1 /* crc32.c -- compute the CRC-32 of a data stream
2 * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7 * tables for updating the shift register in one step with three exclusive-ors
8 * instead of four steps with four exclusive-ors. This results in about a
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
14 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
15 protection on the static variables used to control the first-use generation
16 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
17 first call get_crc_table() to initialize the tables before allowing more than
18 one thread to use crc32().
20 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
25 # ifndef DYNAMIC_CRC_TABLE
26 # define DYNAMIC_CRC_TABLE
27 # endif /* !DYNAMIC_CRC_TABLE */
30 #include "zutil.h" /* for STDC and FAR definitions */
34 /* Definitions for doing the crc four data bytes at a time. */
35 #if !defined(NOBYFOUR) && defined(Z_U4)
39 local
unsigned long crc32_little
OF((unsigned long,
40 const unsigned char FAR
*, unsigned));
41 local
unsigned long crc32_big
OF((unsigned long,
42 const unsigned char FAR
*, unsigned));
48 /* Local functions for crc concatenation */
49 local
unsigned long gf2_matrix_times
OF((unsigned long *mat
,
51 local
void gf2_matrix_square
OF((unsigned long *square
, unsigned long *mat
));
52 local uLong crc32_combine_
OF((uLong crc1
, uLong crc2
, z_off64_t len2
));
55 #ifdef DYNAMIC_CRC_TABLE
57 local
volatile int crc_table_empty
= 1;
58 local z_crc_t FAR crc_table
[TBLS
][256];
59 local
void make_crc_table
OF((void));
61 local
void write_table
OF((FILE *, const z_crc_t FAR
*));
64 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
65 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
67 Polynomials over GF(2) are represented in binary, one bit per coefficient,
68 with the lowest powers in the most significant bit. Then adding polynomials
69 is just exclusive-or, and multiplying a polynomial by x is a right shift by
70 one. If we call the above polynomial p, and represent a byte as the
71 polynomial q, also with the lowest power in the most significant bit (so the
72 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
73 where a mod b means the remainder after dividing a by b.
75 This calculation is done using the shift-register method of multiplying and
76 taking the remainder. The register is initialized to zero, and for each
77 incoming bit, x^32 is added mod p to the register if the bit is a one (where
78 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
79 x (which is shifting right by one and adding x^32 mod p if the bit shifted
80 out is a one). We start with the highest power (least significant bit) of
81 q and repeat for all eight bits of q.
83 The first table is simply the CRC of all possible eight bit values. This is
84 all the information needed to generate CRCs on data a byte at a time for all
85 combinations of CRC register values and incoming bytes. The remaining tables
86 allow for word-at-a-time CRC calculation for both big-endian and little-
87 endian machines, where a word is four bytes.
89 local
void make_crc_table()
93 z_crc_t poly
; /* polynomial exclusive-or pattern */
94 /* terms of polynomial defining this crc (except x^32): */
95 static volatile int first
= 1; /* flag to limit concurrent making */
96 static const unsigned char p
[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
98 /* See if another task is already doing this (not thread-safe, but better
99 than nothing -- significantly reduces duration of vulnerability in
100 case the advice about DYNAMIC_CRC_TABLE is ignored) */
104 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
106 for (n
= 0; n
< (int)(sizeof(p
)/sizeof(unsigned char)); n
++)
107 poly
|= (z_crc_t
)1 << (31 - p
[n
]);
109 /* generate a crc for every 8-bit value */
110 for (n
= 0; n
< 256; n
++) {
112 for (k
= 0; k
< 8; k
++)
113 c
= c
& 1 ? poly
^ (c
>> 1) : c
>> 1;
118 /* generate crc for each value followed by one, two, and three zeros,
119 and then the byte reversal of those as well as the first table */
120 for (n
= 0; n
< 256; n
++) {
122 crc_table
[4][n
] = ZSWAP32(c
);
123 for (k
= 1; k
< 4; k
++) {
124 c
= crc_table
[0][c
& 0xff] ^ (c
>> 8);
126 crc_table
[k
+ 4][n
] = ZSWAP32(c
);
133 else { /* not first */
134 /* wait for the other guy to finish (not efficient, but rare) */
135 while (crc_table_empty
)
140 /* write out CRC tables to crc32.h */
144 out
= fopen("crc32.h", "w");
145 if (out
== NULL
) return;
146 fprintf(out
, "/* crc32.h -- tables for rapid CRC calculation\n");
147 fprintf(out
, " * Generated automatically by crc32.c\n */\n\n");
148 fprintf(out
, "local const z_crc_t FAR ");
149 fprintf(out
, "crc_table[TBLS][256] =\n{\n {\n");
150 write_table(out
, crc_table
[0]);
152 fprintf(out
, "#ifdef BYFOUR\n");
153 for (k
= 1; k
< 8; k
++) {
154 fprintf(out
, " },\n {\n");
155 write_table(out
, crc_table
[k
]);
157 fprintf(out
, "#endif\n");
159 fprintf(out
, " }\n};\n");
162 #endif /* MAKECRCH */
