4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains 1-pass color quantization (color mapping) routines.
9 * These routines provide mapping to a fixed color map using equally spaced
10 * color values. Optional Floyd-Steinberg or ordered dithering is available.
13 #define JPEG_INTERNALS
17 #ifdef QUANT_1PASS_SUPPORTED
21 * The main purpose of 1-pass quantization is to provide a fast, if not very
22 * high quality, colormapped output capability. A 2-pass quantizer usually
23 * gives better visual quality; however, for quantized grayscale output this
24 * quantizer is perfectly adequate. Dithering is highly recommended with this
25 * quantizer, though you can turn it off if you really want to.
27 * In 1-pass quantization the colormap must be chosen in advance of seeing the
28 * image. We use a map consisting of all combinations of Ncolors[i] color
29 * values for the i'th component. The Ncolors[] values are chosen so that
30 * their product, the total number of colors, is no more than that requested.
31 * (In most cases, the product will be somewhat less.)
33 * Since the colormap is orthogonal, the representative value for each color
34 * component can be determined without considering the other components;
35 * then these indexes can be combined into a colormap index by a standard
36 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
37 * can be precalculated and stored in the lookup table colorindex[].
38 * colorindex[i][j] maps pixel value j in component i to the nearest
39 * representative value (grid plane) for that component; this index is
40 * multiplied by the array stride for component i, so that the
41 * index of the colormap entry closest to a given pixel value is just
42 * sum( colorindex[component-number][pixel-component-value] )
43 * Aside from being fast, this scheme allows for variable spacing between
44 * representative values with no additional lookup cost.
46 * If gamma correction has been applied in color conversion, it might be wise
47 * to adjust the color grid spacing so that the representative colors are
48 * equidistant in linear space. At this writing, gamma correction is not
49 * implemented by jdcolor, so nothing is done here.
53 /* Declarations for ordered dithering.
55 * We use a standard 16x16 ordered dither array. The basic concept of ordered
56 * dithering is described in many references, for instance Dale Schumacher's
57 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
58 * In place of Schumacher's comparisons against a "threshold" value, we add a
59 * "dither" value to the input pixel and then round the result to the nearest
60 * output value. The dither value is equivalent to (0.5 - threshold) times
61 * the distance between output values. For ordered dithering, we assume that
62 * the output colors are equally spaced; if not, results will probably be
63 * worse, since the dither may be too much or too little at a given point.
65 * The normal calculation would be to form pixel value + dither, range-limit
66 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
67 * We can skip the separate range-limiting step by extending the colorindex
68 * table in both directions.
71 #define ODITHER_SIZE 16 /* dimension of dither matrix */
72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
74 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
76 typedef int ODITHER_MATRIX
[ODITHER_SIZE
][ODITHER_SIZE
];
77 typedef int (*ODITHER_MATRIX_PTR
)[ODITHER_SIZE
];
79 static const UINT8 base_dither_matrix
[ODITHER_SIZE
][ODITHER_SIZE
] = {
80 /* Bayer's order-4 dither array. Generated by the code given in
81 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
82 * The values in this array must range from 0 to ODITHER_CELLS-1.
84 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
85 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
86 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
87 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
88 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
89 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
90 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
91 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
92 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
93 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
94 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
95 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
96 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
97 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
98 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
99 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
103 /* Declarations for Floyd-Steinberg dithering.
105 * Errors are accumulated into the array fserrors[], at a resolution of
106 * 1/16th of a pixel count. The error at a given pixel is propagated
107 * to its not-yet-processed neighbors using the standard F-S fractions,
110 * We work left-to-right on even rows, right-to-left on odd rows.
112 * We can get away with a single array (holding one row's worth of errors)
113 * by using it to store the current row's errors at pixel columns not yet
114 * processed, but the next row's errors at columns already processed. We
115 * need only a few extra variables to hold the errors immediately around the
116 * current column. (If we are lucky, those variables are in registers, but
117 * even if not, they're probably cheaper to access than array elements are.)
