]> git.saurik.com Git - wxWidgets.git/blob - wxPython/wx/lib/ogl/_oglmisc.py
Correct call to shape.Show()
[wxWidgets.git] / wxPython / wx / lib / ogl / _oglmisc.py
1 # -*- coding: iso-8859-1 -*-
2 #----------------------------------------------------------------------------
3 # Name: oglmisc.py
4 # Purpose: Miscellaneous OGL support functions
5 #
6 # Author: Pierre Hjälm (from C++ original by Julian Smart)
7 #
8 # Created: 2004-05-08
9 # RCS-ID: $Id$
10 # Copyright: (c) 2004 Pierre Hjälm - 1998 Julian Smart
11 # Licence: wxWindows license
12 #----------------------------------------------------------------------------
13
14 import math
15
16 import wx
17
18 # Control point types
19 # Rectangle and most other shapes
20 CONTROL_POINT_VERTICAL = 1
21 CONTROL_POINT_HORIZONTAL = 2
22 CONTROL_POINT_DIAGONAL = 3
23
24 # Line
25 CONTROL_POINT_ENDPOINT_TO = 4
26 CONTROL_POINT_ENDPOINT_FROM = 5
27 CONTROL_POINT_LINE = 6
28
29 # Types of formatting: can be combined in a bit list
30 FORMAT_NONE = 0 # Left justification
31 FORMAT_CENTRE_HORIZ = 1 # Centre horizontally
32 FORMAT_CENTRE_VERT = 2 # Centre vertically
33 FORMAT_SIZE_TO_CONTENTS = 4 # Resize shape to contents
34
35 # Attachment modes
36 ATTACHMENT_MODE_NONE, ATTACHMENT_MODE_EDGE, ATTACHMENT_MODE_BRANCHING = 0, 1, 2
37
38 # Shadow mode
39 SHADOW_NONE, SHADOW_LEFT, SHADOW_RIGHT = 0, 1, 2
40
41 OP_CLICK_LEFT, OP_CLICK_RIGHT, OP_DRAG_LEFT, OP_DRAG_RIGHT = 1, 2, 4, 8
42 OP_ALL = OP_CLICK_LEFT | OP_CLICK_RIGHT | OP_DRAG_LEFT | OP_DRAG_RIGHT
43
44 # Sub-modes for branching attachment mode
45 BRANCHING_ATTACHMENT_NORMAL = 1
46 BRANCHING_ATTACHMENT_BLOB = 2
47
48 # logical function to use when drawing rubberband boxes, etc.
49 OGLRBLF = wx.INVERT
50
51 CONTROL_POINT_SIZE = 6
52
53 # Types of arrowhead
54 # (i) Built-in
55 ARROW_HOLLOW_CIRCLE = 1
56 ARROW_FILLED_CIRCLE = 2
57 ARROW_ARROW = 3
58 ARROW_SINGLE_OBLIQUE = 4
59 ARROW_DOUBLE_OBLIQUE = 5
60 # (ii) Custom
61 ARROW_METAFILE = 20
62
63 # Position of arrow on line
64 ARROW_POSITION_START = 0
65 ARROW_POSITION_END = 1
66 ARROW_POSITION_MIDDLE = 2
67
68 # Line alignment flags
69 # Vertical by default
70 LINE_ALIGNMENT_HORIZ = 1
71 LINE_ALIGNMENT_VERT = 0
72 LINE_ALIGNMENT_TO_NEXT_HANDLE = 2
73 LINE_ALIGNMENT_NONE = 0
74
75
76
77 # Format a string to a list of strings that fit in the given box.
78 # Interpret %n and 10 or 13 as a new line.
