]> git.saurik.com Git - wxWidgets.git/blob - include/wx/matrix.h
Move wxScopedPtr::reset() implementation to wxDEFINE_SCOPED_PTR.
[wxWidgets.git] / include / wx / matrix.h
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: wx/matrix.h
3 // Purpose: wxTransformMatrix class. NOT YET USED
4 // Author: Chris Breeze, Julian Smart
5 // Modified by: Klaas Holwerda
6 // Created: 01/02/97
7 // RCS-ID: $Id$
8 // Copyright: (c) Julian Smart, Chris Breeze
9 // Licence: wxWindows licence
10 /////////////////////////////////////////////////////////////////////////////
11
12 #ifndef _WX_MATRIXH__
13 #define _WX_MATRIXH__
14
15 //! headerfiles="matrix.h wx/object.h"
16 #include "wx/object.h"
17 #include "wx/math.h"
18
19 //! codefiles="matrix.cpp"
20
21 // A simple 3x3 matrix. This may be replaced by a more general matrix
22 // class some day.
23 //
24 // Note: this is intended to be used in wxDC at some point to replace
25 // the current system of scaling/translation. It is not yet used.
26
27 //:definition
28 // A 3x3 matrix to do 2D transformations.
29 // It can be used to map data to window coordinates,
30 // and also for manipulating your own data.
31 // For example drawing a picture (composed of several primitives)
32 // at a certain coordinate and angle within another parent picture.
33 // At all times m_isIdentity is set if the matrix itself is an Identity matrix.
34 // It is used where possible to optimize calculations.
35 class WXDLLIMPEXP_CORE wxTransformMatrix: public wxObject
36 {
37 public:
38 wxTransformMatrix(void);
39 wxTransformMatrix(const wxTransformMatrix& mat);
40
41 //get the value in the matrix at col,row
42 //rows are horizontal (second index of m_matrix member)
43 //columns are vertical (first index of m_matrix member)
44 double GetValue(int col, int row) const;
45
46 //set the value in the matrix at col,row
47 //rows are horizontal (second index of m_matrix member)
48 //columns are vertical (first index of m_matrix member)
49 void SetValue(int col, int row, double value);
50
51 void operator = (const wxTransformMatrix& mat);
52 bool operator == (const wxTransformMatrix& mat) const;
53 bool operator != (const wxTransformMatrix& mat) const;
54
55 //multiply every element by t
56 wxTransformMatrix& operator*=(const double& t);
57 //divide every element by t
58 wxTransformMatrix& operator/=(const double& t);
59 //add matrix m to this t
60 wxTransformMatrix& operator+=(const wxTransformMatrix& m);
61 //subtract matrix m from this
62 wxTransformMatrix& operator-=(const wxTransformMatrix& m);
63 //multiply matrix m with this
64 wxTransformMatrix& operator*=(const wxTransformMatrix& m);
65
66 // constant operators
67
68 //multiply every element by t and return result
69 wxTransformMatrix operator*(const double& t) const;
70 //divide this matrix by t and return result
71 wxTransformMatrix operator/(const double& t) const;
72 //add matrix m to this and return result
73 wxTransformMatrix operator+(const wxTransformMatrix& m) const;
74 //subtract matrix m from this and return result
75 wxTransformMatrix operator-(const wxTransformMatrix& m) const;
76 //multiply this by matrix m and return result
77 wxTransformMatrix operator*(const wxTransformMatrix& m) const;
78 wxTransformMatrix operator-() const;
79
80 //rows are horizontal (second index of m_matrix member)
81 //columns are vertical (first index of m_matrix member)
82 double& operator()(int col, int row);
83
84 //rows are horizontal (second index of m_matrix member)
85 //columns are vertical (first index of m_matrix member)
86 double operator()(int col, int row) const;
87
88 // Invert matrix
89 bool Invert(void);
90
91 // Make into identity matrix
92 bool Identity(void);
93
94 // Is the matrix the identity matrix?
95 // Only returns a flag, which is set whenever an operation
96 // is done.
97 inline bool IsIdentity(void) const { return m_isIdentity; }
98
99 // This does an actual check.
