]> git.saurik.com Git - wxWidgets.git/blob - src/common/longlong.cpp
Made HelpGen compile here.
[wxWidgets.git] / src / common / longlong.cpp
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: wx/longlong.cpp
3 // Purpose: implementation of wxLongLongNative
4 // Author: Jeffrey C. Ollie <jeff@ollie.clive.ia.us>, Vadim Zeitlin
5 // Remarks: this class is not public in wxWindows 2.0! It is intentionally
6 // not documented and is for private use only.
7 // Modified by:
8 // Created: 10.02.99
9 // RCS-ID: $Id$
10 // Copyright: (c) 1998 Vadim Zeitlin <zeitlin@dptmaths.ens-cachan.fr>
11 // Licence: wxWindows license
12 /////////////////////////////////////////////////////////////////////////////
13
14 // ============================================================================
15 // headers
16 // ============================================================================
17
18 #ifdef __GNUG__
19 #pragma implementation "longlong.h"
20 #endif
21
22 #include "wx/wxprec.h"
23
24 #ifdef __BORLANDC__
25 #pragma hdrstop
26 #endif
27
28 #if wxUSE_LONGLONG
29 #include "wx/longlong.h"
30
31 #include <memory.h> // for memset()
32 #include <math.h> // for fabs()
33
34 // ============================================================================
35 // implementation
36 // ============================================================================
37
38 #if wxUSE_LONGLONG_NATIVE
39
40 // ----------------------------------------------------------------------------
41 // misc
42 // ----------------------------------------------------------------------------
43
44 void *wxLongLongNative::asArray() const
45 {
46 static unsigned char temp[8];
47
48 temp[0] = (m_ll >> 56) & 0xFF;
49 temp[1] = (m_ll >> 48) & 0xFF;
50 temp[2] = (m_ll >> 40) & 0xFF;
51 temp[3] = (m_ll >> 32) & 0xFF;
52 temp[4] = (m_ll >> 24) & 0xFF;
53 temp[5] = (m_ll >> 16) & 0xFF;
54 temp[6] = (m_ll >> 8) & 0xFF;
55 temp[7] = (m_ll >> 0) & 0xFF;
56
57 return temp;
58 }
59
60 #if wxUSE_STD_IOSTREAM
61
62 // input/output
63 ostream& operator<< (ostream& o, const wxLongLongNative& ll)
64 {
65 char result[65];
66
67 memset(result, 'A', 64);
68
69 result[64] = '\0';
70
71 for (int i = 0; i < 64; i++)
72 {
73 result[63 - i] = '0' + (char) ((ll.m_ll >> i) & 1);
74 }
75
76 return o << result;
77 }
78
79 #endif // wxUSE_STD_IOSTREAM
80
81 #endif // wxUSE_LONGLONG_NATIVE
82
83 // ============================================================================
84 // wxLongLongWx: emulation of 'long long' using 2 longs
85 // ============================================================================
86
87 #if wxUSE_LONGLONG_WX
88
89 // assignment
90 wxLongLongWx& wxLongLongWx::Assign(double d)
91 {
92 bool positive = d >= 0;
93 d = fabs(d);
94 if ( d <= ULONG_MAX )
95 {
96 m_hi = 0;
97 m_lo = (long)d;
98 }
99 else
100 {
101 m_hi = (unsigned long)(d / (1.0 + (double)ULONG_MAX));
102 m_lo = (unsigned long)(d - ((double)m_hi * (1.0 + (double)ULONG_MAX)));
103 }
104
105 #ifdef wxLONGLONG_TEST_MODE
106 m_ll = (wxLongLong_t)d;
107
108 Check();
109 #endif // wxLONGLONG_TEST_MODE
110
111 if ( !positive )
112 Negate();
113
114 return *this;
115 }
116
117 wxLongLongWx wxLongLongWx::operator<<(int shift) const
118 {
119 wxLongLongWx ll(*this);
120 ll <<= shift;
121
122 return ll;
123 }
124
125 wxLongLongWx& wxLongLongWx::operator<<=(int shift)
126 {
127 if (shift != 0)
128 {
129 if (shift < 32)
130 {
131 m_hi <<= shift;
