1 /////////////////////////////////////////////////////////////////////////////
3 // Purpose: wxQuantize implementation
4 // Author: Julian Smart
8 // Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart
9 // Licence: wxWindows licence + JPEG library licence
10 /////////////////////////////////////////////////////////////////////////////
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
31 /* modified by Vaclav Slavik for use as jpeglib-independent module */
34 #pragma implementation "quantize.h"
37 // For compilers that support precompilation, includes "wx/wx.h".
38 #include "wx/wxprec.h"
45 #include "wx/palette.h"
49 #include "wx/quantize.h"
53 #include "wx/msw/private.h"
61 #define RGB_GREEN_OS2 1
62 #define RGB_BLUE_OS2 2
68 #define RGB_PIXELSIZE 3
70 #define MAXJSAMPLE 255
71 #define CENTERJSAMPLE 128
72 #define BITS_IN_JSAMPLE 8
73 #define GETJSAMPLE(value) ((int) (value))
75 #define RIGHT_SHIFT(x,shft) ((x) >> (shft))
77 typedef unsigned short UINT16
;
78 typedef signed short INT16
;
79 typedef signed int INT32
;
81 typedef unsigned char JSAMPLE
;
82 typedef JSAMPLE
*JSAMPROW
;
83 typedef JSAMPROW
*JSAMPARRAY
;
84 typedef unsigned int JDIMENSION
;
88 JDIMENSION output_width
;
90 int actual_number_of_colors
;
91 int desired_number_of_colors
;
92 JSAMPLE
*sample_range_limit
, *srl_orig
;
95 #if defined(__WINDOWS__) && !defined(__WXMICROWIN__)
96 #define JMETHOD(type,methodname,arglist) type (__cdecl methodname) arglist
98 #define JMETHOD(type,methodname,arglist) type (methodname) arglist
101 typedef j_decompress
*j_decompress_ptr
;
102 struct jpeg_color_quantizer
{
103 JMETHOD(void, start_pass
, (j_decompress_ptr cinfo
, bool is_pre_scan
));
104 JMETHOD(void, color_quantize
, (j_decompress_ptr cinfo
,
105 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
,
107 JMETHOD(void, finish_pass
, (j_decompress_ptr cinfo
));
108 JMETHOD(void, new_color_map
, (j_decompress_ptr cinfo
));
115 * This module implements the well-known Heckbert paradigm for color
116 * quantization. Most of the ideas used here can be traced back to
117 * Heckbert's seminal paper
118 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
119 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
121 * In the first pass over the image, we accumulate a histogram showing the
122 * usage count of each possible color. To keep the histogram to a reasonable
123 * size, we reduce the precision of the input; typical practice is to retain
124 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
125 * in the same histogram cell.
127 * Next, the color-selection step begins with a box representing the whole
128 * color space, and repeatedly splits the "largest" remaining box until we
129 * have as many boxes as desired colors. Then the mean color in each
130 * remaining box becomes one of the possible output colors.
132 * The second pass over the image maps each input pixel to the closest output
133 * color (optionally after applying a Floyd-Steinberg dithering correction).
134 * This mapping is logically trivial, but making it go fast enough requires
137 * Heckbert-style quantizers vary a good deal in their policies for choosing
138 * the "largest" box and deciding where to cut it. The particular policies
139 * used here have proved out well in experimental comparisons, but better ones
142 * In earlier versions of the IJG code, this module quantized in YCbCr color
143 * space, processing the raw upsampled data without a color conversion step.
144 * This allowed the color conversion math to be done only once per colormap
145 * entry, not once per pixel. However, that optimization precluded other
146 * useful optimizations (such as merging color conversion with upsampling)
147 * and it also interfered with desired capabilities such as quantizing to an
148 * externally-supplied colormap. We have therefore abandoned that approach.
149 * The present code works in the post-conversion color space, typically RGB.
151 * To improve the visual quality of the results, we actually work in scaled
152 * RGB space, giving G distances more weight than R, and R in turn more than
153 * B. To do everything in integer math, we must use integer scale factors.
154 * The 2/3/1 scale factors used here correspond loosely to the relative
155 * weights of the colors in the NTSC grayscale equation.
156 * If you want to use this code to quantize a non-RGB color space, you'll
157 * probably need to change these scale factors.
160 #define R_SCALE 2 /* scale R distances by this much */
161 #define G_SCALE 3 /* scale G distances by this much */
162 #define B_SCALE 1 /* and B by this much */
164 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
165 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
166 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
167 * you'll get compile errors until you extend this logic. In that case
168 * you'll probably want to tweak the histogram sizes too.
174 #define C0_SCALE R_SCALE
176 #if RGB_BLUE_OS2 == 0
177 #define C0_SCALE B_SCALE
179 #if RGB_GREEN_OS2 == 1
180 #define C1_SCALE G_SCALE
183 #define C2_SCALE R_SCALE
185 #if RGB_BLUE_OS2 == 2
186 #define C2_SCALE B_SCALE
192 #define C0_SCALE R_SCALE
195 #define C0_SCALE B_SCALE
198 #define C1_SCALE G_SCALE
201 #define C2_SCALE R_SCALE
204 #define C2_SCALE B_SCALE
210 * First we have the histogram data structure and routines for creating it.
212 * The number of bits of precision can be adjusted by changing these symbols.
213 * We recommend keeping 6 bits for G and 5 each for R and B.
214 * If you have plenty of memory and cycles, 6 bits all around gives marginally
215 * better results; if you are short of memory, 5 bits all around will save
216 * some space but degrade the results.
217 * To maintain a fully accurate histogram, we'd need to allocate a "long"
218 * (preferably unsigned long) for each cell. In practice this is overkill;
219 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
220 * and clamping those that do overflow to the maximum value will give close-
221 * enough results. This reduces the recommended histogram size from 256Kb
222 * to 128Kb, which is a useful savings on PC-class machines.
223 * (In the second pass the histogram space is re-used for pixel mapping data;
224 * in that capacity, each cell must be able to store zero to the number of
225 * desired colors. 16 bits/cell is plenty for that too.)
226 * Since the JPEG code is intended to run in small memory model on 80x86
227 * machines, we can't just allocate the histogram in one chunk. Instead
228 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
229 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
230 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
231 * on 80x86 machines, the pointer row is in near memory but the actual
232 * arrays are in far memory (same arrangement as we use for image arrays).
235 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
237 /* These will do the right thing for either R,G,B or B,G,R color order,
238 * but you may not like the results for other color orders.
240 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
241 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
242 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
244 /* Number of elements along histogram axes. */
245 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
246 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
247 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
249 /* These are the amounts to shift an input value to get a histogram index. */
250 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
251 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
252 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
255 typedef UINT16 histcell
; /* histogram cell; prefer an unsigned type */
257 typedef histcell
* histptr
; /* for pointers to histogram cells */
259 typedef histcell hist1d
[HIST_C2_ELEMS
]; /* typedefs for the array */
260 typedef hist1d
* hist2d
; /* type for the 2nd-level pointers */
261 typedef hist2d
* hist3d
; /* type for top-level pointer */
264 /* Declarations for Floyd-Steinberg dithering.
