]> git.saurik.com Git - wxWidgets.git/blob - src/zlib/deflate.c
corrected Get() return value
[wxWidgets.git] / src / zlib / deflate.c
1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2004 Jean-loup Gailly.
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55 " deflate 1.2.2 Copyright 1995-2004 Jean-loup Gailly ";
56 /*
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
61 */
62
63 /* ===========================================================================
64 * Function prototypes.
65 */
66 typedef enum {
67 need_more, /* block not completed, need more input or more output */
68 block_done, /* block flush performed */
69 finish_started, /* finish started, need only more output at next deflate */
70 finish_done /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local void fill_window OF((deflate_state *s));
77 local block_state deflate_stored OF((deflate_state *s, int flush));
78 local block_state deflate_fast OF((deflate_state *s, int flush));
79 #ifndef FASTEST
80 local block_state deflate_slow OF((deflate_state *s, int flush));
81 #endif
82 local void lm_init OF((deflate_state *s));
83 local void putShortMSB OF((deflate_state *s, uInt b));
84 local void flush_pending OF((z_streamp strm));
85 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
86 #ifndef FASTEST
87 #ifdef ASMV
88 void match_init OF((void)); /* asm code initialization */
89 uInt longest_match OF((deflate_state *s, IPos cur_match));
90 #else
91 local uInt longest_match OF((deflate_state *s, IPos cur_match));
92 #endif
93 #endif
94 local uInt longest_match_fast OF((deflate_state *s, IPos cur_match));
95
96 #ifdef DEBUG
97 local void check_match OF((deflate_state *s, IPos start, IPos match,
98 int length));
99 #endif
100
101 /* ===========================================================================
102 * Local data
103 */
104
105 #define NIL 0
106 /* Tail of hash chains */
107
108 #ifndef TOO_FAR
109 # define TOO_FAR 4096
110 #endif
111 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
112
113 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
114 /* Minimum amount of lookahead, except at the end of the input file.
115 * See deflate.c for comments about the MIN_MATCH+1.
116 */
117
118 /* Values for max_lazy_match, good_match and max_chain_length, depending on
119 * the desired pack level (0..9). The values given below have been tuned to
120 * exclude worst case performance for pathological files. Better values may be
121 * found for specific files.
122 */
123 typedef struct config_s {
124 ush good_length; /* reduce lazy search above this match length */
125 ush max_lazy; /* do not perform lazy search above this match length */
126 ush nice_length; /* quit search above this match length */
127 ush max_chain;
128 compress_func func;
129 } config;
130
131 #ifdef FASTEST
132 local const config configuration_table[2] = {
133 /* good lazy nice chain */
134 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
135 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
136 #else
137 local const config configuration_table[10] = {
138 /* good lazy nice chain */
139 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
140 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
141 /* 2 */ {4, 5, 16, 8, deflate_fast},
142 /* 3 */ {4, 6, 32, 32, deflate_fast},
143
144 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
145 /* 5 */ {8, 16, 32, 32, deflate_slow},
146 /* 6 */ {8, 16, 128, 128, deflate_slow},
147 /* 7 */ {8, 32, 128, 256, deflate_slow},
148 /* 8 */ {32, 128, 258, 1024, deflate_slow},
149 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
150 #endif
151
152 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
153 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
154 * meaning.
155 */
156
157 #define EQUAL 0
158 /* result of memcmp for equal strings */
159
160 #ifndef NO_DUMMY_DECL
161 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
162 #endif
163
164 /* ===========================================================================
165 * Update a hash value with the given input byte
166 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
167 * input characters, so that a running hash key can be computed from the
168 * previous key instead of complete recalculation each time.
169 */
170 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
171
172
173 /* ===========================================================================
174 * Insert string str in the dictionary and set match_head to the previous head
175 * of the hash chain (the most recent string with same hash key). Return
176 * the previous length of the hash chain.
177 * If this file is compiled with -DFASTEST, the compression level is forced
178 * to 1, and no hash chains are maintained.
179 * IN assertion: all calls to to INSERT_STRING are made with consecutive
180 * input characters and the first MIN_MATCH bytes of str are valid
181 * (except for the last MIN_MATCH-1 bytes of the input file).
182 */
183 #ifdef FASTEST
184 #define INSERT_STRING(s, str, match_head) \
185 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
186 match_head = s->head[s->ins_h], \
187 s->head[s->ins_h] = (Pos)(str))
188 #else
189 #define INSERT_STRING(s, str, match_head) \
190 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
191 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
192 s->head[s->ins_h] = (Pos)(str))
193 #endif
194
195 /* ===========================================================================
196 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
197 * prev[] will be initialized on the fly.
198 */
199 #define CLEAR_HASH(s) \
200 s->head[s->hash_size-1] = NIL; \
201 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
202
203 /* ========================================================================= */
204 int ZEXPORT deflateInit_(strm, level, version, stream_size)
205 z_streamp strm;
206 int level;
207 const char *version;
208 int stream_size;
209 {
210 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
211 Z_DEFAULT_STRATEGY, version, stream_size);
212 /* To do: ignore strm->next_in if we use it as window */
213 }
214
215 /* ========================================================================= */
216 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
217 version, stream_size)
218 z_streamp strm;
219 int level;
220 int method;
221 int windowBits;
222 int memLevel;
223 int strategy;
224 const char *version;
225 int stream_size;
226 {
227 deflate_state *s;
228 int wrap = 1;
229 static const char my_version[] = ZLIB_VERSION;
230
231 ushf *overlay;
232 /* We overlay pending_buf and d_buf+l_buf. This works since the average
233 * output size for (length,distance) codes is <= 24 bits.
