]>
git.saurik.com Git - wxWidgets.git/blob - src/jpeg/jidctfst.c
   4  * Copyright (C) 1994-1998, Thomas G. Lane. 
   5  * This file is part of the Independent JPEG Group's software. 
   6  * For conditions of distribution and use, see the accompanying README file. 
   8  * This file contains a fast, not so accurate integer implementation of the 
   9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine 
  10  * must also perform dequantization of the input coefficients. 
  12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT 
  13  * on each row (or vice versa, but it's more convenient to emit a row at 
  14  * a time).  Direct algorithms are also available, but they are much more 
  15  * complex and seem not to be any faster when reduced to code. 
  17  * This implementation is based on Arai, Agui, and Nakajima's algorithm for 
  18  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in 
  19  * Japanese, but the algorithm is described in the Pennebaker & Mitchell 
  20  * JPEG textbook (see REFERENCES section in file README).  The following code 
  21  * is based directly on figure 4-8 in P&M. 
  22  * While an 8-point DCT cannot be done in less than 11 multiplies, it is 
  23  * possible to arrange the computation so that many of the multiplies are 
  24  * simple scalings of the final outputs.  These multiplies can then be 
  25  * folded into the multiplications or divisions by the JPEG quantization 
  26  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds 
  27  * to be done in the DCT itself. 
  28  * The primary disadvantage of this method is that with fixed-point math, 
  29  * accuracy is lost due to imprecise representation of the scaled 
  30  * quantization values.  The smaller the quantization table entry, the less 
  31  * precise the scaled value, so this implementation does worse with high- 
  32  * quality-setting files than with low-quality ones. 
  35 #define JPEG_INTERNALS 
  38 #include "jdct.h"               /* Private declarations for DCT subsystem */ 
  40 #ifdef DCT_IFAST_SUPPORTED 
  44  * This module is specialized to the case DCTSIZE = 8. 
  48   Sorry
, this code only copes with 
8x8 DCTs
. /* deliberate syntax err */ 
  52 /* Scaling decisions are generally the same as in the LL&M algorithm; 
  53  * see jidctint.c for more details.  However, we choose to descale 
  54  * (right shift) multiplication products as soon as they are formed, 
  55  * rather than carrying additional fractional bits into subsequent additions. 
  56  * This compromises accuracy slightly, but it lets us save a few shifts. 
  57  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) 
  58  * everywhere except in the multiplications proper; this saves a good deal 
  59  * of work on 16-bit-int machines. 
  61  * The dequantized coefficients are not integers because the AA&N scaling 
  62  * factors have been incorporated.  We represent them scaled up by PASS1_BITS, 
  63  * so that the first and second IDCT rounds have the same input scaling. 
  64  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to 
  65  * avoid a descaling shift; this compromises accuracy rather drastically 
  66  * for small quantization table entries, but it saves a lot of shifts. 
  67  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, 
  68  * so we use a much larger scaling factor to preserve accuracy. 
  70  * A final compromise is to represent the multiplicative constants to only 
  71  * 8 fractional bits, rather than 13.  This saves some shifting work on some 
  72  * machines, and may also reduce the cost of multiplication (since there 
  73  * are fewer one-bits in the constants). 
  76 #if BITS_IN_JSAMPLE == 8 
  81 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */ 
  84 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 
  85  * causing a lot of useless floating-point operations at run time. 
  86  * To get around this we use the following pre-calculated constants. 
  87  * If you change CONST_BITS you may want to add appropriate values. 
  88  * (With a reasonable C compiler, you can just rely on the FIX() macro...) 
  92 #define FIX_1_082392200  ((INT32)  277)         /* FIX(1.082392200) */ 
  93 #define FIX_1_414213562  ((INT32)  362)         /* FIX(1.414213562) */ 
  94 #define FIX_1_847759065  ((INT32)  473)         /* FIX(1.847759065) */ 
  95 #define FIX_2_613125930  ((INT32)  669)         /* FIX(2.613125930) */ 
  97 #define FIX_1_082392200  FIX(1.082392200) 
  98 #define FIX_1_414213562  FIX(1.414213562) 
  99 #define FIX_1_847759065  FIX(1.847759065) 
 100 #define FIX_2_613125930  FIX(2.613125930) 
 104 /* We can gain a little more speed, with a further compromise in accuracy, 
 105  * by omitting the addition in a descaling shift.  This yields an incorrectly 
 106  * rounded result half the time... 