119 * The fserrors[] array is indexed [component#][position].
120 * We provide (#columns + 2) entries per component; the extra entry at each
121 * end saves us from special-casing the first and last pixels.
123 * Note: on a wide image, we might not have enough room in a PC's near data
124 * segment to hold the error array; so it is allocated with alloc_large.
127 #if BITS_IN_JSAMPLE == 8
128 typedef INT16 FSERROR
; /* 16 bits should be enough */
129 typedef int LOCFSERROR
; /* use 'int' for calculation temps */
131 typedef JPEG_INT32 FSERROR
; /* may need more than 16 bits */
132 typedef JPEG_INT32 LOCFSERROR
; /* be sure calculation temps are big enough */
135 typedef FSERROR FAR
*FSERRPTR
; /* pointer to error array (in FAR storage!) */
138 /* Private subobject */
140 #define MAX_Q_COMPS 4 /* max components I can handle */
143 struct jpeg_color_quantizer pub
; /* public fields */
145 /* Initially allocated colormap is saved here */
146 JSAMPARRAY sv_colormap
; /* The color map as a 2-D pixel array */
147 int sv_actual
; /* number of entries in use */
149 JSAMPARRAY colorindex
; /* Precomputed mapping for speed */
150 /* colorindex[i][j] = index of color closest to pixel value j in component i,
151 * premultiplied as described above. Since colormap indexes must fit into
152 * JSAMPLEs, the entries of this array will too.
154 boolean is_padded
; /* is the colorindex padded for odither? */
156 int Ncolors
[MAX_Q_COMPS
]; /* # of values alloced to each component */
158 /* Variables for ordered dithering */
159 int row_index
; /* cur row's vertical index in dither matrix */
160 ODITHER_MATRIX_PTR odither
[MAX_Q_COMPS
]; /* one dither array per component */
162 /* Variables for Floyd-Steinberg dithering */
163 FSERRPTR fserrors
[MAX_Q_COMPS
]; /* accumulated errors */
164 boolean on_odd_row
; /* flag to remember which row we are on */
167 typedef my_cquantizer
* my_cquantize_ptr
;
171 * Policy-making subroutines for create_colormap and create_colorindex.
172 * These routines determine the colormap to be used. The rest of the module
173 * only assumes that the colormap is orthogonal.
175 * * select_ncolors decides how to divvy up the available colors
176 * among the components.
177 * * output_value defines the set of representative values for a component.
178 * * largest_input_value defines the mapping from input values to
179 * representative values for a component.
180 * Note that the latter two routines may impose different policies for
181 * different components, though this is not currently done.
186 select_ncolors (j_decompress_ptr cinfo
, int Ncolors
[])
187 /* Determine allocation of desired colors to components, */
188 /* and fill in Ncolors[] array to indicate choice. */
189 /* Return value is total number of colors (product of Ncolors[] values). */
191 int nc
= cinfo
->out_color_components
; /* number of color components */
192 int max_colors
= cinfo
->desired_number_of_colors
;
193 int total_colors
, iroot
, i
, j
;
196 static const int RGB_order
[3] = { RGB_GREEN
, RGB_RED
, RGB_BLUE
};
198 /* We can allocate at least the nc'th root of max_colors per component. */
199 /* Compute floor(nc'th root of max_colors). */
203 temp
= iroot
; /* set temp = iroot ** nc */
204 for (i
= 1; i
< nc
; i
++)
206 } while (temp
<= (long) max_colors
); /* repeat till iroot exceeds root */
207 iroot
--; /* now iroot = floor(root) */
209 /* Must have at least 2 color values per component */
211 ERREXIT1(cinfo
, JERR_QUANT_FEW_COLORS
, (int) temp
);
213 /* Initialize to iroot color values for each component */
215 for (i
= 0; i
< nc
; i
++) {
217 total_colors
*= iroot
;
219 /* We may be able to increment the count for one or more components without
220 * exceeding max_colors, though we know not all can be incremented.