132 m_hi |= m_lo >> (32 - shift);
133 m_lo <<= shift;
134 }
135 else
136 {
137 m_hi = m_lo << (shift - 32);
138 m_lo = 0;
139 }
140 }
141
142 #ifdef wxLONGLONG_TEST_MODE
143 m_ll <<= shift;
144
145 Check();
146 #endif // wxLONGLONG_TEST_MODE
147
148 return *this;
149 }
150
151 wxLongLongWx wxLongLongWx::operator>>(int shift) const
152 {
153 wxLongLongWx ll(*this);
154 ll >>= shift;
155
156 return ll;
157 }
158
159 wxLongLongWx& wxLongLongWx::operator>>=(int shift)
160 {
161 if (shift != 0)
162 {
163 if (shift < 32)
164 {
165 m_lo >>= shift;
166 m_lo |= m_hi << (32 - shift);
167 m_hi >>= shift;
168 }
169 else
170 {
171 m_lo = m_hi >> (shift - 32);
172 m_hi = (m_hi < 0 ? -1L : 0);
173 }
174 }
175
176 #ifdef wxLONGLONG_TEST_MODE
177 m_ll >>= shift;
178
179 Check();
180 #endif // wxLONGLONG_TEST_MODE
181
182 return *this;
183 }
184
185 wxLongLongWx wxLongLongWx::operator+(const wxLongLongWx& ll) const
186 {
187 wxLongLongWx res(*this);
188 res += ll;
189
190 return res;
191 }
192
193 wxLongLongWx wxLongLongWx::operator+(long l) const
194 {
195 wxLongLongWx res(*this);
196 res += l;
197
198 return res;
199 }
200
201 wxLongLongWx& wxLongLongWx::operator+=(const wxLongLongWx& ll)
202 {
203 unsigned long previous = m_lo;
204
205 m_lo += ll.m_lo;
206 m_hi += ll.m_hi;
207
208 if ((m_lo < previous) || (m_lo < ll.m_lo))
209 m_hi++;
210
211 #ifdef wxLONGLONG_TEST_MODE
212 m_ll += ll.m_ll;
213
214 Check();
215 #endif // wxLONGLONG_TEST_MODE
216
217 return *this;
218 }
219
220 wxLongLongWx& wxLongLongWx::operator+=(long l)
221 {
222 unsigned long previous = m_lo;
223
224 m_lo += l;
225 if (l < 0)
226 m_hi += -1l;
227
228 if ((m_lo < previous) || (m_lo < (unsigned long)l))
229 m_hi++;
230
231 #ifdef wxLONGLONG_TEST_MODE
232 m_ll += l;
233
234 Check();
235 #endif // wxLONGLONG_TEST_MODE
236
237 return *this;
238 }
239
240 // pre increment
241 wxLongLongWx& wxLongLongWx::operator++()
242 {
243 m_lo++;
244 if (m_lo == 0)
245 m_hi++;
246
247 #ifdef wxLONGLONG_TEST_MODE
248 m_ll++;
249
250 Check();
251 #endif // wxLONGLONG_TEST_MODE
252
253 return *this;
254 }
255
256 // negation
257 wxLongLongWx wxLongLongWx::operator-() const
258 {
259 wxLongLongWx res(*this);
260 res.Negate();
261
262 return res;
263 }
264
265 wxLongLongWx& wxLongLongWx::Negate()
266 {
267 m_hi = ~m_hi;
268 m_lo = ~m_lo;
269
270 m_lo++;
271 if ( m_lo == 0 )
272 m_hi++;
273
274 #ifdef wxLONGLONG_TEST_MODE
275 m_ll = -m_ll;
276
277 Check();
278 #endif // wxLONGLONG_TEST_MODE
279
280 return *this;
281 }
282
283 // subtraction
284
285 wxLongLongWx wxLongLongWx::operator-(const wxLongLongWx& ll) const
286 {
287 wxLongLongWx res(*this);
288 res -= ll;
289
290 return res;
291 }
292
293 wxLongLongWx& wxLongLongWx::operator-=(const wxLongLongWx& ll)
294 {
295 unsigned long previous = m_lo;
296
297 m_lo -= ll.m_lo;
298 m_hi -= ll.m_hi;
299
300 if (previous < ll.m_lo)
301 m_hi--;
302
303 #ifdef wxLONGLONG_TEST_MODE
304 m_ll -= ll.m_ll;
305
306 Check();
307 #endif // wxLONGLONG_TEST_MODE
308
309 return *this;
310 }
311
312 // pre decrement
313 wxLongLongWx& wxLongLongWx::operator--()
314 {
315 m_lo--;
316 if (m_lo == 0xFFFFFFFF)
317 m_hi--;
318
319 #ifdef wxLONGLONG_TEST_MODE
320 m_ll--;
321
322 Check();
323 #endif // wxLONGLONG_TEST_MODE
324
325 return *this;
326 }
327
328 // comparison operators
329
330 bool wxLongLongWx::operator<(const wxLongLongWx& ll) const
331 {
332 if ( m_hi < ll.m_hi )
