1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2005 Jean-loup Gailly.
3 * For conditions of distribution and use, see copyright notice in zlib.h
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
53 const char deflate_copyright
[] =
54 " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
56 If you use the zlib library in a product, an acknowledgment is welcome
57 in the documentation of your product. If for some reason you cannot
58 include such an acknowledgment, I would appreciate that you keep this
59 copyright string in the executable of your product.
62 /* ===========================================================================
63 * Function prototypes.
66 need_more
, /* block not completed, need more input or more output */
67 block_done
, /* block flush performed */
68 finish_started
, /* finish started, need only more output at next deflate */
69 finish_done
/* finish done, accept no more input or output */
72 typedef block_state (*compress_func
) OF((deflate_state
*s
, int flush
));
73 /* Compression function. Returns the block state after the call. */
75 local
void fill_window
OF((deflate_state
*s
));
76 local block_state deflate_stored
OF((deflate_state
*s
, int flush
));
77 local block_state deflate_fast
OF((deflate_state
*s
, int flush
));
79 local block_state deflate_slow
OF((deflate_state
*s
, int flush
));
81 local
void lm_init
OF((deflate_state
*s
));
82 local
void putShortMSB
OF((deflate_state
*s
, uInt b
));
83 local
void flush_pending
OF((z_streamp strm
));
84 local
int read_buf
OF((z_streamp strm
, Bytef
*buf
, unsigned size
));
87 void match_init
OF((void)); /* asm code initialization */
88 uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
90 local uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
93 local uInt longest_match_fast
OF((deflate_state
*s
, IPos cur_match
));
96 local
void check_match
OF((deflate_state
*s
, IPos start
, IPos match
,
100 /* ===========================================================================
105 /* Tail of hash chains */
108 # define TOO_FAR 4096
110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
112 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
113 /* Minimum amount of lookahead, except at the end of the input file.
114 * See deflate.c for comments about the MIN_MATCH+1.
117 /* Values for max_lazy_match, good_match and max_chain_length, depending on
118 * the desired pack level (0..9). The values given below have been tuned to
119 * exclude worst case performance for pathological files. Better values may be
120 * found for specific files.
122 typedef struct config_s
{
123 ush good_length
; /* reduce lazy search above this match length */
124 ush max_lazy
; /* do not perform lazy search above this match length */
125 ush nice_length
; /* quit search above this match length */
131 local
const config configuration_table
[2] = {
132 /* good lazy nice chain */
133 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
134 /* 1 */ {4, 4, 8, 4, deflate_fast
}}; /* max speed, no lazy matches */
136 local
const config configuration_table
[10] = {
137 /* good lazy nice chain */
138 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
139 /* 1 */ {4, 4, 8, 4, deflate_fast
}, /* max speed, no lazy matches */
140 /* 2 */ {4, 5, 16, 8, deflate_fast
},
141 /* 3 */ {4, 6, 32, 32, deflate_fast
},
143 /* 4 */ {4, 4, 16, 16, deflate_slow
}, /* lazy matches */
144 /* 5 */ {8, 16, 32, 32, deflate_slow
},
145 /* 6 */ {8, 16, 128, 128, deflate_slow
},
146 /* 7 */ {8, 32, 128, 256, deflate_slow
},
147 /* 8 */ {32, 128, 258, 1024, deflate_slow
},
148 /* 9 */ {32, 258, 258, 4096, deflate_slow
}}; /* max compression */
151 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
152 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
157 /* result of memcmp for equal strings */
159 #ifndef NO_DUMMY_DECL
160 struct static_tree_desc_s
{int dummy
;}; /* for buggy compilers */
163 /* ===========================================================================
164 * Update a hash value with the given input byte
165 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
166 * input characters, so that a running hash key can be computed from the
167 * previous key instead of complete recalculation each time.
169 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
172 /* ===========================================================================
173 * Insert string str in the dictionary and set match_head to the previous head
174 * of the hash chain (the most recent string with same hash key). Return
175 * the previous length of the hash chain.
176 * If this file is compiled with -DFASTEST, the compression level is forced
177 * to 1, and no hash chains are maintained.
178 * IN assertion: all calls to to INSERT_STRING are made with consecutive
179 * input characters and the first MIN_MATCH bytes of str are valid
180 * (except for the last MIN_MATCH-1 bytes of the input file).
183 #define INSERT_STRING(s, str, match_head) \
184 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
185 match_head = s->head[s->ins_h], \
186 s->head[s->ins_h] = (Pos)(str))
188 #define INSERT_STRING(s, str, match_head) \
189 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
190 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
191 s->head[s->ins_h] = (Pos)(str))
194 /* ===========================================================================
195 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
196 * prev[] will be initialized on the fly.
198 #define CLEAR_HASH(s) \
199 s->head[s->hash_size-1] = NIL; \
200 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
202 /* ========================================================================= */
203 int ZEXPORT
deflateInit_(strm
, level
, version
, stream_size
)
209 return deflateInit2_(strm
, level
, Z_DEFLATED
, MAX_WBITS
, DEF_MEM_LEVEL
,
210 Z_DEFAULT_STRATEGY
, version
, stream_size
);
211 /* To do: ignore strm->next_in if we use it as window */
214 /* ========================================================================= */
215 int ZEXPORT
deflateInit2_(strm
, level
, method
, windowBits
, memLevel
, strategy
,
216 version
, stream_size
)
228 static const char my_version
[] = ZLIB_VERSION
;
231 /* We overlay pending_buf and d_buf+l_buf. This works since the average
232 * output size for (length,distance) codes is <= 24 bits.