221 * Sometimes, the first component can be incremented more than once!
222 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
223 * In RGB colorspace, try to increment G first, then R, then B.
227 for (i
= 0; i
< nc
; i
++) {
228 j
= (cinfo
->out_color_space
== JCS_RGB
? RGB_order
[i
] : i
);
229 /* calculate new total_colors if Ncolors[j] is incremented */
230 temp
= total_colors
/ Ncolors
[j
];
231 temp
*= Ncolors
[j
]+1; /* done in long arith to avoid oflo */
232 if (temp
> (long) max_colors
)
233 break; /* won't fit, done with this pass */
234 Ncolors
[j
]++; /* OK, apply the increment */
235 total_colors
= (int) temp
;
245 output_value (j_decompress_ptr cinfo
, int ci
, int j
, int maxj
)
246 /* Return j'th output value, where j will range from 0 to maxj */
247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
249 /* We always provide values 0 and MAXJSAMPLE for each component;
250 * any additional values are equally spaced between these limits.
251 * (Forcing the upper and lower values to the limits ensures that
252 * dithering can't produce a color outside the selected gamut.)
254 return (int) (((JPEG_INT32
) j
* MAXJSAMPLE
+ maxj
/2) / maxj
);
259 largest_input_value (j_decompress_ptr cinfo
, int ci
, int j
, int maxj
)
260 /* Return largest input value that should map to j'th output value */
261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
263 /* Breakpoints are halfway between values returned by output_value */
264 return (int) (((JPEG_INT32
) (2*j
+ 1) * MAXJSAMPLE
+ maxj
) / (2*maxj
));
269 * Create the colormap.
273 create_colormap (j_decompress_ptr cinfo
)
275 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
276 JSAMPARRAY colormap
; /* Created colormap */
277 int total_colors
; /* Number of distinct output colors */
278 int i
,j
,k
, nci
, blksize
, blkdist
, ptr
, val
;
280 /* Select number of colors for each component */
281 total_colors
= select_ncolors(cinfo
, cquantize
->Ncolors
);
283 /* Report selected color counts */
284 if (cinfo
->out_color_components
== 3)
285 TRACEMS4(cinfo
, 1, JTRC_QUANT_3_NCOLORS
,
286 total_colors
, cquantize
->Ncolors
[0],
287 cquantize
->Ncolors
[1], cquantize
->Ncolors
[2]);
289 TRACEMS1(cinfo
, 1, JTRC_QUANT_NCOLORS
, total_colors
);
291 /* Allocate and fill in the colormap. */
292 /* The colors are ordered in the map in standard row-major order, */
293 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
295 colormap
= (*cinfo
->mem
->alloc_sarray
)
296 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
297 (JDIMENSION
) total_colors
, (JDIMENSION
) cinfo
->out_color_components
);
299 /* blksize is number of adjacent repeated entries for a component */
300 /* blkdist is distance between groups of identical entries for a component */
301 blkdist
= total_colors
;
303 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
304 /* fill in colormap entries for i'th color component */
305 nci
= cquantize
->Ncolors
[i
]; /* # of distinct values for this color */
306 blksize
= blkdist
/ nci
;
307 for (j
= 0; j
< nci
; j
++) {
308 /* Compute j'th output value (out of nci) for component */
309 val
= output_value(cinfo
, i
, j
, nci
-1);
310 /* Fill in all colormap entries that have this value of this component */
311 for (ptr
= j
* blksize
; ptr
< total_colors
; ptr
+= blkdist
) {
312 /* fill in blksize entries beginning at ptr */
313 for (k
= 0; k
< blksize
; k
++)
314 colormap
[i
][ptr
+k
] = (JSAMPLE
) val
;
317 blkdist
= blksize
; /* blksize of this color is blkdist of next */
320 /* Save the colormap in private storage,
321 * where it will survive color quantization mode changes.
