]> git.saurik.com Git - wxWidgets.git/blob - src/common/matrix.cpp
Stripped out miscellaneous Motif/Xt-specific code
[wxWidgets.git] / src / common / matrix.cpp
1 // Name: matrix.cpp
2 // Purpose: wxTransformMatrix class
3 // Author: Chris Breeze, Julian Smart
4 // Modified by: Klaas Holwerda
5 // Created: 01/02/97
6 // RCS-ID: $Id$
7 // Copyright: (c) Julian Smart and Markus Holzem
8 // Licence: wxWindows licence
9 /////////////////////////////////////////////////////////////////////////////
10
11 #ifdef __GNUG__
12 #pragma implementation "matrix.h"
13 #endif
14
15 // Note: this is intended to be used in wxDC at some point to replace
16 // the current system of scaling/translation. It is not yet used.
17
18 // For compilers that support precompilation, includes "wx.h".
19 #include "wx/wxprec.h"
20
21 #ifdef __BORLANDC__
22 #pragma hdrstop
23 #endif
24
25 #ifndef WX_PRECOMP
26 #include "wx/defs.h"
27 #endif
28
29 #include "wx/matrix.h"
30 #include <math.h>
31
32 static const double pi = 3.1415926535;
33
34 wxTransformMatrix::wxTransformMatrix(void)
35 {
36 m_isIdentity = FALSE;
37
38 Identity();
39 }
40
41 wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat)
42 {
43 (*this) = mat;
44 }
45
46 double wxTransformMatrix::GetValue(int col, int row) const
47 {
48 if (row < 0 || row > 2 || col < 0 || col > 2)
49 return 0.0;
50
51 return m_matrix[col][row];
52 }
53
54 void wxTransformMatrix::SetValue(int col, int row, double value)
55 {
56 if (row < 0 || row > 2 || col < 0 || col > 2)
57 return;
58
59 m_matrix[col][row] = value;
60 m_isIdentity = IsIdentity1();
61 }
62
63 void wxTransformMatrix::operator = (const wxTransformMatrix& mat)
64 {
65 int i, j;
66 for (i = 0; i < 3; i++)
67 {
68 for (j = 0; j < 3; j++)
69 {
70 m_matrix[i][j] = mat.m_matrix[i][j];
71 }
72 }
73 m_isIdentity = mat.m_isIdentity;
74 }
75
76 bool wxTransformMatrix::operator == (const wxTransformMatrix& mat)
77 {
78 if (m_isIdentity==TRUE && mat.m_isIdentity==TRUE)
79 return TRUE;
80
81 int i, j;
82 for (i = 0; i < 3; i++)
83 {
84 for (j = 0; j < 3; j++)
85 {
86 if (m_matrix[i][j] != mat.m_matrix[i][j])
87 return FALSE;
88 }
89 }
90 return TRUE;
91 }
92
93 bool wxTransformMatrix::operator != (const wxTransformMatrix& mat)
94 {
95 return (! ((*this) == mat));
96 }
97
98 double& wxTransformMatrix::operator()(int col, int row)
99 {
100 if (row < 0 || row > 2 || col < 0 || col > 2)
101 return m_matrix[0][0];
102
103 return m_matrix[col][row];
104 }
105
106 double wxTransformMatrix::operator()(int col, int row) const
107 {
108 if (row < 0 || row > 2 || col < 0 || col > 2)
109 return 0.0;
110
111 return m_matrix[col][row];
112 }
113
114 // Invert matrix
115 bool wxTransformMatrix::Invert(void)
116 {
117 double inverseMatrix[3][3];
118
119 // calculate the adjoint
120 inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]);
121 inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]);
122 inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]);
123
124 inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]);
125 inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]);
126 inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]);
127
128 inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]);
129 inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]);
