1 /////////////////////////////////////////////////////////////////////////////
3 // Purpose: interface of wxImageHandler and wxImage
4 // Author: wxWidgets team
6 // Licence: wxWindows licence
7 /////////////////////////////////////////////////////////////////////////////
10 Possible values for the image resolution option.
12 @see wxImage::GetOptionInt().
14 enum wxImageResolution
16 /// Resolution not specified.
17 wxIMAGE_RESOLUTION_NONE
= 0,
19 /// Resolution specified in inches.
20 wxIMAGE_RESOLUTION_INCHES
= 1,
22 /// Resolution specified in centimetres.
23 wxIMAGE_RESOLUTION_CM
= 2
27 Image resize algorithm.
29 This is used with wxImage::Scale() and wxImage::Rescale().
31 enum wxImageResizeQuality
33 /// Simplest and fastest algorithm.
34 wxIMAGE_QUALITY_NEAREST
,
36 /// Compromise between wxIMAGE_QUALITY_NEAREST and wxIMAGE_QUALITY_BICUBIC.
37 wxIMAGE_QUALITY_BILINEAR
,
39 /// Highest quality but slowest execution time.
40 wxIMAGE_QUALITY_BICUBIC
,
43 Use surrounding pixels to calculate an average that will be used for
44 new pixels. This method is typically used when reducing the size of
47 wxIMAGE_QUALITY_BOX_AVERAGE
,
50 Default image resizing algorithm used by wxImage::Scale(). Currently
51 the same as wxIMAGE_QUALITY_NEAREST.
53 wxIMAGE_QUALITY_NORMAL
,
56 Best image resizing algorithm. Since version 2.9.2 this results in
57 wxIMAGE_QUALITY_BOX_AVERAGE being used when reducing the size of the
58 image (meaning that both the new width and height will be smaller than
59 the original size). Otherwise wxIMAGE_QUALITY_BICUBIC is used.
65 Possible values for PNG image type option.
67 @see wxImage::GetOptionInt().
71 wxPNG_TYPE_COLOUR
= 0, ///< Colour PNG image.
72 wxPNG_TYPE_GREY
= 2, ///< Greyscale PNG image converted from RGB.
73 wxPNG_TYPE_GREY_RED
= 3, ///< Greyscale PNG image using red as grey.
74 wxPNG_TYPE_PALETTE
= 4 ///< Palette encoding.
81 #define wxIMAGE_OPTION_QUALITY wxString("quality")
82 #define wxIMAGE_OPTION_FILENAME wxString("FileName")
83 #define wxIMAGE_OPTION_RESOLUTION wxString("Resolution")
84 #define wxIMAGE_OPTION_RESOLUTIONX wxString("ResolutionX")
85 #define wxIMAGE_OPTION_RESOLUTIONY wxString("ResolutionY")
86 #define wxIMAGE_OPTION_RESOLUTIONUNIT wxString("ResolutionUnit")
87 #define wxIMAGE_OPTION_MAX_WIDTH wxString("MaxWidth")
88 #define wxIMAGE_OPTION_MAX_HEIGHT wxString("MaxHeight")
89 #define wxIMAGE_OPTION_ORIGINAL_WIDTH wxString("OriginalWidth")
90 #define wxIMAGE_OPTION_ORIGINAL_HEIGHT wxString("OriginalHeight")
92 #define wxIMAGE_OPTION_BMP_FORMAT wxString("wxBMP_FORMAT")
93 #define wxIMAGE_OPTION_CUR_HOTSPOT_X wxString("HotSpotX")
94 #define wxIMAGE_OPTION_CUR_HOTSPOT_Y wxString("HotSpotY")
96 #define wxIMAGE_OPTION_GIF_COMMENT wxString("GifComment")
98 #define wxIMAGE_OPTION_PNG_FORMAT wxString("PngFormat")
99 #define wxIMAGE_OPTION_PNG_BITDEPTH wxString("PngBitDepth")
100 #define wxIMAGE_OPTION_PNG_FILTER wxString("PngF")
101 #define wxIMAGE_OPTION_PNG_COMPRESSION_LEVEL wxString("PngZL")
102 #define wxIMAGE_OPTION_PNG_COMPRESSION_MEM_LEVEL wxString("PngZM")
103 #define wxIMAGE_OPTION_PNG_COMPRESSION_STRATEGY wxString("PngZS")
104 #define wxIMAGE_OPTION_PNG_COMPRESSION_BUFFER_SIZE wxString("PngZB")
106 #define wxIMAGE_OPTION_TIFF_BITSPERSAMPLE wxString("BitsPerSample")
107 #define wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL wxString("SamplesPerPixel")
108 #define wxIMAGE_OPTION_TIFF_COMPRESSION wxString("Compression")
109 #define wxIMAGE_OPTION_TIFF_PHOTOMETRIC wxString("Photometric")
110 #define wxIMAGE_OPTION_TIFF_IMAGEDESCRIPTOR wxString("ImageDescriptor")
115 wxBMP_24BPP
= 24, // default, do not need to set
116 //wxBMP_16BPP = 16, // wxQuantize can only do 236 colors?