234 */
235
236 if (version == Z_NULL || version[0] != my_version[0] ||
237 stream_size != sizeof(z_stream)) {
238 return Z_VERSION_ERROR;
239 }
240 if (strm == Z_NULL) return Z_STREAM_ERROR;
241
242 strm->msg = Z_NULL;
243 if (strm->zalloc == (alloc_func)0) {
244 strm->zalloc = zcalloc;
245 strm->opaque = (voidpf)0;
246 }
247 if (strm->zfree == (free_func)0) strm->zfree = zcfree;
248
249 #ifdef FASTEST
250 if (level != 0) level = 1;
251 #else
252 if (level == Z_DEFAULT_COMPRESSION) level = 6;
253 #endif
254
255 if (windowBits < 0) { /* suppress zlib wrapper */
256 wrap = 0;
257 windowBits = -windowBits;
258 }
259 #ifdef GZIP
260 else if (windowBits > 15) {
261 wrap = 2; /* write gzip wrapper instead */
262 windowBits -= 16;
263 }
264 #endif
265 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
266 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
267 strategy < 0 || strategy > Z_RLE) {
268 return Z_STREAM_ERROR;
269 }
270 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
271 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
272 if (s == Z_NULL) return Z_MEM_ERROR;
273 strm->state = (struct internal_state FAR *)s;
274 s->strm = strm;
275
276 s->wrap = wrap;
277 s->w_bits = windowBits;
278 s->w_size = 1 << s->w_bits;
279 s->w_mask = s->w_size - 1;
280
281 s->hash_bits = memLevel + 7;
282 s->hash_size = 1 << s->hash_bits;
283 s->hash_mask = s->hash_size - 1;
284 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
285
286 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
287 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
288 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
289
290 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
291
292 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
293 s->pending_buf = (uchf *) overlay;
294 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
295
296 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
297 s->pending_buf == Z_NULL) {
298 s->status = FINISH_STATE;
299 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
300 deflateEnd (strm);
301 return Z_MEM_ERROR;
302 }
303 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
304 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
305
306 s->level = level;
307 s->strategy = strategy;
308 s->method = (Byte)method;
309
310 return deflateReset(strm);
311 }
312
313 /* ========================================================================= */
314 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
315 z_streamp strm;
316 const Bytef *dictionary;
317 uInt dictLength;
318 {
319 deflate_state *s;
320 uInt length = dictLength;
321 uInt n;
322 IPos hash_head = 0;
323
324 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
325 strm->state->wrap == 2 ||
326 (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
327 return Z_STREAM_ERROR;
328
329 s = strm->state;
330 if (s->wrap)
331 strm->adler = adler32(strm->adler, dictionary, dictLength);
332
333 if (length < MIN_MATCH) return Z_OK;
334 if (length > MAX_DIST(s)) {
335 length = MAX_DIST(s);
336 #ifndef USE_DICT_HEAD
337 dictionary += dictLength - length; /* use the tail of the dictionary */
338 #endif
339 }
340 zmemcpy(s->window, dictionary, length);
341 s->strstart = length;
342 s->block_start = (long)length;
343
344 /* Insert all strings in the hash table (except for the last two bytes).
345 * s->lookahead stays null, so s->ins_h will be recomputed at the next
346 * call of fill_window.
347 */
348 s->ins_h = s->window[0];
349 UPDATE_HASH(s, s->ins_h, s->window[1]);
350 for (n = 0; n <= length - MIN_MATCH; n++) {
351 INSERT_STRING(s, n, hash_head);
352 }
353 if (hash_head) hash_head = 0; /* to make compiler happy */
354 return Z_OK;
355 }
356
357 /* ========================================================================= */
358 int ZEXPORT deflateReset (strm)
359 z_streamp strm;
360 {
361 deflate_state *s;
362
363 if (strm == Z_NULL || strm->state == Z_NULL ||
364 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
365 return Z_STREAM_ERROR;
366 }
367
368 strm->total_in = strm->total_out = 0;
369 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
370 strm->data_type = Z_UNKNOWN;
371
372 s = (deflate_state *)strm->state;
373 s->pending = 0;
374 s->pending_out = s->pending_buf;
375
376 if (s->wrap < 0) {
377 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
378 }
379 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
380 strm->adler =
381 #ifdef GZIP
382 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
383 #endif
384 adler32(0L, Z_NULL, 0);
385 s->last_flush = Z_NO_FLUSH;
386
387 _tr_init(s);
388 lm_init(s);
389
390 return Z_OK;
391 }
392
393 /* ========================================================================= */
394 int ZEXPORT deflatePrime (strm, bits, value)
395 z_streamp strm;
396 int bits;
397 int value;
398 {
399 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
400 strm->state->bi_valid = bits;
401 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
402 return Z_OK;
403 }
404
405 /* ========================================================================= */
406 int ZEXPORT deflateParams(strm, level, strategy)
407 z_streamp strm;
408 int level;
409 int strategy;
410 {
411 deflate_state *s;
412 compress_func func;
413 int err = Z_OK;
414
415 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
416 s = strm->state;
417
418 #ifdef FASTEST
419 if (level != 0) level = 1;
420 #else
421 if (level == Z_DEFAULT_COMPRESSION) level = 6;
422 #endif
423 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_RLE) {
424 return Z_STREAM_ERROR;
425 }
426 func = configuration_table[s->level].func;
427
428 if (func != configuration_table[level].func && strm->total_in != 0) {
429 /* Flush the last buffer: */
430 err = deflate(strm, Z_PARTIAL_FLUSH);
431 }
432 if (s->level != level) {
433 s->level = level;
434 s->max_lazy_match = configuration_table[level].max_lazy;
435 s->good_match = configuration_table[level].good_length;
436 s->nice_match = configuration_table[level].nice_length;
437 s->max_chain_length = configuration_table[level].max_chain;
438 }
439 s->strategy = strategy;
440 return err;
441 }
442
443 /* =========================================================================
444 * For the default windowBits of 15 and memLevel of 8, this function returns
445 * a close to exact, as well as small, upper bound on the compressed size.
