4  * Copyright (C) 1994-1997, Thomas G. Lane. 
   5  * This file is part of the Independent JPEG Group's software. 
   6  * For conditions of distribution and use, see the accompanying README file. 
   8  * This file contains the coefficient buffer controller for decompression. 
   9  * This controller is the top level of the JPEG decompressor proper. 
  10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps. 
  12  * In buffered-image mode, this controller is the interface between 
  13  * input-oriented processing and output-oriented processing. 
  14  * Also, the input side (only) is used when reading a file for transcoding. 
  17 #define JPEG_INTERNALS 
  21 /* Block smoothing is only applicable for progressive JPEG, so: */ 
  22 #ifndef D_PROGRESSIVE_SUPPORTED 
  23 #undef BLOCK_SMOOTHING_SUPPORTED 
  26 /* Private buffer controller object */ 
  29   struct jpeg_d_coef_controller pub
; /* public fields */ 
  31   /* These variables keep track of the current location of the input side. */ 
  32   /* cinfo->input_iMCU_row is also used for this. */ 
  33   JDIMENSION MCU_ctr
;           /* counts MCUs processed in current row */ 
  34   int MCU_vert_offset
;          /* counts MCU rows within iMCU row */ 
  35   int MCU_rows_per_iMCU_row
;    /* number of such rows needed */ 
  37   /* The output side's location is represented by cinfo->output_iMCU_row. */ 
  39   /* In single-pass modes, it's sufficient to buffer just one MCU. 
  40    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, 
  41    * and let the entropy decoder write into that workspace each time. 
  42    * (On 80x86, the workspace is FAR even though it's not really very big; 
  43    * this is to keep the module interfaces unchanged when a large coefficient 
  44    * buffer is necessary.) 
  45    * In multi-pass modes, this array points to the current MCU's blocks 
  46    * within the virtual arrays; it is used only by the input side. 
  48   JBLOCKROW MCU_buffer
[D_MAX_BLOCKS_IN_MCU
]; 
  50 #ifdef D_MULTISCAN_FILES_SUPPORTED 
  51   /* In multi-pass modes, we need a virtual block array for each component. */ 
  52   jvirt_barray_ptr whole_image
[MAX_COMPONENTS
]; 
  55 #ifdef BLOCK_SMOOTHING_SUPPORTED 
  56   /* When doing block smoothing, we latch coefficient Al values here */ 
  57   int * coef_bits_latch
; 
  58 #define SAVED_COEFS  6          /* we save coef_bits[0..5] */ 
  62 typedef my_coef_controller 
* my_coef_ptr
; 
  64 /* Forward declarations */ 
  65 METHODDEF(int) decompress_onepass
 
  66         JPP((j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
)); 
  67 #ifdef D_MULTISCAN_FILES_SUPPORTED 
  68 METHODDEF(int) decompress_data
 
  69         JPP((j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
)); 
  71 #ifdef BLOCK_SMOOTHING_SUPPORTED 
  72 LOCAL(boolean
) smoothing_ok 
JPP((j_decompress_ptr cinfo
)); 
  73 METHODDEF(int) decompress_smooth_data
 
  74         JPP((j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
)); 
  79 start_iMCU_row (j_decompress_ptr cinfo
) 
  80 /* Reset within-iMCU-row counters for a new row (input side) */ 
  82   my_coef_ptr coef 
= (my_coef_ptr
) cinfo
->coef
; 
  84   /* In an interleaved scan, an MCU row is the same as an iMCU row. 
  85    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. 
  86    * But at the bottom of the image, process only what's left. 
  88   if (cinfo
->comps_in_scan 
> 1) { 
  89     coef
->MCU_rows_per_iMCU_row 
= 1; 
  91     if (cinfo
->input_iMCU_row 
< (cinfo
->total_iMCU_rows
-1)) 
  92       coef
->MCU_rows_per_iMCU_row 
= cinfo
->cur_comp_info
[0]->v_samp_factor
; 
  94       coef
->MCU_rows_per_iMCU_row 
= cinfo
->cur_comp_info
[0]->last_row_height
; 
  98   coef
->MCU_vert_offset 
= 0; 
 103  * Initialize for an input processing pass. 