323 cquantize
->sv_colormap
= colormap
;
324 cquantize
->sv_actual
= total_colors
;
329 * Create the color index table.
333 create_colorindex (j_decompress_ptr cinfo
)
335 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
337 int i
,j
,k
, nci
, blksize
, val
, pad
;
339 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
340 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
341 * This is not necessary in the other dithering modes. However, we
342 * flag whether it was done in case user changes dithering mode.
344 if (cinfo
->dither_mode
== JDITHER_ORDERED
) {
346 cquantize
->is_padded
= TRUE
;
349 cquantize
->is_padded
= FALSE
;
352 cquantize
->colorindex
= (*cinfo
->mem
->alloc_sarray
)
353 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
354 (JDIMENSION
) (MAXJSAMPLE
+1 + pad
),
355 (JDIMENSION
) cinfo
->out_color_components
);
357 /* blksize is number of adjacent repeated entries for a component */
358 blksize
= cquantize
->sv_actual
;
360 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
361 /* fill in colorindex entries for i'th color component */
362 nci
= cquantize
->Ncolors
[i
]; /* # of distinct values for this color */
363 blksize
= blksize
/ nci
;
365 /* adjust colorindex pointers to provide padding at negative indexes. */
367 cquantize
->colorindex
[i
] += MAXJSAMPLE
;
369 /* in loop, val = index of current output value, */
370 /* and k = largest j that maps to current val */
371 indexptr
= cquantize
->colorindex
[i
];
373 k
= largest_input_value(cinfo
, i
, 0, nci
-1);
374 for (j
= 0; j
<= MAXJSAMPLE
; j
++) {
375 while (j
> k
) /* advance val if past boundary */
376 k
= largest_input_value(cinfo
, i
, ++val
, nci
-1);
377 /* premultiply so that no multiplication needed in main processing */
378 indexptr
[j
] = (JSAMPLE
) (val
* blksize
);
380 /* Pad at both ends if necessary */
382 for (j
= 1; j
<= MAXJSAMPLE
; j
++) {
383 indexptr
[-j
] = indexptr
[0];
384 indexptr
[MAXJSAMPLE
+j
] = indexptr
[MAXJSAMPLE
];
391 * Create an ordered-dither array for a component having ncolors
392 * distinct output values.
395 LOCAL(ODITHER_MATRIX_PTR
)
396 make_odither_array (j_decompress_ptr cinfo
, int ncolors
)
398 ODITHER_MATRIX_PTR odither
;
402 odither
= (ODITHER_MATRIX_PTR
)
403 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
404 SIZEOF(ODITHER_MATRIX
));
405 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
406 * Hence the dither value for the matrix cell with fill order f
407 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
408 * On 16-bit-int machine, be careful to avoid overflow.
410 den
= 2 * ODITHER_CELLS
* ((JPEG_INT32
) (ncolors
- 1));
411 for (j
= 0; j
< ODITHER_SIZE
; j
++) {
412 for (k
= 0; k
< ODITHER_SIZE
; k
++) {
413 num
= ((JPEG_INT32
) (ODITHER_CELLS
-1 - 2*((int)base_dither_matrix
[j
][k
])))
415 /* Ensure round towards zero despite C's lack of consistency
416 * about rounding negative values in integer division...
418 odither
[j
][k
] = (int) (num
<0 ? -((-num
)/den
) : num
/den
);
426 * Create the ordered-dither tables.
427 * Components having the same number of representative colors may
428 * share a dither table.