446 * They are coded as constants here for a reason--if the #define's are
447 * changed, then this function needs to be changed as well. The return
448 * value for 15 and 8 only works for those exact settings.
449 *
450 * For any setting other than those defaults for windowBits and memLevel,
451 * the value returned is a conservative worst case for the maximum expansion
452 * resulting from using fixed blocks instead of stored blocks, which deflate
453 * can emit on compressed data for some combinations of the parameters.
454 *
455 * This function could be more sophisticated to provide closer upper bounds
456 * for every combination of windowBits and memLevel, as well as wrap.
457 * But even the conservative upper bound of about 14% expansion does not
458 * seem onerous for output buffer allocation.
459 */
460 uLong ZEXPORT deflateBound(strm, sourceLen)
461 z_streamp strm;
462 uLong sourceLen;
463 {
464 deflate_state *s;
465 uLong destLen;
466
467 /* conservative upper bound */
468 destLen = sourceLen +
469 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11;
470
471 /* if can't get parameters, return conservative bound */
472 if (strm == Z_NULL || strm->state == Z_NULL)
473 return destLen;
474
475 /* if not default parameters, return conservative bound */
476 s = strm->state;
477 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
478 return destLen;
479
480 /* default settings: return tight bound for that case */
481 return compressBound(sourceLen);
482 }
483
484 /* =========================================================================
485 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
486 * IN assertion: the stream state is correct and there is enough room in
487 * pending_buf.
488 */
489 local void putShortMSB (s, b)
490 deflate_state *s;
491 uInt b;
492 {
493 put_byte(s, (Byte)(b >> 8));
494 put_byte(s, (Byte)(b & 0xff));
495 }
496
497 /* =========================================================================
498 * Flush as much pending output as possible. All deflate() output goes
499 * through this function so some applications may wish to modify it
500 * to avoid allocating a large strm->next_out buffer and copying into it.
501 * (See also read_buf()).
502 */
503 local void flush_pending(strm)
504 z_streamp strm;
505 {
506 unsigned len = strm->state->pending;
507
508 if (len > strm->avail_out) len = strm->avail_out;
509 if (len == 0) return;
510
511 zmemcpy(strm->next_out, strm->state->pending_out, len);
512 strm->next_out += len;
513 strm->state->pending_out += len;
514 strm->total_out += len;
515 strm->avail_out -= len;
516 strm->state->pending -= len;
517 if (strm->state->pending == 0) {
518 strm->state->pending_out = strm->state->pending_buf;
519 }
520 }
521
522 /* ========================================================================= */
523 int ZEXPORT deflate (strm, flush)
524 z_streamp strm;
525 int flush;
526 {
527 int old_flush; /* value of flush param for previous deflate call */
528 deflate_state *s;
529
530 if (strm == Z_NULL || strm->state == Z_NULL ||
531 flush > Z_FINISH || flush < 0) {
532 return Z_STREAM_ERROR;
533 }
534 s = strm->state;
535
536 if (strm->next_out == Z_NULL ||
537 (strm->next_in == Z_NULL && strm->avail_in != 0) ||
538 (s->status == FINISH_STATE && flush != Z_FINISH)) {
539 ERR_RETURN(strm, Z_STREAM_ERROR);
540 }
541 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
542
543 s->strm = strm; /* just in case */
544 old_flush = s->last_flush;
545 s->last_flush = flush;
546
547 /* Write the header */
548 if (s->status == INIT_STATE) {
549 #ifdef GZIP
550 if (s->wrap == 2) {
551 put_byte(s, 31);
552 put_byte(s, 139);
553 put_byte(s, 8);
554 put_byte(s, 0);
555 put_byte(s, 0);
556 put_byte(s, 0);
557 put_byte(s, 0);
558 put_byte(s, 0);
559 put_byte(s, s->level == 9 ? 2 :
560 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
561 4 : 0));
562 put_byte(s, 255);
563 s->status = BUSY_STATE;
564 strm->adler = crc32(0L, Z_NULL, 0);
565 }
566 else
567 #endif
568 {
569 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
570 uInt level_flags;
571
572 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
573 level_flags = 0;
574 else if (s->level < 6)
575 level_flags = 1;
576 else if (s->level == 6)
577 level_flags = 2;
578 else
579 level_flags = 3;
580 header |= (level_flags << 6);
581 if (s->strstart != 0) header |= PRESET_DICT;
582 header += 31 - (header % 31);
583
584 s->status = BUSY_STATE;
585 putShortMSB(s, header);
586
587 /* Save the adler32 of the preset dictionary: */
588 if (s->strstart != 0) {
589 putShortMSB(s, (uInt)(strm->adler >> 16));
590 putShortMSB(s, (uInt)(strm->adler & 0xffff));
591 }
592 strm->adler = adler32(0L, Z_NULL, 0);
593 }
594 }
595
596 /* Flush as much pending output as possible */
597 if (s->pending != 0) {
598 flush_pending(strm);
599 if (strm->avail_out == 0) {
600 /* Since avail_out is 0, deflate will be called again with
601 * more output space, but possibly with both pending and
602 * avail_in equal to zero. There won't be anything to do,
603 * but this is not an error situation so make sure we
604 * return OK instead of BUF_ERROR at next call of deflate:
605 */
606 s->last_flush = -1;
607 return Z_OK;
608 }
609
610 /* Make sure there is something to do and avoid duplicate consecutive
611 * flushes. For repeated and useless calls with Z_FINISH, we keep
612 * returning Z_STREAM_END instead of Z_BUF_ERROR.
613 */
614 } else if (strm->avail_in == 0 && flush <= old_flush &&
615 flush != Z_FINISH) {
616 ERR_RETURN(strm, Z_BUF_ERROR);
617 }
618
619 /* User must not provide more input after the first FINISH: */
620 if (s->status == FINISH_STATE && strm->avail_in != 0) {
621 ERR_RETURN(strm, Z_BUF_ERROR);
622 }
623
624 /* Start a new block or continue the current one.