266 * Errors are accumulated into the array fserrors[], at a resolution of
267 * 1/16th of a pixel count. The error at a given pixel is propagated
268 * to its not-yet-processed neighbors using the standard F-S fractions,
271 * We work left-to-right on even rows, right-to-left on odd rows.
273 * We can get away with a single array (holding one row's worth of errors)
274 * by using it to store the current row's errors at pixel columns not yet
275 * processed, but the next row's errors at columns already processed. We
276 * need only a few extra variables to hold the errors immediately around the
277 * current column. (If we are lucky, those variables are in registers, but
278 * even if not, they're probably cheaper to access than array elements are.)
280 * The fserrors[] array has (#columns + 2) entries; the extra entry at
281 * each end saves us from special-casing the first and last pixels.
282 * Each entry is three values long, one value for each color component.
284 * Note: on a wide image, we might not have enough room in a PC's near data
285 * segment to hold the error array; so it is allocated with alloc_large.
288 #if BITS_IN_JSAMPLE == 8
289 typedef INT16 FSERROR
; /* 16 bits should be enough */
290 typedef int LOCFSERROR
; /* use 'int' for calculation temps */
292 typedef INT32 FSERROR
; /* may need more than 16 bits */
293 typedef INT32 LOCFSERROR
; /* be sure calculation temps are big enough */
296 typedef FSERROR
*FSERRPTR
; /* pointer to error array (in storage!) */
299 /* Private subobject */
304 void (*finish_pass
)(j_decompress_ptr
);
305 void (*color_quantize
)(j_decompress_ptr
, JSAMPARRAY
, JSAMPARRAY
, int);
306 void (*start_pass
)(j_decompress_ptr
, bool);
307 void (*new_color_map
)(j_decompress_ptr
);
310 /* Space for the eventually created colormap is stashed here */
311 JSAMPARRAY sv_colormap
; /* colormap allocated at init time */
312 int desired
; /* desired # of colors = size of colormap */
314 /* Variables for accumulating image statistics */
315 hist3d histogram
; /* pointer to the histogram */
317 bool needs_zeroed
; /* true if next pass must zero histogram */
319 /* Variables for Floyd-Steinberg dithering */
320 FSERRPTR fserrors
; /* accumulated errors */
321 bool on_odd_row
; /* flag to remember which row we are on */
322 int * error_limiter
; /* table for clamping the applied error */
325 typedef my_cquantizer
* my_cquantize_ptr
;
329 * Prescan some rows of pixels.
330 * In this module the prescan simply updates the histogram, which has been
331 * initialized to zeroes by start_pass.
332 * An output_buf parameter is required by the method signature, but no data
333 * is actually output (in fact the buffer controller is probably passing a
338 prescan_quantize (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
339 JSAMPARRAY
WXUNUSED(output_buf
), int num_rows
)
341 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
342 register JSAMPROW ptr
;
343 register histptr histp
;
344 register hist3d histogram
= cquantize
->histogram
;
347 JDIMENSION width
= cinfo
->output_width
;
349 for (row
= 0; row
< num_rows
; row
++) {
350 ptr
= input_buf
[row
];
351 for (col
= width
; col
> 0; col
--) {
355 /* get pixel value and index into the histogram */
356 histp
= & histogram
[GETJSAMPLE(ptr
[0]) >> C0_SHIFT
]
357 [GETJSAMPLE(ptr
[1]) >> C1_SHIFT
]
358 [GETJSAMPLE(ptr
[2]) >> C2_SHIFT
];
359 /* increment, check for overflow and undo increment if so. */
370 * Next we have the really interesting routines: selection of a colormap
371 * given the completed histogram.
372 * These routines work with a list of "boxes", each representing a rectangular
373 * subset of the input color space (to histogram precision).
377 /* The bounds of the box (inclusive); expressed as histogram indexes */
381 /* The volume (actually 2-norm) of the box */
383 /* The number of nonzero histogram cells within this box */
387 typedef box
* boxptr
;
391 find_biggest_color_pop (boxptr boxlist
, int numboxes
)
392 /* Find the splittable box with the largest color population */
393 /* Returns NULL if no splittable boxes remain */
395 register boxptr boxp
;
397 register long maxc
= 0;
400 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
401 if (boxp
->colorcount
> maxc
&& boxp
->volume
> 0) {
403 maxc
= boxp
->colorcount
;
411 find_biggest_volume (boxptr boxlist
, int numboxes
)
412 /* Find the splittable box with the largest (scaled) volume */
413 /* Returns NULL if no splittable boxes remain */
415 register boxptr boxp
;
417 register INT32 maxv
= 0;
420 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
421 if (boxp
->volume
> maxv
) {
431 update_box (j_decompress_ptr cinfo
, boxptr boxp
)
432 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
433 /* and recompute its volume and population */
435 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
436 hist3d histogram
= cquantize
->histogram
;
439 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
440 INT32 dist0
,dist1
,dist2
;
443 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
444 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
445 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
448 for (c0
= c0min
; c0
<= c0max
; c0
++)
449 for (c1
= c1min
; c1
<= c1max
; c1
++) {
450 histp
= & histogram
[c0
][c1
][c2min
];
451 for (c2
= c2min
; c2
<= c2max
; c2
++)
453 boxp
->c0min
= c0min
= c0
;
459 for (c0
= c0max
; c0
>= c0min
; c0
--)
460 for (c1
= c1min
; c1
<= c1max
; c1
++) {
461 histp
= & histogram
[c0
][c1
][c2min
];
462 for (c2
= c2min
; c2
<= c2max
; c2
++)
464 boxp
->c0max
= c0max
= c0
;
470 for (c1
= c1min
; c1
<= c1max
; c1
++)
471 for (c0
= c0min
; c0
<= c0max
; c0
++) {
472 histp
= & histogram
[c0
][c1
][c2min
];
473 for (c2
= c2min
; c2
<= c2max
; c2
++)
475 boxp
->c1min
= c1min
= c1
;
481 for (c1
= c1max
; c1
>= c1min
; c1
--)
482 for (c0
= c0min
; c0
<= c0max
; c0
++) {
483 histp
= & histogram
[c0
][c1
][c2min
];
484 for (c2
= c2min
; c2
<= c2max
; c2
++)
486 boxp
->c1max
= c1max
= c1
;
492 for (c2
= c2min
; c2
<= c2max
; c2
++)
493 for (c0
= c0min
; c0
<= c0max
; c0
++) {
494 histp
= & histogram
[c0
][c1min
][c2
];
495 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
497 boxp
->c2min
= c2min
= c2
;
503 for (c2
= c2max
; c2
>= c2min
; c2
--)
504 for (c0
= c0min
; c0
<= c0max
; c0
++) {
505 histp
= & histogram
[c0
][c1min
][c2
];
506 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
508 boxp
->c2max
= c2max
= c2
;
514 /* Update box volume.
515 * We use 2-norm rather than real volume here; this biases the method
516 * against making long narrow boxes, and it has the side benefit that
517 * a box is splittable iff norm > 0.
518 * Since the differences are expressed in histogram-cell units,
519 * we have to shift back to JSAMPLE units to get consistent distances;
520 * after which, we scale according to the selected distance scale factors.
