]>
git.saurik.com Git - wxWidgets.git/blob - src/jpeg/jidctflt.c
   4  * Copyright (C) 1994-1998, Thomas G. Lane. 
   5  * This file is part of the Independent JPEG Group's software. 
   6  * For conditions of distribution and use, see the accompanying README file. 
   8  * This file contains a floating-point implementation of the 
   9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine 
  10  * must also perform dequantization of the input coefficients. 
  12  * This implementation should be more accurate than either of the integer 
  13  * IDCT implementations.  However, it may not give the same results on all 
  14  * machines because of differences in roundoff behavior.  Speed will depend 
  15  * on the hardware's floating point capacity. 
  17  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT 
  18  * on each row (or vice versa, but it's more convenient to emit a row at 
  19  * a time).  Direct algorithms are also available, but they are much more 
  20  * complex and seem not to be any faster when reduced to code. 
  22  * This implementation is based on Arai, Agui, and Nakajima's algorithm for 
  23  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in 
  24  * Japanese, but the algorithm is described in the Pennebaker & Mitchell 
  25  * JPEG textbook (see REFERENCES section in file README).  The following code 
  26  * is based directly on figure 4-8 in P&M. 
  27  * While an 8-point DCT cannot be done in less than 11 multiplies, it is 
  28  * possible to arrange the computation so that many of the multiplies are 
  29  * simple scalings of the final outputs.  These multiplies can then be 
  30  * folded into the multiplications or divisions by the JPEG quantization 
  31  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds 
  32  * to be done in the DCT itself. 
  33  * The primary disadvantage of this method is that with a fixed-point 
  34  * implementation, accuracy is lost due to imprecise representation of the 
  35  * scaled quantization values.  However, that problem does not arise if 
  36  * we use floating point arithmetic. 
  39 #define JPEG_INTERNALS 
  42 #include "jdct.h"               /* Private declarations for DCT subsystem */ 
  44 #ifdef DCT_FLOAT_SUPPORTED 
  48  * This module is specialized to the case DCTSIZE = 8. 
  52   Sorry
, this code only copes with 
8x8 DCTs
. /* deliberate syntax err */ 
  56 /* Dequantize a coefficient by multiplying it by the multiplier-table 
  57  * entry; produce a float result. 
  60 #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval)) 
  64  * Perform dequantization and inverse DCT on one block of coefficients. 
  68 jpeg_idct_float (j_decompress_ptr cinfo
, jpeg_component_info 
* compptr
, 
  70                  JSAMPARRAY output_buf
, JDIMENSION output_col
) 
  72   FAST_FLOAT tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
; 
  73   FAST_FLOAT tmp10
, tmp11
, tmp12
, tmp13
; 
  74   FAST_FLOAT z5
, z10
, z11
, z12
, z13
; 
  76   FLOAT_MULT_TYPE 
* quantptr
; 
  79   JSAMPLE 
*range_limit 
= IDCT_range_limit(cinfo
); 
  81   FAST_FLOAT workspace
[DCTSIZE2
]; /* buffers data between passes */ 
  84   /* Pass 1: process columns from input, store into work array. */ 
  87   quantptr 
= (FLOAT_MULT_TYPE 
*) compptr
->dct_table
; 
  89   for (ctr 
= DCTSIZE
; ctr 
> 0; ctr
--) { 
  90     /* Due to quantization, we will usually find that many of the input 
  91      * coefficients are zero, especially the AC terms.  We can exploit this 
  92      * by short-circuiting the IDCT calculation for any column in which all 
  93      * the AC terms are zero.  In that case each output is equal to the 
  94      * DC coefficient (with scale factor as needed). 
  95      * With typical images and quantization tables, half or more of the 
  96      * column DCT calculations can be simplified this way. 
  99     if (inptr
[DCTSIZE
*1] == 0 && inptr
[DCTSIZE
*2] == 0 && 
 100         inptr
[DCTSIZE
*3] == 0 && inptr
[DCTSIZE
*4] == 0 && 
 101         inptr
[DCTSIZE
*5] == 0 && inptr
[DCTSIZE
*6] == 0 && 
 102         inptr
[DCTSIZE
*7] == 0) { 
 103       /* AC terms all zero */ 
 104       FAST_FLOAT dcval 
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]); 
 106       wsptr
[DCTSIZE
*0] = dcval
; 
 107       wsptr
[DCTSIZE
*1] = dcval
; 
 108       wsptr
[DCTSIZE
*2] = dcval
; 