79 def FormatText(dc, text, width, height, formatMode):
80 i = 0
81 word = ""
82 word_list = []
83 end_word = False
84 new_line = False
85 while i < len(text):
86 if text[i] == "%":
87 i += 1
88 if i == len(text):
89 word += "%"
90 else:
91 if text[i] == "n":
92 new_line = True
93 end_word = True
94 i += 1
95 else:
96 word += "%" + text[i]
97 i += 1
98 elif text[i] in ["\012","\015"]:
99 new_line = True
100 end_word = True
101 i += 1
102 elif text[i] == " ":
103 end_word = True
104 i += 1
105 else:
106 word += text[i]
107 i += 1
108
109 if i == len(text):
110 end_word = True
111
112 if end_word:
113 word_list.append(word)
114 word = ""
115 end_word = False
116 if new_line:
117 word_list.append(None)
118 new_line = False
119
120 # Now, make a list of strings which can fit in the box
121 string_list = []
122 buffer = ""
123 for s in word_list:
124 oldBuffer = buffer
125 if s is None:
126 # FORCE NEW LINE
127 if len(buffer) > 0:
128 string_list.append(buffer)
129 buffer = ""
130 else:
131 if len(buffer):
132 buffer += " "
133 buffer += s
134 x, y = dc.GetTextExtent(buffer)
135
136 # Don't fit within the bounding box if we're fitting
137 # shape to contents
138 if (x > width) and not (formatMode & FORMAT_SIZE_TO_CONTENTS):
139 # Deal with first word being wider than box
140 if len(oldBuffer):
141 string_list.append(oldBuffer)
142 buffer = s
143 if len(buffer):
144 string_list.append(buffer)
145
146 return string_list
147
148
149
150 def GetCentredTextExtent(dc, text_list, xpos = 0, ypos = 0, width = 0, height = 0):
151 if not text_list:
152 return 0, 0
153
154 max_width = 0
155 for line in text_list:
156 current_width, char_height = dc.GetTextExtent(line.GetText())
157 if current_width > max_width:
158 max_width = current_width
159
160 return max_width, len(text_list) * char_height
161
162
163
164 def CentreText(dc, text_list, xpos, ypos, width, height, formatMode):
165 if not text_list:
166 return
167
168 # First, get maximum dimensions of box enclosing text
169 char_height = 0
170 max_width = 0
171 current_width = 0
172
173 # Store text extents for speed
174 widths = []
175 for line in text_list:
176 current_width, char_height = dc.GetTextExtent(line.GetText())
177 widths.append(current_width)
178 if current_width > max_width:
179 max_width = current_width
180
181 max_height = len(text_list) * char_height
182
183 if formatMode & FORMAT_CENTRE_VERT:
184 if max_height < height:
185 yoffset = ypos - height / 2.0 + (height - max_height) / 2.0
186 else:
187 yoffset = ypos - height / 2.0
188 yOffset = ypos
189 else:
190 yoffset = 0.0
191 yOffset = 0.0
192
193 if formatMode & FORMAT_CENTRE_HORIZ:
194 xoffset = xpos - width / 2.0
195 xOffset = xpos
196 else:
197 xoffset = 0.0
198 xOffset = 0.0
199
200 for i, line in enumerate(text_list):
201 if formatMode & FORMAT_CENTRE_HORIZ and widths[i] < width:
202 x = (width - widths[i]) / 2.0 + xoffset
203 else:
204 x = xoffset
205 y = i * char_height + yoffset
206
207 line.SetX(x - xOffset)
208 line.SetY(y - yOffset)
209
210
211
212 def DrawFormattedText(dc, text_list, xpos, ypos, width, height, formatMode):
213 if formatMode & FORMAT_CENTRE_HORIZ:
214 xoffset = xpos
215 else:
216 xoffset = xpos - width / 2.0
217
218 if formatMode & FORMAT_CENTRE_VERT:
219 yoffset = ypos
220 else:
221 yoffset = ypos - height / 2.0
222
223 # +1 to allow for rounding errors
224 dc.SetClippingRegion(xpos - width / 2.0, ypos - height / 2.0, width + 1, height + 1)
225
226 for line in text_list:
227 dc.DrawText(line.GetText(), xoffset + line.GetX(), yoffset + line.GetY())
228
229 dc.DestroyClippingRegion()
230
231
232
233 def RoughlyEqual(val1, val2, tol = 0.00001):
234 return val1 < (val2 + tol) and val1 > (val2 - tol) and \
235 val2 < (val1 + tol) and val2 > (val1 - tol)
236
237
238
239 def FindEndForBox(width, height, x1, y1, x2, y2):
240 xvec = [x1 - width / 2.0, x1 - width / 2.0, x1 + width / 2.0, x1 + width / 2.0, x1 - width / 2.0]
241 yvec = [y1 - height / 2.0, y1 + height / 2.0, y1 + height / 2.0, y1 - height / 2.0, y1 - height / 2.0]
242
243 return FindEndForPolyline(xvec, yvec, x2, y2, x1, y1)
244
245
246
247 def CheckLineIntersection(x1, y1, x2, y2, x3, y3, x4, y4):
248 denominator_term = (y4 - y3) * (x2 - x1) - (y2 - y1) * (x4 - x3)
249 numerator_term = (x3 - x1) * (y4 - y3) + (x4 - x3) * (y1 - y3)
250
251 length_ratio = 1.0
252 k_line = 1.0
253
254 # Check for parallel lines
