4  * Copyright (C) 1994-1996, Thomas G. Lane. 
   5  * This file is part of the Independent JPEG Group's software. 
   6  * For conditions of distribution and use, see the accompanying README file. 
   8  * This file contains the forward-DCT management logic. 
   9  * This code selects a particular DCT implementation to be used, 
  10  * and it performs related housekeeping chores including coefficient 
  14 #define JPEG_INTERNALS 
  17 #include "jdct.h"               /* Private declarations for DCT subsystem */ 
  20 /* Private subobject for this module */ 
  23   struct jpeg_forward_dct pub
;  /* public fields */ 
  25   /* Pointer to the DCT routine actually in use */ 
  26   forward_DCT_method_ptr do_dct
; 
  28   /* The actual post-DCT divisors --- not identical to the quant table 
  29    * entries, because of scaling (especially for an unnormalized DCT). 
  30    * Each table is given in normal array order. 
  32   DCTELEM 
* divisors
[NUM_QUANT_TBLS
]; 
  34 #ifdef DCT_FLOAT_SUPPORTED 
  35   /* Same as above for the floating-point case. */ 
  36   float_DCT_method_ptr do_float_dct
; 
  37   FAST_FLOAT 
* float_divisors
[NUM_QUANT_TBLS
]; 
  41 typedef my_fdct_controller 
* my_fdct_ptr
; 
  45  * Initialize for a processing pass. 
  46  * Verify that all referenced Q-tables are present, and set up 
  47  * the divisor table for each one. 
  48  * In the current implementation, DCT of all components is done during 
  49  * the first pass, even if only some components will be output in the 
  50  * first scan.  Hence all components should be examined here. 
  54 start_pass_fdctmgr (j_compress_ptr cinfo
) 
  56   my_fdct_ptr fdct 
= (my_fdct_ptr
) cinfo
->fdct
; 
  58   jpeg_component_info 
*compptr
; 
  62   for (ci 
= 0, compptr 
= cinfo
->comp_info
; ci 
< cinfo
->num_components
; 
  64     qtblno 
= compptr
->quant_tbl_no
; 
  65     /* Make sure specified quantization table is present */ 
  66     if (qtblno 
< 0 || qtblno 
>= NUM_QUANT_TBLS 
|| 
  67         cinfo
->quant_tbl_ptrs
[qtblno
] == NULL
) 
  68       ERREXIT1(cinfo
, JERR_NO_QUANT_TABLE
, qtblno
); 
  69     qtbl 
= cinfo
->quant_tbl_ptrs
[qtblno
]; 
  70     /* Compute divisors for this quant table */ 
  71     /* We may do this more than once for same table, but it's not a big deal */ 
  72     switch (cinfo
->dct_method
) { 
  73 #ifdef DCT_ISLOW_SUPPORTED 
  75       /* For LL&M IDCT method, divisors are equal to raw quantization 
  76        * coefficients multiplied by 8 (to counteract scaling). 
  78       if (fdct
->divisors
[qtblno
] == NULL
) { 
  79         fdct
->divisors
[qtblno
] = (DCTELEM 
*) 
  80           (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
  81                                       DCTSIZE2 
* SIZEOF(DCTELEM
)); 
  83       dtbl 
= fdct
->divisors
[qtblno
]; 
  84       for (i 
= 0; i 
< DCTSIZE2
; i
++) { 
  85         dtbl
[i
] = ((DCTELEM
) qtbl
->quantval
[i
]) << 3; 
  89 #ifdef DCT_IFAST_SUPPORTED 
  92         /* For AA&N IDCT method, divisors are equal to quantization 
  93          * coefficients scaled by scalefactor[row]*scalefactor[col], where 
  95          *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 
  96          * We apply a further scale factor of 8. 
  99         static const INT16 aanscales
[DCTSIZE2
] = { 
 100           /* precomputed values scaled up by 14 bits */ 
 101           16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, 
 102           22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, 
 103           21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, 
 104           19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, 
 105           16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, 
 106           12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, 
 107            8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, 
 108            4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 
 112         if (fdct
->divisors
[qtblno
] == NULL
) { 
 113           fdct
->divisors
[qtblno
] = (DCTELEM 
*) 
 114             (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 115                                         DCTSIZE2 
* SIZEOF(DCTELEM
)); 
 117         dtbl 
= fdct
->divisors
[qtblno
]; 
 118         for (i 
= 0; i 
< DCTSIZE2
; i
++) { 
 120             DESCALE(MULTIPLY16V16((INT32
) qtbl
->quantval
[i
], 
 121                                   (INT32
) aanscales
[i
]), 
 127 #ifdef DCT_FLOAT_SUPPORTED 
 130         /* For float AA&N IDCT method, divisors are equal to quantization 
 131          * coefficients scaled by scalefactor[row]*scalefactor[col], where 
 133          *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 
 134          * We apply a further scale factor of 8. 