 107 start_input_pass (j_decompress_ptr cinfo
) 
 109   cinfo
->input_iMCU_row 
= 0; 
 110   start_iMCU_row(cinfo
); 
 115  * Initialize for an output processing pass. 
 119 start_output_pass (j_decompress_ptr cinfo
) 
 121 #ifdef BLOCK_SMOOTHING_SUPPORTED 
 122   my_coef_ptr coef 
= (my_coef_ptr
) cinfo
->coef
; 
 124   /* If multipass, check to see whether to use block smoothing on this pass */ 
 125   if (coef
->pub
.coef_arrays 
!= NULL
) { 
 126     if (cinfo
->do_block_smoothing 
&& smoothing_ok(cinfo
)) 
 127       coef
->pub
.decompress_data 
= decompress_smooth_data
; 
 129       coef
->pub
.decompress_data 
= decompress_data
; 
 132   cinfo
->output_iMCU_row 
= 0; 
 137  * Decompress and return some data in the single-pass case. 
 138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). 
 139  * Input and output must run in lockstep since we have only a one-MCU buffer. 
 140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. 
 142  * NB: output_buf contains a plane for each component in image, 
 143  * which we index according to the component's SOF position. 
 147 decompress_onepass (j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
) 
 149   my_coef_ptr coef 
= (my_coef_ptr
) cinfo
->coef
; 
 150   JDIMENSION MCU_col_num
;       /* index of current MCU within row */ 
 151   JDIMENSION last_MCU_col 
= cinfo
->MCUs_per_row 
- 1; 
 152   JDIMENSION last_iMCU_row 
= cinfo
->total_iMCU_rows 
- 1; 
 153   int blkn
, ci
, xindex
, yindex
, yoffset
, useful_width
; 
 154   JSAMPARRAY output_ptr
; 
 155   JDIMENSION start_col
, output_col
; 
 156   jpeg_component_info 
*compptr
; 
 157   inverse_DCT_method_ptr inverse_DCT
; 
 159   /* Loop to process as much as one whole iMCU row */ 
 160   for (yoffset 
= coef
->MCU_vert_offset
; yoffset 
< coef
->MCU_rows_per_iMCU_row
; 
 162     for (MCU_col_num 
= coef
->MCU_ctr
; MCU_col_num 
<= last_MCU_col
; 
 164       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */ 
 165       jzero_far((void FAR 
*) coef
->MCU_buffer
[0], 
 166                 (size_t) (cinfo
->blocks_in_MCU 
* SIZEOF(JBLOCK
))); 
 167       if (! (*cinfo
->entropy
->decode_mcu
) (cinfo
, coef
->MCU_buffer
)) { 
 168         /* Suspension forced; update state counters and exit */ 
 169         coef
->MCU_vert_offset 
= yoffset
; 
 170         coef
->MCU_ctr 
= MCU_col_num
; 
 171         return JPEG_SUSPENDED
; 
 173       /* Determine where data should go in output_buf and do the IDCT thing. 
 174        * We skip dummy blocks at the right and bottom edges (but blkn gets 
 175        * incremented past them!).  Note the inner loop relies on having 
 176        * allocated the MCU_buffer[] blocks sequentially. 