333 return TRUE;
334 else if ( m_hi == ll.m_hi )
335 return m_lo < ll.m_lo;
336 else
337 return FALSE;
338 }
339
340 bool wxLongLongWx::operator>(const wxLongLongWx& ll) const
341 {
342 if ( m_hi > ll.m_hi )
343 return TRUE;
344 else if ( m_hi == ll.m_hi )
345 return m_lo > ll.m_lo;
346 else
347 return FALSE;
348 }
349
350 // bitwise operators
351
352 wxLongLongWx wxLongLongWx::operator&(const wxLongLongWx& ll) const
353 {
354 return wxLongLongWx(m_hi & ll.m_hi, m_lo & ll.m_lo);
355 }
356
357 wxLongLongWx wxLongLongWx::operator|(const wxLongLongWx& ll) const
358 {
359 return wxLongLongWx(m_hi | ll.m_hi, m_lo | ll.m_lo);
360 }
361
362 wxLongLongWx wxLongLongWx::operator^(const wxLongLongWx& ll) const
363 {
364 return wxLongLongWx(m_hi ^ ll.m_hi, m_lo ^ ll.m_lo);
365 }
366
367 wxLongLongWx& wxLongLongWx::operator&=(const wxLongLongWx& ll)
368 {
369 m_lo &= ll.m_lo;
370 m_hi &= ll.m_hi;
371
372 #ifdef wxLONGLONG_TEST_MODE
373 m_ll &= ll.m_ll;
374
375 Check();
376 #endif // wxLONGLONG_TEST_MODE
377
378 return *this;
379 }
380
381 wxLongLongWx& wxLongLongWx::operator|=(const wxLongLongWx& ll)
382 {
383 m_lo |= ll.m_lo;
384 m_hi |= ll.m_hi;
385
386 #ifdef wxLONGLONG_TEST_MODE
387 m_ll |= ll.m_ll;
388
389 Check();
390 #endif // wxLONGLONG_TEST_MODE
391
392 return *this;
393 }
394
395 wxLongLongWx& wxLongLongWx::operator^=(const wxLongLongWx& ll)
396 {
397 m_lo ^= ll.m_lo;
398 m_hi ^= ll.m_hi;
399
400 #ifdef wxLONGLONG_TEST_MODE
401 m_ll ^= ll.m_ll;
402
403 Check();
404 #endif // wxLONGLONG_TEST_MODE
405
406 return *this;
407 }
408
409 wxLongLongWx wxLongLongWx::operator~() const
410 {
411 return wxLongLongWx(~m_hi, ~m_lo);
412 }
413
414 // multiplication
415
416 wxLongLongWx wxLongLongWx::operator*(const wxLongLongWx& ll) const
417 {
418 wxLongLongWx res(*this);
419 res *= ll;
420
421 return res;
422 }
423
424 wxLongLongWx& wxLongLongWx::operator*=(const wxLongLongWx& ll)
425 {
426 wxLongLongWx t(m_hi, m_lo);
427 wxLongLongWx q(ll.m_hi, ll.m_lo);
428
429 m_hi = m_lo = 0;
430
431 #ifdef wxLONGLONG_TEST_MODE
432 wxLongLong_t llOld = m_ll;
433 m_ll = 0;
434 #endif // wxLONGLONG_TEST_MODE
435
436 int counter = 0;
437 do
438 {
439 if ((q.m_lo & 1) != 0)
440 *this += t;
441 q >>= 1;
442 t <<= 1;
443 counter++;
444 }
445 while ((counter < 64) && ((q.m_hi != 0) || (q.m_lo != 0)));
446
447 #ifdef wxLONGLONG_TEST_MODE
448 m_ll = llOld * ll.m_ll;
449
450 Check();
451 #endif // wxLONGLONG_TEST_MODE
452
453 return *this;
454 }
455
456 // division
457
458 void wxLongLongWx::Divide(const wxLongLongWx& divisorIn,
459 wxLongLongWx& quotient,
460 wxLongLongWx& remainder) const
461 {
462 if ((divisorIn.m_lo == 0) && (divisorIn.m_hi == 0))
463 {
464 // provoke division by zero error and silence the compilers warnings
465 // about an expression without effect and unused variable
466 long dummy = divisorIn.m_lo/divisorIn.m_hi;
467 dummy += 0;
468 }
469
470 // VZ: I'm writing this in a hurry and it's surely not the fastest way to
471 // do this - any improvements are more than welcome
472 //
473 // code inspired by the snippet at
474 // http://www.bearcave.com/software/divide.htm
475 //
476 // Copyright notice:
477 //
478 // Use of this program, for any purpose, is granted the author, Ian
479 // Kaplan, as long as this copyright notice is included in the source
480 // code or any source code derived from this program. The user assumes
481 // all responsibility for using this code.