235 if (version
== Z_NULL
|| version
[0] != my_version
[0] ||
236 stream_size
!= sizeof(z_stream
)) {
237 return Z_VERSION_ERROR
;
239 if (strm
== Z_NULL
) return Z_STREAM_ERROR
;
242 if (strm
->zalloc
== (alloc_func
)0) {
243 strm
->zalloc
= zcalloc
;
244 strm
->opaque
= (voidpf
)0;
246 if (strm
->zfree
== (free_func
)0) strm
->zfree
= zcfree
;
249 if (level
!= 0) level
= 1;
251 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
254 if (windowBits
< 0) { /* suppress zlib wrapper */
256 windowBits
= -windowBits
;
259 else if (windowBits
> 15) {
260 wrap
= 2; /* write gzip wrapper instead */
264 if (memLevel
< 1 || memLevel
> MAX_MEM_LEVEL
|| method
!= Z_DEFLATED
||
265 windowBits
< 8 || windowBits
> 15 || level
< 0 || level
> 9 ||
266 strategy
< 0 || strategy
> Z_FIXED
) {
267 return Z_STREAM_ERROR
;
269 if (windowBits
== 8) windowBits
= 9; /* until 256-byte window bug fixed */
270 s
= (deflate_state
*) ZALLOC(strm
, 1, sizeof(deflate_state
));
271 if (s
== Z_NULL
) return Z_MEM_ERROR
;
272 strm
->state
= (struct internal_state FAR
*)s
;
277 s
->w_bits
= windowBits
;
278 s
->w_size
= 1 << s
->w_bits
;
279 s
->w_mask
= s
->w_size
- 1;
281 s
->hash_bits
= memLevel
+ 7;
282 s
->hash_size
= 1 << s
->hash_bits
;
283 s
->hash_mask
= s
->hash_size
- 1;
284 s
->hash_shift
= ((s
->hash_bits
+MIN_MATCH
-1)/MIN_MATCH
);
286 s
->window
= (Bytef
*) ZALLOC(strm
, s
->w_size
, 2*sizeof(Byte
));
287 s
->prev
= (Posf
*) ZALLOC(strm
, s
->w_size
, sizeof(Pos
));
288 s
->head
= (Posf
*) ZALLOC(strm
, s
->hash_size
, sizeof(Pos
));
290 s
->lit_bufsize
= 1 << (memLevel
+ 6); /* 16K elements by default */
292 overlay
= (ushf
*) ZALLOC(strm
, s
->lit_bufsize
, sizeof(ush
)+2);
293 s
->pending_buf
= (uchf
*) overlay
;
294 s
->pending_buf_size
= (ulg
)s
->lit_bufsize
* (sizeof(ush
)+2L);
296 if (s
->window
== Z_NULL
|| s
->prev
== Z_NULL
|| s
->head
== Z_NULL
||
297 s
->pending_buf
== Z_NULL
) {
298 s
->status
= FINISH_STATE
;
299 strm
->msg
= (char*)ERR_MSG(Z_MEM_ERROR
);
303 s
->d_buf
= overlay
+ s
->lit_bufsize
/sizeof(ush
);
304 s
->l_buf
= s
->pending_buf
+ (1+sizeof(ush
))*s
->lit_bufsize
;
307 s
->strategy
= strategy
;
308 s
->method
= (Byte
)method
;
310 return deflateReset(strm
);
313 /* ========================================================================= */
314 int ZEXPORT
deflateSetDictionary (strm
, dictionary
, dictLength
)
316 const Bytef
*dictionary
;
320 uInt length
= dictLength
;
324 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
|| dictionary
== Z_NULL
||
325 strm
->state
->wrap
== 2 ||
326 (strm
->state
->wrap
== 1 && strm
->state
->status
!= INIT_STATE
))
327 return Z_STREAM_ERROR
;
331 strm
->adler
= adler32(strm
->adler
, dictionary
, dictLength
);
333 if (length
< MIN_MATCH
) return Z_OK
;
334 if (length
> MAX_DIST(s
)) {
335 length
= MAX_DIST(s
);
336 dictionary
+= dictLength
- length
; /* use the tail of the dictionary */
338 zmemcpy(s
->window
, dictionary
, length
);
339 s
->strstart
= length
;
340 s
->block_start
= (long)length
;
342 /* Insert all strings in the hash table (except for the last two bytes).
343 * s->lookahead stays null, so s->ins_h will be recomputed at the next
344 * call of fill_window.
346 s
->ins_h
= s
->window
[0];
347 UPDATE_HASH(s
, s
->ins_h
, s
->window
[1]);
348 for (n
= 0; n
<= length
- MIN_MATCH
; n
++) {
349 INSERT_STRING(s
, n
, hash_head
);
351 if (hash_head
) hash_head
= 0; /* to make compiler happy */
355 /* ========================================================================= */
356 int ZEXPORT
deflateReset (strm
)
361 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
362 strm
->zalloc
== (alloc_func
)0 || strm
->zfree
== (free_func
)0) {
363 return Z_STREAM_ERROR
;
366 strm
->total_in
= strm
->total_out
= 0;
367 strm
->msg
= Z_NULL
; /* use zfree if we ever allocate msg dynamically */
368 strm
->data_type
= Z_UNKNOWN
;
370 s
= (deflate_state
*)strm
->state
;
372 s
->pending_out
= s
->pending_buf
;
375 s
->wrap
= -s
->wrap
; /* was made negative by deflate(..., Z_FINISH); */
377 s
->status
= s
->wrap
? INIT_STATE
: BUSY_STATE
;
380 s
->wrap
== 2 ? crc32(0L, Z_NULL
, 0) :
382 adler32(0L, Z_NULL
, 0);
383 s
->last_flush
= Z_NO_FLUSH
;
391 /* ========================================================================= */
392 int ZEXPORT
deflateSetHeader (strm
, head
)
396 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
397 if (strm
->state
->wrap
!= 2) return Z_STREAM_ERROR
;
398 strm
->state
->gzhead
= head
;
402 /* ========================================================================= */
403 int ZEXPORT
deflatePrime (strm
, bits
, value
)
408 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
409 strm
->state
->bi_valid
= bits
;
410 strm
->state
->bi_buf
= (ush
)(value
& ((1 << bits
) - 1));
414 /* ========================================================================= */
415 int ZEXPORT
deflateParams(strm
, level
, strategy
)
424 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
428 if (level
!= 0) level
= 1;
430 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
432 if (level
< 0 || level
> 9 || strategy
< 0 || strategy
> Z_FIXED
) {
433 return Z_STREAM_ERROR
;
435 func
= configuration_table
[s
->level
].func
;
437 if (func
!= configuration_table
[level
].func
&& strm
->total_in
!= 0) {
438 /* Flush the last buffer: */
439 err
= deflate(strm
, Z_PARTIAL_FLUSH
);
441 if (s
->level
!= level
) {
443 s
->max_lazy_match
= configuration_table
[level
].max_lazy
;
444 s
->good_match
= configuration_table
[level
].good_length
;
445 s
->nice_match
= configuration_table
[level
].nice_length
;
446 s
->max_chain_length
= configuration_table
[level
].max_chain
;
448 s
->strategy
= strategy
;
452 /* ========================================================================= */
453 int ZEXPORT
deflateTune(strm
, good_length
, max_lazy
, nice_length
, max_chain
)
462 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
464 s
->good_match
= good_length
;
465 s
->max_lazy_match
= max_lazy
;
466 s
->nice_match
= nice_length
;
467 s
->max_chain_length
= max_chain
;
471 /* =========================================================================
472 * For the default windowBits of 15 and memLevel of 8, this function returns
473 * a close to exact, as well as small, upper bound on the compressed size.