 178       blkn 
= 0;                 /* index of current DCT block within MCU */ 
 179       for (ci 
= 0; ci 
< cinfo
->comps_in_scan
; ci
++) { 
 180         compptr 
= cinfo
->cur_comp_info
[ci
]; 
 181         /* Don't bother to IDCT an uninteresting component. */ 
 182         if (! compptr
->component_needed
) { 
 183           blkn 
+= compptr
->MCU_blocks
; 
 186         inverse_DCT 
= cinfo
->idct
->inverse_DCT
[compptr
->component_index
]; 
 187         useful_width 
= (MCU_col_num 
< last_MCU_col
) ? compptr
->MCU_width
 
 188                                                     : compptr
->last_col_width
; 
 189         output_ptr 
= output_buf
[compptr
->component_index
] + 
 190           yoffset 
* compptr
->DCT_scaled_size
; 
 191         start_col 
= MCU_col_num 
* compptr
->MCU_sample_width
; 
 192         for (yindex 
= 0; yindex 
< compptr
->MCU_height
; yindex
++) { 
 193           if (cinfo
->input_iMCU_row 
< last_iMCU_row 
|| 
 194               yoffset
+yindex 
< compptr
->last_row_height
) { 
 195             output_col 
= start_col
; 
 196             for (xindex 
= 0; xindex 
< useful_width
; xindex
++) { 
 197               (*inverse_DCT
) (cinfo
, compptr
, 
 198                               (JCOEFPTR
) coef
->MCU_buffer
[blkn
+xindex
], 
 199                               output_ptr
, output_col
); 
 200               output_col 
+= compptr
->DCT_scaled_size
; 
 203           blkn 
+= compptr
->MCU_width
; 
 204           output_ptr 
+= compptr
->DCT_scaled_size
; 
 208     /* Completed an MCU row, but perhaps not an iMCU row */ 
 211   /* Completed the iMCU row, advance counters for next one */ 
 212   cinfo
->output_iMCU_row
++; 
 213   if (++(cinfo
->input_iMCU_row
) < cinfo
->total_iMCU_rows
) { 
 214     start_iMCU_row(cinfo
); 
 215     return JPEG_ROW_COMPLETED
; 
 217   /* Completed the scan */ 
 218   (*cinfo
->inputctl
->finish_input_pass
) (cinfo
); 
 219   return JPEG_SCAN_COMPLETED
; 
 224  * Dummy consume-input routine for single-pass operation. 
 228 dummy_consume_data (j_decompress_ptr cinfo
) 
 230   return JPEG_SUSPENDED
;        /* Always indicate nothing was done */ 
 234 #ifdef D_MULTISCAN_FILES_SUPPORTED 
 237  * Consume input data and store it in the full-image coefficient buffer. 
 238  * We read as much as one fully interleaved MCU row ("iMCU" row) per call, 
 239  * ie, v_samp_factor block rows for each component in the scan. 
 240  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. 
 244 consume_data (j_decompress_ptr cinfo
) 
 246   my_coef_ptr coef 
= (my_coef_ptr
) cinfo
->coef
; 
 247   JDIMENSION MCU_col_num
;       /* index of current MCU within row */ 
 248   int blkn
, ci
, xindex
, yindex
, yoffset
; 
 249   JDIMENSION start_col
; 
 250   JBLOCKARRAY buffer
[MAX_COMPS_IN_SCAN
]; 
 251   JBLOCKROW buffer_ptr
; 
 252   jpeg_component_info 
*compptr
; 
 254   /* Align the virtual buffers for the components used in this scan. */ 
 255   for (ci 
= 0; ci 
< cinfo
->comps_in_scan
; ci
++) { 
 256     compptr 
= cinfo
->cur_comp_info
[ci
]; 
 257     buffer
[ci
] = (*cinfo
->mem
->access_virt_barray
) 
 258       ((j_common_ptr
) cinfo
, coef
->whole_image
[compptr
->component_index
], 
 259        cinfo
->input_iMCU_row 
* compptr
->v_samp_factor
, 
 260        (JDIMENSION
) compptr
->v_samp_factor
, TRUE
); 
 261     /* Note: entropy decoder expects buffer to be zeroed, 
 262      * but this is handled automatically by the memory manager 
 263      * because we requested a pre-zeroed array. 