522 dist0
= ((c0max
- c0min
) << C0_SHIFT
) * C0_SCALE
;
523 dist1
= ((c1max
- c1min
) << C1_SHIFT
) * C1_SCALE
;
524 dist2
= ((c2max
- c2min
) << C2_SHIFT
) * C2_SCALE
;
525 boxp
->volume
= dist0
*dist0
+ dist1
*dist1
+ dist2
*dist2
;
527 /* Now scan remaining volume of box and compute population */
529 for (c0
= c0min
; c0
<= c0max
; c0
++)
530 for (c1
= c1min
; c1
<= c1max
; c1
++) {
531 histp
= & histogram
[c0
][c1
][c2min
];
532 for (c2
= c2min
; c2
<= c2max
; c2
++, histp
++)
537 boxp
->colorcount
= ccount
;
542 median_cut (j_decompress_ptr cinfo
, boxptr boxlist
, int numboxes
,
544 /* Repeatedly select and split the largest box until we have enough boxes */
548 register boxptr b1
,b2
;
550 while (numboxes
< desired_colors
) {
551 /* Select box to split.
552 * Current algorithm: by population for first half, then by volume.
554 if ((numboxes
*2) <= desired_colors
) {
555 b1
= find_biggest_color_pop(boxlist
, numboxes
);
557 b1
= find_biggest_volume(boxlist
, numboxes
);
559 if (b1
== NULL
) /* no splittable boxes left! */
561 b2
= &boxlist
[numboxes
]; /* where new box will go */
562 /* Copy the color bounds to the new box. */
563 b2
->c0max
= b1
->c0max
; b2
->c1max
= b1
->c1max
; b2
->c2max
= b1
->c2max
;
564 b2
->c0min
= b1
->c0min
; b2
->c1min
= b1
->c1min
; b2
->c2min
= b1
->c2min
;
565 /* Choose which axis to split the box on.
566 * Current algorithm: longest scaled axis.
567 * See notes in update_box about scaling distances.
569 c0
= ((b1
->c0max
- b1
->c0min
) << C0_SHIFT
) * C0_SCALE
;
570 c1
= ((b1
->c1max
- b1
->c1min
) << C1_SHIFT
) * C1_SCALE
;
571 c2
= ((b1
->c2max
- b1
->c2min
) << C2_SHIFT
) * C2_SCALE
;
572 /* We want to break any ties in favor of green, then red, blue last.
573 * This code does the right thing for R,G,B or B,G,R color orders only.
575 #if defined(__VISAGECPP__)
579 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
580 if (c2
> cmax
) { n
= 2; }
583 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
584 if (c0
> cmax
) { n
= 0; }
591 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
592 if (c2
> cmax
) { n
= 2; }
595 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
596 if (c0
> cmax
) { n
= 0; }
600 /* Choose split point along selected axis, and update box bounds.
601 * Current algorithm: split at halfway point.
602 * (Since the box has been shrunk to minimum volume,
603 * any split will produce two nonempty subboxes.)
604 * Note that lb value is max for lower box, so must be < old max.
608 lb
= (b1
->c0max
+ b1
->c0min
) / 2;
613 lb
= (b1
->c1max
+ b1
->c1min
) / 2;
618 lb
= (b1
->c2max
+ b1
->c2min
) / 2;
623 /* Update stats for boxes */
624 update_box(cinfo
, b1
);
625 update_box(cinfo
, b2
);
633 compute_color (j_decompress_ptr cinfo
, boxptr boxp
, int icolor
)
634 /* Compute representative color for a box, put it in colormap[icolor] */
636 /* Current algorithm: mean weighted by pixels (not colors) */
637 /* Note it is important to get the rounding correct! */
638 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
639 hist3d histogram
= cquantize
->histogram
;
642 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
649 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
650 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
651 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
653 for (c0
= c0min
; c0
<= c0max
; c0
++)
654 for (c1
= c1min
; c1
<= c1max
; c1
++) {
655 histp
= & histogram
[c0
][c1
][c2min
];
656 for (c2
= c2min
; c2
<= c2max
; c2
++) {
657 if ((count
= *histp
++) != 0) {
659 c0total
+= ((c0
<< C0_SHIFT
) + ((1<<C0_SHIFT
)>>1)) * count
;
660 c1total
+= ((c1
<< C1_SHIFT
) + ((1<<C1_SHIFT
)>>1)) * count
;
661 c2total
+= ((c2
<< C2_SHIFT
) + ((1<<C2_SHIFT
)>>1)) * count
;
666 cinfo
->colormap
[0][icolor
] = (JSAMPLE
) ((c0total
+ (total
>>1)) / total
);
667 cinfo
->colormap
[1][icolor
] = (JSAMPLE
) ((c1total
+ (total
>>1)) / total
);
668 cinfo
->colormap
[2][icolor
] = (JSAMPLE
) ((c2total
+ (total
>>1)) / total
);
673 select_colors (j_decompress_ptr cinfo
, int desired_colors
)
674 /* Master routine for color selection */
680 /* Allocate workspace for box list */
681 boxlist
= (boxptr
) malloc(desired_colors
* sizeof(box
));
682 /* Initialize one box containing whole space */
684 boxlist
[0].c0min
= 0;
685 boxlist
[0].c0max
= MAXJSAMPLE
>> C0_SHIFT
;
686 boxlist
[0].c1min
= 0;
687 boxlist
[0].c1max
= MAXJSAMPLE
>> C1_SHIFT
;
688 boxlist
[0].c2min
= 0;
689 boxlist
[0].c2max
= MAXJSAMPLE
>> C2_SHIFT
;
690 /* Shrink it to actually-used volume and set its statistics */
691 update_box(cinfo
, & boxlist
[0]);
692 /* Perform median-cut to produce final box list */
693 numboxes
= median_cut(cinfo
, boxlist
, numboxes
, desired_colors
);
694 /* Compute the representative color for each box, fill colormap */
695 for (i
= 0; i
< numboxes
; i
++)
696 compute_color(cinfo
, & boxlist
[i
], i
);
697 cinfo
->actual_number_of_colors
= numboxes
;
699 free(boxlist
); //FIXME?? I don't know if this is correct - VS
704 * These routines are concerned with the time-critical task of mapping input
705 * colors to the nearest color in the selected colormap.
707 * We re-use the histogram space as an "inverse color map", essentially a
708 * cache for the results of nearest-color searches. All colors within a
709 * histogram cell will be mapped to the same colormap entry, namely the one
710 * closest to the cell's center. This may not be quite the closest entry to
711 * the actual input color, but it's almost as good. A zero in the cache
712 * indicates we haven't found the nearest color for that cell yet; the array
713 * is cleared to zeroes before starting the mapping pass. When we find the
714 * nearest color for a cell, its colormap index plus one is recorded in the
715 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
716 * when they need to use an unfilled entry in the cache.
718 * Our method of efficiently finding nearest colors is based on the "locally
719 * sorted search" idea described by Heckbert and on the incremental distance
720 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
721 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
722 * the distances from a given colormap entry to each cell of the histogram can
723 * be computed quickly using an incremental method: the differences between
724 * distances to adjacent cells themselves differ by a constant. This allows a
725 * fairly fast implementation of the "brute force" approach of computing the
726 * distance from every colormap entry to every histogram cell. Unfortunately,
727 * it needs a work array to hold the best-distance-so-far for each histogram
728 * cell (because the inner loop has to be over cells, not colormap entries).