 109       wsptr
[DCTSIZE
*3] = dcval
; 
 110       wsptr
[DCTSIZE
*4] = dcval
; 
 111       wsptr
[DCTSIZE
*5] = dcval
; 
 112       wsptr
[DCTSIZE
*6] = dcval
; 
 113       wsptr
[DCTSIZE
*7] = dcval
; 
 115       inptr
++;                  /* advance pointers to next column */ 
 123     tmp0 
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]); 
 124     tmp1 
= DEQUANTIZE(inptr
[DCTSIZE
*2], quantptr
[DCTSIZE
*2]); 
 125     tmp2 
= DEQUANTIZE(inptr
[DCTSIZE
*4], quantptr
[DCTSIZE
*4]); 
 126     tmp3 
= DEQUANTIZE(inptr
[DCTSIZE
*6], quantptr
[DCTSIZE
*6]); 
 128     tmp10 
= tmp0 
+ tmp2
;        /* phase 3 */ 
 131     tmp13 
= tmp1 
+ tmp3
;        /* phases 5-3 */ 
 132     tmp12 
= (tmp1 
- tmp3
) * ((FAST_FLOAT
) 1.414213562) - tmp13
; /* 2*c4 */ 
 134     tmp0 
= tmp10 
+ tmp13
;       /* phase 2 */ 
 135     tmp3 
= tmp10 
- tmp13
; 
 136     tmp1 
= tmp11 
+ tmp12
; 
 137     tmp2 
= tmp11 
- tmp12
; 
 141     tmp4 
= DEQUANTIZE(inptr
[DCTSIZE
*1], quantptr
[DCTSIZE
*1]); 
 142     tmp5 
= DEQUANTIZE(inptr
[DCTSIZE
*3], quantptr
[DCTSIZE
*3]); 
 143     tmp6 
= DEQUANTIZE(inptr
[DCTSIZE
*5], quantptr
[DCTSIZE
*5]); 
 144     tmp7 
= DEQUANTIZE(inptr
[DCTSIZE
*7], quantptr
[DCTSIZE
*7]); 
 146     z13 
= tmp6 
+ tmp5
;          /* phase 6 */ 
 151     tmp7 
= z11 
+ z13
;           /* phase 5 */ 
 152     tmp11 
= (z11 
- z13
) * ((FAST_FLOAT
) 1.414213562); /* 2*c4 */ 
 154     z5 
= (z10 
+ z12
) * ((FAST_FLOAT
) 1.847759065); /* 2*c2 */ 
 155     tmp10 
= ((FAST_FLOAT
) 1.082392200) * z12 
- z5
; /* 2*(c2-c6) */ 
 156     tmp12 
= ((FAST_FLOAT
) -2.613125930) * z10 
+ z5
; /* -2*(c2+c6) */ 
 158     tmp6 
= tmp12 
- tmp7
;        /* phase 2 */ 
 162     wsptr
[DCTSIZE
*0] = tmp0 
+ tmp7
; 
 163     wsptr
[DCTSIZE
*7] = tmp0 
- tmp7
; 
 164     wsptr
[DCTSIZE
*1] = tmp1 
+ tmp6
; 
 165     wsptr
[DCTSIZE
*6] = tmp1 
- tmp6
; 
 166     wsptr
[DCTSIZE
*2] = tmp2 
+ tmp5
; 
 167     wsptr
[DCTSIZE
*5] = tmp2 
- tmp5
; 
 168     wsptr
[DCTSIZE
*4] = tmp3 
+ tmp4
; 
 169     wsptr
[DCTSIZE
*3] = tmp3 
- tmp4
; 
 171     inptr
++;                    /* advance pointers to next column */ 
 176   /* Pass 2: process rows from work array, store into output array. */ 
 177   /* Note that we must descale the results by a factor of 8 == 2**3. */ 
 180   for (ctr 
= 0; ctr 
< DCTSIZE
; ctr
++) { 
 181     outptr 
= output_buf
[ctr
] + output_col
; 
 182     /* Rows of zeroes can be exploited in the same way as we did with columns. 
 183      * However, the column calculation has created many nonzero AC terms, so 
 184      * the simplification applies less often (typically 5% to 10% of the time). 
 185      * And testing floats for zero is relatively expensive, so we don't bother. 
 190     tmp10 
= wsptr
[0] + wsptr
[4]; 
 191     tmp11 
= wsptr
[0] - wsptr
[4]; 
 193     tmp13 
= wsptr
[2] + wsptr
[6]; 
 194     tmp12 
= (wsptr
[2] - wsptr
[6]) * ((FAST_FLOAT
) 1.414213562) - tmp13
; 
 196     tmp0 
= tmp10 
+ tmp13
; 
 197     tmp3 
= tmp10 
- tmp13
; 
 198     tmp1 
= tmp11 
+ tmp12
; 
 199     tmp2 
= tmp11 
- tmp12
; 
 203     z13 
= wsptr
[5] + wsptr
[3]; 
 204     z10 
= wsptr
[5] - wsptr
[3]; 
 205     z11 
= wsptr
[1] + wsptr
[7]; 
 206     z12 
= wsptr
[1] - wsptr
[7]; 
 209     tmp11 
= (z11 
- z13
) * ((FAST_FLOAT
) 1.414213562); 
 211     z5 
= (z10 
+ z12
) * ((FAST_FLOAT
) 1.847759065); /* 2*c2 */ 
 212     tmp10 
= ((FAST_FLOAT
) 1.082392200) * z12 
- z5
; /* 2*(c2-c6) */ 
 213     tmp12 
= ((FAST_FLOAT
) -2.613125930) * z10 
+ z5
; /* -2*(c2+c6) */ 
 219     /* Final output stage: scale down by a factor of 8 and range-limit */ 
 221     outptr
[0] = range_limit
[(int) DESCALE((INT32
) (tmp0 
+ tmp7
), 3) 
 223     outptr
[7] = range_limit
[(int) DESCALE((INT32
) (tmp0 
- tmp7
), 3) 
 225     outptr
[1] = range_limit
[(int) DESCALE((INT32
) (tmp1 
+ tmp6
), 3) 
 227     outptr
[6] = range_limit
[(int) DESCALE((INT32
) (tmp1 
- tmp6
), 3) 
 229     outptr
[2] = range_limit
[(int) DESCALE((INT32
) (tmp2 
+ tmp5
), 3) 
 231     outptr
[5] = range_limit
[(int) DESCALE((INT32
) (tmp2 
- tmp5
), 3) 
 233     outptr
[4] = range_limit
[(int) DESCALE((INT32
) (tmp3 
+ tmp4
), 3) 
 235     outptr
[3] = range_limit
[(int) DESCALE((INT32
) (tmp3 
- tmp4
), 3) 
 238     wsptr 
+= DCTSIZE
;           /* advance pointer to next row */ 
 242 #endif /* DCT_FLOAT_SUPPORTED */