625 */
626 if (strm->avail_in != 0 || s->lookahead != 0 ||
627 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
628 block_state bstate;
629
630 bstate = (*(configuration_table[s->level].func))(s, flush);
631
632 if (bstate == finish_started || bstate == finish_done) {
633 s->status = FINISH_STATE;
634 }
635 if (bstate == need_more || bstate == finish_started) {
636 if (strm->avail_out == 0) {
637 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
638 }
639 return Z_OK;
640 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
641 * of deflate should use the same flush parameter to make sure
642 * that the flush is complete. So we don't have to output an
643 * empty block here, this will be done at next call. This also
644 * ensures that for a very small output buffer, we emit at most
645 * one empty block.
646 */
647 }
648 if (bstate == block_done) {
649 if (flush == Z_PARTIAL_FLUSH) {
650 _tr_align(s);
651 } else { /* FULL_FLUSH or SYNC_FLUSH */
652 _tr_stored_block(s, (char*)0, 0L, 0);
653 /* For a full flush, this empty block will be recognized
654 * as a special marker by inflate_sync().
655 */
656 if (flush == Z_FULL_FLUSH) {
657 CLEAR_HASH(s); /* forget history */
658 }
659 }
660 flush_pending(strm);
661 if (strm->avail_out == 0) {
662 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
663 return Z_OK;
664 }
665 }
666 }
667 Assert(strm->avail_out > 0, "bug2");
668
669 if (flush != Z_FINISH) return Z_OK;
670 if (s->wrap <= 0) return Z_STREAM_END;
671
672 /* Write the trailer */
673 #ifdef GZIP
674 if (s->wrap == 2) {
675 put_byte(s, (Byte)(strm->adler & 0xff));
676 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
677 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
678 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
679 put_byte(s, (Byte)(strm->total_in & 0xff));
680 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
681 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
682 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
683 }
684 else
685 #endif
686 {
687 putShortMSB(s, (uInt)(strm->adler >> 16));
688 putShortMSB(s, (uInt)(strm->adler & 0xffff));
689 }
690 flush_pending(strm);
691 /* If avail_out is zero, the application will call deflate again
692 * to flush the rest.
693 */
694 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
695 return s->pending != 0 ? Z_OK : Z_STREAM_END;
696 }
697
698 /* ========================================================================= */
699 int ZEXPORT deflateEnd (strm)
700 z_streamp strm;
701 {
702 int status;
703
704 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
705
706 status = strm->state->status;
707 if (status != INIT_STATE && status != BUSY_STATE &&
708 status != FINISH_STATE) {
709 return Z_STREAM_ERROR;
710 }
711
712 /* Deallocate in reverse order of allocations: */
713 TRY_FREE(strm, strm->state->pending_buf);
714 TRY_FREE(strm, strm->state->head);
715 TRY_FREE(strm, strm->state->prev);
716 TRY_FREE(strm, strm->state->window);
717
718 ZFREE(strm, strm->state);
719 strm->state = Z_NULL;
720
721 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
722 }
723
724 /* =========================================================================
725 * Copy the source state to the destination state.
726 * To simplify the source, this is not supported for 16-bit MSDOS (which
727 * doesn't have enough memory anyway to duplicate compression states).
728 */
729 int ZEXPORT deflateCopy (dest, source)
730 z_streamp dest;
731 z_streamp source;
732 {
733 #ifdef MAXSEG_64K
734 return Z_STREAM_ERROR;
735 #else
736 deflate_state *ds;
737 deflate_state *ss;
738 ushf *overlay;
739
740
741 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
742 return Z_STREAM_ERROR;
743 }
744
745 ss = source->state;
746
747 *dest = *source;
748
749 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
750 if (ds == Z_NULL) return Z_MEM_ERROR;
751 dest->state = (struct internal_state FAR *) ds;
752 *ds = *ss;
753 ds->strm = dest;
754
755 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
756 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
757 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
758 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
759 ds->pending_buf = (uchf *) overlay;
760
761 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
762 ds->pending_buf == Z_NULL) {
763 deflateEnd (dest);
764 return Z_MEM_ERROR;
765 }
766 /* following zmemcpy do not work for 16-bit MSDOS */
767 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
768 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
769 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
770 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
771
772 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
773 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
774 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
775
776 ds->l_desc.dyn_tree = ds->dyn_ltree;
777 ds->d_desc.dyn_tree = ds->dyn_dtree;
778 ds->bl_desc.dyn_tree = ds->bl_tree;
779
780 return Z_OK;
781 #endif /* MAXSEG_64K */
782 }
783
784 /* ===========================================================================
785 * Read a new buffer from the current input stream, update the adler32
786 * and total number of bytes read. All deflate() input goes through
787 * this function so some applications may wish to modify it to avoid
788 * allocating a large strm->next_in buffer and copying from it.
789 * (See also flush_pending()).