729 * The work array elements have to be INT32s, so the work array would need
730 * 256Kb at our recommended precision. This is not feasible in DOS machines.
732 * To get around these problems, we apply Thomas' method to compute the
733 * nearest colors for only the cells within a small subbox of the histogram.
734 * The work array need be only as big as the subbox, so the memory usage
735 * problem is solved. Furthermore, we need not fill subboxes that are never
736 * referenced in pass2; many images use only part of the color gamut, so a
737 * fair amount of work is saved. An additional advantage of this
738 * approach is that we can apply Heckbert's locality criterion to quickly
739 * eliminate colormap entries that are far away from the subbox; typically
740 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
741 * and we need not compute their distances to individual cells in the subbox.
742 * The speed of this approach is heavily influenced by the subbox size: too
743 * small means too much overhead, too big loses because Heckbert's criterion
744 * can't eliminate as many colormap entries. Empirically the best subbox
745 * size seems to be about 1/512th of the histogram (1/8th in each direction).
747 * Thomas' article also describes a refined method which is asymptotically
748 * faster than the brute-force method, but it is also far more complex and
749 * cannot efficiently be applied to small subboxes. It is therefore not
750 * useful for programs intended to be portable to DOS machines. On machines
751 * with plenty of memory, filling the whole histogram in one shot with Thomas'
752 * refined method might be faster than the present code --- but then again,
753 * it might not be any faster, and it's certainly more complicated.
757 /* log2(histogram cells in update box) for each axis; this can be adjusted */
758 #define BOX_C0_LOG (HIST_C0_BITS-3)
759 #define BOX_C1_LOG (HIST_C1_BITS-3)
760 #define BOX_C2_LOG (HIST_C2_BITS-3)
762 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
763 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
764 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
766 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
767 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
768 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
772 * The next three routines implement inverse colormap filling. They could
773 * all be folded into one big routine, but splitting them up this way saves
774 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
775 * and may allow some compilers to produce better code by registerizing more
776 * inner-loop variables.
780 find_nearby_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
782 /* Locate the colormap entries close enough to an update box to be candidates
783 * for the nearest entry to some cell(s) in the update box. The update box
784 * is specified by the center coordinates of its first cell. The number of
785 * candidate colormap entries is returned, and their colormap indexes are
786 * placed in colorlist[].
787 * This routine uses Heckbert's "locally sorted search" criterion to select
788 * the colors that need further consideration.
791 int numcolors
= cinfo
->actual_number_of_colors
;
792 int maxc0
, maxc1
, maxc2
;
793 int centerc0
, centerc1
, centerc2
;
795 INT32 minmaxdist
, min_dist
, max_dist
, tdist
;
796 INT32 mindist
[MAXNUMCOLORS
]; /* min distance to colormap entry i */
798 /* Compute true coordinates of update box's upper corner and center.
799 * Actually we compute the coordinates of the center of the upper-corner
800 * histogram cell, which are the upper bounds of the volume we care about.
801 * Note that since ">>" rounds down, the "center" values may be closer to
802 * min than to max; hence comparisons to them must be "<=", not "<".
804 maxc0
= minc0
+ ((1 << BOX_C0_SHIFT
) - (1 << C0_SHIFT
));
805 centerc0
= (minc0
+ maxc0
) >> 1;
806 maxc1
= minc1
+ ((1 << BOX_C1_SHIFT
) - (1 << C1_SHIFT
));
807 centerc1
= (minc1
+ maxc1
) >> 1;
808 maxc2
= minc2
+ ((1 << BOX_C2_SHIFT
) - (1 << C2_SHIFT
));
809 centerc2
= (minc2
+ maxc2
) >> 1;
811 /* For each color in colormap, find:
812 * 1. its minimum squared-distance to any point in the update box
813 * (zero if color is within update box);
814 * 2. its maximum squared-distance to any point in the update box.
815 * Both of these can be found by considering only the corners of the box.
816 * We save the minimum distance for each color in mindist[];
817 * only the smallest maximum distance is of interest.
819 minmaxdist
= 0x7FFFFFFFL
;
821 for (i
= 0; i
< numcolors
; i
++) {
822 /* We compute the squared-c0-distance term, then add in the other two. */
823 x
= GETJSAMPLE(cinfo
->colormap
[0][i
]);
825 tdist
= (x
- minc0
) * C0_SCALE
;
826 min_dist
= tdist
*tdist
;
827 tdist
= (x
- maxc0
) * C0_SCALE
;
828 max_dist
= tdist
*tdist
;
829 } else if (x
> maxc0
) {
830 tdist
= (x
- maxc0
) * C0_SCALE
;
831 min_dist
= tdist
*tdist
;
832 tdist
= (x
- minc0
) * C0_SCALE
;
833 max_dist
= tdist
*tdist
;
835 /* within cell range so no contribution to min_dist */
838 tdist
= (x
- maxc0
) * C0_SCALE
;
839 max_dist
= tdist
*tdist
;
841 tdist
= (x
- minc0
) * C0_SCALE
;
842 max_dist
= tdist
*tdist
;
846 x
= GETJSAMPLE(cinfo
->colormap
[1][i
]);
848 tdist
= (x
- minc1
) * C1_SCALE
;
849 min_dist
+= tdist
*tdist
;
850 tdist
= (x
- maxc1
) * C1_SCALE
;
851 max_dist
+= tdist
*tdist
;
852 } else if (x
> maxc1
) {
853 tdist
= (x
- maxc1
) * C1_SCALE
;
854 min_dist
+= tdist
*tdist
;
855 tdist
= (x
- minc1
) * C1_SCALE
;
856 max_dist
+= tdist
*tdist
;
858 /* within cell range so no contribution to min_dist */
860 tdist
= (x
- maxc1
) * C1_SCALE
;
861 max_dist
+= tdist
*tdist
;
863 tdist
= (x
- minc1
) * C1_SCALE
;
864 max_dist
+= tdist
*tdist
;
868 x
= GETJSAMPLE(cinfo
->colormap
[2][i
]);
870 tdist
= (x
- minc2
) * C2_SCALE
;
871 min_dist
+= tdist
*tdist
;
872 tdist
= (x
- maxc2
) * C2_SCALE
;
873 max_dist
+= tdist
*tdist
;
874 } else if (x
> maxc2
) {
875 tdist
= (x
- maxc2
) * C2_SCALE
;
876 min_dist
+= tdist
*tdist
;
877 tdist
= (x
- minc2
) * C2_SCALE
;
878 max_dist
+= tdist
*tdist
;
880 /* within cell range so no contribution to min_dist */
882 tdist
= (x
- maxc2
) * C2_SCALE
;
883 max_dist
+= tdist
*tdist
;
885 tdist
= (x
- minc2
) * C2_SCALE
;
886 max_dist
+= tdist
*tdist
;
890 mindist
[i
] = min_dist
; /* save away the results */
891 if (max_dist
< minmaxdist
)
892 minmaxdist
= max_dist
;
895 /* Now we know that no cell in the update box is more than minmaxdist
896 * away from some colormap entry. Therefore, only colors that are
897 * within minmaxdist of some part of the box need be considered.