 135          * What's actually stored is 1/divisor so that the inner loop can 
 136          * use a multiplication rather than a division. 
 140         static const double aanscalefactor
[DCTSIZE
] = { 
 141           1.0, 1.387039845, 1.306562965, 1.175875602, 
 142           1.0, 0.785694958, 0.541196100, 0.275899379 
 145         if (fdct
->float_divisors
[qtblno
] == NULL
) { 
 146           fdct
->float_divisors
[qtblno
] = (FAST_FLOAT 
*) 
 147             (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 148                                         DCTSIZE2 
* SIZEOF(FAST_FLOAT
)); 
 150         fdtbl 
= fdct
->float_divisors
[qtblno
]; 
 152         for (row 
= 0; row 
< DCTSIZE
; row
++) { 
 153           for (col 
= 0; col 
< DCTSIZE
; col
++) { 
 154             fdtbl
[i
] = (FAST_FLOAT
) 
 155               (1.0 / (((double) qtbl
->quantval
[i
] * 
 156                        aanscalefactor
[row
] * aanscalefactor
[col
] * 8.0))); 
 164       ERREXIT(cinfo
, JERR_NOT_COMPILED
); 
 172  * Perform forward DCT on one or more blocks of a component. 
 174  * The input samples are taken from the sample_data[] array starting at 
 175  * position start_row/start_col, and moving to the right for any additional 
 176  * blocks. The quantized coefficients are returned in coef_blocks[]. 
 180 forward_DCT (j_compress_ptr cinfo
, jpeg_component_info 
* compptr
, 
 181              JSAMPARRAY sample_data
, JBLOCKROW coef_blocks
, 
 182              JDIMENSION start_row
, JDIMENSION start_col
, 
 183              JDIMENSION num_blocks
) 
 184 /* This version is used for integer DCT implementations. */ 
 186   /* This routine is heavily used, so it's worth coding it tightly. */ 
 187   my_fdct_ptr fdct 
= (my_fdct_ptr
) cinfo
->fdct
; 
 188   forward_DCT_method_ptr do_dct 
= fdct
->do_dct
; 
 189   DCTELEM 
* divisors 
= fdct
->divisors
[compptr
->quant_tbl_no
]; 
 190   DCTELEM workspace
[DCTSIZE2
];  /* work area for FDCT subroutine */ 
 193   sample_data 
+= start_row
;     /* fold in the vertical offset once */ 
 195   for (bi 
= 0; bi 
< num_blocks
; bi
++, start_col 
+= DCTSIZE
) { 
 196     /* Load data into workspace, applying unsigned->signed conversion */ 
 197     { register DCTELEM 
*workspaceptr
; 
 198       register JSAMPROW elemptr
; 
 201       workspaceptr 
= workspace
; 
 202       for (elemr 
= 0; elemr 
< DCTSIZE
; elemr
++) { 
 203         elemptr 
= sample_data
[elemr
] + start_col
; 
 204 #if DCTSIZE == 8                /* unroll the inner loop */ 
 205         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 206         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 207         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 208         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 209         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 210         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 211         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 212         *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 214         { register int elemc
; 
 215           for (elemc 
= DCTSIZE
; elemc 
> 0; elemc
--) { 
 216             *workspaceptr
++ = GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
; 
 223     /* Perform the DCT */ 
 224     (*do_dct
) (workspace
); 
 226     /* Quantize/descale the coefficients, and store into coef_blocks[] */ 
 227     { register DCTELEM temp
, qval
; 
 229       register JCOEFPTR output_ptr 
= coef_blocks
[bi
]; 
 231       for (i 
= 0; i 
< DCTSIZE2
; i
++) { 
 234         /* Divide the coefficient value by qval, ensuring proper rounding. 
 235          * Since C does not specify the direction of rounding for negative 
 236          * quotients, we have to force the dividend positive for portability. 
 238          * In most files, at least half of the output values will be zero 
 239          * (at default quantization settings, more like three-quarters...) 
 240          * so we should ensure that this case is fast.  On many machines, 
 241          * a comparison is enough cheaper than a divide to make a special test 
 242          * a win.  Since both inputs will be nonnegative, we need only test 
 243          * for a < b to discover whether a/b is 0. 
 244          * If your machine's division is fast enough, define FAST_DIVIDE. 