117 wxBMP_8BPP
= 8, // 8bpp, quantized colors
118 wxBMP_8BPP_GREY
= 9, // 8bpp, rgb averaged to greys
119 wxBMP_8BPP_GRAY
= wxBMP_8BPP_GREY
,
120 wxBMP_8BPP_RED
= 10, // 8bpp, red used as greyscale
121 wxBMP_8BPP_PALETTE
= 11, // 8bpp, use the wxImage's palette
122 wxBMP_4BPP
= 4, // 4bpp, quantized colors
123 wxBMP_1BPP
= 1, // 1bpp, quantized "colors"
124 wxBMP_1BPP_BW
= 2 // 1bpp, black & white from red
129 @class wxImageHandler
131 This is the base class for implementing image file loading/saving, and
132 image creation from data.
133 It is used within wxImage and is not normally seen by the application.
135 If you wish to extend the capabilities of wxImage, derive a class from
136 wxImageHandler and add the handler using wxImage::AddHandler in your
137 application initialization.
139 Note that all wxImageHandlers provided by wxWidgets are part of
140 the @ref page_libs_wxcore library.
141 For details about the default handlers, please see the section
142 @ref image_handlers in the wxImage class documentation.
145 @section imagehandler_note Note (Legal Issue)
147 This software is based in part on the work of the Independent JPEG Group.
148 (Applies when wxWidgets is linked with JPEG support.
149 wxJPEGHandler uses libjpeg created by IJG.)
158 @see wxImage, wxInitAllImageHandlers()
160 class wxImageHandler
: public wxObject
166 In your own default constructor, initialise the members
167 m_name, m_extension and m_type.
172 Destroys the wxImageHandler object.
174 virtual ~wxImageHandler();
177 Returns @true if this handler supports the image format contained in the
180 This function doesn't modify the current stream position (because it
181 restores the original position before returning; this however requires the
182 stream to be seekable; see wxStreamBase::IsSeekable).
184 bool CanRead( wxInputStream
& stream
);
187 Returns @true if this handler supports the image format contained in the
188 file with the given name.
190 This function doesn't modify the current stream position (because it
191 restores the original position before returning; this however requires the
192 stream to be seekable; see wxStreamBase::IsSeekable).
194 bool CanRead( const wxString
& filename
);
197 Gets the preferred file extension associated with this handler.
199 @see GetAltExtensions()
201 const wxString
& GetExtension() const;
204 Returns the other file extensions associated with this handler.
206 The preferred extension for this handler is returned by GetExtension().
210 const wxArrayString
& GetAltExtensions() const;
213 If the image file contains more than one image and the image handler is capable
214 of retrieving these individually, this function will return the number of
218 Opened input stream for reading image data.
219 This function doesn't modify the current stream position (because it
220 restores the original position before returning; this however requires the
221 stream to be seekable; see wxStreamBase::IsSeekable).
223 @return Number of available images. For most image handlers, this is 1
224 (exceptions are TIFF and ICO formats as well as animated GIFs
225 for which this function returns the number of frames in the
228 virtual int GetImageCount(wxInputStream
& stream
);
231 Gets the MIME type associated with this handler.
233 const wxString
& GetMimeType() const;
236 Gets the name of this handler.
238 const wxString
& GetName() const;
241 Gets the image type associated with this handler.
243 wxBitmapType
GetType() const;
246 Loads a image from a stream, putting the resulting data into @a image.
248 If the image file contains more than one image and the image handler is
249 capable of retrieving these individually, @a index indicates which image
250 to read from the stream.
253 The image object which is to be affected by this operation.
255 Opened input stream for reading image data.
257 If set to @true, errors reported by the image handler will produce
260 The index of the image in the file (starting from zero).
262 @return @true if the operation succeeded, @false otherwise.
264 @see wxImage::LoadFile, wxImage::SaveFile, SaveFile()
266 virtual bool LoadFile(wxImage
* image
, wxInputStream
& stream
,
267 bool verbose
= true, int index
= -1);
270 Saves a image in the output stream.
273 The image object which is to be affected by this operation.
275 Opened output stream for writing the data.
277 If set to @true, errors reported by the image handler will produce
280 @return @true if the operation succeeded, @false otherwise.
282 @see wxImage::LoadFile, wxImage::SaveFile, LoadFile()
284 virtual bool SaveFile(wxImage
* image
, wxOutputStream
& stream
,
285 bool verbose
= true);
288 Sets the preferred file extension associated with this handler.
291 File extension without leading dot.
293 @see SetAltExtensions()
295 void SetExtension(const wxString
& extension
);
298 Sets the alternative file extensions associated with this handler.
301 Array of file extensions.
307 void SetAltExtensions(const wxArrayString
& extensions
);
310 Sets the handler MIME type.
315 void SetMimeType(const wxString
& mimetype
);
318 Sets the handler name.
323 void SetName(const wxString
& name
);
326 Retrieve the version information about the image library used by this
329 This method is not present in wxImageHandler class itself but is
330 present in a few of the classes deriving from it, currently
331 wxJPEGHandler, wxPNGHandler and wxTIFFHandler. It returns the
332 information about the version of the image library being used for the
333 corresponding handler implementation.
337 static wxVersionInfo
GetLibraryVersionInfo();
342 Constant used to indicate the alpha value conventionally defined as
343 the complete transparency.
345 const unsigned char wxIMAGE_ALPHA_TRANSPARENT
= 0;
348 Constant used to indicate the alpha value conventionally defined as
349 the complete opacity.
351 const unsigned char wxIMAGE_ALPHA_OPAQUE
= 0xff;
353 const unsigned char wxIMAGE_ALPHA_THRESHOLD
= 0x80;
359 This class encapsulates a platform-independent image.
361 An image can be created from data, or using wxBitmap::ConvertToImage.
362 An image can be loaded from a file in a variety of formats, and is extensible
363 to new formats via image format handlers. Functions are available to set and
364 get image bits, so it can be used for basic image manipulation.