900 for (i
= 0; i
< numcolors
; i
++) {
901 if (mindist
[i
] <= minmaxdist
)
902 colorlist
[ncolors
++] = (JSAMPLE
) i
;
909 find_best_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
910 int numcolors
, JSAMPLE colorlist
[], JSAMPLE bestcolor
[])
911 /* Find the closest colormap entry for each cell in the update box,
912 * given the list of candidate colors prepared by find_nearby_colors.
913 * Return the indexes of the closest entries in the bestcolor[] array.
914 * This routine uses Thomas' incremental distance calculation method to
915 * find the distance from a colormap entry to successive cells in the box.
920 register INT32
* bptr
; /* pointer into bestdist[] array */
921 JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
922 INT32 dist0
, dist1
; /* initial distance values */
923 register INT32 dist2
; /* current distance in inner loop */
924 INT32 xx0
, xx1
; /* distance increments */
926 INT32 inc0
, inc1
, inc2
; /* initial values for increments */
927 /* This array holds the distance to the nearest-so-far color for each cell */
928 INT32 bestdist
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
930 /* Initialize best-distance for each cell of the update box */
932 for (i
= BOX_C0_ELEMS
*BOX_C1_ELEMS
*BOX_C2_ELEMS
-1; i
>= 0; i
--)
933 *bptr
++ = 0x7FFFFFFFL
;
935 /* For each color selected by find_nearby_colors,
936 * compute its distance to the center of each cell in the box.
937 * If that's less than best-so-far, update best distance and color number.
940 /* Nominal steps between cell centers ("x" in Thomas article) */
941 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
942 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
943 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
945 for (i
= 0; i
< numcolors
; i
++) {
946 icolor
= GETJSAMPLE(colorlist
[i
]);
947 /* Compute (square of) distance from minc0/c1/c2 to this color */
948 inc0
= (minc0
- GETJSAMPLE(cinfo
->colormap
[0][icolor
])) * C0_SCALE
;
950 inc1
= (minc1
- GETJSAMPLE(cinfo
->colormap
[1][icolor
])) * C1_SCALE
;
952 inc2
= (minc2
- GETJSAMPLE(cinfo
->colormap
[2][icolor
])) * C2_SCALE
;
954 /* Form the initial difference increments */
955 inc0
= inc0
* (2 * STEP_C0
) + STEP_C0
* STEP_C0
;
956 inc1
= inc1
* (2 * STEP_C1
) + STEP_C1
* STEP_C1
;
957 inc2
= inc2
* (2 * STEP_C2
) + STEP_C2
* STEP_C2
;
958 /* Now loop over all cells in box, updating distance per Thomas method */
962 for (ic0
= BOX_C0_ELEMS
-1; ic0
>= 0; ic0
--) {
965 for (ic1
= BOX_C1_ELEMS
-1; ic1
>= 0; ic1
--) {
968 for (ic2
= BOX_C2_ELEMS
-1; ic2
>= 0; ic2
--) {
971 *cptr
= (JSAMPLE
) icolor
;
974 xx2
+= 2 * STEP_C2
* STEP_C2
;
979 xx1
+= 2 * STEP_C1
* STEP_C1
;
982 xx0
+= 2 * STEP_C0
* STEP_C0
;
989 fill_inverse_cmap (j_decompress_ptr cinfo
, int c0
, int c1
, int c2
)
990 /* Fill the inverse-colormap entries in the update box that contains */
991 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
992 /* we can fill as many others as we wish.) */
994 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
995 hist3d histogram
= cquantize
->histogram
;
996 int minc0
, minc1
, minc2
; /* lower left corner of update box */
998 register JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
999 register histptr cachep
; /* pointer into main cache array */
1000 /* This array lists the candidate colormap indexes. */
1001 JSAMPLE colorlist
[MAXNUMCOLORS
];
1002 int numcolors
; /* number of candidate colors */
1003 /* This array holds the actually closest colormap index for each cell. */
1004 JSAMPLE bestcolor
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
1006 /* Convert cell coordinates to update box ID */
1011 /* Compute true coordinates of update box's origin corner.
1012 * Actually we compute the coordinates of the center of the corner
1013 * histogram cell, which are the lower bounds of the volume we care about.
1015 minc0
= (c0
<< BOX_C0_SHIFT
) + ((1 << C0_SHIFT
) >> 1);
1016 minc1
= (c1
<< BOX_C1_SHIFT
) + ((1 << C1_SHIFT
) >> 1);
1017 minc2
= (c2
<< BOX_C2_SHIFT
) + ((1 << C2_SHIFT
) >> 1);
1019 /* Determine which colormap entries are close enough to be candidates
1020 * for the nearest entry to some cell in the update box.
1022 numcolors
= find_nearby_colors(cinfo
, minc0
, minc1
, minc2
, colorlist
);
1024 /* Determine the actually nearest colors. */
1025 find_best_colors(cinfo
, minc0
, minc1
, minc2
, numcolors
, colorlist
,
1028 /* Save the best color numbers (plus 1) in the main cache array */
1029 c0
<<= BOX_C0_LOG
; /* convert ID back to base cell indexes */
1033 for (ic0
= 0; ic0
< BOX_C0_ELEMS
; ic0
++) {
1034 for (ic1
= 0; ic1
< BOX_C1_ELEMS
; ic1
++) {
1035 cachep
= & histogram
[c0
+ic0
][c1
+ic1
][c2
];
1036 for (ic2
= 0; ic2
< BOX_C2_ELEMS
; ic2
++) {
1037 *cachep
++ = (histcell
) (GETJSAMPLE(*cptr
++) + 1);
1045 * Map some rows of pixels to the output colormapped representation.