474 * They are coded as constants here for a reason--if the #define's are
475 * changed, then this function needs to be changed as well. The return
476 * value for 15 and 8 only works for those exact settings.
478 * For any setting other than those defaults for windowBits and memLevel,
479 * the value returned is a conservative worst case for the maximum expansion
480 * resulting from using fixed blocks instead of stored blocks, which deflate
481 * can emit on compressed data for some combinations of the parameters.
483 * This function could be more sophisticated to provide closer upper bounds
484 * for every combination of windowBits and memLevel, as well as wrap.
485 * But even the conservative upper bound of about 14% expansion does not
486 * seem onerous for output buffer allocation.
488 uLong ZEXPORT
deflateBound(strm
, sourceLen
)
495 /* conservative upper bound */
496 destLen
= sourceLen
+
497 ((sourceLen
+ 7) >> 3) + ((sourceLen
+ 63) >> 6) + 11;
499 /* if can't get parameters, return conservative bound */
500 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
)
503 /* if not default parameters, return conservative bound */
505 if (s
->w_bits
!= 15 || s
->hash_bits
!= 8 + 7)
508 /* default settings: return tight bound for that case */
509 return compressBound(sourceLen
);
512 /* =========================================================================
513 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
514 * IN assertion: the stream state is correct and there is enough room in
517 local
void putShortMSB (s
, b
)
521 put_byte(s
, (Byte
)(b
>> 8));
522 put_byte(s
, (Byte
)(b
& 0xff));
525 /* =========================================================================
526 * Flush as much pending output as possible. All deflate() output goes
527 * through this function so some applications may wish to modify it
528 * to avoid allocating a large strm->next_out buffer and copying into it.
529 * (See also read_buf()).
531 local
void flush_pending(strm
)
534 unsigned len
= strm
->state
->pending
;
536 if (len
> strm
->avail_out
) len
= strm
->avail_out
;
537 if (len
== 0) return;
539 zmemcpy(strm
->next_out
, strm
->state
->pending_out
, len
);
540 strm
->next_out
+= len
;
541 strm
->state
->pending_out
+= len
;
542 strm
->total_out
+= len
;
543 strm
->avail_out
-= len
;
544 strm
->state
->pending
-= len
;
545 if (strm
->state
->pending
== 0) {
546 strm
->state
->pending_out
= strm
->state
->pending_buf
;
550 /* ========================================================================= */
551 int ZEXPORT
deflate (strm
, flush
)
555 int old_flush
; /* value of flush param for previous deflate call */
558 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
559 flush
> Z_FINISH
|| flush
< 0) {
560 return Z_STREAM_ERROR
;
564 if (strm
->next_out
== Z_NULL
||
565 (strm
->next_in
== Z_NULL
&& strm
->avail_in
!= 0) ||
566 (s
->status
== FINISH_STATE
&& flush
!= Z_FINISH
)) {
567 ERR_RETURN(strm
, Z_STREAM_ERROR
);
569 if (strm
->avail_out
== 0) ERR_RETURN(strm
, Z_BUF_ERROR
);
571 s
->strm
= strm
; /* just in case */
572 old_flush
= s
->last_flush
;
573 s
->last_flush
= flush
;
575 /* Write the header */
576 if (s
->status
== INIT_STATE
) {
579 strm
->adler
= crc32(0L, Z_NULL
, 0);
583 if (s
->gzhead
== NULL
) {
589 put_byte(s
, s
->level
== 9 ? 2 :
590 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
592 put_byte(s
, OS_CODE
);
593 s
->status
= BUSY_STATE
;
596 put_byte(s
, (s
->gzhead
->text
? 1 : 0) +
597 (s
->gzhead
->hcrc
? 2 : 0) +
598 (s
->gzhead
->extra
== Z_NULL
? 0 : 4) +
599 (s
->gzhead
->name
== Z_NULL
? 0 : 8) +
600 (s
->gzhead
->comment
== Z_NULL
? 0 : 16)
602 put_byte(s
, (Byte
)(s
->gzhead
->time
& 0xff));
603 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 8) & 0xff));
604 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 16) & 0xff));
605 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 24) & 0xff));
606 put_byte(s
, s
->level
== 9 ? 2 :
607 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
609 put_byte(s
, s
->gzhead
->os
& 0xff);
610 if (s
->gzhead
->extra
!= NULL
) {
611 put_byte(s
, s
->gzhead
->extra_len
& 0xff);
612 put_byte(s
, (s
->gzhead
->extra_len
>> 8) & 0xff);
615 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
,
618 s
->status
= EXTRA_STATE
;
624 uInt header
= (Z_DEFLATED
+ ((s
->w_bits
-8)<<4)) << 8;
627 if (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2)
629 else if (s
->level
< 6)
631 else if (s
->level
== 6)
635 header
|= (level_flags
<< 6);
636 if (s
->strstart
!= 0) header
|= PRESET_DICT
;
637 header
+= 31 - (header
% 31);
639 s
->status
= BUSY_STATE
;
640 putShortMSB(s
, header
);
642 /* Save the adler32 of the preset dictionary: */
643 if (s
->strstart
!= 0) {
644 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
645 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
647 strm
->adler
= adler32(0L, Z_NULL
, 0);
651 if (s
->status
== EXTRA_STATE
) {
652 if (s
->gzhead
->extra
!= NULL
) {
653 uInt beg
= s
->pending
; /* start of bytes to update crc */
655 while (s
->gzindex
< (s
->gzhead
->extra_len
& 0xffff)) {
656 if (s
->pending
== s
->pending_buf_size
) {
657 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
658 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
662 if (s
->pending
== s
->pending_buf_size
)
665 put_byte(s
, s
->gzhead
->extra
[s
->gzindex
]);
668 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
669 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
671 if (s
->gzindex
== s
->gzhead
->extra_len
) {
673 s
->status
= NAME_STATE
;
677 s
->status
= NAME_STATE
;
679 if (s
->status
== NAME_STATE
) {
680 if (s
->gzhead
->name
!= NULL
) {
681 uInt beg
= s
->pending
; /* start of bytes to update crc */
685 if (s
->pending
== s
->pending_buf_size
) {
686 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
687 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
691 if (s
->pending
== s
->pending_buf_size
) {
696 val
= s
->gzhead
->name
[s
->gzindex
++];
699 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
700 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
704 s
->status
= COMMENT_STATE
;
708 s
->status
= COMMENT_STATE
;
710 if (s
->status
== COMMENT_STATE
) {
711 if (s
->gzhead
->comment
!= NULL
) {
712 uInt beg
= s
->pending
; /* start of bytes to update crc */
716 if (s
->pending
== s
->pending_buf_size
) {
717 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
718 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
722 if (s
->pending
== s
->pending_buf_size
) {
727 val
= s
->gzhead
->comment
[s
->gzindex
++];
730 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
731 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
734 s
->status
= HCRC_STATE
;
737 s
->status
= HCRC_STATE
;
739 if (s
->status
== HCRC_STATE
) {
740 if (s
->gzhead
->hcrc
) {
741 if (s
->pending
+ 2 > s
->pending_buf_size
)
743 if (s
->pending
+ 2 <= s
->pending_buf_size
) {
744 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
745 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
746 strm
->adler
= crc32(0L, Z_NULL
, 0);
747 s
->status
= BUSY_STATE
;
751 s
->status
= BUSY_STATE
;
755 /* Flush as much pending output as possible */
756 if (s
->pending
!= 0) {
758 if (strm
->avail_out
== 0) {
759 /* Since avail_out is 0, deflate will be called again with
760 * more output space, but possibly with both pending and
761 * avail_in equal to zero. There won't be anything to do,
762 * but this is not an error situation so make sure we
763 * return OK instead of BUF_ERROR at next call of deflate:
769 /* Make sure there is something to do and avoid duplicate consecutive
770 * flushes. For repeated and useless calls with Z_FINISH, we keep
771 * returning Z_STREAM_END instead of Z_BUF_ERROR.