790 */
791 local int read_buf(strm, buf, size)
792 z_streamp strm;
793 Bytef *buf;
794 unsigned size;
795 {
796 unsigned len = strm->avail_in;
797
798 if (len > size) len = size;
799 if (len == 0) return 0;
800
801 strm->avail_in -= len;
802
803 if (strm->state->wrap == 1) {
804 strm->adler = adler32(strm->adler, strm->next_in, len);
805 }
806 #ifdef GZIP
807 else if (strm->state->wrap == 2) {
808 strm->adler = crc32(strm->adler, strm->next_in, len);
809 }
810 #endif
811 zmemcpy(buf, strm->next_in, len);
812 strm->next_in += len;
813 strm->total_in += len;
814
815 return (int)len;
816 }
817
818 /* ===========================================================================
819 * Initialize the "longest match" routines for a new zlib stream
820 */
821 local void lm_init (s)
822 deflate_state *s;
823 {
824 s->window_size = (ulg)2L*s->w_size;
825
826 CLEAR_HASH(s);
827
828 /* Set the default configuration parameters:
829 */
830 s->max_lazy_match = configuration_table[s->level].max_lazy;
831 s->good_match = configuration_table[s->level].good_length;
832 s->nice_match = configuration_table[s->level].nice_length;
833 s->max_chain_length = configuration_table[s->level].max_chain;
834
835 s->strstart = 0;
836 s->block_start = 0L;
837 s->lookahead = 0;
838 s->match_length = s->prev_length = MIN_MATCH-1;
839 s->match_available = 0;
840 s->ins_h = 0;
841 #ifdef ASMV
842 match_init(); /* initialize the asm code */
843 #endif
844 }
845
846 #ifndef FASTEST
847 /* ===========================================================================
848 * Set match_start to the longest match starting at the given string and
849 * return its length. Matches shorter or equal to prev_length are discarded,
850 * in which case the result is equal to prev_length and match_start is
851 * garbage.
852 * IN assertions: cur_match is the head of the hash chain for the current
853 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
854 * OUT assertion: the match length is not greater than s->lookahead.
855 */
856 #ifndef ASMV
857 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
858 * match.S. The code will be functionally equivalent.
859 */
860 local uInt longest_match(s, cur_match)
861 deflate_state *s;
862 IPos cur_match; /* current match */
863 {
864 unsigned chain_length = s->max_chain_length;/* max hash chain length */
865 register Bytef *scan = s->window + s->strstart; /* current string */
866 register Bytef *match; /* matched string */
867 register int len; /* length of current match */
868 int best_len = s->prev_length; /* best match length so far */
869 int nice_match = s->nice_match; /* stop if match long enough */
870 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
871 s->strstart - (IPos)MAX_DIST(s) : NIL;
872 /* Stop when cur_match becomes <= limit. To simplify the code,
873 * we prevent matches with the string of window index 0.
874 */
875 Posf *prev = s->prev;
876 uInt wmask = s->w_mask;
877
878 #ifdef UNALIGNED_OK
879 /* Compare two bytes at a time. Note: this is not always beneficial.
880 * Try with and without -DUNALIGNED_OK to check.
881 */
882 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
883 register ush scan_start = *(ushf*)scan;
884 register ush scan_end = *(ushf*)(scan+best_len-1);
885 #else
886 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
887 register Byte scan_end1 = scan[best_len-1];
888 register Byte scan_end = scan[best_len];
889 #endif
890
891 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
892 * It is easy to get rid of this optimization if necessary.
893 */
894 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
895
896 /* Do not waste too much time if we already have a good match: */
897 if (s->prev_length >= s->good_match) {
898 chain_length >>= 2;
899 }
900 /* Do not look for matches beyond the end of the input. This is necessary
901 * to make deflate deterministic.
902 */
903 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
904
905 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
906
907 do {
908 Assert(cur_match < s->strstart, "no future");
909 match = s->window + cur_match;
910
911 /* Skip to next match if the match length cannot increase
912 * or if the match length is less than 2:
913 */
914 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
915 /* This code assumes sizeof(unsigned short) == 2. Do not use
916 * UNALIGNED_OK if your compiler uses a different size.
917 */
918 if (*(ushf*)(match+best_len-1) != scan_end ||
919 *(ushf*)match != scan_start) continue;
920
921 /* It is not necessary to compare scan[2] and match[2] since they are
922 * always equal when the other bytes match, given that the hash keys
923 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
924 * strstart+3, +5, ... up to strstart+257. We check for insufficient
925 * lookahead only every 4th comparison; the 128th check will be made
926 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
927 * necessary to put more guard bytes at the end of the window, or
928 * to check more often for insufficient lookahead.
929 */
930 Assert(scan[2] == match[2], "scan[2]?");
931 scan++, match++;
932 do {
933 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
934 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
935 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
936 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
937 scan < strend);
938 /* The funny "do {}" generates better code on most compilers */
939
940 /* Here, scan <= window+strstart+257 */
941 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
942 if (*scan == *match) scan++;
943
944 len = (MAX_MATCH - 1) - (int)(strend-scan);
945 scan = strend - (MAX_MATCH-1);
946
947 #else /* UNALIGNED_OK */
948
949 if (match[best_len] != scan_end ||
950 match[best_len-1] != scan_end1 ||
951 *match != *scan ||
952 *++match != scan[1]) continue;
953
954 /* The check at best_len-1 can be removed because it will be made
955 * again later. (This heuristic is not always a win.)
956 * It is not necessary to compare scan[2] and match[2] since they
957 * are always equal when the other bytes match, given that
958 * the hash keys are equal and that HASH_BITS >= 8.
959 */
960 scan += 2, match++;
961 Assert(*scan == *match, "match[2]?");
962
963 /* We check for insufficient lookahead only every 8th comparison;
964 * the 256th check will be made at strstart+258.
965 */
966 do {
967 } while (*++scan == *++match && *++scan == *++match &&
968 *++scan == *++match && *++scan == *++match &&
969 *++scan == *++match && *++scan == *++match &&
970 *++scan == *++match && *++scan == *++match &&
971 scan < strend);
972
973 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
974
975 len = MAX_MATCH - (int)(strend - scan);
976 scan = strend - MAX_MATCH;
977
978 #endif /* UNALIGNED_OK */
979
980 if (len > best_len) {
981 s->match_start = cur_match;
982 best_len = len;
983 if (len >= nice_match) break;
984 #ifdef UNALIGNED_OK
985 scan_end = *(ushf*)(scan+best_len-1);
986 #else
987 scan_end1 = scan[best_len-1];
988 scan_end = scan[best_len];
989 #endif
990 }
991 } while ((cur_match = prev[cur_match & wmask]) > limit
992 && --chain_length != 0);
993
994 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
995 return s->lookahead;
996 }
997 #endif /* ASMV */
998 #endif /* FASTEST */
999
1000 /* ---------------------------------------------------------------------------
1001 * Optimized version for level == 1 or strategy == Z_RLE only
1002 */
1003 local uInt longest_match_fast(s, cur_match)
1004 deflate_state *s;
1005 IPos cur_match; /* current match */
1006 {
1007 register Bytef *scan = s->window + s->strstart; /* current string */
1008 register Bytef *match; /* matched string */
1009 register int len; /* length of current match */
1010 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1011
1012 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1013 * It is easy to get rid of this optimization if necessary.