482
483 // init everything
484 wxLongLongWx dividend = *this,
485 divisor = divisorIn;
486
487 quotient = 0l;
488 remainder = 0l;
489
490 // always do unsigned division and adjust the signs later: in C integer
491 // division, the sign of the remainder is the same as the sign of the
492 // dividend, while the sign of the quotient is the product of the signs of
493 // the dividend and divisor. Of course, we also always have
494 //
495 // dividend = quotient*divisor + remainder
496 //
497 // with 0 <= abs(remainder) < abs(divisor)
498 bool negRemainder = dividend.m_hi < 0;
499 bool negQuotient = FALSE; // assume positive
500 if ( dividend.m_hi < 0 )
501 {
502 negQuotient = !negQuotient;
503 dividend = -dividend;
504 }
505 if ( divisor.m_hi < 0 )
506 {
507 negQuotient = !negQuotient;
508 divisor = -divisor;
509 }
510
511 // check for some particular cases
512 if ( divisor > dividend )
513 {
514 remainder = dividend;
515 }
516 else if ( divisor == dividend )
517 {
518 quotient = 1l;
519 }
520 else
521 {
522 // here: dividend > divisor and both are positibe: do unsigned division
523 size_t nBits = 64u;
524 wxLongLongWx d;
525
526 #define IS_MSB_SET(ll) ((ll.m_hi) & (1 << (8*sizeof(long) - 1)))
527
528 while ( remainder < divisor )
529 {
530 remainder <<= 1;
531 if ( IS_MSB_SET(dividend) )
532 {
533 remainder |= 1;
534 }
535
536 d = dividend;
537 dividend <<= 1;
538
539 nBits--;
540 }
541
542 // undo the last loop iteration
543 dividend = d;
544 remainder >>= 1;
545 nBits++;
546
547 for ( size_t i = 0; i < nBits; i++ )
548 {
549 remainder <<= 1;
550 if ( IS_MSB_SET(dividend) )
551 {
552 remainder |= 1;
553 }
554
555 wxLongLongWx t = remainder - divisor;
556 dividend <<= 1;
557 quotient <<= 1;
558 if ( !IS_MSB_SET(t) )
559 {
560 quotient |= 1;
561
562 remainder = t;
563 }
564 }
565 }
566
567 // adjust signs
568 if ( negRemainder )
569 {
570 remainder = -remainder;
571 }
572
573 if ( negQuotient )
574 {
575 quotient = -quotient;
576 }
577 }
578
579 wxLongLongWx wxLongLongWx::operator/(const wxLongLongWx& ll) const
580 {
581 wxLongLongWx quotient, remainder;
582
583 Divide(ll, quotient, remainder);
584
585 return quotient;
586 }
587
588 wxLongLongWx& wxLongLongWx::operator/=(const wxLongLongWx& ll)
589 {
590 wxLongLongWx quotient, remainder;
591
592 Divide(ll, quotient, remainder);
593
594 *this = quotient;
595
596 return *this;
597 }
598
599 wxLongLongWx wxLongLongWx::operator%(const wxLongLongWx& ll) const
600 {
601 wxLongLongWx quotient, remainder;
602
603 Divide(ll, quotient, remainder);
604
605 return remainder;
606 }
607
608 // ----------------------------------------------------------------------------
609 // misc
610 // ----------------------------------------------------------------------------
611
612 // temporary - just for testing
613 void *wxLongLongWx::asArray(void) const
614 {
615 static unsigned char temp[8];
616
617 temp[0] = (char)((m_hi >> 24) & 0xFF);
618 temp[1] = (char)((m_hi >> 16) & 0xFF);
619 temp[2] = (char)((m_hi >> 8) & 0xFF);
620 temp[3] = (char)((m_hi >> 0) & 0xFF);
621 temp[4] = (char)((m_lo >> 24) & 0xFF);
622 temp[5] = (char)((m_lo >> 16) & 0xFF);
623 temp[6] = (char)((m_lo >> 8) & 0xFF);
624 temp[7] = (char)((m_lo >> 0) & 0xFF);
625
626 return temp;
627 }
628
629 #if wxUSE_STD_IOSTREAM
630
631 // input/output
632 ostream& operator<< (ostream& o, const wxLongLongWx& ll)
633 {
634 char result[65];
635
636 memset(result, 'A', 64);
637
638 result[64] = '\0';
639
640 for (int i = 0; i < 32; i++)
641 {
642 result[31 - i] = (char) ('0' + (int) ((ll.m_hi >> i) & 1));
643 result[63 - i] = (char) ('0' + (int) ((ll.m_lo >> i) & 1));
644 }
645
646 return o << result;
647 }
648 #endif // wxUSE_STD_IOSTREAM
649
650 #endif // wxUSE_LONGLONG_NATIVE
651
652 #endif // wxUSE_LONGLONG