255 if denominator_term < 0.005 and denominator_term > -0.005:
256 line_constant = -1.0
257 else:
258 line_constant = float(numerator_term) / denominator_term
259
260 # Check for intersection
261 if line_constant < 1.0 and line_constant > 0.0:
262 # Now must check that other line hits
263 if (y4 - y3) < 0.005 and (y4 - y3) > -0.005:
264 k_line = (x1 - x3 + line_constant * (x2 - x1)) / (x4 - x3)
265 else:
266 k_line = (y1 - y3 + line_constant * (y2 - y1)) / (y4 - y3)
267 if k_line >= 0 and k_line < 1:
268 length_ratio = line_constant
269 else:
270 k_line = 1
271
272 return length_ratio, k_line
273
274
275
276 def FindEndForPolyline(xvec, yvec, x1, y1, x2, y2):
277 lastx = xvec[0]
278 lasty = yvec[0]
279
280 min_ratio = 1.0
281
282 for i in range(1, len(xvec)):
283 line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
284 lastx = xvec[i]
285 lasty = yvec[i]
286
287 if line_ratio < min_ratio:
288 min_ratio = line_ratio
289
290 # Do last (implicit) line if last and first doubles are not identical
291 if not (xvec[0] == lastx and yvec[0] == lasty):
292 line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
293 if line_ratio < min_ratio:
294 min_ratio = line_ratio
295
296 return x1 + (x2 - x1) * min_ratio, y1 + (y2 - y1) * min_ratio
297
298
299
300 def PolylineHitTest(xvec, yvec, x1, y1, x2, y2):
301 isAHit = False
302 lastx = xvec[0]
303 lasty = yvec[0]
304
305 min_ratio = 1.0
306
307 for i in range(1, len(xvec)):
308 line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
309 if line_ratio != 1.0:
310 isAHit = True
311 lastx = xvec[i]
312 lasty = yvec[i]
313
314 if line_ratio < min_ratio:
315 min_ratio = line_ratio
316
317 # Do last (implicit) line if last and first doubles are not identical
318 if not (xvec[0] == lastx and yvec[0] == lasty):
319 line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
320 if line_ratio != 1.0:
321 isAHit = True
322
323 return isAHit
324
325
326
327 def GraphicsStraightenLine(point1, point2):
328 dx = point2[0] - point1[0]
329 dy = point2[1] - point1[1]
330
331 if dx == 0:
332 return
333 elif abs(float(dy) / dx) > 1:
334 point2[0] = point1[0]
335 else:
336 point2[1] = point1[1]
337
338
339
340 def GetPointOnLine(x1, y1, x2, y2, length):
341 l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
342 if l < 0.01:
343 l = 0.01
344
345 i_bar = (x2 - x1) / l
346 j_bar = (y2 - y1) / l
347
348 return -length * i_bar + x2, -length * j_bar + y2
349
350
351
352 def GetArrowPoints(x1, y1, x2, y2, length, width):
353 l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
354
355 if l < 0.01:
356 l = 0.01
357
358 i_bar = (x2 - x1) / l
359 j_bar = (y2 - y1) / l
360
361 x3 = -length * i_bar + x2
362 y3 = -length * j_bar + y2
363
364 return x2, y2, width * -j_bar + x3, width * i_bar + y3, -width * -j_bar + x3, -width * i_bar + y3
365
366
367
368 def DrawArcToEllipse(x1, y1, width1, height1, x2, y2, x3, y3):
369 a1 = width1 / 2.0
370 b1 = height1 / 2.0
371
372 # Check that x2 != x3
373 if abs(x2 - x3) < 0.05:
374 x4 = x2
375 if y3 > y2:
376 y4 = y1 - math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
377 else:
378 y4 = y1 + math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
379 return x4, y4
380
381 # Calculate the x and y coordinates of the point where arc intersects ellipse
382 A = (1 / (a1 * a1))
383 B = ((y3 - y2) * (y3 - y2)) / ((x3 - x2) * (x3 - x2) * b1 * b1)
384 C = (2 * (y3 - y2) * (y2 - y1)) / ((x3 - x2) * b1 * b1)
385 D = ((y2 - y1) * (y2 - y1)) / (b1 * b1)
386 E = (A + B)
387 F = (C - (2 * A * x1) - (2 * B * x2))
388 G = ((A * x1 * x1) + (B * x2 * x2) - (C * x2) + D - 1)
389 H = (float(y3 - y2) / (x3 - x2))
390 K = ((F * F) - (4 * E * G))
391
392 if K >= 0:
393 # In this case the line intersects the ellipse, so calculate intersection
394 if x2 >= x1:
395 ellipse1_x = ((F * -1) + math.sqrt(K)) / (2 * E)
396 ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
397 else:
398 ellipse1_x = (((F * -1) - math.sqrt(K)) / (2 * E))
399 ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
400 else:
401 # in this case, arc does not intersect ellipse, so just draw arc
402 ellipse1_x = x3
403 ellipse1_y = y3
404
405 return ellipse1_x, ellipse1_y
406
407
408
409 def FindEndForCircle(radius, x1, y1, x2, y2):
410 H = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
411
412 if H == 0:
413 return x1, y1
414 else:
415 return radius * (x2 - x1) / H + x1, radius * (y2 - y1) / H + y1