 247 #define DIVIDE_BY(a,b)  a /= b 
 249 #define DIVIDE_BY(a,b)  if (a >= b) a /= b; else a = 0 
 253           temp 
+= qval
>>1;      /* for rounding */ 
 254           DIVIDE_BY(temp
, qval
); 
 257           temp 
+= qval
>>1;      /* for rounding */ 
 258           DIVIDE_BY(temp
, qval
); 
 260         output_ptr
[i
] = (JCOEF
) temp
; 
 267 #ifdef DCT_FLOAT_SUPPORTED 
 270 forward_DCT_float (j_compress_ptr cinfo
, jpeg_component_info 
* compptr
, 
 271                    JSAMPARRAY sample_data
, JBLOCKROW coef_blocks
, 
 272                    JDIMENSION start_row
, JDIMENSION start_col
, 
 273                    JDIMENSION num_blocks
) 
 274 /* This version is used for floating-point DCT implementations. */ 
 276   /* This routine is heavily used, so it's worth coding it tightly. */ 
 277   my_fdct_ptr fdct 
= (my_fdct_ptr
) cinfo
->fdct
; 
 278   float_DCT_method_ptr do_dct 
= fdct
->do_float_dct
; 
 279   FAST_FLOAT 
* divisors 
= fdct
->float_divisors
[compptr
->quant_tbl_no
]; 
 280   FAST_FLOAT workspace
[DCTSIZE2
]; /* work area for FDCT subroutine */ 
 283   sample_data 
+= start_row
;     /* fold in the vertical offset once */ 
 285   for (bi 
= 0; bi 
< num_blocks
; bi
++, start_col 
+= DCTSIZE
) { 
 286     /* Load data into workspace, applying unsigned->signed conversion */ 
 287     { register FAST_FLOAT 
*workspaceptr
; 
 288       register JSAMPROW elemptr
; 
 291       workspaceptr 
= workspace
; 
 292       for (elemr 
= 0; elemr 
< DCTSIZE
; elemr
++) { 
 293         elemptr 
= sample_data
[elemr
] + start_col
; 
 294 #if DCTSIZE == 8                /* unroll the inner loop */ 
 295         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 296         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 297         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 298         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 299         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 300         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 301         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 302         *workspaceptr
++ = (FAST_FLOAT
)(GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 304         { register int elemc
; 
 305           for (elemc 
= DCTSIZE
; elemc 
> 0; elemc
--) { 
 306             *workspaceptr
++ = (FAST_FLOAT
) 
 307               (GETJSAMPLE(*elemptr
++) - CENTERJSAMPLE
); 
 314     /* Perform the DCT */ 
 315     (*do_dct
) (workspace
); 
 317     /* Quantize/descale the coefficients, and store into coef_blocks[] */ 
 318     { register FAST_FLOAT temp
; 
 320       register JCOEFPTR output_ptr 
= coef_blocks
[bi
]; 
 322       for (i 
= 0; i 
< DCTSIZE2
; i
++) { 
 323         /* Apply the quantization and scaling factor */ 
 324         temp 
= workspace
[i
] * divisors
[i
]; 
 325         /* Round to nearest integer. 
 326          * Since C does not specify the direction of rounding for negative 
 327          * quotients, we have to force the dividend positive for portability. 
 328          * The maximum coefficient size is +-16K (for 12-bit data), so this 
 329          * code should work for either 16-bit or 32-bit ints. 
 331         output_ptr
[i
] = (JCOEF
) ((int) (temp 
+ (FAST_FLOAT
) 16384.5) - 16384); 
 337 #endif /* DCT_FLOAT_SUPPORTED */ 
 341  * Initialize FDCT manager. 
 345 jinit_forward_dct (j_compress_ptr cinfo
) 
 351     (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 
 352                                 SIZEOF(my_fdct_controller
)); 
 353   cinfo
->fdct 
= (struct jpeg_forward_dct 
*) fdct
; 
 354   fdct
->pub
.start_pass 
= start_pass_fdctmgr
; 
 356   switch (cinfo
->dct_method
) { 
 357 #ifdef DCT_ISLOW_SUPPORTED 
 359     fdct
->pub
.forward_DCT 
= forward_DCT
; 
 360     fdct
->do_dct 
= jpeg_fdct_islow
; 
 363 #ifdef DCT_IFAST_SUPPORTED 
 365     fdct
->pub
.forward_DCT 
= forward_DCT
; 
 366     fdct
->do_dct 
= jpeg_fdct_ifast
; 
 369 #ifdef DCT_FLOAT_SUPPORTED 
 371     fdct
->pub
.forward_DCT 
= forward_DCT_float
; 
 372     fdct
->do_float_dct 
= jpeg_fdct_float
; 
 376     ERREXIT(cinfo
, JERR_NOT_COMPILED
); 
 380   /* Mark divisor tables unallocated */ 
 381   for (i 
= 0; i 
< NUM_QUANT_TBLS
; i
++) { 
 382     fdct
->divisors
[i
] = NULL
; 
 383 #ifdef DCT_FLOAT_SUPPORTED 
 384     fdct
->float_divisors
[i
] = NULL
;