432 create_odither_tables (j_decompress_ptr cinfo
)
434 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
435 ODITHER_MATRIX_PTR odither
;
438 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
439 nci
= cquantize
->Ncolors
[i
]; /* # of distinct values for this color */
440 odither
= NULL
; /* search for matching prior component */
441 for (j
= 0; j
< i
; j
++) {
442 if (nci
== cquantize
->Ncolors
[j
]) {
443 odither
= cquantize
->odither
[j
];
447 if (odither
== NULL
) /* need a new table? */
448 odither
= make_odither_array(cinfo
, nci
);
449 cquantize
->odither
[i
] = odither
;
455 * Map some rows of pixels to the output colormapped representation.
459 color_quantize (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
460 JSAMPARRAY output_buf
, int num_rows
)
461 /* General case, no dithering */
463 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
464 JSAMPARRAY colorindex
= cquantize
->colorindex
;
465 register int pixcode
, ci
;
466 register JSAMPROW ptrin
, ptrout
;
469 JDIMENSION width
= cinfo
->output_width
;
470 register int nc
= cinfo
->out_color_components
;
472 for (row
= 0; row
< num_rows
; row
++) {
473 ptrin
= input_buf
[row
];
474 ptrout
= output_buf
[row
];
475 for (col
= width
; col
> 0; col
--) {
477 for (ci
= 0; ci
< nc
; ci
++) {
478 pixcode
+= GETJSAMPLE(colorindex
[ci
][GETJSAMPLE(*ptrin
++)]);
480 *ptrout
++ = (JSAMPLE
) pixcode
;
487 color_quantize3 (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
488 JSAMPARRAY output_buf
, int num_rows
)
489 /* Fast path for out_color_components==3, no dithering */
491 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
492 register int pixcode
;
493 register JSAMPROW ptrin
, ptrout
;
494 JSAMPROW colorindex0
= cquantize
->colorindex
[0];
495 JSAMPROW colorindex1
= cquantize
->colorindex
[1];
496 JSAMPROW colorindex2
= cquantize
->colorindex
[2];
499 JDIMENSION width
= cinfo
->output_width
;
501 for (row
= 0; row
< num_rows
; row
++) {
502 ptrin
= input_buf
[row
];
503 ptrout
= output_buf
[row
];
504 for (col
= width
; col
> 0; col
--) {
505 pixcode
= GETJSAMPLE(colorindex0
[GETJSAMPLE(*ptrin
++)]);
506 pixcode
+= GETJSAMPLE(colorindex1
[GETJSAMPLE(*ptrin
++)]);
507 pixcode
+= GETJSAMPLE(colorindex2
[GETJSAMPLE(*ptrin
++)]);
508 *ptrout
++ = (JSAMPLE
) pixcode
;
515 quantize_ord_dither (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
516 JSAMPARRAY output_buf
, int num_rows
)
517 /* General case, with ordered dithering */
519 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
520 register JSAMPROW input_ptr
;
521 register JSAMPROW output_ptr
;
522 JSAMPROW colorindex_ci
;
523 int * dither
; /* points to active row of dither matrix */
524 int row_index
, col_index
; /* current indexes into dither matrix */
525 int nc
= cinfo
->out_color_components
;
529 JDIMENSION width
= cinfo
->output_width
;
531 for (row
= 0; row
< num_rows
; row
++) {
532 /* Initialize output values to 0 so can process components separately */
533 jzero_far((void FAR
*) output_buf
[row
],
534 (size_t) (width
* SIZEOF(JSAMPLE
)));
535 row_index
= cquantize
->row_index
;
536 for (ci
= 0; ci
< nc
; ci
++) {
537 input_ptr
= input_buf
[row
] + ci
;
538 output_ptr
= output_buf
[row
];
539 colorindex_ci
= cquantize
->colorindex
[ci
];
540 dither
= cquantize
->odither
[ci
][row_index
];
543 for (col
= width
; col
> 0; col
--) {
544 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
545 * select output value, accumulate into output code for this pixel.
546 * Range-limiting need not be done explicitly, as we have extended
547 * the colorindex table to produce the right answers for out-of-range
548 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
549 * required amount of padding.