1049 pass2_no_dither (j_decompress_ptr cinfo
,
1050 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
1051 /* This version performs no dithering */
1053 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1054 hist3d histogram
= cquantize
->histogram
;
1055 register JSAMPROW inptr
, outptr
;
1056 register histptr cachep
;
1057 register int c0
, c1
, c2
;
1060 JDIMENSION width
= cinfo
->output_width
;
1062 for (row
= 0; row
< num_rows
; row
++) {
1063 inptr
= input_buf
[row
];
1064 outptr
= output_buf
[row
];
1065 for (col
= width
; col
> 0; col
--) {
1066 /* get pixel value and index into the cache */
1067 c0
= GETJSAMPLE(*inptr
++) >> C0_SHIFT
;
1068 c1
= GETJSAMPLE(*inptr
++) >> C1_SHIFT
;
1069 c2
= GETJSAMPLE(*inptr
++) >> C2_SHIFT
;
1070 cachep
= & histogram
[c0
][c1
][c2
];
1071 /* If we have not seen this color before, find nearest colormap entry */
1072 /* and update the cache */
1074 fill_inverse_cmap(cinfo
, c0
,c1
,c2
);
1075 /* Now emit the colormap index for this cell */
1076 *outptr
++ = (JSAMPLE
) (*cachep
- 1);
1083 pass2_fs_dither (j_decompress_ptr cinfo
,
1084 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
1085 /* This version performs Floyd-Steinberg dithering */
1087 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1088 hist3d histogram
= cquantize
->histogram
;
1089 register LOCFSERROR cur0
, cur1
, cur2
; /* current error or pixel value */
1090 LOCFSERROR belowerr0
, belowerr1
, belowerr2
; /* error for pixel below cur */
1091 LOCFSERROR bpreverr0
, bpreverr1
, bpreverr2
; /* error for below/prev col */
1092 register FSERRPTR errorptr
; /* => fserrors[] at column before current */
1093 JSAMPROW inptr
; /* => current input pixel */
1094 JSAMPROW outptr
; /* => current output pixel */
1096 int dir
; /* +1 or -1 depending on direction */
1097 int dir3
; /* 3*dir, for advancing inptr & errorptr */
1100 JDIMENSION width
= cinfo
->output_width
;
1101 JSAMPLE
*range_limit
= cinfo
->sample_range_limit
;
1102 int *error_limit
= cquantize
->error_limiter
;
1103 JSAMPROW colormap0
= cinfo
->colormap
[0];
1104 JSAMPROW colormap1
= cinfo
->colormap
[1];
1105 JSAMPROW colormap2
= cinfo
->colormap
[2];
1108 for (row
= 0; row
< num_rows
; row
++) {
1109 inptr
= input_buf
[row
];
1110 outptr
= output_buf
[row
];
1111 if (cquantize
->on_odd_row
) {
1112 /* work right to left in this row */
1113 inptr
+= (width
-1) * 3; /* so point to rightmost pixel */
1117 errorptr
= cquantize
->fserrors
+ (width
+1)*3; /* => entry after last column */
1118 cquantize
->on_odd_row
= FALSE
; /* flip for next time */
1120 /* work left to right in this row */
1123 errorptr
= cquantize
->fserrors
; /* => entry before first real column */
1124 cquantize
->on_odd_row
= TRUE
; /* flip for next time */
1126 /* Preset error values: no error propagated to first pixel from left */
1127 cur0
= cur1
= cur2
= 0;
1128 /* and no error propagated to row below yet */
1129 belowerr0
= belowerr1
= belowerr2
= 0;
1130 bpreverr0
= bpreverr1
= bpreverr2
= 0;
1132 for (col
= width
; col
> 0; col
--) {
1133 /* curN holds the error propagated from the previous pixel on the
1134 * current line. Add the error propagated from the previous line
1135 * to form the complete error correction term for this pixel, and
1136 * round the error term (which is expressed * 16) to an integer.
1137 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1138 * for either sign of the error value.
1139 * Note: errorptr points to *previous* column's array entry.
1141 cur0
= RIGHT_SHIFT(cur0
+ errorptr
[dir3
+0] + 8, 4);
1142 cur1
= RIGHT_SHIFT(cur1
+ errorptr
[dir3
+1] + 8, 4);
1143 cur2
= RIGHT_SHIFT(cur2
+ errorptr
[dir3
+2] + 8, 4);
1144 /* Limit the error using transfer function set by init_error_limit.
1145 * See comments with init_error_limit for rationale.
1147 cur0
= error_limit
[cur0
];
1148 cur1
= error_limit
[cur1
];
1149 cur2
= error_limit
[cur2
];
1150 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1151 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1152 * this sets the required size of the range_limit array.
1154 cur0
+= GETJSAMPLE(inptr
[0]);
1155 cur1
+= GETJSAMPLE(inptr
[1]);
1156 cur2
+= GETJSAMPLE(inptr
[2]);
1157 cur0
= GETJSAMPLE(range_limit
[cur0
]);
1158 cur1
= GETJSAMPLE(range_limit
[cur1
]);
1159 cur2
= GETJSAMPLE(range_limit
[cur2
]);
1160 /* Index into the cache with adjusted pixel value */
1161 cachep
= & histogram
[cur0
>>C0_SHIFT
][cur1
>>C1_SHIFT
][cur2
>>C2_SHIFT
];
1162 /* If we have not seen this color before, find nearest colormap */
1163 /* entry and update the cache */
1165 fill_inverse_cmap(cinfo
, cur0
>>C0_SHIFT
,cur1
>>C1_SHIFT
,cur2
>>C2_SHIFT
);
1166 /* Now emit the colormap index for this cell */
1167 { register int pixcode
= *cachep
- 1;
1168 *outptr
= (JSAMPLE
) pixcode
;
1169 /* Compute representation error for this pixel */
1170 cur0
-= GETJSAMPLE(colormap0
[pixcode
]);
1171 cur1
-= GETJSAMPLE(colormap1
[pixcode
]);
1172 cur2
-= GETJSAMPLE(colormap2
[pixcode
]);
1174 /* Compute error fractions to be propagated to adjacent pixels.
1175 * Add these into the running sums, and simultaneously shift the
1176 * next-line error sums left by 1 column.
1178 { register LOCFSERROR bnexterr
, delta
;
1180 bnexterr
= cur0
; /* Process component 0 */
1182 cur0
+= delta
; /* form error * 3 */
1183 errorptr
[0] = (FSERROR
) (bpreverr0
+ cur0
);
1184 cur0
+= delta
; /* form error * 5 */
1185 bpreverr0
= belowerr0
+ cur0
;
1186 belowerr0
= bnexterr
;
1187 cur0
+= delta
; /* form error * 7 */
1188 bnexterr
= cur1
; /* Process component 1 */
1190 cur1
+= delta
; /* form error * 3 */
1191 errorptr
[1] = (FSERROR
) (bpreverr1
+ cur1
);
1192 cur1
+= delta
; /* form error * 5 */
1193 bpreverr1
= belowerr1
+ cur1
;
1194 belowerr1
= bnexterr
;
1195 cur1
+= delta
; /* form error * 7 */
1196 bnexterr
= cur2
; /* Process component 2 */
1198 cur2
+= delta
; /* form error * 3 */
1199 errorptr
[2] = (FSERROR
) (bpreverr2
+ cur2
);
1200 cur2
+= delta
; /* form error * 5 */
1201 bpreverr2
= belowerr2
+ cur2
;
1202 belowerr2
= bnexterr
;
1203 cur2
+= delta
; /* form error * 7 */
1205 /* At this point curN contains the 7/16 error value to be propagated
1206 * to the next pixel on the current line, and all the errors for the
1207 * next line have been shifted over. We are therefore ready to move on.
1209 inptr
+= dir3
; /* Advance pixel pointers to next column */
1211 errorptr
+= dir3
; /* advance errorptr to current column */
1213 /* Post-loop cleanup: we must unload the final error values into the
1214 * final fserrors[] entry. Note we need not unload belowerrN because
1215 * it is for the dummy column before or after the actual array.
1217 errorptr
[0] = (FSERROR
) bpreverr0
; /* unload prev errs into array */
1218 errorptr
[1] = (FSERROR
) bpreverr1
;
1219 errorptr
[2] = (FSERROR
) bpreverr2
;
1225 * Initialize the error-limiting transfer function (lookup table).