366 A wxImage cannot (currently) be drawn directly to a wxDC.
367 Instead, a platform-specific wxBitmap object must be created from it using
368 the wxBitmap::wxBitmap(wxImage,int depth) constructor.
369 This bitmap can then be drawn in a device context, using wxDC::DrawBitmap.
371 More on the difference between wxImage and wxBitmap: wxImage is just a
372 buffer of RGB bytes with an optional buffer for the alpha bytes. It is all
373 generic, platform independent and image file format independent code. It
374 includes generic code for scaling, resizing, clipping, and other manipulations
375 of the image data. OTOH, wxBitmap is intended to be a wrapper of whatever is
376 the native image format that is quickest/easiest to draw to a DC or to be the
377 target of the drawing operations performed on a wxMemoryDC. By splitting the
378 responsibilities between wxImage/wxBitmap like this then it's easier to use
379 generic code shared by all platforms and image types for generic operations and
380 platform specific code where performance or compatibility is needed.
382 One colour value of the image may be used as a mask colour which will lead to
383 the automatic creation of a wxMask object associated to the bitmap object.
386 @section image_alpha Alpha channel support
388 Starting from wxWidgets 2.5.0 wxImage supports alpha channel data, that is
389 in addition to a byte for the red, green and blue colour components for each
390 pixel it also stores a byte representing the pixel opacity.
392 An alpha value of 0 corresponds to a transparent pixel (null opacity) while
393 a value of 255 means that the pixel is 100% opaque.
394 The constants ::wxIMAGE_ALPHA_TRANSPARENT and ::wxIMAGE_ALPHA_OPAQUE can be
395 used to indicate those values in a more readable form.
397 While all images have RGB data, not all images have an alpha channel. Before
398 using wxImage::GetAlpha you should check if this image contains an alpha
399 channel with wxImage::HasAlpha. Currently the BMP, PNG, TGA, and TIFF format
400 handlers have full alpha channel support for loading so if you want to use
401 alpha you have to use one of these formats. If you initialize the image
402 alpha channel yourself using wxImage::SetAlpha, you should save it in
403 either PNG, TGA, or TIFF format to avoid losing it as these are the only
404 handlers that currently support saving with alpha.
407 @section image_handlers Available image handlers
409 The following image handlers are available.
410 wxBMPHandler is always installed by default.
411 To use other image formats, install the appropriate handler with
412 wxImage::AddHandler or call ::wxInitAllImageHandlers().
414 - wxBMPHandler: For loading (including alpha support) and saving, always installed.
415 - wxPNGHandler: For loading and saving. Includes alpha support.
416 - wxJPEGHandler: For loading and saving.
417 - wxGIFHandler: For loading and saving (see below).
418 - wxPCXHandler: For loading and saving (see below).
419 - wxPNMHandler: For loading and saving (see below).
420 - wxTIFFHandler: For loading and saving. Includes alpha support.
421 - wxTGAHandler: For loading and saving. Includes alpha support.
422 - wxIFFHandler: For loading only.
423 - wxXPMHandler: For loading and saving.
424 - wxICOHandler: For loading and saving.
425 - wxCURHandler: For loading and saving.
426 - wxANIHandler: For loading only.
428 When saving in PCX format, wxPCXHandler will count the number of different
429 colours in the image; if there are 256 or less colours, it will save as 8 bit,
430 else it will save as 24 bit.
432 Loading PNMs only works for ASCII or raw RGB images.
433 When saving in PNM format, wxPNMHandler will always save as raw RGB.
435 Saving GIFs requires images of maximum 8 bpp (see wxQuantize), and the alpha channel converted to a mask (see wxImage::ConvertAlphaToMask).
436 Saving an animated GIF requires images of the same size (see wxGIFHandler::SaveAnimation)
444 @see wxBitmap, wxInitAllImageHandlers(), wxPixelData
446 class wxImage
: public wxObject
450 A simple class which stores red, green and blue values as 8 bit unsigned integers
451 in the range of 0-255.
457 Constructor for RGBValue, an object that contains values for red, green
458 and blue which represent the value of a color.
460 It is used by wxImage::HSVtoRGB and wxImage::RGBtoHSV, which convert
461 between HSV color space and RGB color space.
463 RGBValue(unsigned char r
=0, unsigned char g
=0, unsigned char b
=0);
471 A simple class which stores hue, saturation and value as doubles in the range 0.0-1.0.
477 Constructor for HSVValue, an object that contains values for hue, saturation
478 and value which represent the value of a color.
480 It is used by wxImage::HSVtoRGB() and wxImage::RGBtoHSV(), which convert
481 between HSV color space and RGB color space.
483 HSVValue(double h
=0.0, double s
=0.0, double v
=0.0);
491 Creates an empty wxImage object without an alpha channel.
496 Creates an image with the given size and clears it if requested.
498 Does not create an alpha channel.
501 Specifies the width of the image.
503 Specifies the height of the image.
505 If @true, initialize the image to black.
507 wxImage(int width
, int height
, bool clear
= true);
512 wxImage(const wxSize
& sz
, bool clear
= true);
515 Creates an image from data in memory. If @a static_data is @false
516 then the wxImage will take ownership of the data and free it
517 afterwards. For this, it has to be allocated with @e malloc.