 267   /* Loop to process one whole iMCU row */ 
 268   for (yoffset 
= coef
->MCU_vert_offset
; yoffset 
< coef
->MCU_rows_per_iMCU_row
; 
 270     for (MCU_col_num 
= coef
->MCU_ctr
; MCU_col_num 
< cinfo
->MCUs_per_row
; 
 272       /* Construct list of pointers to DCT blocks belonging to this MCU */ 
 273       blkn 
= 0;                 /* index of current DCT block within MCU */ 
 274       for (ci 
= 0; ci 
< cinfo
->comps_in_scan
; ci
++) { 
 275         compptr 
= cinfo
->cur_comp_info
[ci
]; 
 276         start_col 
= MCU_col_num 
* compptr
->MCU_width
; 
 277         for (yindex 
= 0; yindex 
< compptr
->MCU_height
; yindex
++) { 
 278           buffer_ptr 
= buffer
[ci
][yindex
+yoffset
] + start_col
; 
 279           for (xindex 
= 0; xindex 
< compptr
->MCU_width
; xindex
++) { 
 280             coef
->MCU_buffer
[blkn
++] = buffer_ptr
++; 
 284       /* Try to fetch the MCU. */ 
 285       if (! (*cinfo
->entropy
->decode_mcu
) (cinfo
, coef
->MCU_buffer
)) { 
 286         /* Suspension forced; update state counters and exit */ 
 287         coef
->MCU_vert_offset 
= yoffset
; 
 288         coef
->MCU_ctr 
= MCU_col_num
; 
 289         return JPEG_SUSPENDED
; 
 292     /* Completed an MCU row, but perhaps not an iMCU row */ 
 295   /* Completed the iMCU row, advance counters for next one */ 
 296   if (++(cinfo
->input_iMCU_row
) < cinfo
->total_iMCU_rows
) { 
 297     start_iMCU_row(cinfo
); 
 298     return JPEG_ROW_COMPLETED
; 
 300   /* Completed the scan */ 
 301   (*cinfo
->inputctl
->finish_input_pass
) (cinfo
); 
 302   return JPEG_SCAN_COMPLETED
; 
 307  * Decompress and return some data in the multi-pass case. 
 308  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). 
 309  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. 
 311  * NB: output_buf contains a plane for each component in image. 
 315 decompress_data (j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
) 
 317   my_coef_ptr coef 
= (my_coef_ptr
) cinfo
->coef
; 
 318   JDIMENSION last_iMCU_row 
= cinfo
->total_iMCU_rows 
- 1; 
 319   JDIMENSION block_num
; 
 320   int ci
, block_row
, block_rows
; 
 322   JBLOCKROW buffer_ptr
; 
 323   JSAMPARRAY output_ptr
; 
 324   JDIMENSION output_col
; 
 325   jpeg_component_info 
*compptr
; 
 326   inverse_DCT_method_ptr inverse_DCT
; 
 328   /* Force some input to be done if we are getting ahead of the input. */ 
 329   while (cinfo
->input_scan_number 
< cinfo
->output_scan_number 
|| 
 330          (cinfo
->input_scan_number 
== cinfo
->output_scan_number 
&& 
 331           cinfo
->input_iMCU_row 
<= cinfo
->output_iMCU_row
)) { 
 332     if ((*cinfo
->inputctl
->consume_input
)(cinfo
) == JPEG_SUSPENDED
) 
 333       return JPEG_SUSPENDED
; 
 336   /* OK, output from the virtual arrays. */ 
 337   for (ci 
= 0, compptr 
= cinfo
->comp_info
; ci 
< cinfo
->num_components
; 
 339     /* Don't bother to IDCT an uninteresting component. */ 
 340     if (! compptr
->component_needed
) 
 342     /* Align the virtual buffer for this component. */ 
 343     buffer 
= (*cinfo
->mem
->access_virt_barray
) 
 344       ((j_common_ptr
) cinfo
, coef
->whole_image
[ci
], 
 345        cinfo
->output_iMCU_row 
* compptr
->v_samp_factor
, 
 346        (JDIMENSION
) compptr
->v_samp_factor
, FALSE
); 
 347     /* Count non-dummy DCT block rows in this iMCU row. */ 
 348     if (cinfo
->output_iMCU_row 
< last_iMCU_row
) 
 349       block_rows 
= compptr
->v_samp_factor
; 
 351       /* NB: can't use last_row_height here; it is input-side-dependent! */ 
 352       block_rows 
= (int) (compptr
->height_in_blocks 
% compptr
->v_samp_factor
); 
 353       if (block_rows 
== 0) block_rows 
= compptr
->v_samp_factor
; 
 355     inverse_DCT 
= cinfo
->idct
->inverse_DCT
[ci
]; 
 356     output_ptr 
= output_buf
[ci
]; 
 357     /* Loop over all DCT blocks to be processed. */ 
 358     for (block_row 
= 0; block_row 
< block_rows
; block_row
++) { 
 359       buffer_ptr 
= buffer
[block_row
]; 
 361       for (block_num 
= 0; block_num 
< compptr
->width_in_blocks
; block_num
++) { 
 362         (*inverse_DCT
) (cinfo
, compptr
, (JCOEFPTR
) buffer_ptr
, 
 363                         output_ptr
, output_col
); 
 365         output_col 
+= compptr
->DCT_scaled_size
; 
 367       output_ptr 
+= compptr
->DCT_scaled_size
; 
 371   if (++(cinfo
->output_iMCU_row
) < cinfo
->total_iMCU_rows
) 
 372     return JPEG_ROW_COMPLETED
; 
 373   return JPEG_SCAN_COMPLETED
; 
 376 #endif /* D_MULTISCAN_FILES_SUPPORTED */ 
 379 #ifdef BLOCK_SMOOTHING_SUPPORTED 
 382  * This code applies interblock smoothing as described by section K.8 
 383  * of the JPEG standard: the first 5 AC coefficients are estimated from 
 384  * the DC values of a DCT block and its 8 neighboring blocks. 