1014 */
1015 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1016
1017 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1018
1019 Assert(cur_match < s->strstart, "no future");
1020
1021 match = s->window + cur_match;
1022
1023 /* Return failure if the match length is less than 2:
1024 */
1025 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1026
1027 /* The check at best_len-1 can be removed because it will be made
1028 * again later. (This heuristic is not always a win.)
1029 * It is not necessary to compare scan[2] and match[2] since they
1030 * are always equal when the other bytes match, given that
1031 * the hash keys are equal and that HASH_BITS >= 8.
1032 */
1033 scan += 2, match += 2;
1034 Assert(*scan == *match, "match[2]?");
1035
1036 /* We check for insufficient lookahead only every 8th comparison;
1037 * the 256th check will be made at strstart+258.
1038 */
1039 do {
1040 } while (*++scan == *++match && *++scan == *++match &&
1041 *++scan == *++match && *++scan == *++match &&
1042 *++scan == *++match && *++scan == *++match &&
1043 *++scan == *++match && *++scan == *++match &&
1044 scan < strend);
1045
1046 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1047
1048 len = MAX_MATCH - (int)(strend - scan);
1049
1050 if (len < MIN_MATCH) return MIN_MATCH - 1;
1051
1052 s->match_start = cur_match;
1053 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1054 }
1055
1056 #ifdef DEBUG
1057 /* ===========================================================================
1058 * Check that the match at match_start is indeed a match.
1059 */
1060 local void check_match(s, start, match, length)
1061 deflate_state *s;
1062 IPos start, match;
1063 int length;
1064 {
1065 /* check that the match is indeed a match */
1066 if (zmemcmp(s->window + match,
1067 s->window + start, length) != EQUAL) {
1068 fprintf(stderr, " start %u, match %u, length %d\n",
1069 start, match, length);
1070 do {
1071 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1072 } while (--length != 0);
1073 z_error("invalid match");
1074 }
1075 if (z_verbose > 1) {
1076 fprintf(stderr,"\\[%d,%d]", start-match, length);
1077 do { putc(s->window[start++], stderr); } while (--length != 0);
1078 }
1079 }
1080 #else
1081 # define check_match(s, start, match, length)
1082 #endif /* DEBUG */
1083
1084 /* ===========================================================================
1085 * Fill the window when the lookahead becomes insufficient.
1086 * Updates strstart and lookahead.
1087 *
1088 * IN assertion: lookahead < MIN_LOOKAHEAD
1089 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1090 * At least one byte has been read, or avail_in == 0; reads are
1091 * performed for at least two bytes (required for the zip translate_eol
1092 * option -- not supported here).
1093 */
1094 local void fill_window(s)
1095 deflate_state *s;
1096 {
1097 register unsigned n, m;
1098 register Posf *p;
1099 unsigned more; /* Amount of free space at the end of the window. */
1100 uInt wsize = s->w_size;
1101
1102 do {
1103 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1104
1105 /* Deal with !@#$% 64K limit: */
1106 if (sizeof(int) <= 2) {
1107 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1108 more = wsize;
1109
1110 } else if (more == (unsigned)(-1)) {
1111 /* Very unlikely, but possible on 16 bit machine if
1112 * strstart == 0 && lookahead == 1 (input done a byte at time)
1113 */
1114 more--;
1115 }
1116 }
1117
1118 /* If the window is almost full and there is insufficient lookahead,
1119 * move the upper half to the lower one to make room in the upper half.
1120 */
1121 if (s->strstart >= wsize+MAX_DIST(s)) {
1122
1123 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1124 s->match_start -= wsize;
1125 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1126 s->block_start -= (long) wsize;
1127
1128 /* Slide the hash table (could be avoided with 32 bit values
1129 at the expense of memory usage). We slide even when level == 0
1130 to keep the hash table consistent if we switch back to level > 0
1131 later. (Using level 0 permanently is not an optimal usage of
1132 zlib, so we don't care about this pathological case.)
1133 */
1134 n = s->hash_size;
1135 p = &s->head[n];
1136 do {
1137 m = *--p;
1138 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1139 } while (--n);
1140
1141 n = wsize;
1142 #ifndef FASTEST
1143 p = &s->prev[n];
1144 do {
1145 m = *--p;
1146 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1147 /* If n is not on any hash chain, prev[n] is garbage but
1148 * its value will never be used.
1149 */
1150 } while (--n);
1151 #endif
1152 more += wsize;
1153 }
1154 if (s->strm->avail_in == 0) return;
1155
1156 /* If there was no sliding:
1157 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1158 * more == window_size - lookahead - strstart
1159 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1160 * => more >= window_size - 2*WSIZE + 2
1161 * In the BIG_MEM or MMAP case (not yet supported),
1162 * window_size == input_size + MIN_LOOKAHEAD &&
1163 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1164 * Otherwise, window_size == 2*WSIZE so more >= 2.
1165 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1166 */
1167 Assert(more >= 2, "more < 2");
1168
1169 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1170 s->lookahead += n;
1171
1172 /* Initialize the hash value now that we have some input: */
1173 if (s->lookahead >= MIN_MATCH) {
1174 s->ins_h = s->window[s->strstart];
1175 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1176 #if MIN_MATCH != 3
1177 Call UPDATE_HASH() MIN_MATCH-3 more times
1178 #endif
1179 }
1180 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1181 * but this is not important since only literal bytes will be emitted.