520 Specifies the width of the image.
522 Specifies the height of the image.
524 A pointer to RGB data
526 Indicates if the data should be free'd after use
529 wxImage(int width
, int height
, unsigned char* data
, bool static_data
= false);
534 wxImage(const wxSize
& sz
, unsigned char* data
, bool static_data
= false);
537 Creates an image from data in memory. If @a static_data is @false
538 then the wxImage will take ownership of the data and free it
539 afterwards. For this, it has to be allocated with @e malloc.
542 Specifies the width of the image.
544 Specifies the height of the image.
546 A pointer to RGB data
548 A pointer to alpha-channel data
550 Indicates if the data should be free'd after use
553 wxImage(int width
, int height
, unsigned char* data
, unsigned char* alpha
,
554 bool static_data
= false );
559 wxImage(const wxSize
& sz
, unsigned char* data
, unsigned char* alpha
,
560 bool static_data
= false);
563 Creates an image from XPM data.
566 A pointer to XPM image data.
569 Not supported by wxPerl.
572 wxImage(const char* const* xpmData
);
575 Creates an image from a file.
578 Name of the file from which to load the image.
580 May be one of the following:
581 @li wxBITMAP_TYPE_BMP: Load a Windows bitmap file.
582 @li wxBITMAP_TYPE_GIF: Load a GIF bitmap file.
583 @li wxBITMAP_TYPE_JPEG: Load a JPEG bitmap file.
584 @li wxBITMAP_TYPE_PNG: Load a PNG bitmap file.
585 @li wxBITMAP_TYPE_PCX: Load a PCX bitmap file.
586 @li wxBITMAP_TYPE_PNM: Load a PNM bitmap file.
587 @li wxBITMAP_TYPE_TIFF: Load a TIFF bitmap file.
588 @li wxBITMAP_TYPE_TGA: Load a TGA bitmap file.
589 @li wxBITMAP_TYPE_XPM: Load a XPM bitmap file.
590 @li wxBITMAP_TYPE_ICO: Load a Windows icon file (ICO).
591 @li wxBITMAP_TYPE_CUR: Load a Windows cursor file (CUR).
592 @li wxBITMAP_TYPE_ANI: Load a Windows animated cursor file (ANI).
593 @li wxBITMAP_TYPE_ANY: Will try to autodetect the format.
595 Index of the image to load in the case that the image file contains
596 multiple images. This is only used by GIF, ICO and TIFF handlers.
597 The default value (-1) means "choose the default image" and is
598 interpreted as the first image (index=0) by the GIF and TIFF handler
599 and as the largest and most colourful one by the ICO handler.
601 @remarks Depending on how wxWidgets has been configured and by which
602 handlers have been loaded, not all formats may be available.
603 Any handler other than BMP must be previously initialized with
604 wxImage::AddHandler or wxInitAllImageHandlers.
607 You can use GetOptionInt() to get the hotspot when loading cursor files:
609 int hotspot_x = image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_X);
610 int hotspot_y = image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y);
615 wxImage(const wxString
& name
, wxBitmapType type
= wxBITMAP_TYPE_ANY
, int index
= -1);
618 Creates an image from a file using MIME-types to specify the type.
621 Name of the file from which to load the image.
623 MIME type string (for example 'image/jpeg')
625 See description in wxImage(const wxString&, wxBitmapType, int) overload.
627 wxImage(const wxString
& name
, const wxString
& mimetype
, int index
= -1);
630 Creates an image from a stream.
633 Opened input stream from which to load the image. Currently,
634 the stream must support seeking.
636 See description in wxImage(const wxString&, wxBitmapType, int) overload.
638 See description in wxImage(const wxString&, wxBitmapType, int) overload.
640 wxImage(wxInputStream
& stream
, wxBitmapType type
= wxBITMAP_TYPE_ANY
, int index
= -1);
643 Creates an image from a stream using MIME-types to specify the type.
646 Opened input stream from which to load the image. Currently,
647 the stream must support seeking.
649 MIME type string (for example 'image/jpeg')
651 See description in wxImage(const wxString&, wxBitmapType, int) overload.
653 wxImage(wxInputStream
& stream
, const wxString
& mimetype
, int index
= -1);
658 See @ref overview_refcount_destruct "reference-counted object destruction"
666 @name Image creation, initialization and deletion functions
671 Returns an identical copy of this image.
673 wxImage
Copy() const;
676 Creates a fresh image.
677 See wxImage::wxImage(int,int,bool) for more info.
679 @return @true if the call succeeded, @false otherwise.
681 bool Create(int width
, int height
, bool clear
= true);
686 bool Create( const wxSize
& sz
, bool clear
= true );
689 Creates a fresh image.
690 See wxImage::wxImage(int,int,unsigned char*,bool) for more info.
692 @return @true if the call succeeded, @false otherwise.
694 bool Create( int width
, int height
, unsigned char* data
, bool static_data
= false );
699 bool Create( const wxSize
& sz
, unsigned char* data
, bool static_data
= false );
702 Creates a fresh image.
703 See wxImage::wxImage(int,int,unsigned char*,unsigned char*,bool) for more info.
705 @return @true if the call succeeded, @false otherwise.
707 bool Create( int width
, int height
, unsigned char* data
, unsigned char* alpha
, bool static_data
= false );
712 bool Create( const wxSize
& sz
, unsigned char* data
, unsigned char* alpha
, bool static_data
= false );
715 Initialize the image data with zeroes (the default) or with the
716 byte value given as @a value.
720 void Clear(unsigned char value
= 0);
723 Destroys the image data.
728 Initializes the image alpha channel data.
730 It is an error to call it if the image already has alpha data.
731 If it doesn't, alpha data will be by default initialized to all pixels
732 being fully opaque. But if the image has a mask colour, all mask pixels
733 will be completely transparent.