 385  * We apply smoothing only for progressive JPEG decoding, and only if 
 386  * the coefficients it can estimate are not yet known to full precision. 
 389 /* Natural-order array positions of the first 5 zigzag-order coefficients */ 
 397  * Determine whether block smoothing is applicable and safe. 
 398  * We also latch the current states of the coef_bits[] entries for the 
 399  * AC coefficients; otherwise, if the input side of the decompressor 
 400  * advances into a new scan, we might think the coefficients are known 
 401  * more accurately than they really are. 
 405 smoothing_ok (j_decompress_ptr cinfo
) 
 407   my_coef_ptr coef 
= (my_coef_ptr
) cinfo
->coef
; 
 408   boolean smoothing_useful 
= FALSE
; 
 410   jpeg_component_info 
*compptr
; 
 413   int * coef_bits_latch
; 
 415   if (! cinfo
->progressive_mode 
|| cinfo
->coef_bits 
== NULL
) 
 418   /* Allocate latch area if not already done */ 
 419   if (coef
->coef_bits_latch 
== NULL
) 
 420     coef
->coef_bits_latch 
= (int *) 
 421       (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 422                                   cinfo
->num_components 
* 
 423                                   (SAVED_COEFS 
* SIZEOF(int))); 
 424   coef_bits_latch 
= coef
->coef_bits_latch
; 
 426   for (ci 
= 0, compptr 
= cinfo
->comp_info
; ci 
< cinfo
->num_components
; 
 428     /* All components' quantization values must already be latched. */ 
 429     if ((qtable 
= compptr
->quant_table
) == NULL
) 
 431     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ 
 432     if (qtable
->quantval
[0] == 0 || 
 433         qtable
->quantval
[Q01_POS
] == 0 || 
 434         qtable
->quantval
[Q10_POS
] == 0 || 
 435         qtable
->quantval
[Q20_POS
] == 0 || 
 436         qtable
->quantval
[Q11_POS
] == 0 || 
 437         qtable
->quantval
[Q02_POS
] == 0) 
 439     /* DC values must be at least partly known for all components. */ 
 440     coef_bits 
= cinfo
->coef_bits
[ci
]; 
 441     if (coef_bits
[0] < 0) 
 443     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ 
 444     for (coefi 
= 1; coefi 
<= 5; coefi
++) { 
 445       coef_bits_latch
[coefi
] = coef_bits
[coefi
]; 
 446       if (coef_bits
[coefi
] != 0) 
 447         smoothing_useful 
= TRUE
; 
 449     coef_bits_latch 
+= SAVED_COEFS
; 
 452   return smoothing_useful
; 
 457  * Variant of decompress_data for use when doing block smoothing. 