1182 */
1183
1184 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1185 }
1186
1187 /* ===========================================================================
1188 * Flush the current block, with given end-of-file flag.
1189 * IN assertion: strstart is set to the end of the current match.
1190 */
1191 #define FLUSH_BLOCK_ONLY(s, eof) { \
1192 _tr_flush_block(s, (s->block_start >= 0L ? \
1193 (charf *)&s->window[(unsigned)s->block_start] : \
1194 (charf *)Z_NULL), \
1195 (ulg)((long)s->strstart - s->block_start), \
1196 (eof)); \
1197 s->block_start = s->strstart; \
1198 flush_pending(s->strm); \
1199 Tracev((stderr,"[FLUSH]")); \
1200 }
1201
1202 /* Same but force premature exit if necessary. */
1203 #define FLUSH_BLOCK(s, eof) { \
1204 FLUSH_BLOCK_ONLY(s, eof); \
1205 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1206 }
1207
1208 /* ===========================================================================
1209 * Copy without compression as much as possible from the input stream, return
1210 * the current block state.
1211 * This function does not insert new strings in the dictionary since
1212 * uncompressible data is probably not useful. This function is used
1213 * only for the level=0 compression option.
1214 * NOTE: this function should be optimized to avoid extra copying from
1215 * window to pending_buf.
1216 */
1217 local block_state deflate_stored(s, flush)
1218 deflate_state *s;
1219 int flush;
1220 {
1221 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1222 * to pending_buf_size, and each stored block has a 5 byte header:
1223 */
1224 ulg max_block_size = 0xffff;
1225 ulg max_start;
1226
1227 if (max_block_size > s->pending_buf_size - 5) {
1228 max_block_size = s->pending_buf_size - 5;
1229 }
1230
1231 /* Copy as much as possible from input to output: */
1232 for (;;) {
1233 /* Fill the window as much as possible: */
1234 if (s->lookahead <= 1) {
1235
1236 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1237 s->block_start >= (long)s->w_size, "slide too late");
1238
1239 fill_window(s);
1240 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1241
1242 if (s->lookahead == 0) break; /* flush the current block */
1243 }
1244 Assert(s->block_start >= 0L, "block gone");
1245
1246 s->strstart += s->lookahead;
1247 s->lookahead = 0;
1248
1249 /* Emit a stored block if pending_buf will be full: */
1250 max_start = s->block_start + max_block_size;
1251 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1252 /* strstart == 0 is possible when wraparound on 16-bit machine */
1253 s->lookahead = (uInt)(s->strstart - max_start);
1254 s->strstart = (uInt)max_start;
1255 FLUSH_BLOCK(s, 0);
1256 }
1257 /* Flush if we may have to slide, otherwise block_start may become
1258 * negative and the data will be gone:
1259 */
1260 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1261 FLUSH_BLOCK(s, 0);
1262 }
1263 }
1264 FLUSH_BLOCK(s, flush == Z_FINISH);
1265 return flush == Z_FINISH ? finish_done : block_done;
1266 }
1267
1268 /* ===========================================================================
1269 * Compress as much as possible from the input stream, return the current
1270 * block state.
1271 * This function does not perform lazy evaluation of matches and inserts
1272 * new strings in the dictionary only for unmatched strings or for short
1273 * matches. It is used only for the fast compression options.
1274 */
1275 local block_state deflate_fast(s, flush)
1276 deflate_state *s;
1277 int flush;
1278 {
1279 IPos hash_head = NIL; /* head of the hash chain */
1280 int bflush; /* set if current block must be flushed */
1281
1282 for (;;) {
1283 /* Make sure that we always have enough lookahead, except
1284 * at the end of the input file. We need MAX_MATCH bytes
1285 * for the next match, plus MIN_MATCH bytes to insert the
1286 * string following the next match.
1287 */
1288 if (s->lookahead < MIN_LOOKAHEAD) {
1289 fill_window(s);
1290 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1291 return need_more;
1292 }
1293 if (s->lookahead == 0) break; /* flush the current block */
1294 }
1295
1296 /* Insert the string window[strstart .. strstart+2] in the
1297 * dictionary, and set hash_head to the head of the hash chain:
1298 */
1299 if (s->lookahead >= MIN_MATCH) {
1300 INSERT_STRING(s, s->strstart, hash_head);
1301 }
1302
1303 /* Find the longest match, discarding those <= prev_length.
1304 * At this point we have always match_length < MIN_MATCH
1305 */
1306 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1307 /* To simplify the code, we prevent matches with the string
1308 * of window index 0 (in particular we have to avoid a match
1309 * of the string with itself at the start of the input file).
1310 */
1311 #ifdef FASTEST
1312 if ((s->strategy < Z_HUFFMAN_ONLY) ||
1313 (s->strategy == Z_RLE && s->strstart - hash_head == 1)) {
1314 s->match_length = longest_match_fast (s, hash_head);
1315 }
1316 #else
1317 if (s->strategy < Z_HUFFMAN_ONLY) {
1318 s->match_length = longest_match (s, hash_head);
1319 } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1320 s->match_length = longest_match_fast (s, hash_head);
1321 }
1322 #endif
1323 /* longest_match() or longest_match_fast() sets match_start */
1324 }
1325 if (s->match_length >= MIN_MATCH) {
1326 check_match(s, s->strstart, s->match_start, s->match_length);
1327
1328 _tr_tally_dist(s, s->strstart - s->match_start,
1329 s->match_length - MIN_MATCH, bflush);
1330
1331 s->lookahead -= s->match_length;
1332
1333 /* Insert new strings in the hash table only if the match length
1334 * is not too large. This saves time but degrades compression.