741 @name Image manipulation functions
746 Blurs the image in both horizontal and vertical directions by the
747 specified pixel @a blurRadius. This should not be used when using
748 a single mask colour for transparency.
750 @see BlurHorizontal(), BlurVertical()
752 wxImage
Blur(int blurRadius
) const;
755 Blurs the image in the horizontal direction only. This should not be used
756 when using a single mask colour for transparency.
758 @see Blur(), BlurVertical()
760 wxImage
BlurHorizontal(int blurRadius
) const;
763 Blurs the image in the vertical direction only. This should not be used
764 when using a single mask colour for transparency.
766 @see Blur(), BlurHorizontal()
768 wxImage
BlurVertical(int blurRadius
) const;
771 Returns a mirrored copy of the image.
772 The parameter @a horizontally indicates the orientation.
774 wxImage
Mirror(bool horizontally
= true) const;
777 Copy the data of the given @a image to the specified position in this image.
779 void Paste(const wxImage
& image
, int x
, int y
);
782 Replaces the colour specified by @e r1,g1,b1 by the colour @e r2,g2,b2.
784 void Replace(unsigned char r1
, unsigned char g1
,
785 unsigned char b1
, unsigned char r2
,
786 unsigned char g2
, unsigned char b2
);
789 Changes the size of the image in-place by scaling it: after a call to this
790 function,the image will have the given width and height.
792 For a description of the @a quality parameter, see the Scale() function.
793 Returns the (modified) image itself.
797 wxImage
& Rescale(int width
, int height
,
798 wxImageResizeQuality quality
= wxIMAGE_QUALITY_NORMAL
);
801 Changes the size of the image in-place without scaling it by adding either a
802 border with the given colour or cropping as necessary.
804 The image is pasted into a new image with the given @a size and background
805 colour at the position @a pos relative to the upper left of the new image.
807 If @a red = green = blue = -1 then use either the current mask colour
808 if set or find, use, and set a suitable mask colour for any newly exposed
811 @return The (modified) image itself.
815 wxImage
& Resize(const wxSize
& size
, const wxPoint
& pos
, int red
= -1,
816 int green
= -1, int blue
= -1);
819 Rotates the image about the given point, by @a angle radians.
821 Passing @true to @a interpolating results in better image quality, but is slower.
823 If the image has a mask, then the mask colour is used for the uncovered
824 pixels in the rotated image background. Else, black (rgb 0, 0, 0) will be used.
826 Returns the rotated image, leaving this image intact.
828 wxImage
Rotate(double angle
, const wxPoint
& rotationCentre
,
829 bool interpolating
= true,
830 wxPoint
* offsetAfterRotation
= NULL
) const;
833 Returns a copy of the image rotated 90 degrees in the direction
834 indicated by @a clockwise.
836 wxImage
Rotate90(bool clockwise
= true) const;
839 Returns a copy of the image rotated by 180 degrees.
843 wxImage
Rotate180() const;
846 Rotates the hue of each pixel in the image by @e angle, which is a double in
847 the range of -1.0 to +1.0, where -1.0 corresponds to -360 degrees and +1.0
848 corresponds to +360 degrees.
850 void RotateHue(double angle
);
853 Returns a scaled version of the image.
855 This is also useful for scaling bitmaps in general as the only other way
856 to scale bitmaps is to blit a wxMemoryDC into another wxMemoryDC.
858 The parameter @a quality determines what method to use for resampling
859 the image, see wxImageResizeQuality documentation.
861 It should be noted that although using @c wxIMAGE_QUALITY_HIGH produces much nicer
862 looking results it is a slower method. Downsampling will use the box averaging
863 method which seems to operate very fast. If you are upsampling larger images using
864 this method you will most likely notice that it is a bit slower and in extreme
865 cases it will be quite substantially slower as the bicubic algorithm has to process a
868 It should also be noted that the high quality scaling may not work as expected
869 when using a single mask colour for transparency, as the scaling will blur the
870 image and will therefore remove the mask partially. Using the alpha channel
875 // get the bitmap from somewhere
878 // rescale it to have size of 32*32
879 if ( bmp.GetWidth() != 32 || bmp.GetHeight() != 32 )
881 wxImage image = bmp.ConvertToImage();
882 bmp = wxBitmap(image.Scale(32, 32));
884 // another possibility:
885 image.Rescale(32, 32);
892 wxImage
Scale(int width
, int height
,
893 wxImageResizeQuality quality
= wxIMAGE_QUALITY_NORMAL
) const;
896 Returns a resized version of this image without scaling it by adding either a
897 border with the given colour or cropping as necessary.
899 The image is pasted into a new image with the given @a size and background
900 colour at the position @a pos relative to the upper left of the new image.
902 If @a red = green = blue = -1 then the areas of the larger image not covered
903 by this image are made transparent by filling them with the image mask colour
904 (which will be allocated automatically if it isn't currently set).
906 Otherwise, the areas will be filled with the colour with the specified RGB components.
910 wxImage
Size(const wxSize
& size
, const wxPoint
& pos
, int red
= -1,
911 int green
= -1, int blue
= -1) const;
917 @name Conversion functions
922 If the image has alpha channel, this method converts it to mask.
924 If the image has an alpha channel, all pixels with alpha value less
925 than @a threshold are replaced with the mask colour and the alpha
926 channel is removed. Otherwise nothing is done.