 109 #ifndef USE_ACCURATE_ROUNDING 
 111 #define DESCALE(x,n)  RIGHT_SHIFT(x, n) 
 115 /* Multiply a DCTELEM variable by an INT32 constant, and immediately 
 116  * descale to yield a DCTELEM result. 
 119 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 
 122 /* Dequantize a coefficient by multiplying it by the multiplier-table 
 123  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16 
 124  * multiplication will do.  For 12-bit data, the multiplier table is 
 125  * declared INT32, so a 32-bit multiply will be used. 
 128 #if BITS_IN_JSAMPLE == 8 
 129 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval)) 
 131 #define DEQUANTIZE(coef,quantval)  \ 
 132         DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) 
 136 /* Like DESCALE, but applies to a DCTELEM and produces an int. 
 137  * We assume that int right shift is unsigned if INT32 right shift is. 
 140 #ifdef RIGHT_SHIFT_IS_UNSIGNED 
 141 #define ISHIFT_TEMPS    DCTELEM ishift_temp; 
 142 #if BITS_IN_JSAMPLE == 8 
 143 #define DCTELEMBITS  16         /* DCTELEM may be 16 or 32 bits */ 
 145 #define DCTELEMBITS  32         /* DCTELEM must be 32 bits */ 
 147 #define IRIGHT_SHIFT(x,shft)  \ 
 148     ((ishift_temp = (x)) < 0 ? \ 
 149      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ 
 150      (ishift_temp >> (shft))) 
 153 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft)) 
 156 #ifdef USE_ACCURATE_ROUNDING 
 157 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) 
 159 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n)) 
 164  * Perform dequantization and inverse DCT on one block of coefficients. 
 168 jpeg_idct_ifast (j_decompress_ptr cinfo
, jpeg_component_info 
* compptr
, 
 170                  JSAMPARRAY output_buf
, JDIMENSION output_col
) 
 172   DCTELEM tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
; 
 173   DCTELEM tmp10
, tmp11
, tmp12
, tmp13
; 
 174   DCTELEM z5
, z10
, z11
, z12
, z13
; 
 176   IFAST_MULT_TYPE 
* quantptr
; 
 179   JSAMPLE 
*range_limit 
= IDCT_range_limit(cinfo
); 
 181   int workspace
[DCTSIZE2
];      /* buffers data between passes */ 
 182   SHIFT_TEMPS                   
/* for DESCALE */ 
 183   ISHIFT_TEMPS                  
/* for IDESCALE */ 
 185   /* Pass 1: process columns from input, store into work array. */ 
 188   quantptr 
= (IFAST_MULT_TYPE 
*) compptr
->dct_table
; 
 190   for (ctr 
= DCTSIZE
; ctr 
> 0; ctr
--) { 
 191     /* Due to quantization, we will usually find that many of the input 
 192      * coefficients are zero, especially the AC terms.  We can exploit this 
 193      * by short-circuiting the IDCT calculation for any column in which all 
 194      * the AC terms are zero.  In that case each output is equal to the 
 195      * DC coefficient (with scale factor as needed). 
 196      * With typical images and quantization tables, half or more of the 
 197      * column DCT calculations can be simplified this way. 