130 inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]);
131
132 // now divide by the determinant
133 double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0];
134 if (det != 0.0)
135 {
136 inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det;
137 inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det;
138 inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det;
139
140 int i, j;
141 for (i = 0; i < 3; i++)
142 {
143 for (j = 0; j < 3; j++)
144 {
145 m_matrix[i][j] = inverseMatrix[i][j];
146 }
147 }
148 m_isIdentity = IsIdentity1();
149 return TRUE;
150 }
151 else
152 {
153 return FALSE;
154 }
155 }
156
157 // Make into identity matrix
158 bool wxTransformMatrix::Identity(void)
159 {
160 m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0;
161 m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0;
162 m_isIdentity = TRUE;
163
164 return TRUE;
165 }
166
167 // Scale by scale (isotropic scaling i.e. the same in x and y):
168 // | scale 0 0 |
169 // matrix' = | 0 scale 0 | x matrix
170 // | 0 0 scale |
171 //
172 bool wxTransformMatrix::Scale(double scale)
173 {
174 int i, j;
175 for (i = 0; i < 3; i++)
176 {
177 for (j = 0; j < 3; j++)
178 {
179 m_matrix[i][j] *= scale;
180 }
181 }
182 m_isIdentity = IsIdentity1();
183
184 return TRUE;
185 }
186
187
188 // scale a matrix in 2D
189 //
190 // xs 0 xc(1-xs)
191 // 0 ys yc(1-ys)
192 // 0 0 1
193 //
194 wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc)
195 {
196 double r00,r10,r20,r01,r11,r21;
197
198 if (m_isIdentity)
199 {
200 double tx =xc*(1-xs);
201 double ty =yc*(1-ys);
202 r00 = xs;
203 r10 = 0;
204 r20 = tx;
205 r01 = 0;
206 r11 = ys;
207 r21 = ty;
208 }
209 else if (xc!=0 || yc!=0)
210 {
211 double tx =xc*(1-xs);
212 double ty =yc*(1-ys);
213 r00 = xs * m_matrix[0][0];
214 r10 = xs * m_matrix[1][0];
215 r20 = xs * m_matrix[2][0] + tx;
216 r01 = ys * m_matrix[0][1];
217 r11 = ys * m_matrix[1][1];
218 r21 = ys * m_matrix[2][1] + ty;
219 }
220 else
221 {
222 r00 = xs * m_matrix[0][0];
223 r10 = xs * m_matrix[1][0];
224 r20 = xs * m_matrix[2][0];
225 r01 = ys * m_matrix[0][1];
226 r11 = ys * m_matrix[1][1];
227 r21 = ys * m_matrix[2][1];
228 }
229
230 m_matrix[0][0] = r00;
231 m_matrix[1][0] = r10;
232 m_matrix[2][0] = r20;
233 m_matrix[0][1] = r01;
234 m_matrix[1][1] = r11;
235 m_matrix[2][1] = r21;
236
237 /* or like this
238 // first translate to origin O
239 (*this).Translate(-x_cen, -y_cen);
240
241 // now do the scaling
242 wxTransformMatrix scale;
243 scale.m_matrix[0][0] = x_fac;
244 scale.m_matrix[1][1] = y_fac;
245 scale.m_isIdentity = IsIdentity1();
246
247 *this = scale * (*this);
248
249 // translate back from origin to x_cen, y_cen
250 (*this).Translate(x_cen, y_cen);
251 */
252
253 m_isIdentity = IsIdentity1();
254
255 return *this;
256 }
257
258
259 // mirror a matrix in x, y
260 //
261 // -1 0 0 Y-mirror
262 // 0 -1 0 X-mirror
263 // 0 0 -1 Z-mirror
264 wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y)
265 {
266 wxTransformMatrix temp;
267 if (x)
268 {
269 temp.m_matrix[1][1] = -1;
270 temp.m_isIdentity=FALSE;
271 }
272 if (y)
273 {
274 temp.m_matrix[0][0] = -1;
275 temp.m_isIdentity=FALSE;
276 }
277
278 *this = temp * (*this);
279 m_isIdentity = IsIdentity1();
280 return *this;
281 }
282
283 // Translate by dx, dy:
284 // | 1 0 dx |
285 // matrix' = | 0 1 dy | x matrix
286 // | 0 0 1 |
287 //
288 bool wxTransformMatrix::Translate(double dx, double dy)
289 {
290 int i;
291 for (i = 0; i < 3; i++)
292 m_matrix[i][0] += dx * m_matrix[i][2];
293 for (i = 0; i < 3; i++)
294 m_matrix[i][1] += dy * m_matrix[i][2];
295
296 m_isIdentity = IsIdentity1();
297
298 return TRUE;
299 }
300
301 // Rotate clockwise by the given number of degrees:
302 // | cos sin 0 |
303 // matrix' = | -sin cos 0 | x matrix
304 // | 0 0 1 |
305 bool wxTransformMatrix::Rotate(double degrees)
306 {
307 Rotate(-degrees,0,0);
308 return TRUE;
309 }
310
311 // counter clockwise rotate around a point
312 //
313 // cos(r) -sin(r) x(1-cos(r))+y(sin(r)
314 // sin(r) cos(r) y(1-cos(r))-x(sin(r)
315 // 0 0 1
316 wxTransformMatrix& wxTransformMatrix::Rotate(const double &degrees, const double &x, const double &y)
317 {
318 double angle = degrees * pi / 180.0;
319 double c = cos(angle);
320 double s = sin(angle);
321 double r00,r10,r20,r01,r11,r21;
322
323 if (m_isIdentity)
324 {
325 double tx = x*(1-c)+y*s;
326 double ty = y*(1-c)-x*s;
327 r00 = c ;
328 r10 = -s;
329 r20 = tx;
330 r01 = s;
331 r11 = c;
332 r21 = ty;
333 }
334 else if (x!=0 || y!=0)
335 {
336 double tx = x*(1-c)+y*s;
337 double ty = y*(1-c)-x*s;
338 r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2];
339 r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2];
340 r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2];
341 r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2];
342 r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2];
343 r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2];
344 }
345 else
346 {
347 r00 = c * m_matrix[0][0] - s * m_matrix[0][1];
348 r10 = c * m_matrix[1][0] - s * m_matrix[1][1];
349 r20 = c * m_matrix[2][0] - s * m_matrix[2][1];
350 r01 = c * m_matrix[0][1] + s * m_matrix[0][0];
351 r11 = c * m_matrix[1][1] + s * m_matrix[1][0];
352 r21 = c * m_matrix[2][1] + s * m_matrix[2][0];
353 }
354
355 m_matrix[0][0] = r00;
356 m_matrix[1][0] = r10;
357 m_matrix[2][0] = r20;
358 m_matrix[0][1] = r01;
359 m_matrix[1][1] = r11;
360 m_matrix[2][1] = r21;
361
362 /* or like this
363 wxTransformMatrix rotate;
364 rotate.m_matrix[2][0] = tx;
365 rotate.m_matrix[2][1] = ty;
366
367 rotate.m_matrix[0][0] = c;
368 rotate.m_matrix[0][1] = s;
369
370 rotate.m_matrix[1][0] = -s;
371 rotate.m_matrix[1][1] = c;
372
373 rotate.m_isIdentity=false;
374 *this = rotate * (*this);
375 */
376 m_isIdentity = IsIdentity1();
377
378 return *this;
379 }
380
381 // Transform a point from logical to device coordinates
382 bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const
383 {
384 if (IsIdentity())
385 {
386 tx = x; ty = y; return TRUE;
387 }
388
389 tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0];
390 ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1];
391
392 return TRUE;
393 }
394
395 // Transform a point from device to logical coordinates.
396
397 // Example of use:
398 // wxTransformMatrix mat = dc.GetTransformation();
399 // mat.Invert();
400 // mat.InverseTransformPoint(x, y, x1, y1);
401 // OR (shorthand:)
402 // dc.LogicalToDevice(x, y, x1, y1);
403 // The latter is slightly less efficient if we're doing several
404 // conversions, since the matrix is inverted several times.