928 The mask colour is chosen automatically using
929 FindFirstUnusedColour() by this function, see the overload below if you
930 this is not appropriate.
932 @return Returns @true on success, @false on error.
934 bool ConvertAlphaToMask(unsigned char threshold
= wxIMAGE_ALPHA_THRESHOLD
);
937 If the image has alpha channel, this method converts it to mask using
938 the specified colour as the mask colour.
940 If the image has an alpha channel, all pixels with alpha value less
941 than @a threshold are replaced with the mask colour and the alpha
942 channel is removed. Otherwise nothing is done.
947 The red component of the mask colour.
949 The green component of the mask colour.
951 The blue component of the mask colour.
953 Pixels with alpha channel values below the given threshold are
954 considered to be transparent, i.e. the corresponding mask pixels
955 are set. Pixels with the alpha values above the threshold are
956 considered to be opaque.
958 @return Returns @true on success, @false on error.
960 bool ConvertAlphaToMask(unsigned char mr
, unsigned char mg
, unsigned char mb
,
961 unsigned char threshold
= wxIMAGE_ALPHA_THRESHOLD
);
964 Returns a greyscale version of the image.
966 The returned image uses the luminance component of the original to
967 calculate the greyscale. Defaults to using the standard ITU-T BT.601
968 when converting to YUV, where every pixel equals
969 (R * @a weight_r) + (G * @a weight_g) + (B * @a weight_b).
971 wxImage
ConvertToGreyscale(double weight_r
, double weight_g
, double weight_b
) const;
974 Returns a greyscale version of the image.
977 wxImage
ConvertToGreyscale() const;
980 Returns monochromatic version of the image.
982 The returned image has white colour where the original has @e (r,g,b)
983 colour and black colour everywhere else.
985 wxImage
ConvertToMono(unsigned char r
, unsigned char g
, unsigned char b
) const;
988 Returns disabled (dimmed) version of the image.
991 wxImage
ConvertToDisabled(unsigned char brightness
= 255) const;
997 @name Miscellaneous functions
1002 Computes the histogram of the image. @a histogram is a reference to
1003 wxImageHistogram object. wxImageHistogram is a specialization of
1004 wxHashMap "template" and is defined as follows:
1007 class WXDLLEXPORT wxImageHistogramEntry
1010 wxImageHistogramEntry() : index(0), value(0) {}
1011 unsigned long index;
1012 unsigned long value;
1015 WX_DECLARE_EXPORTED_HASH_MAP(unsigned long, wxImageHistogramEntry,
1016 wxIntegerHash, wxIntegerEqual,
1020 @return Returns number of colours in the histogram.
1022 unsigned long ComputeHistogram(wxImageHistogram
& histogram
) const;
1025 Finds the first colour that is never used in the image.
1026 The search begins at given initial colour and continues by increasing
1027 R, G and B components (in this order) by 1 until an unused colour is
1028 found or the colour space exhausted.
1030 The parameters @a r, @a g, @a b are pointers to variables to save the colour.
1032 The parameters @a startR, @a startG, @a startB define the initial values
1034 The returned colour will have RGB values equal to or greater than these.
1036 @return Returns @false if there is no unused colour left, @true on success.
1039 This method involves computing the histogram, which is a
1040 computationally intensive operation.
1042 bool FindFirstUnusedColour(unsigned char* r
, unsigned char* g
,
1043 unsigned char* b
, unsigned char startR
= 1,
1044 unsigned char startG
= 0,
1045 unsigned char startB
= 0) const;
1048 Assignment operator, using @ref overview_refcount "reference counting".
1053 @return Returns 'this' object.
1055 wxImage
& operator=(const wxImage
& image
);
1066 Returns pointer to the array storing the alpha values for this image.
1068 This pointer is @NULL for the images without the alpha channel. If the image
1069 does have it, this pointer may be used to directly manipulate the alpha values
1070 which are stored as the RGB ones.
1072 unsigned char* GetAlpha() const;
1075 Returns the image data as an array.
1077 This is most often used when doing direct image manipulation.
1078 The return value points to an array of characters in RGBRGBRGB... format
1079 in the top-to-bottom, left-to-right order, that is the first RGB triplet
1080 corresponds to the pixel first pixel of the first row, the second one ---
1081 to the second pixel of the first row and so on until the end of the first
1082 row, with second row following after it and so on.
1084 You should not delete the returned pointer nor pass it to SetData().
1086 unsigned char* GetData() const;
1089 Return alpha value at given pixel location.
1091 unsigned char GetAlpha(int x
, int y
) const;
1094 Returns the red intensity at the given coordinate.
1096 unsigned char GetRed(int x
, int y
) const;
1099 Returns the green intensity at the given coordinate.
1101 unsigned char GetGreen(int x
, int y
) const;
1104 Returns the blue intensity at the given coordinate.
1106 unsigned char GetBlue(int x
, int y
) const;
1109 Gets the red value of the mask colour.
1111 unsigned char GetMaskRed() const;
1114 Gets the green value of the mask colour.
1116 unsigned char GetMaskGreen() const;
1119 Gets the blue value of the mask colour.
1121 unsigned char GetMaskBlue() const;
1124 Gets the width of the image in pixels.
1126 @see GetHeight(), GetSize()
1128 int GetWidth() const;
1131 Gets the height of the image in pixels.
1133 @see GetWidth(), GetSize()
1135 int GetHeight() const;
1138 Returns the size of the image in pixels.
1142 @see GetHeight(), GetWidth()
1144 wxSize
GetSize() const;
1147 Gets a user-defined string-valued option.
1150 @li @c wxIMAGE_OPTION_FILENAME: The name of the file from which the image
1153 Options specific to wxGIFHandler:
1154 @li @c wxIMAGE_OPTION_GIF_COMMENT: The comment text that is read from
1155 or written to the GIF file. In an animated GIF each frame can have
1156 its own comment. If there is only a comment in the first frame of
1157 a GIF it will not be repeated in other frames.