551 *output_ptr
+= colorindex_ci
[GETJSAMPLE(*input_ptr
)+dither
[col_index
]];
554 col_index
= (col_index
+ 1) & ODITHER_MASK
;
557 /* Advance row index for next row */
558 row_index
= (row_index
+ 1) & ODITHER_MASK
;
559 cquantize
->row_index
= row_index
;
565 quantize3_ord_dither (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
566 JSAMPARRAY output_buf
, int num_rows
)
567 /* Fast path for out_color_components==3, with ordered dithering */
569 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
570 register int pixcode
;
571 register JSAMPROW input_ptr
;
572 register JSAMPROW output_ptr
;
573 JSAMPROW colorindex0
= cquantize
->colorindex
[0];
574 JSAMPROW colorindex1
= cquantize
->colorindex
[1];
575 JSAMPROW colorindex2
= cquantize
->colorindex
[2];
576 int * dither0
; /* points to active row of dither matrix */
579 int row_index
, col_index
; /* current indexes into dither matrix */
582 JDIMENSION width
= cinfo
->output_width
;
584 for (row
= 0; row
< num_rows
; row
++) {
585 row_index
= cquantize
->row_index
;
586 input_ptr
= input_buf
[row
];
587 output_ptr
= output_buf
[row
];
588 dither0
= cquantize
->odither
[0][row_index
];
589 dither1
= cquantize
->odither
[1][row_index
];
590 dither2
= cquantize
->odither
[2][row_index
];
593 for (col
= width
; col
> 0; col
--) {
594 pixcode
= GETJSAMPLE(colorindex0
[GETJSAMPLE(*input_ptr
++) +
595 dither0
[col_index
]]);
596 pixcode
+= GETJSAMPLE(colorindex1
[GETJSAMPLE(*input_ptr
++) +
597 dither1
[col_index
]]);
598 pixcode
+= GETJSAMPLE(colorindex2
[GETJSAMPLE(*input_ptr
++) +
599 dither2
[col_index
]]);
600 *output_ptr
++ = (JSAMPLE
) pixcode
;
601 col_index
= (col_index
+ 1) & ODITHER_MASK
;
603 row_index
= (row_index
+ 1) & ODITHER_MASK
;
604 cquantize
->row_index
= row_index
;
610 quantize_fs_dither (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
611 JSAMPARRAY output_buf
, int num_rows
)
612 /* General case, with Floyd-Steinberg dithering */
614 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
615 register LOCFSERROR cur
; /* current error or pixel value */
616 LOCFSERROR belowerr
; /* error for pixel below cur */
617 LOCFSERROR bpreverr
; /* error for below/prev col */
618 LOCFSERROR bnexterr
; /* error for below/next col */
620 register FSERRPTR errorptr
; /* => fserrors[] at column before current */
621 register JSAMPROW input_ptr
;
622 register JSAMPROW output_ptr
;
623 JSAMPROW colorindex_ci
;
624 JSAMPROW colormap_ci
;
626 int nc
= cinfo
->out_color_components
;
627 int dir
; /* 1 for left-to-right, -1 for right-to-left */
628 int dirnc
; /* dir * nc */
632 JDIMENSION width
= cinfo
->output_width
;
633 JSAMPLE
*range_limit
= cinfo
->sample_range_limit
;
636 for (row
= 0; row
< num_rows
; row
++) {
637 /* Initialize output values to 0 so can process components separately */
638 jzero_far((void FAR
*) output_buf
[row
],
639 (size_t) (width
* SIZEOF(JSAMPLE
)));
640 for (ci
= 0; ci
< nc
; ci
++) {
641 input_ptr
= input_buf
[row
] + ci
;
642 output_ptr
= output_buf
[row
];
643 if (cquantize
->on_odd_row
) {
644 /* work right to left in this row */
645 input_ptr
+= (width
-1) * nc
; /* so point to rightmost pixel */
646 output_ptr
+= width
-1;
649 errorptr
= cquantize
->fserrors
[ci
] + (width
+1); /* => entry after last column */
651 /* work left to right in this row */
654 errorptr
= cquantize
->fserrors
[ci
]; /* => entry before first column */
656 colorindex_ci
= cquantize
->colorindex
[ci
];
657 colormap_ci
= cquantize
->sv_colormap
[ci
];
658 /* Preset error values: no error propagated to first pixel from left */
660 /* and no error propagated to row below yet */
661 belowerr
= bpreverr
= 0;
663 for (col
= width
; col
> 0; col
--) {
664 /* cur holds the error propagated from the previous pixel on the
665 * current line. Add the error propagated from the previous line
666 * to form the complete error correction term for this pixel, and
667 * round the error term (which is expressed * 16) to an integer.