773 } else if (strm
->avail_in
== 0 && flush
<= old_flush
&&
775 ERR_RETURN(strm
, Z_BUF_ERROR
);
778 /* User must not provide more input after the first FINISH: */
779 if (s
->status
== FINISH_STATE
&& strm
->avail_in
!= 0) {
780 ERR_RETURN(strm
, Z_BUF_ERROR
);
783 /* Start a new block or continue the current one.
785 if (strm
->avail_in
!= 0 || s
->lookahead
!= 0 ||
786 (flush
!= Z_NO_FLUSH
&& s
->status
!= FINISH_STATE
)) {
789 bstate
= (*(configuration_table
[s
->level
].func
))(s
, flush
);
791 if (bstate
== finish_started
|| bstate
== finish_done
) {
792 s
->status
= FINISH_STATE
;
794 if (bstate
== need_more
|| bstate
== finish_started
) {
795 if (strm
->avail_out
== 0) {
796 s
->last_flush
= -1; /* avoid BUF_ERROR next call, see above */
799 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
800 * of deflate should use the same flush parameter to make sure
801 * that the flush is complete. So we don't have to output an
802 * empty block here, this will be done at next call. This also
803 * ensures that for a very small output buffer, we emit at most
807 if (bstate
== block_done
) {
808 if (flush
== Z_PARTIAL_FLUSH
) {
810 } else { /* FULL_FLUSH or SYNC_FLUSH */
811 _tr_stored_block(s
, (char*)0, 0L, 0);
812 /* For a full flush, this empty block will be recognized
813 * as a special marker by inflate_sync().
815 if (flush
== Z_FULL_FLUSH
) {
816 CLEAR_HASH(s
); /* forget history */
820 if (strm
->avail_out
== 0) {
821 s
->last_flush
= -1; /* avoid BUF_ERROR at next call, see above */
826 Assert(strm
->avail_out
> 0, "bug2");
828 if (flush
!= Z_FINISH
) return Z_OK
;
829 if (s
->wrap
<= 0) return Z_STREAM_END
;
831 /* Write the trailer */
834 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
835 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
836 put_byte(s
, (Byte
)((strm
->adler
>> 16) & 0xff));
837 put_byte(s
, (Byte
)((strm
->adler
>> 24) & 0xff));
838 put_byte(s
, (Byte
)(strm
->total_in
& 0xff));
839 put_byte(s
, (Byte
)((strm
->total_in
>> 8) & 0xff));
840 put_byte(s
, (Byte
)((strm
->total_in
>> 16) & 0xff));
841 put_byte(s
, (Byte
)((strm
->total_in
>> 24) & 0xff));
846 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
847 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
850 /* If avail_out is zero, the application will call deflate again
853 if (s
->wrap
> 0) s
->wrap
= -s
->wrap
; /* write the trailer only once! */
854 return s
->pending
!= 0 ? Z_OK
: Z_STREAM_END
;
857 /* ========================================================================= */
858 int ZEXPORT
deflateEnd (strm
)
863 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
865 status
= strm
->state
->status
;
866 if (status
!= INIT_STATE
&&
867 status
!= EXTRA_STATE
&&
868 status
!= NAME_STATE
&&
869 status
!= COMMENT_STATE
&&
870 status
!= HCRC_STATE
&&
871 status
!= BUSY_STATE
&&
872 status
!= FINISH_STATE
) {
873 return Z_STREAM_ERROR
;
876 /* Deallocate in reverse order of allocations: */
877 TRY_FREE(strm
, strm
->state
->pending_buf
);
878 TRY_FREE(strm
, strm
->state
->head
);
879 TRY_FREE(strm
, strm
->state
->prev
);
880 TRY_FREE(strm
, strm
->state
->window
);
882 ZFREE(strm
, strm
->state
);
883 strm
->state
= Z_NULL
;
885 return status
== BUSY_STATE
? Z_DATA_ERROR
: Z_OK
;
888 /* =========================================================================
889 * Copy the source state to the destination state.
890 * To simplify the source, this is not supported for 16-bit MSDOS (which
891 * doesn't have enough memory anyway to duplicate compression states).