405 bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const
406 {
407 if (IsIdentity())
408 {
409 tx = x; ty = y; return TRUE;
410 }
411
412 double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2];
413 if (z == 0.0)
414 {
415 // z = 0.0000001;
416 return FALSE;
417 }
418 tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
419 ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
420 return TRUE;
421 }
422
423 wxTransformMatrix& wxTransformMatrix::operator*=(const double& t)
424 {
425 for (int i = 0; i < 3; i++)
426 for (int j = 0; j < 3; j++)
427 m_matrix[i][j]*= t;
428 m_isIdentity = IsIdentity1();
429 return *this;
430 }
431
432 wxTransformMatrix& wxTransformMatrix::operator/=(const double& t)
433 {
434 for (int i = 0; i < 3; i++)
435 for (int j = 0; j < 3; j++)
436 m_matrix[i][j]/= t;
437 m_isIdentity = IsIdentity1();
438 return *this;
439 }
440
441 wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat)
442 {
443 for (int i = 0; i < 3; i++)
444 for (int j = 0; j < 3; j++)
445 m_matrix[i][j] += mat.m_matrix[i][j];
446 m_isIdentity = IsIdentity1();
447 return *this;
448 }
449
450 wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat)
451 {
452 for (int i = 0; i < 3; i++)
453 for (int j = 0; j < 3; j++)
454 m_matrix[i][j] -= mat.m_matrix[i][j];
455 m_isIdentity = IsIdentity1();
456 return *this;
457 }
458
459 wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat)
460 {
461
462 if (mat.m_isIdentity)
463 return *this;
464 if (m_isIdentity)
465 {
466 *this = mat;
467 return *this;
468 }
469 else
470 {
471 wxTransformMatrix result;
472 for (int i = 0; i < 3; i++)
473 {
474 for (int j = 0; j < 3; j++)
475 {
476 double sum = 0;
477 for (int k = 0; k < 3; k++)
478 sum += m_matrix[k][i] * mat.m_matrix[j][k];
479 result.m_matrix[j][i] = sum;
480 }
481 }
482 *this = result;
483 }
484
485 m_isIdentity = IsIdentity1();
486 return *this;
487 }
488
489
490 // constant operators
491 wxTransformMatrix wxTransformMatrix::operator*(const double& t) const
492 {
493 wxTransformMatrix result = *this;
494 result *= t;
495 result.m_isIdentity = result.IsIdentity1();
496 return result;
497 }
498
499 wxTransformMatrix wxTransformMatrix::operator/(const double& t) const
500 {
501 wxTransformMatrix result = *this;
502 // wxASSERT(t!=0);
503 result /= t;
504 result.m_isIdentity = result.IsIdentity1();
505 return result;
506 }
507
508 wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const
509 {
510 wxTransformMatrix result = *this;
511 result += m;
512 result.m_isIdentity = result.IsIdentity1();
513 return result;
514 }
515
516 wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const
517 {
518 wxTransformMatrix result = *this;
519 result -= m;
520 result.m_isIdentity = result.IsIdentity1();
521 return result;
522 }
523
524
525 wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const
526 {
527 wxTransformMatrix result = *this;
528 result *= m;
529 result.m_isIdentity = result.IsIdentity1();
530 return result;
531 }
532
533
534 wxTransformMatrix wxTransformMatrix::operator-() const
535 {
536 wxTransformMatrix result = *this;
537 for (int i = 0; i < 3; i++)
538 for (int j = 0; j < 3; j++)
539 result.m_matrix[i][j] = -(this->m_matrix[i][j]);
540 result.m_isIdentity = result.IsIdentity1();
541 return result;
542 }
543
544 static double CheckInt(double getal)
545 {
546 // check if the number is very close to an integer
547 if ( (ceil(getal) - getal) < 0.0001)
548 return ceil(getal);
549
550 else if ( (getal - floor(getal)) < 0.0001)
551 return floor(getal);
552
553 return getal;
554
555 }
556
557 double wxTransformMatrix::Get_scaleX()
558 {
559 double scale_factor;
560 double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
561 if (rot_angle != 90 && rot_angle != -90)
562 scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi);
563 else
564 scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
565
566 scale_factor = CheckInt(scale_factor);
567 if (scale_factor < 0)
568 scale_factor = -scale_factor;
569
570 return scale_factor;
571 }
572
573 double wxTransformMatrix::Get_scaleY()
574 {
575 double scale_factor;
576 double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi);
577 if (rot_angle != 90 && rot_angle != -90)
578 scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi);
579 else
580 scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden !
581
582 scale_factor = CheckInt(scale_factor);
583 if (scale_factor < 0)
584
585 scale_factor = -scale_factor;
586
587 return scale_factor;
588
589 }
590
591 double wxTransformMatrix::GetRotation()
592 {
593 double temp1 = GetValue(0,0); // for angle calculation
594 double temp2 = GetValue(0,1); //
595
596 // Rotation
597 double rot_angle = atan2(temp2,temp1)*180/pi;
598
599 rot_angle = CheckInt(rot_angle);
600 return rot_angle;
601 }
602
603 void wxTransformMatrix::SetRotation(double rotation)
604 {
605 double x=GetValue(2,0);
606 double y=GetValue(2,1);
607 Rotate(-GetRotation(), x, y);
608 Rotate(rotation, x, y);
609 }
610