1226 * The raw F-S error computation can potentially compute error values of up to
1227 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1228 * much less, otherwise obviously wrong pixels will be created. (Typical
1229 * effects include weird fringes at color-area boundaries, isolated bright
1230 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1231 * is to ensure that the "corners" of the color cube are allocated as output
1232 * colors; then repeated errors in the same direction cannot cause cascading
1233 * error buildup. However, that only prevents the error from getting
1234 * completely out of hand; Aaron Giles reports that error limiting improves
1235 * the results even with corner colors allocated.
1236 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1237 * well, but the smoother transfer function used below is even better. Thanks
1238 * to Aaron Giles for this idea.
1242 init_error_limit (j_decompress_ptr cinfo
)
1243 /* Allocate and fill in the error_limiter table */
1245 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1249 table
= (int *) malloc((MAXJSAMPLE
*2+1) * sizeof(int));
1250 table
+= MAXJSAMPLE
; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1251 cquantize
->error_limiter
= table
;
1253 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1254 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1256 for (in
= 0; in
< STEPSIZE
; in
++, out
++) {
1257 table
[in
] = out
; table
[-in
] = -out
;
1259 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1260 for (; in
< STEPSIZE
*3; in
++, out
+= (in
&1) ? 0 : 1) {
1261 table
[in
] = out
; table
[-in
] = -out
;
1263 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1264 for (; in
<= MAXJSAMPLE
; in
++) {
1265 table
[in
] = out
; table
[-in
] = -out
;
1272 * Finish up at the end of each pass.
1276 finish_pass1 (j_decompress_ptr cinfo
)
1278 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1280 /* Select the representative colors and fill in cinfo->colormap */
1281 cinfo
->colormap
= cquantize
->sv_colormap
;
1282 select_colors(cinfo
, cquantize
->desired
);
1283 /* Force next pass to zero the color index table */
1284 cquantize
->needs_zeroed
= TRUE
;
1289 finish_pass2 (j_decompress_ptr
WXUNUSED(cinfo
))
1296 * Initialize for each processing pass.
1300 start_pass_2_quant (j_decompress_ptr cinfo
, bool is_pre_scan
)
1302 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1303 hist3d histogram
= cquantize
->histogram
;
1307 /* Set up method pointers */
1308 cquantize
->pub
.color_quantize
= prescan_quantize
;
1309 cquantize
->pub
.finish_pass
= finish_pass1
;
1310 cquantize
->needs_zeroed
= TRUE
; /* Always zero histogram */
1312 /* Set up method pointers */
1313 cquantize
->pub
.color_quantize
= pass2_fs_dither
;
1314 cquantize
->pub
.finish_pass
= finish_pass2
;
1316 /* Make sure color count is acceptable */
1317 i
= cinfo
->actual_number_of_colors
;
1320 size_t arraysize
= (size_t) ((cinfo
->output_width
+ 2) *
1321 (3 * sizeof(FSERROR
)));
1322 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1323 if (cquantize
->fserrors
== NULL
)
1324 cquantize
->fserrors
= (INT16
*) malloc(arraysize
);
1325 /* Initialize the propagated errors to zero. */
1326 memset((void *) cquantize
->fserrors
, 0, arraysize
);
1327 /* Make the error-limit table if we didn't already. */
1328 if (cquantize
->error_limiter
== NULL
)
1329 init_error_limit(cinfo
);
1330 cquantize
->on_odd_row
= FALSE
;
1334 /* Zero the histogram or inverse color map, if necessary */
1335 if (cquantize
->needs_zeroed
) {
1336 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1337 memset((void *) histogram
[i
], 0,
1338 HIST_C1_ELEMS
*HIST_C2_ELEMS
* sizeof(histcell
));
1340 cquantize
->needs_zeroed
= FALSE
;
1346 * Switch to a new external colormap between output passes.
1350 new_color_map_2_quant (j_decompress_ptr cinfo
)
1352 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1354 /* Reset the inverse color map */
1355 cquantize
->needs_zeroed
= TRUE
;
1360 * Module initialization routine for 2-pass color quantization.
1364 jinit_2pass_quantizer (j_decompress_ptr cinfo
)
1366 my_cquantize_ptr cquantize
;
1369 cquantize
= (my_cquantize_ptr
) malloc(sizeof(my_cquantizer
));
1370 cinfo
->cquantize
= (jpeg_color_quantizer
*) cquantize
;
1371 cquantize
->pub
.start_pass
= start_pass_2_quant
;
1372 cquantize
->pub
.new_color_map
= new_color_map_2_quant
;
1373 cquantize
->fserrors
= NULL
; /* flag optional arrays not allocated */
1374 cquantize
->error_limiter
= NULL
;
1377 /* Allocate the histogram/inverse colormap storage */
1378 cquantize
->histogram
= (hist3d
) malloc(HIST_C0_ELEMS
* sizeof(hist2d
));
1379 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1380 cquantize
->histogram
[i
] = (hist2d
) malloc(HIST_C1_ELEMS
*HIST_C2_ELEMS
* sizeof(histcell
));
1382 cquantize
->needs_zeroed
= TRUE
; /* histogram is garbage now */
1384 /* Allocate storage for the completed colormap, if required.
1385 * We do this now since it is storage and may affect
1386 * the memory manager's space calculations.
1389 /* Make sure color count is acceptable */
1390 int desired
= cinfo
->desired_number_of_colors
;
1392 cquantize
->sv_colormap
= (JSAMPARRAY
) malloc(sizeof(JSAMPROW
) * 3);
1393 cquantize
->sv_colormap
[0] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1394 cquantize
->sv_colormap
[1] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1395 cquantize
->sv_colormap
[2] = (JSAMPROW
) malloc(sizeof(JSAMPLE
) * desired
);
1397 cquantize
->desired
= desired
;
1400 /* Allocate Floyd-Steinberg workspace if necessary.
1401 * This isn't really needed until pass 2, but again it is storage.
1402 * Although we will cope with a later change in dither_mode,
1403 * we do not promise to honor max_memory_to_use if dither_mode changes.