1335 */
1336 #ifndef FASTEST
1337 if (s->match_length <= s->max_insert_length &&
1338 s->lookahead >= MIN_MATCH) {
1339 s->match_length--; /* string at strstart already in table */
1340 do {
1341 s->strstart++;
1342 INSERT_STRING(s, s->strstart, hash_head);
1343 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1344 * always MIN_MATCH bytes ahead.
1345 */
1346 } while (--s->match_length != 0);
1347 s->strstart++;
1348 } else
1349 #endif
1350 {
1351 s->strstart += s->match_length;
1352 s->match_length = 0;
1353 s->ins_h = s->window[s->strstart];
1354 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1355 #if MIN_MATCH != 3
1356 Call UPDATE_HASH() MIN_MATCH-3 more times
1357 #endif
1358 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1359 * matter since it will be recomputed at next deflate call.
1360 */
1361 }
1362 } else {
1363 /* No match, output a literal byte */
1364 Tracevv((stderr,"%c", s->window[s->strstart]));
1365 _tr_tally_lit (s, s->window[s->strstart], bflush);
1366 s->lookahead--;
1367 s->strstart++;
1368 }
1369 if (bflush) FLUSH_BLOCK(s, 0);
1370 }
1371 FLUSH_BLOCK(s, flush == Z_FINISH);
1372 return flush == Z_FINISH ? finish_done : block_done;
1373 }
1374
1375 #ifndef FASTEST
1376 /* ===========================================================================
1377 * Same as above, but achieves better compression. We use a lazy
1378 * evaluation for matches: a match is finally adopted only if there is
1379 * no better match at the next window position.
1380 */
1381 local block_state deflate_slow(s, flush)
1382 deflate_state *s;
1383 int flush;
1384 {
1385 IPos hash_head = NIL; /* head of hash chain */
1386 int bflush; /* set if current block must be flushed */
1387
1388 /* Process the input block. */
1389 for (;;) {
1390 /* Make sure that we always have enough lookahead, except
1391 * at the end of the input file. We need MAX_MATCH bytes
1392 * for the next match, plus MIN_MATCH bytes to insert the
1393 * string following the next match.
1394 */
1395 if (s->lookahead < MIN_LOOKAHEAD) {
1396 fill_window(s);
1397 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1398 return need_more;
1399 }
1400 if (s->lookahead == 0) break; /* flush the current block */
1401 }
1402
1403 /* Insert the string window[strstart .. strstart+2] in the
1404 * dictionary, and set hash_head to the head of the hash chain:
1405 */
1406 if (s->lookahead >= MIN_MATCH) {
1407 INSERT_STRING(s, s->strstart, hash_head);
1408 }
1409
1410 /* Find the longest match, discarding those <= prev_length.
1411 */
1412 s->prev_length = s->match_length, s->prev_match = s->match_start;
1413 s->match_length = MIN_MATCH-1;
1414
1415 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1416 s->strstart - hash_head <= MAX_DIST(s)) {
1417 /* To simplify the code, we prevent matches with the string
1418 * of window index 0 (in particular we have to avoid a match
1419 * of the string with itself at the start of the input file).
1420 */
1421 if (s->strategy < Z_HUFFMAN_ONLY) {
1422 s->match_length = longest_match (s, hash_head);
1423 } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1424 s->match_length = longest_match_fast (s, hash_head);
1425 }
1426 /* longest_match() or longest_match_fast() sets match_start */
1427
1428 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1429 #if TOO_FAR <= 32767
1430 || (s->match_length == MIN_MATCH &&
1431 s->strstart - s->match_start > TOO_FAR)
1432 #endif
1433 )) {
1434
1435 /* If prev_match is also MIN_MATCH, match_start is garbage
1436 * but we will ignore the current match anyway.
1437 */
1438 s->match_length = MIN_MATCH-1;
1439 }
1440 }
1441 /* If there was a match at the previous step and the current
1442 * match is not better, output the previous match:
1443 */
1444 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1445 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1446 /* Do not insert strings in hash table beyond this. */
1447
1448 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1449
1450 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1451 s->prev_length - MIN_MATCH, bflush);
1452
1453 /* Insert in hash table all strings up to the end of the match.
1454 * strstart-1 and strstart are already inserted. If there is not
1455 * enough lookahead, the last two strings are not inserted in
1456 * the hash table.
1457 */
1458 s->lookahead -= s->prev_length-1;
1459 s->prev_length -= 2;
1460 do {
1461 if (++s->strstart <= max_insert) {
1462 INSERT_STRING(s, s->strstart, hash_head);
1463 }
1464 } while (--s->prev_length != 0);
1465 s->match_available = 0;
1466 s->match_length = MIN_MATCH-1;
1467 s->strstart++;
1468
1469 if (bflush) FLUSH_BLOCK(s, 0);
1470
1471 } else if (s->match_available) {
1472 /* If there was no match at the previous position, output a
1473 * single literal. If there was a match but the current match
1474 * is longer, truncate the previous match to a single literal.
1475 */
1476 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1477 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1478 if (bflush) {
1479 FLUSH_BLOCK_ONLY(s, 0);
1480 }
1481 s->strstart++;
1482 s->lookahead--;
1483 if (s->strm->avail_out == 0) return need_more;
1484 } else {
1485 /* There is no previous match to compare with, wait for
1486 * the next step to decide.
1487 */
1488 s->match_available = 1;
1489 s->strstart++;
1490 s->lookahead--;
1491 }
1492 }
1493 Assert (flush != Z_NO_FLUSH, "no flush?");
1494 if (s->match_available) {
1495 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1496 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1497 s->match_available = 0;
1498 }
1499 FLUSH_BLOCK(s, flush == Z_FINISH);
1500 return flush == Z_FINISH ? finish_done : block_done;
1501 }
1502 #endif /* FASTEST */