 461 decompress_smooth_data (j_decompress_ptr cinfo
, JSAMPIMAGE output_buf
) 
 463   my_coef_ptr coef 
= (my_coef_ptr
) cinfo
->coef
; 
 464   JDIMENSION last_iMCU_row 
= cinfo
->total_iMCU_rows 
- 1; 
 465   JDIMENSION block_num
, last_block_column
; 
 466   int ci
, block_row
, block_rows
, access_rows
; 
 468   JBLOCKROW buffer_ptr
, prev_block_row
, next_block_row
; 
 469   JSAMPARRAY output_ptr
; 
 470   JDIMENSION output_col
; 
 471   jpeg_component_info 
*compptr
; 
 472   inverse_DCT_method_ptr inverse_DCT
; 
 473   boolean first_row
, last_row
; 
 476   JQUANT_TBL 
*quanttbl
; 
 477   INT32 Q00
,Q01
,Q02
,Q10
,Q11
,Q20
, num
; 
 478   int DC1
,DC2
,DC3
,DC4
,DC5
,DC6
,DC7
,DC8
,DC9
; 
 481   /* Force some input to be done if we are getting ahead of the input. */ 
 482   while (cinfo
->input_scan_number 
<= cinfo
->output_scan_number 
&& 
 483          ! cinfo
->inputctl
->eoi_reached
) { 
 484     if (cinfo
->input_scan_number 
== cinfo
->output_scan_number
) { 
 485       /* If input is working on current scan, we ordinarily want it to 
 486        * have completed the current row.  But if input scan is DC, 
 487        * we want it to keep one row ahead so that next block row's DC 
 488        * values are up to date. 
 490       JDIMENSION delta 
= (cinfo
->Ss 
== 0) ? 1 : 0; 
 491       if (cinfo
->input_iMCU_row 
> cinfo
->output_iMCU_row
+delta
) 
 494     if ((*cinfo
->inputctl
->consume_input
)(cinfo
) == JPEG_SUSPENDED
) 
 495       return JPEG_SUSPENDED
; 
 498   /* OK, output from the virtual arrays. */ 
 499   for (ci 
= 0, compptr 
= cinfo
->comp_info
; ci 
< cinfo
->num_components
; 
 501     /* Don't bother to IDCT an uninteresting component. */ 
 502     if (! compptr
->component_needed
) 
 504     /* Count non-dummy DCT block rows in this iMCU row. */ 
 505     if (cinfo
->output_iMCU_row 
< last_iMCU_row
) { 
 506       block_rows 
= compptr
->v_samp_factor
; 
 507       access_rows 
= block_rows 
* 2; /* this and next iMCU row */ 
 510       /* NB: can't use last_row_height here; it is input-side-dependent! */ 
 511       block_rows 
= (int) (compptr
->height_in_blocks 
% compptr
->v_samp_factor
); 
 512       if (block_rows 
== 0) block_rows 
= compptr
->v_samp_factor
; 
 513       access_rows 
= block_rows
; /* this iMCU row only */ 
 516     /* Align the virtual buffer for this component. */ 
 517     if (cinfo
->output_iMCU_row 
> 0) { 
 518       access_rows 
+= compptr
->v_samp_factor
; /* prior iMCU row too */ 
 519       buffer 
= (*cinfo
->mem
->access_virt_barray
) 
 520         ((j_common_ptr
) cinfo
, coef
->whole_image
[ci
], 
 521          (cinfo
->output_iMCU_row 
- 1) * compptr
->v_samp_factor
, 
 522          (JDIMENSION
) access_rows
, FALSE
); 
 523       buffer 
+= compptr
->v_samp_factor
; /* point to current iMCU row */ 
 526       buffer 
= (*cinfo
->mem
->access_virt_barray
) 
 527         ((j_common_ptr
) cinfo
, coef
->whole_image
[ci
], 
 528          (JDIMENSION
) 0, (JDIMENSION
) access_rows
, FALSE
); 
 531     /* Fetch component-dependent info */ 
 532     coef_bits 
= coef
->coef_bits_latch 
+ (ci 
* SAVED_COEFS
); 
 533     quanttbl 
= compptr
->quant_table
; 
 534     Q00 
= quanttbl
->quantval
[0]; 
 535     Q01 
= quanttbl
->quantval
[Q01_POS
]; 
 536     Q10 
= quanttbl
->quantval
[Q10_POS
]; 
 537     Q20 
= quanttbl
->quantval
[Q20_POS
]; 
 538     Q11 
= quanttbl
->quantval
[Q11_POS
]; 
 539     Q02 
= quanttbl
->quantval
[Q02_POS
]; 
 540     inverse_DCT 
= cinfo
->idct
->inverse_DCT
[ci
]; 
 541     output_ptr 
= output_buf
[ci
]; 
 542     /* Loop over all DCT blocks to be processed. */ 
 543     for (block_row 
= 0; block_row 
< block_rows
; block_row
++) { 
 544       buffer_ptr 
= buffer
[block_row
]; 
 545       if (first_row 
&& block_row 
== 0) 
 546         prev_block_row 
= buffer_ptr
; 
 548         prev_block_row 
= buffer
[block_row
-1]; 
 549       if (last_row 
&& block_row 
== block_rows
-1) 
 550         next_block_row 
= buffer_ptr
; 
 552         next_block_row 
= buffer
[block_row
+1]; 
 553       /* We fetch the surrounding DC values using a sliding-register approach. 