1160 The name of the option, case-insensitive.
1162 The value of the option or an empty string if not found. Use
1163 HasOption() if an empty string can be a valid option value.
1165 @see SetOption(), GetOptionInt(), HasOption()
1167 wxString
GetOption(const wxString
& name
) const;
1170 Gets a user-defined integer-valued option.
1172 The function is case-insensitive to @a name.
1173 If the given option is not present, the function returns 0.
1174 Use HasOption() if 0 is a possibly valid value for the option.
1177 @li @c wxIMAGE_OPTION_MAX_WIDTH and @c wxIMAGE_OPTION_MAX_HEIGHT: If either
1178 of these options is specified, the loaded image will be scaled down
1179 (preserving its aspect ratio) so that its width is less than the
1180 max width given if it is not 0 @em and its height is less than the
1181 max height given if it is not 0. This is typically used for loading
1182 thumbnails and the advantage of using these options compared to
1183 calling Rescale() after loading is that some handlers (only JPEG
1184 one right now) support rescaling the image during loading which is
1185 vastly more efficient than loading the entire huge image and
1186 rescaling it later (if these options are not supported by the
1187 handler, this is still what happens however). These options must be
1188 set before calling LoadFile() to have any effect.
1190 @li @c wxIMAGE_OPTION_ORIGINAL_WIDTH and @c wxIMAGE_OPTION_ORIGINAL_HEIGHT:
1191 These options will return the original size of the image if either
1192 @c wxIMAGE_OPTION_MAX_WIDTH or @c wxIMAGE_OPTION_MAX_HEIGHT is
1196 @li @c wxIMAGE_OPTION_QUALITY: JPEG quality used when saving. This is an
1197 integer in 0..100 range with 0 meaning very poor and 100 excellent
1198 (but very badly compressed). This option is currently ignored for
1201 @li @c wxIMAGE_OPTION_RESOLUTIONUNIT: The value of this option determines
1202 whether the resolution of the image is specified in centimetres or
1203 inches, see wxImageResolution enum elements.
1205 @li @c wxIMAGE_OPTION_RESOLUTION, @c wxIMAGE_OPTION_RESOLUTIONX and
1206 @c wxIMAGE_OPTION_RESOLUTIONY: These options define the resolution of
1207 the image in the units corresponding to @c wxIMAGE_OPTION_RESOLUTIONUNIT
1208 options value. The first option can be set before saving the image
1209 to set both horizontal and vertical resolution to the same value.
1210 The X and Y options are set by the image handlers if they support
1211 the image resolution (currently BMP, JPEG and TIFF handlers do) and
1212 the image provides the resolution information and can be queried
1213 after loading the image.
1215 Options specific to wxPNGHandler:
1216 @li @c wxIMAGE_OPTION_PNG_FORMAT: Format for saving a PNG file, see
1217 wxImagePNGType for the supported values.
1218 @li @c wxIMAGE_OPTION_PNG_BITDEPTH: Bit depth for every channel (R/G/B/A).
1219 @li @c wxIMAGE_OPTION_PNG_FILTER: Filter for saving a PNG file, see libpng
1220 (http://www.libpng.org/pub/png/libpng-1.2.5-manual.html) for possible values
1221 (e.g. PNG_FILTER_NONE, PNG_FILTER_SUB, PNG_FILTER_UP, etc).
1222 @li @c wxIMAGE_OPTION_PNG_COMPRESSION_LEVEL: Compression level (0..9) for
1223 saving a PNG file. An high value creates smaller-but-slower PNG file.
1224 Note that unlike other formats (e.g. JPEG) the PNG format is always
1225 lossless and thus this compression level doesn't tradeoff the image
1227 @li @c wxIMAGE_OPTION_PNG_COMPRESSION_MEM_LEVEL: Compression memory usage
1228 level (1..9) for saving a PNG file. An high value means the saving
1229 process consumes more memory, but may create smaller PNG file.
1230 @li @c wxIMAGE_OPTION_PNG_COMPRESSION_STRATEGY: Possible values are 0 for
1231 default strategy, 1 for filter, and 2 for Huffman-only.
1232 You can use OptiPNG (http://optipng.sourceforge.net/) to get a suitable
1233 value for your application.
1234 @li @c wxIMAGE_OPTION_PNG_COMPRESSION_BUFFER_SIZE: Internal buffer size
1235 (in bytes) for saving a PNG file. Ideally this should be as big as
1236 the resulting PNG file. Use this option if your application produces
1237 images with small size variation.
1239 Options specific to wxTIFFHandler:
1240 @li @c wxIMAGE_OPTION_TIFF_BITSPERSAMPLE: Number of bits per
1241 sample (channel). Currently values of 1 and 8 are supported. A
1242 value of 1 results in a black and white image. A value of 8 (the
1243 default) can mean greyscale or RGB, depending on the value of
1244 @c wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL.
1245 @li @c wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL: Number of samples
1246 (channels) per pixel. Currently values of 1 and 3 are supported.