166 local
void write_table(out
, table
)
168 const z_crc_t FAR
*table
;
172 for (n
= 0; n
< 256; n
++)
173 fprintf(out
, "%s0x%08lxUL%s", n
% 5 ? "" : " ",
174 (unsigned long)(table
[n
]),
175 n
== 255 ? "\n" : (n
% 5 == 4 ? ",\n" : ", "));
177 #endif /* MAKECRCH */
179 #else /* !DYNAMIC_CRC_TABLE */
180 /* ========================================================================
181 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
184 #endif /* DYNAMIC_CRC_TABLE */
186 /* =========================================================================
187 * This function can be used by asm versions of crc32()
189 const z_crc_t FAR
* ZEXPORT
get_crc_table()
191 #ifdef DYNAMIC_CRC_TABLE
194 #endif /* DYNAMIC_CRC_TABLE */
195 return (const z_crc_t FAR
*)crc_table
;
198 /* ========================================================================= */
199 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
200 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
202 /* ========================================================================= */
203 unsigned long ZEXPORT
crc32(crc
, buf
, len
)
205 const unsigned char FAR
*buf
;
208 if (buf
== Z_NULL
) return 0UL;
210 #ifdef DYNAMIC_CRC_TABLE
213 #endif /* DYNAMIC_CRC_TABLE */
216 if (sizeof(void *) == sizeof(ptrdiff_t)) {
220 if (*((unsigned char *)(&endian
)))
221 return crc32_little(crc
, buf
, len
);
223 return crc32_big(crc
, buf
, len
);
226 crc
= crc
^ 0xffffffffUL
;
234 return crc
^ 0xffffffffUL
;
239 /* ========================================================================= */
240 #define DOLIT4 c ^= *buf4++; \
241 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
242 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
243 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
245 /* ========================================================================= */
246 local
unsigned long crc32_little(crc
, buf
, len
)
248 const unsigned char FAR
*buf
;
252 register const z_crc_t FAR
*buf4
;
256 while (len
&& ((ptrdiff_t)buf
& 3)) {
257 c
= crc_table
[0][(c
^ *buf
++) & 0xff] ^ (c
>> 8);
261 buf4
= (const z_crc_t FAR
*)(const void FAR
*)buf
;
270 buf
= (const unsigned char FAR
*)buf4
;
273 c
= crc_table
[0][(c
^ *buf
++) & 0xff] ^ (c
>> 8);
276 return (unsigned long)c
;
279 /* ========================================================================= */
280 #define DOBIG4 c ^= *++buf4; \
281 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
282 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
283 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
285 /* ========================================================================= */
286 local
unsigned long crc32_big(crc
, buf
, len
)
288 const unsigned char FAR
*buf
;
292 register const z_crc_t FAR
*buf4
;
294 c
= ZSWAP32((z_crc_t
)crc
);
296 while (len
&& ((ptrdiff_t)buf
& 3)) {
297 c
= crc_table
[4][(c
>> 24) ^ *buf
++] ^ (c
<< 8);
301 buf4
= (const z_crc_t FAR
*)(const void FAR
*)buf
;
312 buf
= (const unsigned char FAR
*)buf4
;
315 c
= crc_table
[4][(c
>> 24) ^ *buf
++] ^ (c
<< 8);
318 return (unsigned long)(ZSWAP32(c
));
323 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
325 /* ========================================================================= */
326 local
unsigned long gf2_matrix_times(mat
, vec
)
342 /* ========================================================================= */
343 local
void gf2_matrix_square(square
, mat
)
344 unsigned long *square
;
349 for (n
= 0; n
< GF2_DIM
; n
++)
350 square
[n
] = gf2_matrix_times(mat
, mat
[n
]);
353 /* ========================================================================= */
354 local uLong
crc32_combine_(crc1
, crc2
, len2
)
361 unsigned long even
[GF2_DIM
]; /* even-power-of-two zeros operator */
362 unsigned long odd
[GF2_DIM
]; /* odd-power-of-two zeros operator */
364 /* degenerate case (also disallow negative lengths) */
368 /* put operator for one zero bit in odd */
369 odd
[0] = 0xedb88320UL
; /* CRC-32 polynomial */
371 for (n
= 1; n
< GF2_DIM
; n
++) {
376 /* put operator for two zero bits in even */
377 gf2_matrix_square(even
, odd
);
379 /* put operator for four zero bits in odd */
380 gf2_matrix_square(odd
, even
);
382 /* apply len2 zeros to crc1 (first square will put the operator for one
383 zero byte, eight zero bits, in even) */
385 /* apply zeros operator for this bit of len2 */
386 gf2_matrix_square(even
, odd
);
388 crc1
= gf2_matrix_times(even
, crc1
);
391 /* if no more bits set, then done */
395 /* another iteration of the loop with odd and even swapped */
396 gf2_matrix_square(odd
, even
);
398 crc1
= gf2_matrix_times(odd
, crc1
);
401 /* if no more bits set, then done */
404 /* return combined crc */
409 /* ========================================================================= */
410 uLong ZEXPORT
crc32_combine(crc1
, crc2
, len2
)
415 return crc32_combine_(crc1
, crc2
, len2
);
418 uLong ZEXPORT
crc32_combine64(crc1
, crc2
, len2
)
423 return crc32_combine_(crc1
, crc2
, len2
);