 554        * Initialize all nine here so as to do the right thing on narrow pics. 
 556       DC1 
= DC2 
= DC3 
= (int) prev_block_row
[0][0]; 
 557       DC4 
= DC5 
= DC6 
= (int) buffer_ptr
[0][0]; 
 558       DC7 
= DC8 
= DC9 
= (int) next_block_row
[0][0]; 
 560       last_block_column 
= compptr
->width_in_blocks 
- 1; 
 561       for (block_num 
= 0; block_num 
<= last_block_column
; block_num
++) { 
 562         /* Fetch current DCT block into workspace so we can modify it. */ 
 563         jcopy_block_row(buffer_ptr
, (JBLOCKROW
) workspace
, (JDIMENSION
) 1); 
 564         /* Update DC values */ 
 565         if (block_num 
< last_block_column
) { 
 566           DC3 
= (int) prev_block_row
[1][0]; 
 567           DC6 
= (int) buffer_ptr
[1][0]; 
 568           DC9 
= (int) next_block_row
[1][0]; 
 570         /* Compute coefficient estimates per K.8. 
 571          * An estimate is applied only if coefficient is still zero, 
 572          * and is not known to be fully accurate. 
 575         if ((Al
=coef_bits
[1]) != 0 && workspace
[1] == 0) { 
 576           num 
= 36 * Q00 
* (DC4 
- DC6
); 
 578             pred 
= (int) (((Q01
<<7) + num
) / (Q01
<<8)); 
 579             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 582             pred 
= (int) (((Q01
<<7) - num
) / (Q01
<<8)); 
 583             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 587           workspace
[1] = (JCOEF
) pred
; 
 590         if ((Al
=coef_bits
[2]) != 0 && workspace
[8] == 0) { 
 591           num 
= 36 * Q00 
* (DC2 
- DC8
); 
 593             pred 
= (int) (((Q10
<<7) + num
) / (Q10
<<8)); 
 594             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 597             pred 
= (int) (((Q10
<<7) - num
) / (Q10
<<8)); 
 598             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 602           workspace
[8] = (JCOEF
) pred
; 
 605         if ((Al
=coef_bits
[3]) != 0 && workspace
[16] == 0) { 
 606           num 
= 9 * Q00 
* (DC2 
+ DC8 
- 2*DC5
); 
 608             pred 
= (int) (((Q20
<<7) + num
) / (Q20
<<8)); 
 609             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 612             pred 
= (int) (((Q20
<<7) - num
) / (Q20
<<8)); 
 613             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 617           workspace
[16] = (JCOEF
) pred
; 
 620         if ((Al
=coef_bits
[4]) != 0 && workspace
[9] == 0) { 
 621           num 
= 5 * Q00 
* (DC1 
- DC3 
- DC7 
+ DC9
); 
 623             pred 
= (int) (((Q11
<<7) + num
) / (Q11
<<8)); 
 624             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 627             pred 
= (int) (((Q11
<<7) - num
) / (Q11
<<8)); 
 628             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 632           workspace
[9] = (JCOEF
) pred
; 
 635         if ((Al
=coef_bits
[5]) != 0 && workspace
[2] == 0) { 
 636           num 
= 9 * Q00 
* (DC4 
+ DC6 
- 2*DC5
); 
 638             pred 
= (int) (((Q02
<<7) + num
) / (Q02
<<8)); 
 639             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 642             pred 
= (int) (((Q02
<<7) - num
) / (Q02
<<8)); 
 643             if (Al 
> 0 && pred 
>= (1<<Al
)) 
 647           workspace