893 int ZEXPORT
deflateCopy (dest
, source
)
898 return Z_STREAM_ERROR
;
905 if (source
== Z_NULL
|| dest
== Z_NULL
|| source
->state
== Z_NULL
) {
906 return Z_STREAM_ERROR
;
911 zmemcpy(dest
, source
, sizeof(z_stream
));
913 ds
= (deflate_state
*) ZALLOC(dest
, 1, sizeof(deflate_state
));
914 if (ds
== Z_NULL
) return Z_MEM_ERROR
;
915 dest
->state
= (struct internal_state FAR
*) ds
;
916 zmemcpy(ds
, ss
, sizeof(deflate_state
));
919 ds
->window
= (Bytef
*) ZALLOC(dest
, ds
->w_size
, 2*sizeof(Byte
));
920 ds
->prev
= (Posf
*) ZALLOC(dest
, ds
->w_size
, sizeof(Pos
));
921 ds
->head
= (Posf
*) ZALLOC(dest
, ds
->hash_size
, sizeof(Pos
));
922 overlay
= (ushf
*) ZALLOC(dest
, ds
->lit_bufsize
, sizeof(ush
)+2);
923 ds
->pending_buf
= (uchf
*) overlay
;
925 if (ds
->window
== Z_NULL
|| ds
->prev
== Z_NULL
|| ds
->head
== Z_NULL
||
926 ds
->pending_buf
== Z_NULL
) {
930 /* following zmemcpy do not work for 16-bit MSDOS */
931 zmemcpy(ds
->window
, ss
->window
, ds
->w_size
* 2 * sizeof(Byte
));
932 zmemcpy(ds
->prev
, ss
->prev
, ds
->w_size
* sizeof(Pos
));
933 zmemcpy(ds
->head
, ss
->head
, ds
->hash_size
* sizeof(Pos
));
934 zmemcpy(ds
->pending_buf
, ss
->pending_buf
, (uInt
)ds
->pending_buf_size
);
936 ds
->pending_out
= ds
->pending_buf
+ (ss
->pending_out
- ss
->pending_buf
);
937 ds
->d_buf
= overlay
+ ds
->lit_bufsize
/sizeof(ush
);
938 ds
->l_buf
= ds
->pending_buf
+ (1+sizeof(ush
))*ds
->lit_bufsize
;
940 ds
->l_desc
.dyn_tree
= ds
->dyn_ltree
;
941 ds
->d_desc
.dyn_tree
= ds
->dyn_dtree
;
942 ds
->bl_desc
.dyn_tree
= ds
->bl_tree
;
945 #endif /* MAXSEG_64K */
948 /* ===========================================================================
949 * Read a new buffer from the current input stream, update the adler32
950 * and total number of bytes read. All deflate() input goes through
951 * this function so some applications may wish to modify it to avoid
952 * allocating a large strm->next_in buffer and copying from it.
953 * (See also flush_pending()).
955 local
int read_buf(strm
, buf
, size
)
960 unsigned len
= strm
->avail_in
;
962 if (len
> size
) len
= size
;
963 if (len
== 0) return 0;
965 strm
->avail_in
-= len
;
967 if (strm
->state
->wrap
== 1) {
968 strm
->adler
= adler32(strm
->adler
, strm
->next_in
, len
);
971 else if (strm
->state
->wrap
== 2) {
972 strm
->adler
= crc32(strm
->adler
, strm
->next_in
, len
);
975 zmemcpy(buf
, strm
->next_in
, len
);
976 strm
->next_in
+= len
;
977 strm
->total_in
+= len
;
982 /* ===========================================================================
983 * Initialize the "longest match" routines for a new zlib stream
985 local
void lm_init (s
)
988 s
->window_size
= (ulg
)2L*s
->w_size
;
992 /* Set the default configuration parameters:
994 s
->max_lazy_match
= configuration_table
[s
->level
].max_lazy
;
995 s
->good_match
= configuration_table
[s
->level
].good_length
;
996 s
->nice_match
= configuration_table
[s
->level
].nice_length
;
997 s
->max_chain_length
= configuration_table
[s
->level
].max_chain
;
1000 s
->block_start
= 0L;
1002 s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
1003 s
->match_available
= 0;
1007 match_init(); /* initialize the asm code */
1013 /* ===========================================================================
1014 * Set match_start to the longest match starting at the given string and
1015 * return its length. Matches shorter or equal to prev_length are discarded,
1016 * in which case the result is equal to prev_length and match_start is
1018 * IN assertions: cur_match is the head of the hash chain for the current
1019 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1020 * OUT assertion: the match length is not greater than s->lookahead.
1023 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1024 * match.S. The code will be functionally equivalent.
1026 local uInt
longest_match(s
, cur_match
)
1028 IPos cur_match
; /* current match */
1030 unsigned chain_length
= s
->max_chain_length
;/* max hash chain length */
1031 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1032 register Bytef
*match
; /* matched string */
1033 register int len
; /* length of current match */
1034 int best_len
= s
->prev_length
; /* best match length so far */
1035 int nice_match
= s
->nice_match
; /* stop if match long enough */
1036 IPos limit
= s
->strstart
> (IPos
)MAX_DIST(s
) ?
1037 s
->strstart
- (IPos
)MAX_DIST(s
) : NIL
;
1038 /* Stop when cur_match becomes <= limit. To simplify the code,
1039 * we prevent matches with the string of window index 0.
1041 Posf
*prev
= s
->prev
;
1042 uInt wmask
= s
->w_mask
;
1045 /* Compare two bytes at a time. Note: this is not always beneficial.
1046 * Try with and without -DUNALIGNED_OK to check.
1048 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
- 1;
1049 register ush scan_start
= *(ushf
*)scan
;
1050 register ush scan_end
= *(ushf
*)(scan
+best_len
-1);
1052 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1053 register Byte scan_end1
= scan
[best_len
-1];
1054 register Byte scan_end
= scan
[best_len
];
1057 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1058 * It is easy to get rid of this optimization if necessary.
1060 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1062 /* Do not waste too much time if we already have a good match: */
1063 if (s
->prev_length
>= s
->good_match
) {
1066 /* Do not look for matches beyond the end of the input. This is necessary
1067 * to make deflate deterministic.
1069 if ((uInt
)nice_match
> s
->lookahead
) nice_match
= s
->lookahead
;
1071 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1074 Assert(cur_match
< s
->strstart
, "no future");
1075 match
= s
->window
+ cur_match
;
1077 /* Skip to next match if the match length cannot increase
1078 * or if the match length is less than 2. Note that the checks below
1079 * for insufficient lookahead only occur occasionally for performance
1080 * reasons. Therefore uninitialized memory will be accessed, and
1081 * conditional jumps will be made that depend on those values.
1082 * However the length of the match is limited to the lookahead, so
1083 * the output of deflate is not affected by the uninitialized values.
1085 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1086 /* This code assumes sizeof(unsigned short) == 2. Do not use
1087 * UNALIGNED_OK if your compiler uses a different size.
1089 if (*(ushf
*)(match
+best_len
-1) != scan_end
||
1090 *(ushf
*)match
!= scan_start
) continue;
1092 /* It is not necessary to compare scan[2] and match[2] since they are
1093 * always equal when the other bytes match, given that the hash keys
1094 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1095 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1096 * lookahead only every 4th comparison; the 128th check will be made
1097 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1098 * necessary to put more guard bytes at the end of the window, or
1099 * to check more often for insufficient lookahead.
