_dc_val
[ci
]; 
 562         state
.last_dc_val
[ci
] = s
; 
 563         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ 
 564         (*block
)[0] = (JCOEF
) s
; 
 567       if (entropy
->ac_needed
[blkn
]) { 
 569         /* Section F.2.2.2: decode the AC coefficients */ 
 570         /* Since zeroes are skipped, output area must be cleared beforehand */ 
 571         for (k 
= 1; k 
< DCTSIZE2
; k
++) { 
 572           HUFF_DECODE(s
, br_state
, actbl
, return FALSE
, label2
); 
 579             CHECK_BIT_BUFFER(br_state
, s
, return FALSE
); 
 581             s 
= HUFF_EXTEND(r
, s
); 
 582             /* Output coefficient in natural (dezigzagged) order. 
 583              * Note: the extra entries in jpeg_natural_order[] will save us 
 584              * if k >= DCTSIZE2, which could happen if the data is corrupted. 
 586             (*block
)[jpeg_natural_order
[k
]] = (JCOEF
) s
; 
 596         /* Section F.2.2.2: decode the AC coefficients */ 
 597         /* In this path we just discard the values */ 
 598         for (k 
= 1; k 
< DCTSIZE2
; k
++) { 
 599           HUFF_DECODE(s
, br_state
, actbl
, return FALSE
, label3
); 
 606             CHECK_BIT_BUFFER(br_state
, s
, return FALSE
); 
 618     /* Completed MCU, so update state */ 
 619     BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
); 
 620     ASSIGN_STATE(entropy
->saved
, state
); 
 623   /* Account for restart interval (no-op if not using restarts) */ 
 624   entropy
->restarts_to_go
--; 
 631  * Module initialization routine for Huffman entropy decoding. 
 635 jinit_huff_decoder (j_decompress_ptr cinfo
) 
 637   huff_entropy_ptr entropy
; 
 640   entropy 
= (huff_entropy_ptr
) 
 641     (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 642                                 SIZEOF(huff_entropy_decoder
)); 
 643   cinfo
->entropy 
= (struct jpeg_entropy_decoder 
*) entropy
; 
 644   entropy
->pub
.start_pass 
= start_pass_huff_decoder
; 
 645   entropy
->pub
.decode_mcu 
= decode_mcu
; 
 647   /* Mark tables unallocated */ 
 648   for (i 
= 0; i 
< NUM_HUFF_TBLS
; i
++) { 
 649     entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;