[2] = (JCOEF
) pred
; 
 649         /* OK, do the IDCT */ 
 650         (*inverse_DCT
) (cinfo
, compptr
, (JCOEFPTR
) workspace
, 
 651                         output_ptr
, output_col
); 
 652         /* Advance for next column */ 
 653         DC1 
= DC2
; DC2 
= DC3
; 
 654         DC4 
= DC5
; DC5 
= DC6
; 
 655         DC7 
= DC8
; DC8 
= DC9
; 
 656         buffer_ptr
++, prev_block_row
++, next_block_row
++; 
 657         output_col 
+= compptr
->DCT_scaled_size
; 
 659       output_ptr 
+= compptr
->DCT_scaled_size
; 
 663   if (++(cinfo
->output_iMCU_row
) < cinfo
->total_iMCU_rows
) 
 664     return JPEG_ROW_COMPLETED
; 
 665   return JPEG_SCAN_COMPLETED
; 
 668 #endif /* BLOCK_SMOOTHING_SUPPORTED */ 
 672  * Initialize coefficient buffer controller. 
 676 jinit_d_coef_controller (j_decompress_ptr cinfo
, boolean need_full_buffer
) 
 681     (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 682                                 SIZEOF(my_coef_controller
)); 
 683   cinfo
->coef 
= (struct jpeg_d_coef_controller 
*) coef
; 
 684   coef
->pub
.start_input_pass 
= start_input_pass
; 
 685   coef
->pub
.start_output_pass 
= start_output_pass
; 
 686 #ifdef BLOCK_SMOOTHING_SUPPORTED 
 687   coef
->coef_bits_latch 
= NULL
; 
 690   /* Create the coefficient buffer. */ 
 691   if (need_full_buffer
) { 
 692 #ifdef D_MULTISCAN_FILES_SUPPORTED 
 693     /* Allocate a full-image virtual array for each component, */ 
 694     /* padded to a multiple of samp_factor DCT blocks in each direction. */ 
 695     /* Note we ask for a pre-zeroed array. */ 
 697     jpeg_component_info 
*compptr
; 
 699     for (ci 
= 0, compptr 
= cinfo
->comp_info
; ci 
< cinfo
->num_components
; 
 701       access_rows 
= compptr
->v_samp_factor
; 
 702 #ifdef BLOCK_SMOOTHING_SUPPORTED 
 703       /* If block smoothing could be used, need a bigger window */ 
 704       if (cinfo
->progressive_mode
) 
 707       coef
->whole_image
[ci
] = (*cinfo
->mem
->request_virt_barray
) 
 708         ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, TRUE
, 
 709          (JDIMENSION
) jround_up((long) compptr
->width_in_blocks
, 
 710                                 (long) compptr
->h_samp_factor
), 
 711          (JDIMENSION
) jround_up((long) compptr
->height_in_blocks
, 
 712                                 (long) compptr
->v_samp_factor
), 
 713          (JDIMENSION
) access_rows
); 
 715     coef
->pub
.consume_data 
= consume_data
; 
 716     coef
->pub
.decompress_data 
= decompress_data
; 
 717     coef
->pub
.coef_arrays 
= coef
->whole_image
; /* link to virtual arrays */ 
 719     ERREXIT(cinfo
, JERR_NOT_COMPILED
); 
 722     /* We only need a single-MCU buffer. */ 
 727       (*cinfo
->mem
->alloc_large
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 728                                   D_MAX_BLOCKS_IN_MCU 
* SIZEOF(JBLOCK
)); 
 729     for (i 
= 0; i 
< D_MAX_BLOCKS_IN_MCU
; i
++) { 
 730       coef
->MCU_buffer
[i
] = buffer 
+ i
; 
 732     coef
->pub
.consume_data 
= dummy_consume_data
; 
 733     coef
->pub
.decompress_data 
= decompress_onepass
; 
 734     coef
->pub
.coef_arrays 
= NULL
; /* flag for no virtual arrays */