1101 Assert(scan
[2] == match
[2], "scan[2]?");
1104 } while (*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1105 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1106 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1107 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1109 /* The funny "do {}" generates better code on most compilers */
1111 /* Here, scan <= window+strstart+257 */
1112 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1113 if (*scan
== *match
) scan
++;
1115 len
= (MAX_MATCH
- 1) - (int)(strend
-scan
);
1116 scan
= strend
- (MAX_MATCH
-1);
1118 #else /* UNALIGNED_OK */
1120 if (match
[best_len
] != scan_end
||
1121 match
[best_len
-1] != scan_end1
||
1123 *++match
!= scan
[1]) continue;
1125 /* The check at best_len-1 can be removed because it will be made
1126 * again later. (This heuristic is not always a win.)
1127 * It is not necessary to compare scan[2] and match[2] since they
1128 * are always equal when the other bytes match, given that
1129 * the hash keys are equal and that HASH_BITS >= 8.
1132 Assert(*scan
== *match
, "match[2]?");
1134 /* We check for insufficient lookahead only every 8th comparison;
1135 * the 256th check will be made at strstart+258.
1138 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1139 *++scan
== *++match
&& *++scan
== *++match
&&
1140 *++scan
== *++match
&& *++scan
== *++match
&&
1141 *++scan
== *++match
&& *++scan
== *++match
&&
1144 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1146 len
= MAX_MATCH
- (int)(strend
- scan
);
1147 scan
= strend
- MAX_MATCH
;
1149 #endif /* UNALIGNED_OK */
1151 if (len
> best_len
) {
1152 s
->match_start
= cur_match
;
1154 if (len
>= nice_match
) break;
1156 scan_end
= *(ushf
*)(scan
+best_len
-1);
1158 scan_end1
= scan
[best_len
-1];
1159 scan_end
= scan
[best_len
];
1162 } while ((cur_match
= prev
[cur_match
& wmask
]) > limit
1163 && --chain_length
!= 0);
1165 if ((uInt
)best_len
<= s
->lookahead
) return (uInt
)best_len
;
1166 return s
->lookahead
;
1169 #endif /* FASTEST */
1171 /* ---------------------------------------------------------------------------
1172 * Optimized version for level == 1 or strategy == Z_RLE only
1174 local uInt
longest_match_fast(s
, cur_match
)
1176 IPos cur_match
; /* current match */
1178 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1179 register Bytef
*match
; /* matched string */
1180 register int len
; /* length of current match */
1181 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1183 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1184 * It is easy to get rid of this optimization if necessary.
1186 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1188 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1190 Assert(cur_match
< s
->strstart
, "no future");
1192 match
= s
->window
+ cur_match
;
1194 /* Return failure if the match length is less than 2:
1196 if (match
[0] != scan
[0] || match
[1] != scan
[1]) return MIN_MATCH
-1;
1198 /* The check at best_len-1 can be removed because it will be made
1199 * again later. (This heuristic is not always a win.)
1200 * It is not necessary to compare scan[2] and match[2] since they
1201 * are always equal when the other bytes match, given that
1202 * the hash keys are equal and that HASH_BITS >= 8.
1204 scan
+= 2, match
+= 2;
1205 Assert(*scan
== *match
, "match[2]?");
1207 /* We check for insufficient lookahead only every 8th comparison;
1208 * the 256th check will be made at strstart+258.
1211 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1212 *++scan
== *++match
&& *++scan
== *++match
&&
1213 *++scan
== *++match
&& *++scan
== *++match
&&
1214 *++scan
== *++match
&& *++scan
== *++match
&&
1217 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1219 len
= MAX_MATCH
- (int)(strend
- scan
);
1221 if (len
< MIN_MATCH
) return MIN_MATCH
- 1;
1223 s
->match_start
= cur_match
;
1224 return (uInt
)len
<= s
->lookahead
? (uInt
)len
: s
->lookahead
;
1228 /* ===========================================================================
1229 * Check that the match at match_start is indeed a match.
1231 local
void check_match(s
, start
, match
, length
)
1236 /* check that the match is indeed a match */
1237 if (zmemcmp(s
->window
+ match
,
1238 s
->window
+ start
, length
) != EQUAL
) {
1239 fprintf(stderr
, " start %u, match %u, length %d\n",
1240 start
, match
, length
);
1242 fprintf(stderr
, "%c%c", s
->window
[match
++], s
->window
[start
++]);
1243 } while (--length
!= 0);
1244 z_error("invalid match");
1246 if (z_verbose
> 1) {
1247 fprintf(stderr
,"\\[%d,%d]", start
-match
, length
);
1248 do { putc(s
->window
[start
++], stderr
); } while (--length
!= 0);
1252 # define check_match(s, start, match, length)
1255 /* ===========================================================================
1256 * Fill the window when the lookahead becomes insufficient.
1257 * Updates strstart and lookahead.
1259 * IN assertion: lookahead < MIN_LOOKAHEAD
1260 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1261 * At least one byte has been read, or avail_in == 0; reads are
1262 * performed for at least two bytes (required for the zip translate_eol
1263 * option -- not supported here).
1265 local
void fill_window(s
)
1268 register unsigned n
, m
;
1270 unsigned more
; /* Amount of free space at the end of the window. */
1271 uInt wsize
= s
->w_size
;
1274 more
= (unsigned)(s
->window_size
-(ulg
)s
->lookahead
-(ulg
)s
->strstart
);
1276 /* Deal with !@#$% 64K limit: */
1277 if (sizeof(int) <= 2) {
1278 if (more
== 0 && s
->strstart
== 0 && s
->lookahead
== 0) {
1281 } else if (more
== (unsigned)(-1)) {
1282 /* Very unlikely, but possible on 16 bit machine if
1283 * strstart == 0 && lookahead == 1 (input done a byte at time)
1289 /* If the window is almost full and there is insufficient lookahead,
1290 * move the upper half to the lower one to make room in the upper half.
1292 if (s
->strstart
>= wsize
+MAX_DIST(s
)) {
1294 zmemcpy(s
->window
, s
->window
+wsize
, (unsigned)wsize
);
1295 s
->match_start
-= wsize
;
1296 s
->strstart
-= wsize
; /* we now have strstart >= MAX_DIST */
1297 s
->block_start
-= (long) wsize
;
1299 /* Slide the hash table (could be avoided with 32 bit values
1300 at the expense of memory usage). We slide even when level == 0
1301 to keep the hash table consistent if we switch back to level > 0
1302 later. (Using level 0 permanently is not an optimal usage of
1303 zlib, so we don't care about this pathological case.)