1406 cquantize
->fserrors
= (FSERRPTR
) malloc(
1407 (size_t) ((cinfo
->output_width
+ 2) * (3 * sizeof(FSERROR
))));
1408 /* Might as well create the error-limiting table too. */
1409 init_error_limit(cinfo
);
1423 prepare_range_limit_table (j_decompress_ptr cinfo
)
1424 /* Allocate and fill in the sample_range_limit table */
1429 table
= (JSAMPLE
*) malloc((5 * (MAXJSAMPLE
+1) + CENTERJSAMPLE
) * sizeof(JSAMPLE
));
1430 cinfo
->srl_orig
= table
;
1431 table
+= (MAXJSAMPLE
+1); /* allow negative subscripts of simple table */
1432 cinfo
->sample_range_limit
= table
;
1433 /* First segment of "simple" table: limit[x] = 0 for x < 0 */
1434 memset(table
- (MAXJSAMPLE
+1), 0, (MAXJSAMPLE
+1) * sizeof(JSAMPLE
));
1435 /* Main part of "simple" table: limit[x] = x */
1436 for (i
= 0; i
<= MAXJSAMPLE
; i
++)
1437 table
[i
] = (JSAMPLE
) i
;
1438 table
+= CENTERJSAMPLE
; /* Point to where post-IDCT table starts */
1439 /* End of simple table, rest of first half of post-IDCT table */
1440 for (i
= CENTERJSAMPLE
; i
< 2*(MAXJSAMPLE
+1); i
++)
1441 table
[i
] = MAXJSAMPLE
;
1442 /* Second half of post-IDCT table */
1443 memset(table
+ (2 * (MAXJSAMPLE
+1)), 0,
1444 (2 * (MAXJSAMPLE
+1) - CENTERJSAMPLE
) * sizeof(JSAMPLE
));
1445 memcpy(table
+ (4 * (MAXJSAMPLE
+1) - CENTERJSAMPLE
),
1446 cinfo
->sample_range_limit
, CENTERJSAMPLE
* sizeof(JSAMPLE
));
1456 IMPLEMENT_DYNAMIC_CLASS(wxQuantize
, wxObject
)
1458 void wxQuantize::DoQuantize(unsigned w
, unsigned h
, unsigned char **in_rows
, unsigned char **out_rows
,
1459 unsigned char *palette
, int desiredNoColours
)
1462 my_cquantize_ptr cquantize
;
1464 dec
.output_width
= w
;
1465 dec
.desired_number_of_colors
= desiredNoColours
;
1466 prepare_range_limit_table(&dec
);
1467 jinit_2pass_quantizer(&dec
);
1468 cquantize
= (my_cquantize_ptr
) dec
.cquantize
;
1471 cquantize
->pub
.start_pass(&dec
, TRUE
);
1472 cquantize
->pub
.color_quantize(&dec
, in_rows
, out_rows
, h
);
1473 cquantize
->pub
.finish_pass(&dec
);
1475 cquantize
->pub
.start_pass(&dec
, FALSE
);
1476 cquantize
->pub
.color_quantize(&dec
, in_rows
, out_rows
, h
);
1477 cquantize
->pub
.finish_pass(&dec
);
1480 for (int i
= 0; i
< dec
.desired_number_of_colors
; i
++) {
1481 palette
[3 * i
+ 0] = dec
.colormap
[0][i
];
1482 palette
[3 * i
+ 1] = dec
.colormap
[1][i
];
1483 palette
[3 * i
+ 2] = dec
.colormap
[2][i
];
1486 for (int ii
= 0; ii
< HIST_C0_ELEMS
; ii
++) free(cquantize
->histogram
[ii
]);
1487 free(cquantize
->histogram
);
1488 free(dec
.colormap
[0]);
1489 free(dec
.colormap
[1]);
1490 free(dec
.colormap
[2]);
1494 //free(cquantize->error_limiter);
1495 free((void*)(cquantize
->error_limiter
- MAXJSAMPLE
)); // To reverse what was done to it
1497 free(cquantize
->fserrors
);
1501 // TODO: somehow make use of the Windows system colours, rather than ignoring them for the
1502 // purposes of quantization.
1504 bool wxQuantize::Quantize(const wxImage
& src
, wxImage
& dest
,
1505 wxPalette
** pPalette
,
1506 int desiredNoColours
,
1507 unsigned char** eightBitData
,
1512 int w
= src
.GetWidth();
1513 int h
= src
.GetHeight();
1515 int windowsSystemColourCount
= 20;
1517 int paletteShift
= 0;
1519 // Shift the palette up by the number of Windows system colours,
1521 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1522 paletteShift
= windowsSystemColourCount
;
1524 // Make room for the Windows system colours
1526 if ((flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
) && (desiredNoColours
> (256 - windowsSystemColourCount
)))
1527 desiredNoColours
= 256 - windowsSystemColourCount
;
1530 // create rows info:
1531 unsigned char **rows
= new unsigned char *[h
];
1532 h
= src
.GetHeight(), w
= src
.GetWidth();
1533 unsigned char *imgdt
= src
.GetData();
1534 for (i
= 0; i
< h
; i
++)
1535 rows
[i
] = imgdt
+ 3/*RGB*/ * w
* i
;
1537 unsigned char palette
[3*256];
1539 // This is the image as represented by palette indexes.
1540 unsigned char *data8bit
= new unsigned char[w
* h
];
1541 unsigned char **outrows
= new unsigned char *[h
];
1542 for (i
= 0; i
< h
; i
++)
1543 outrows
[i
] = data8bit
+ w
* i
;
1546 DoQuantize(w
, h
, rows
, outrows
, palette
, desiredNoColours
);
1551 // palette->RGB(max.256)
1553 if (flags
& wxQUANTIZE_FILL_DESTINATION_IMAGE
)
1558 imgdt
= dest
.GetData();
1559 for (i
= 0; i
< w
* h
; i
++)
1561 unsigned char c
= data8bit
[i
];
1562 imgdt
[3 * i
+ 0/*R*/] = palette
[3 * c
+ 0];
1563 imgdt
[3 * i
+ 1/*G*/] = palette
[3 * c
+ 1];
1564 imgdt
[3 * i
+ 2/*B*/] = palette
[3 * c
+ 2];
1568 if (eightBitData
&& (flags
& wxQUANTIZE_RETURN_8BIT_DATA
))
1571 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1573 // We need to shift the palette entries up
1574 // to make room for the Windows system colours.
1575 for (i
= 0; i
< w
* h
; i
++)
1576 data8bit
[i
] = data8bit
[i
] + paletteShift
;
1579 *eightBitData
= data8bit
;
1585 // Make a wxWindows palette
1588 unsigned char* r
= new unsigned char[256];
1589 unsigned char* g
= new unsigned char[256];
1590 unsigned char* b
= new unsigned char[256];
1593 // Fill the first 20 entries with Windows system colours
1594 if (flags
& wxQUANTIZE_INCLUDE_WINDOWS_COLOURS
)
1596 HDC hDC
= ::GetDC(NULL
);
1597 PALETTEENTRY
* entries
= new PALETTEENTRY
[windowsSystemColourCount
];
1598 ::GetSystemPaletteEntries(hDC
, 0, windowsSystemColourCount
, entries
);
1599 ::ReleaseDC(NULL
, hDC
);
1601 for (i
= 0; i
< windowsSystemColourCount
; i
++)
1603 r
[i
] = entries
[i
].peRed
;
1604 g
[i
] = entries
[i
].peGreen
;
1605 b
[i
] = entries
[i
].peBlue
;
1611 for (i
= 0; i
< desiredNoColours
; i
++)
1613 r
[i
+paletteShift
] = palette
[i
*3 + 0];
1614 g
[i
+paletteShift
] = palette
[i
*3 + 1];
1615 b
[i
+paletteShift
] = palette
[i
*3 + 2];
1618 // Blank out any remaining palette entries
1619 for (i
= desiredNoColours
+paletteShift
; i
< 256; i
++)
1625 *pPalette
= new wxPalette(256, r
, g
, b
);
1630 #endif // wxUSE_PALETTE
1635 // This version sets a palette in the destination image so you don't
1636 // have to manage it yourself.
1638 bool wxQuantize::Quantize(const wxImage
& src
,
1640 int desiredNoColours
,
1641 unsigned char** eightBitData
,
1644 wxPalette
* palette
= NULL
;
1645 if ( !Quantize(src
, dest
, & palette
, desiredNoColours
, eightBitData
, flags
) )
1651 dest
.SetPalette(* palette
);
1654 #endif // wxUSE_PALETTE