668 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
669 * for either sign of the error value.
670 * Note: errorptr points to *previous* column's array entry.
672 cur
= RIGHT_SHIFT(cur
+ errorptr
[dir
] + 8, 4);
673 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
674 * The maximum error is +- MAXJSAMPLE; this sets the required size
675 * of the range_limit array.
677 cur
+= GETJSAMPLE(*input_ptr
);
678 cur
= GETJSAMPLE(range_limit
[cur
]);
679 /* Select output value, accumulate into output code for this pixel */
680 pixcode
= GETJSAMPLE(colorindex_ci
[cur
]);
681 *output_ptr
+= (JSAMPLE
) pixcode
;
682 /* Compute actual representation error at this pixel */
683 /* Note: we can do this even though we don't have the final */
684 /* pixel code, because the colormap is orthogonal. */
685 cur
-= GETJSAMPLE(colormap_ci
[pixcode
]);
686 /* Compute error fractions to be propagated to adjacent pixels.
687 * Add these into the running sums, and simultaneously shift the
688 * next-line error sums left by 1 column.
692 cur
+= delta
; /* form error * 3 */
693 errorptr
[0] = (FSERROR
) (bpreverr
+ cur
);
694 cur
+= delta
; /* form error * 5 */
695 bpreverr
= belowerr
+ cur
;
697 cur
+= delta
; /* form error * 7 */
698 /* At this point cur contains the 7/16 error value to be propagated
699 * to the next pixel on the current line, and all the errors for the
700 * next line have been shifted over. We are therefore ready to move on.
702 input_ptr
+= dirnc
; /* advance input ptr to next column */
703 output_ptr
+= dir
; /* advance output ptr to next column */
704 errorptr
+= dir
; /* advance errorptr to current column */
706 /* Post-loop cleanup: we must unload the final error value into the
707 * final fserrors[] entry. Note we need not unload belowerr because
708 * it is for the dummy column before or after the actual array.
710 errorptr
[0] = (FSERROR
) bpreverr
; /* unload prev err into array */
712 cquantize
->on_odd_row
= (cquantize
->on_odd_row
? FALSE
: TRUE
);
718 * Allocate workspace for Floyd-Steinberg errors.
722 alloc_fs_workspace (j_decompress_ptr cinfo
)
724 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
728 arraysize
= (size_t) ((cinfo
->output_width
+ 2) * SIZEOF(FSERROR
));
729 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
730 cquantize
->fserrors
[i
] = (FSERRPTR
)
731 (*cinfo
->mem
->alloc_large
)((j_common_ptr
) cinfo
, JPOOL_IMAGE
, arraysize
);
737 * Initialize for one-pass color quantization.