1305 /* %%% avoid this when Z_RLE */
1310 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1318 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1319 /* If n is not on any hash chain, prev[n] is garbage but
1320 * its value will never be used.
1326 if (s
->strm
->avail_in
== 0) return;
1328 /* If there was no sliding:
1329 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1330 * more == window_size - lookahead - strstart
1331 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1332 * => more >= window_size - 2*WSIZE + 2
1333 * In the BIG_MEM or MMAP case (not yet supported),
1334 * window_size == input_size + MIN_LOOKAHEAD &&
1335 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1336 * Otherwise, window_size == 2*WSIZE so more >= 2.
1337 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1339 Assert(more
>= 2, "more < 2");
1341 n
= read_buf(s
->strm
, s
->window
+ s
->strstart
+ s
->lookahead
, more
);
1344 /* Initialize the hash value now that we have some input: */
1345 if (s
->lookahead
>= MIN_MATCH
) {
1346 s
->ins_h
= s
->window
[s
->strstart
];
1347 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1349 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1352 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1353 * but this is not important since only literal bytes will be emitted.
1356 } while (s
->lookahead
< MIN_LOOKAHEAD
&& s
->strm
->avail_in
!= 0);
1359 /* ===========================================================================
1360 * Flush the current block, with given end-of-file flag.
1361 * IN assertion: strstart is set to the end of the current match.
1363 #define FLUSH_BLOCK_ONLY(s, eof) { \
1364 _tr_flush_block(s, (s->block_start >= 0L ? \
1365 (charf *)&s->window[(unsigned)s->block_start] : \
1367 (ulg)((long)s->strstart - s->block_start), \
1369 s->block_start = s->strstart; \
1370 flush_pending(s->strm); \
1371 Tracev((stderr,"[FLUSH]")); \
1374 /* Same but force premature exit if necessary. */
1375 #define FLUSH_BLOCK(s, eof) { \
1376 FLUSH_BLOCK_ONLY(s, eof); \
1377 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1380 /* ===========================================================================
1381 * Copy without compression as much as possible from the input stream, return
1382 * the current block state.
1383 * This function does not insert new strings in the dictionary since
1384 * uncompressible data is probably not useful. This function is used
1385 * only for the level=0 compression option.
1386 * NOTE: this function should be optimized to avoid extra copying from
1387 * window to pending_buf.
1389 local block_state
deflate_stored(s
, flush
)
1393 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1394 * to pending_buf_size, and each stored block has a 5 byte header:
1396 ulg max_block_size
= 0xffff;
1399 if (max_block_size
> s
->pending_buf_size
- 5) {
1400 max_block_size
= s
->pending_buf_size
- 5;
1403 /* Copy as much as possible from input to output: */
1405 /* Fill the window as much as possible: */
1406 if (s
->lookahead
<= 1) {
1408 Assert(s
->strstart
< s
->w_size
+MAX_DIST(s
) ||
1409 s
->block_start
>= (long)s
->w_size
, "slide too late");
1412 if (s
->lookahead
== 0 && flush
== Z_NO_FLUSH
) return need_more
;
1414 if (s
->lookahead
== 0) break; /* flush the current block */
1416 Assert(s
->block_start
>= 0L, "block gone");
1418 s
->strstart
+= s
->lookahead
;
1421 /* Emit a stored block if pending_buf will be full: */
1422 max_start
= s
->block_start
+ max_block_size
;
1423 if (s
->strstart
== 0 || (ulg
)s
->strstart
>= max_start
) {
1424 /* strstart == 0 is possible when wraparound on 16-bit machine */
1425 s
->lookahead
= (uInt
)(s
->strstart
- max_start
);
1426 s
->strstart
= (uInt
)max_start
;
1429 /* Flush if we may have to slide, otherwise block_start may become
1430 * negative and the data will be gone:
1432 if (s
->strstart
- (uInt
)s
->block_start
>= MAX_DIST(s
)) {
1436 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1437 return flush
== Z_FINISH
? finish_done
: block_done
;
1440 /* ===========================================================================
1441 * Compress as much as possible from the input stream, return the current
1443 * This function does not perform lazy evaluation of matches and inserts
1444 * new strings in the dictionary only for unmatched strings or for short
1445 * matches. It is used only for the fast compression options.
1447 local block_state
deflate_fast(s
, flush
)
1451 IPos hash_head
= NIL
; /* head of the hash chain */
1452 int bflush
; /* set if current block must be flushed */
1455 /* Make sure that we always have enough lookahead, except
1456 * at the end of the input file. We need MAX_MATCH bytes
1457 * for the next match, plus MIN_MATCH bytes to insert the
1458 * string following the next match.
1460 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1462 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1465 if (s
->lookahead
== 0) break; /* flush the current block */
1468 /* Insert the string window[strstart .. strstart+2] in the
1469 * dictionary, and set hash_head to the head of the hash chain:
1471 if (s
->lookahead
>= MIN_MATCH
) {
1472 INSERT_STRING(s
, s
->strstart
, hash_head
);
1475 /* Find the longest match, discarding those <= prev_length.
1476 * At this point we have always match_length < MIN_MATCH
1478 if (hash_head
!= NIL
&& s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1479 /* To simplify the code, we prevent matches with the string
1480 * of window index 0 (in particular we have to avoid a match
1481 * of the string with itself at the start of the input file).
1484 if ((s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) ||
1485 (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1)) {
1486 s
->match_length
= longest_match_fast (s
, hash_head
);
1489 if (s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) {
1490 s
->match_length
= longest_match (s
, hash_head
);
1491 } else if (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1) {
1492 s
->match_length
= longest_match_fast (s
, hash_head
);
1495 /* longest_match() or longest_match_fast() sets match_start */
1497 if (s
->match_length
>= MIN_MATCH
) {
1498 check_match(s
, s
->strstart
, s
->match_start
, s
->match_length
);
1500 _tr_tally_dist(s
, s
->strstart
- s
->match_start
,
1501 s
->match_length
- MIN_MATCH
, bflush
);
1503 s
->lookahead
-= s
->match_length
;
1505 /* Insert new strings in the hash table only if the match length
1506 * is not too large. This saves time but degrades compression.
1509 if (s
->match_length
<= s
->max_insert_length
&&
1510 s
->lookahead
>= MIN_MATCH
) {
1511 s
->match_length
--; /* string at strstart already in table */
1514 INSERT_STRING(s
, s
->strstart
, hash_head
);
1515 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1516 * always MIN_MATCH bytes ahead.