 200     if (inptr
[DCTSIZE
*1] == 0 && inptr
[DCTSIZE
*2] == 0 && 
 201         inptr
[DCTSIZE
*3] == 0 && inptr
[DCTSIZE
*4] == 0 && 
 202         inptr
[DCTSIZE
*5] == 0 && inptr
[DCTSIZE
*6] == 0 && 
 203         inptr
[DCTSIZE
*7] == 0) { 
 204       /* AC terms all zero */ 
 205       int dcval 
= (int) DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]); 
 207       wsptr
[DCTSIZE
*0] = dcval
; 
 208       wsptr
[DCTSIZE
*1] = dcval
; 
 209       wsptr
[DCTSIZE
*2] = dcval
; 
 210       wsptr
[DCTSIZE
*3] = dcval
; 
 211       wsptr
[DCTSIZE
*4] = dcval
; 
 212       wsptr
[DCTSIZE
*5] = dcval
; 
 213       wsptr
[DCTSIZE
*6] = dcval
; 
 214       wsptr
[DCTSIZE
*7] = dcval
; 
 216       inptr
++;                  /* advance pointers to next column */ 
 224     tmp0 
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]); 
 225     tmp1 
= DEQUANTIZE(inptr
[DCTSIZE
*2], quantptr
[DCTSIZE
*2]); 
 226     tmp2 
= DEQUANTIZE(inptr
[DCTSIZE
*4], quantptr
[DCTSIZE
*4]); 
 227     tmp3 
= DEQUANTIZE(inptr
[DCTSIZE
*6], quantptr
[DCTSIZE
*6]); 
 229     tmp10 
= tmp0 
+ tmp2
;        /* phase 3 */ 
 232     tmp13 
= tmp1 
+ tmp3
;        /* phases 5-3 */ 
 233     tmp12 
= MULTIPLY(tmp1 
- tmp3
, FIX_1_414213562
) - tmp13
; /* 2*c4 */ 
 235     tmp0 
= tmp10 
+ tmp13
;       /* phase 2 */ 
 236     tmp3 
= tmp10 
- tmp13
; 
 237     tmp1 
= tmp11 
+ tmp12
; 
 238     tmp2 
= tmp11 
- tmp12
; 
 242     tmp4 
= DEQUANTIZE(inptr
[DCTSIZE
*1], quantptr
[DCTSIZE
*1]); 
 243     tmp5 
= DEQUANTIZE(inptr
[DCTSIZE
*3], quantptr
[DCTSIZE
*3]); 
 244     tmp6 
= DEQUANTIZE(inptr
[DCTSIZE
*5], quantptr
[DCTSIZE
*5]); 
 245     tmp7 
= DEQUANTIZE(inptr
[DCTSIZE
*7], quantptr
[DCTSIZE
*7]); 
 247     z13 
= tmp6 
+ tmp5
;          /* phase 6 */ 
 252     tmp7 
= z11 
+ z13
;           /* phase 5 */ 
 253     tmp11 
= MULTIPLY(z11 
- z13
, FIX_1_414213562
); /* 2*c4 */ 
 255     z5 
= MULTIPLY(z10 
+ z12
, FIX_1_847759065
); /* 2*c2 */ 
 256     tmp10 
= MULTIPLY(z12
, FIX_1_082392200
) - z5
; /* 2*(c2-c6) */ 
 257     tmp12 
= MULTIPLY(z10
, - FIX_2_613125930
) + z5
; /* -2*(c2+c6) */ 
 259     tmp6 
= tmp12 
- tmp7
;        /* phase 2 */ 
 263     wsptr
[DCTSIZE
*0] = (int) (tmp0 
+ tmp7
); 
 264     wsptr
[DCTSIZE
*7] = (int) (tmp0 
- tmp7
); 
 265     wsptr
[DCTSIZE
*1] = (int) (tmp1 
+ tmp6
); 
 266     wsptr
[DCTSIZE
*6] = (int) (tmp1 
- tmp6
); 
 267     wsptr
[DCTSIZE
*2] = (int) (tmp2 
+ tmp5
); 
 268     wsptr
[DCTSIZE
*5] = (int) (tmp2 
- tmp5
); 
 269     wsptr
[DCTSIZE
*4] = (int) (tmp3 
+ tmp4
); 
 270     wsptr
[DCTSIZE
*3] = (int) (tmp3 
- tmp4
); 
 272     inptr
++;                    /* advance pointers to next column */ 
 277   /* Pass 2: process rows from work array, store into output array. */ 
 278   /* Note that we must descale the results by a factor of 8 == 2**3, */ 
 279   /* and also undo the PASS1_BITS scaling. */ 
 282   for (ctr 
= 0; ctr 
< DCTSIZE
; ctr
++) { 
 283     outptr 
= output_buf
[ctr
] + output_col
; 
 284     /* Rows of zeroes can be exploited in the same way as we did with columns. 