741 start_pass_1_quant (j_decompress_ptr cinfo
, boolean is_pre_scan
)
743 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
747 /* Install my colormap. */
748 cinfo
->colormap
= cquantize
->sv_colormap
;
749 cinfo
->actual_number_of_colors
= cquantize
->sv_actual
;
751 /* Initialize for desired dithering mode. */
752 switch (cinfo
->dither_mode
) {
754 if (cinfo
->out_color_components
== 3)
755 cquantize
->pub
.color_quantize
= color_quantize3
;
757 cquantize
->pub
.color_quantize
= color_quantize
;
759 case JDITHER_ORDERED
:
760 if (cinfo
->out_color_components
== 3)
761 cquantize
->pub
.color_quantize
= quantize3_ord_dither
;
763 cquantize
->pub
.color_quantize
= quantize_ord_dither
;
764 cquantize
->row_index
= 0; /* initialize state for ordered dither */
765 /* If user changed to ordered dither from another mode,
766 * we must recreate the color index table with padding.
767 * This will cost extra space, but probably isn't very likely.
769 if (! cquantize
->is_padded
)
770 create_colorindex(cinfo
);
771 /* Create ordered-dither tables if we didn't already. */
772 if (cquantize
->odither
[0] == NULL
)
773 create_odither_tables(cinfo
);
776 cquantize
->pub
.color_quantize
= quantize_fs_dither
;
777 cquantize
->on_odd_row
= FALSE
; /* initialize state for F-S dither */
778 /* Allocate Floyd-Steinberg workspace if didn't already. */
779 if (cquantize
->fserrors
[0] == NULL
)
780 alloc_fs_workspace(cinfo
);
781 /* Initialize the propagated errors to zero. */
782 arraysize
= (size_t) ((cinfo
->output_width
+ 2) * SIZEOF(FSERROR
));
783 for (i
= 0; i
< cinfo
->out_color_components
; i
++)
784 jzero_far((void FAR
*) cquantize
->fserrors
[i
], arraysize
);
787 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
794 * Finish up at the end of the pass.
798 finish_pass_1_quant (j_decompress_ptr cinfo
)
800 /* no work in 1-pass case */
805 * Switch to a new external colormap between output passes.
806 * Shouldn't get to this module!
810 new_color_map_1_quant (j_decompress_ptr cinfo
)
812 ERREXIT(cinfo
, JERR_MODE_CHANGE
);
817 * Module initialization routine for 1-pass color quantization.
821 jinit_1pass_quantizer (j_decompress_ptr cinfo
)
823 my_cquantize_ptr cquantize
;
825 cquantize
= (my_cquantize_ptr
)
826 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
827 SIZEOF(my_cquantizer
));
828 cinfo
->cquantize
= (struct jpeg_color_quantizer
*) cquantize
;
829 cquantize
->pub
.start_pass
= start_pass_1_quant
;
830 cquantize
->pub
.finish_pass
= finish_pass_1_quant
;
831 cquantize
->pub
.new_color_map
= new_color_map_1_quant
;
832 cquantize
->fserrors
[0] = NULL
; /* Flag FS workspace not allocated */
833 cquantize
->odither
[0] = NULL
; /* Also flag odither arrays not allocated */
835 /* Make sure my internal arrays won't overflow */
836 if (cinfo
->out_color_components
> MAX_Q_COMPS
)
837 ERREXIT1(cinfo
, JERR_QUANT_COMPONENTS
, MAX_Q_COMPS
);
838 /* Make sure colormap indexes can be represented by JSAMPLEs */
839 if (cinfo
->desired_number_of_colors
> (MAXJSAMPLE
+1))
840 ERREXIT1(cinfo
, JERR_QUANT_MANY_COLORS
, MAXJSAMPLE
+1);
842 /* Create the colormap and color index table. */
843 create_colormap(cinfo
);
844 create_colorindex(cinfo
);
846 /* Allocate Floyd-Steinberg workspace now if requested.
847 * We do this now since it is FAR storage and may affect the memory
848 * manager's space calculations. If the user changes to FS dither
849 * mode in a later pass, we will allocate the space then, and will
850 * possibly overrun the max_memory_to_use setting.
852 if (cinfo
->dither_mode
== JDITHER_FS
)
853 alloc_fs_workspace(cinfo
);
856 #endif /* QUANT_1PASS_SUPPORTED */