1518 } while (--s
->match_length
!= 0);
1523 s
->strstart
+= s
->match_length
;
1524 s
->match_length
= 0;
1525 s
->ins_h
= s
->window
[s
->strstart
];
1526 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1528 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1530 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1531 * matter since it will be recomputed at next deflate call.
1535 /* No match, output a literal byte */
1536 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1537 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1541 if (bflush
) FLUSH_BLOCK(s
, 0);
1543 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1544 return flush
== Z_FINISH
? finish_done
: block_done
;
1548 /* ===========================================================================
1549 * Same as above, but achieves better compression. We use a lazy
1550 * evaluation for matches: a match is finally adopted only if there is
1551 * no better match at the next window position.
1553 local block_state
deflate_slow(s
, flush
)
1557 IPos hash_head
= NIL
; /* head of hash chain */
1558 int bflush
; /* set if current block must be flushed */
1560 /* Process the input block. */
1562 /* Make sure that we always have enough lookahead, except
1563 * at the end of the input file. We need MAX_MATCH bytes
1564 * for the next match, plus MIN_MATCH bytes to insert the
1565 * string following the next match.
1567 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1569 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1572 if (s
->lookahead
== 0) break; /* flush the current block */
1575 /* Insert the string window[strstart .. strstart+2] in the
1576 * dictionary, and set hash_head to the head of the hash chain:
1578 if (s
->lookahead
>= MIN_MATCH
) {
1579 INSERT_STRING(s
, s
->strstart
, hash_head
);
1582 /* Find the longest match, discarding those <= prev_length.
1584 s
->prev_length
= s
->match_length
, s
->prev_match
= s
->match_start
;
1585 s
->match_length
= MIN_MATCH
-1;
1587 if (hash_head
!= NIL
&& s
->prev_length
< s
->max_lazy_match
&&
1588 s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1589 /* To simplify the code, we prevent matches with the string
1590 * of window index 0 (in particular we have to avoid a match
1591 * of the string with itself at the start of the input file).
1593 if (s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) {
1594 s
->match_length
= longest_match (s
, hash_head
);
1595 } else if (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1) {
1596 s
->match_length
= longest_match_fast (s
, hash_head
);
1598 /* longest_match() or longest_match_fast() sets match_start */
1600 if (s
->match_length
<= 5 && (s
->strategy
== Z_FILTERED
1601 #if TOO_FAR <= 32767
1602 || (s
->match_length
== MIN_MATCH
&&
1603 s
->strstart
- s
->match_start
> TOO_FAR
)
1607 /* If prev_match is also MIN_MATCH, match_start is garbage
1608 * but we will ignore the current match anyway.
1610 s
->match_length
= MIN_MATCH
-1;
1613 /* If there was a match at the previous step and the current
1614 * match is not better, output the previous match:
1616 if (s
->prev_length
>= MIN_MATCH
&& s
->match_length
<= s
->prev_length
) {
1617 uInt max_insert
= s
->strstart
+ s
->lookahead
- MIN_MATCH
;
1618 /* Do not insert strings in hash table beyond this. */
1620 check_match(s
, s
->strstart
-1, s
->prev_match
, s
->prev_length
);
1622 _tr_tally_dist(s
, s
->strstart
-1 - s
->prev_match
,
1623 s
->prev_length
- MIN_MATCH
, bflush
);
1625 /* Insert in hash table all strings up to the end of the match.
1626 * strstart-1 and strstart are already inserted. If there is not
1627 * enough lookahead, the last two strings are not inserted in
1630 s
->lookahead
-= s
->prev_length
-1;
1631 s
->prev_length
-= 2;
1633 if (++s
->strstart
<= max_insert
) {
1634 INSERT_STRING(s
, s
->strstart
, hash_head
);
1636 } while (--s
->prev_length
!= 0);
1637 s
->match_available
= 0;
1638 s
->match_length
= MIN_MATCH
-1;
1641 if (bflush
) FLUSH_BLOCK(s
, 0);
1643 } else if (s
->match_available
) {
1644 /* If there was no match at the previous position, output a
1645 * single literal. If there was a match but the current match
1646 * is longer, truncate the previous match to a single literal.
1648 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1649 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1651 FLUSH_BLOCK_ONLY(s
, 0);
1655 if (s
->strm
->avail_out
== 0) return need_more
;
1657 /* There is no previous match to compare with, wait for
1658 * the next step to decide.
1660 s
->match_available
= 1;
1665 Assert (flush
!= Z_NO_FLUSH
, "no flush?");
1666 if (s
->match_available
) {
1667 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1668 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1669 s
->match_available
= 0;
1671 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1672 return flush
== Z_FINISH
? finish_done
: block_done
;
1674 #endif /* FASTEST */
1677 /* ===========================================================================
1678 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1679 * one. Do not maintain a hash table. (It will be regenerated if this run of
1680 * deflate switches away from Z_RLE.)
1682 local block_state
deflate_rle(s
, flush
)
1686 int bflush
; /* set if current block must be flushed */
1687 uInt run
; /* length of run */
1688 uInt max
; /* maximum length of run */
1689 uInt prev
; /* byte at distance one to match */
1690 Bytef
*scan
; /* scan for end of run */
1693 /* Make sure that we always have enough lookahead, except
1694 * at the end of the input file. We need MAX_MATCH bytes
1695 * for the longest encodable run.
1697 if (s
->lookahead
< MAX_MATCH
) {
1699 if (s
->lookahead
< MAX_MATCH
&& flush
== Z_NO_FLUSH
) {
1702 if (s
->lookahead
== 0) break; /* flush the current block */
1705 /* See how many times the previous byte repeats */
1707 if (s
->strstart
> 0) { /* if there is a previous byte, that is */
1708 max
= s
->lookahead
< MAX_MATCH
? s
->lookahead
: MAX_MATCH
;
1709 scan
= s
->window
+ s
->strstart
- 1;
1712 if (*scan
++ != prev
)
1714 } while (++run
< max
);
1717 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1718 if (run
>= MIN_MATCH
) {
1719 check_match(s
, s
->strstart
, s
->strstart
- 1, run
);
1720 _tr_tally_dist(s
, 1, run
- MIN_MATCH
, bflush
);
1721 s
->lookahead
-= run
;
1724 /* No match, output a literal byte */
1725 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1726 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1730 if (bflush
) FLUSH_BLOCK(s
, 0);
1732 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1733 return flush
== Z_FINISH
? finish_done
: block_done
;