 285      * However, the column calculation has created many nonzero AC terms, so 
 286      * the simplification applies less often (typically 5% to 10% of the time). 
 287      * On machines with very fast multiplication, it's possible that the 
 288      * test takes more time than it's worth.  In that case this section 
 289      * may be commented out. 
 292 #ifndef NO_ZERO_ROW_TEST 
 293     if (wsptr
[1] == 0 && wsptr
[2] == 0 && wsptr
[3] == 0 && wsptr
[4] == 0 && 
 294         wsptr
[5] == 0 && wsptr
[6] == 0 && wsptr
[7] == 0) { 
 295       /* AC terms all zero */ 
 296       JSAMPLE dcval 
= range_limit
[IDESCALE(wsptr
[0], PASS1_BITS
+3) 
 308       wsptr 
+= DCTSIZE
;         /* advance pointer to next row */ 
 315     tmp10 
= ((DCTELEM
) wsptr
[0] + (DCTELEM
) wsptr
[4]); 
 316     tmp11 
= ((DCTELEM
) wsptr
[0] - (DCTELEM
) wsptr
[4]); 
 318     tmp13 
= ((DCTELEM
) wsptr
[2] + (DCTELEM
) wsptr
[6]); 
 319     tmp12 
= MULTIPLY((DCTELEM
) wsptr
[2] - (DCTELEM
) wsptr
[6], FIX_1_414213562
) 
 322     tmp0 
= tmp10 
+ tmp13
; 
 323     tmp3 
= tmp10 
- tmp13
; 
 324     tmp1 
= tmp11 
+ tmp12
; 
 325     tmp2 
= tmp11 
- tmp12
; 
 329     z13 
= (DCTELEM
) wsptr
[5] + (DCTELEM
) wsptr
[3]; 
 330     z10 
= (DCTELEM
) wsptr
[5] - (DCTELEM
) wsptr
[3]; 
 331     z11 
= (DCTELEM
) wsptr
[1] + (DCTELEM
) wsptr
[7]; 
 332     z12 
= (DCTELEM
) wsptr
[1] - (DCTELEM
) wsptr
[7]; 
 334     tmp7 
= z11 
+ z13
;           /* phase 5 */ 
 335     tmp11 
= MULTIPLY(z11 
- z13
, FIX_1_414213562
); /* 2*c4 */ 
 337     z5 
= MULTIPLY(z10 
+ z12
, FIX_1_847759065
); /* 2*c2 */ 
 338     tmp10 
= MULTIPLY(z12
, FIX_1_082392200
) - z5
; /* 2*(c2-c6) */ 
 339     tmp12 
= MULTIPLY(z10
, - FIX_2_613125930
) + z5
; /* -2*(c2+c6) */ 
 341     tmp6 
= tmp12 
- tmp7
;        /* phase 2 */ 
 345     /* Final output stage: scale down by a factor of 8 and range-limit */ 
 347     outptr
[0] = range_limit
[IDESCALE(tmp0 
+ tmp7
, PASS1_BITS
+3) 
 349     outptr
[7] = range_limit
[IDESCALE(tmp0 
- tmp7
, PASS1_BITS
+3) 
 351     outptr
[1] = range_limit
[IDESCALE(tmp1 
+ tmp6
, PASS1_BITS
+3) 
 353     outptr
[6] = range_limit
[IDESCALE(tmp1 
- tmp6
, PASS1_BITS
+3) 
 355     outptr
[2] = range_limit
[IDESCALE(tmp2 
+ tmp5
, PASS1_BITS
+3) 
 357     outptr
[5] = range_limit
[IDESCALE(tmp2 
- tmp5
, PASS1_BITS
+3) 
 359     outptr
[4] = range_limit
[IDESCALE(tmp3 
+ tmp4
, PASS1_BITS
+3) 
 361     outptr
[3] = range_limit
[IDESCALE(tmp3 
- tmp4
, PASS1_BITS
+3) 
 364     wsptr 
+= DCTSIZE
;           /* advance pointer to next row */ 
 368 #endif /* DCT_IFAST_SUPPORTED */