100 inline bool IsIdentity1(void) const ;
101
102 //Scale by scale (isotropic scaling i.e. the same in x and y):
103 //!ex:
104 //!code: | scale 0 0 |
105 //!code: matrix' = | 0 scale 0 | x matrix
106 //!code: | 0 0 scale |
107 bool Scale(double scale);
108
109 //Scale with center point and x/y scale
110 //
111 //!ex:
112 //!code: | xs 0 xc(1-xs) |
113 //!code: matrix' = | 0 ys yc(1-ys) | x matrix
114 //!code: | 0 0 1 |
115 wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
116
117 // mirror a matrix in x, y
118 //!ex:
119 //!code: | -1 0 0 |
120 //!code: matrix' = | 0 -1 0 | x matrix
121 //!code: | 0 0 1 |
122 wxTransformMatrix& Mirror(bool x=true, bool y=false);
123 // Translate by dx, dy:
124 //!ex:
125 //!code: | 1 0 dx |
126 //!code: matrix' = | 0 1 dy | x matrix
127 //!code: | 0 0 1 |
128 bool Translate(double x, double y);
129
130 // Rotate clockwise by the given number of degrees:
131 //!ex:
132 //!code: | cos sin 0 |
133 //!code: matrix' = | -sin cos 0 | x matrix
134 //!code: | 0 0 1 |
135 bool Rotate(double angle);
136
137 //Rotate counter clockwise with point of rotation
138 //
139 //!ex:
140 //!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
141 //!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
142 //!code: | 0 0 1 |
143 wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
144
145 // Transform X value from logical to device
146 inline double TransformX(double x) const;
147
148 // Transform Y value from logical to device
149 inline double TransformY(double y) const;
150
151 // Transform a point from logical to device coordinates
152 bool TransformPoint(double x, double y, double& tx, double& ty) const;
153
154 // Transform a point from device to logical coordinates.
155 // Example of use:
156 // wxTransformMatrix mat = dc.GetTransformation();
157 // mat.Invert();
158 // mat.InverseTransformPoint(x, y, x1, y1);
159 // OR (shorthand:)
160 // dc.LogicalToDevice(x, y, x1, y1);
161 // The latter is slightly less efficient if we're doing several
162 // conversions, since the matrix is inverted several times.
163 // N.B. 'this' matrix is the inverse at this point
164 bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
165
166 double Get_scaleX();
167 double Get_scaleY();
168 double GetRotation();
169 void SetRotation(double rotation);
170
171
172 public:
173 double m_matrix[3][3];
174 bool m_isIdentity;
175 };
176
177
178 /*
179 Chris Breeze reported, that
180 some functions of wxTransformMatrix cannot work because it is not
181 known if he matrix has been inverted. Be careful when using it.
182 */
183
184 // Transform X value from logical to device
185 // warning: this function can only be used for this purpose
186 // because no rotation is involved when mapping logical to device coordinates
187 // mirror and scaling for x and y will be part of the matrix
188 // if you have a matrix that is rotated, eg a shape containing a matrix to place
189 // it in the logical coordinate system, use TransformPoint
190 inline double wxTransformMatrix::TransformX(double x) const
191 {
192 //normally like this, but since no rotation is involved (only mirror and scale)
193 //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
194 //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
195 return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
196 }
197
198 // Transform Y value from logical to device
199 // warning: this function can only be used for this purpose
200 // because no rotation is involved when mapping logical to device coordinates
201 // mirror and scaling for x and y will be part of the matrix
202 // if you have a matrix that is rotated, eg a shape containing a matrix to place
203 // it in the logical coordinate system, use TransformPoint
204 inline double wxTransformMatrix::TransformY(double y) const
205 {
206 //normally like this, but since no rotation is involved (only mirror and scale)
207 //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
208 //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
209 return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
210 }
211
212
213 // Is the matrix the identity matrix?
214 // Each operation checks whether the result is still the identity matrix and sets a flag.
215 inline bool wxTransformMatrix::IsIdentity1(void) const
216 {
217 return
218 ( wxIsSameDouble(m_matrix[0][0], 1.0) &&
219 wxIsSameDouble(m_matrix[1][1], 1.0) &&
220 wxIsSameDouble(m_matrix[2][2], 1.0) &&
221 wxIsSameDouble(m_matrix[1][0], 0.0) &&
222 wxIsSameDouble(m_matrix[2][0], 0.0) &&
223 wxIsSameDouble(m_matrix[0][1], 0.0) &&
224 wxIsSameDouble(m_matrix[2][1], 0.0) &&
225 wxIsSameDouble(m_matrix[0][2], 0.0) &&
226 wxIsSameDouble(m_matrix[1][2], 0.0) );
227 }
228
229 // Calculates the determinant of a 2 x 2 matrix
230 inline double wxCalculateDet(double a11, double a21, double a12, double a22)
231 {
232 return a11 * a22 - a12 * a21;
233 }
234
235 #endif // _WX_MATRIXH__