1247 A value of 1 results in either a greyscale (by default) or black and
1248 white image, depending on the value of
1249 @c wxIMAGE_OPTION_TIFF_BITSPERSAMPLE. A value of 3 (the default)
1250 will result in an RGB image.
1251 @li @c wxIMAGE_OPTION_TIFF_COMPRESSION: Compression type. By default
1252 it is set to 1 (COMPRESSION_NONE). Typical other values are
1253 5 (COMPRESSION_LZW) and 7 (COMPRESSION_JPEG). See tiff.h for more
1255 @li @c wxIMAGE_OPTION_TIFF_PHOTOMETRIC: Specifies the photometric
1256 interpretation. By default it is set to 2 (PHOTOMETRIC_RGB) for RGB
1257 images and 0 (PHOTOMETRIC_MINISWHITE) for greyscale or black and
1258 white images. It can also be set to 1 (PHOTOMETRIC_MINISBLACK) to
1259 treat the lowest value as black and highest as white.
1260 If you want a greyscale image it is also sufficient to only specify
1261 @c wxIMAGE_OPTION_TIFF_PHOTOMETRIC and set it to either
1262 PHOTOMETRIC_MINISWHITE or PHOTOMETRIC_MINISBLACK. The other values
1266 Be careful when combining the options @c wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL,
1267 @c wxIMAGE_OPTION_TIFF_BITSPERSAMPLE, and @c wxIMAGE_OPTION_TIFF_PHOTOMETRIC.
1268 While some measures are taken to prevent illegal combinations and/or
1269 values, it is still easy to abuse them and come up with invalid
1270 results in the form of either corrupted images or crashes.
1273 The name of the option, case-insensitive.
1275 The value of the option or 0 if not found.
1276 Use HasOption() if 0 can be a valid option value.
1278 @see SetOption(), GetOption()
1280 int GetOptionInt(const wxString
& name
) const;
1283 Get the current mask colour or find a suitable unused colour that could be
1284 used as a mask colour. Returns @true if the image currently has a mask.
1286 bool GetOrFindMaskColour(unsigned char* r
, unsigned char* g
,
1287 unsigned char* b
) const;
1290 Returns the palette associated with the image.
1291 Currently the palette is only used when converting to wxBitmap under Windows.
1293 Some of the wxImage handlers have been modified to set the palette if
1294 one exists in the image file (usually 256 or less colour images in
1297 const wxPalette
& GetPalette() const;
1300 Returns a sub image of the current one as long as the rect belongs entirely
1303 wxImage
GetSubImage(const wxRect
& rect
) const;
1306 Gets the type of image found by LoadFile() or specified with SaveFile().
1310 wxBitmapType
GetType() const;
1313 Returns @true if this image has alpha channel, @false otherwise.
1315 @see GetAlpha(), SetAlpha()
1317 bool HasAlpha() const;
1320 Returns @true if there is a mask active, @false otherwise.
1322 bool HasMask() const;
1325 Returns @true if the given option is present.
1326 The function is case-insensitive to @a name.
1328 The lists of the currently supported options are in GetOption() and
1329 GetOptionInt() function docs.
1331 @see SetOption(), GetOption(), GetOptionInt()
1333 bool HasOption(const wxString
& name
) const;
1336 Returns @true if image data is present.
1341 Returns @true if the given pixel is transparent, i.e. either has the mask
1342 colour if this image has a mask or if this image has alpha channel and alpha
1343 value of this pixel is strictly less than @a threshold.
1345 bool IsTransparent(int x
, int y
,
1346 unsigned char threshold
= wxIMAGE_ALPHA_THRESHOLD
) const;
1352 @name Loading and saving functions
1357 Loads an image from an input stream.
1360 Opened input stream from which to load the image.
1361 Currently, the stream must support seeking.
1363 May be one of the following:
1364 @li wxBITMAP_TYPE_BMP: Load a Windows bitmap file.
1365 @li wxBITMAP_TYPE_GIF: Load a GIF bitmap file.
1366 @li wxBITMAP_TYPE_JPEG: Load a JPEG bitmap file.
1367 @li wxBITMAP_TYPE_PNG: Load a PNG bitmap file.
1368 @li wxBITMAP_TYPE_PCX: Load a PCX bitmap file.
1369 @li wxBITMAP_TYPE_PNM: Load a PNM bitmap file.
1370 @li wxBITMAP_TYPE_TIFF: Load a TIFF bitmap file.
1371 @li wxBITMAP_TYPE_TGA: Load a TGA bitmap file.
1372 @li wxBITMAP_TYPE_XPM: Load a XPM bitmap file.
1373 @li wxBITMAP_TYPE_ICO: Load a Windows icon file (ICO).
1374 @li wxBITMAP_TYPE_CUR: Load a Windows cursor file (CUR).
1375 @li wxBITMAP_TYPE_ANI: Load a Windows animated cursor file (ANI).
1376 @li wxBITMAP_TYPE_ANY: Will try to autodetect the format.
1378 Index of the image to load in the case that the image file contains
1379 multiple images. This is only used by GIF, ICO and TIFF handlers.
1380 The default value (-1) means "choose the default image" and is
1381 interpreted as the first image (index=0) by the GIF and TIFF handler
1382 and as the largest and most colourful one by the ICO handler.
1384 @return @true if the operation succeeded, @false otherwise.
1385 If the optional index parameter is out of range, @false is
1386 returned and a call to wxLogError() takes place.
1388 @remarks Depending on how wxWidgets has been configured, not all formats
1392 You can use GetOptionInt() to get the hotspot when loading cursor files:
1394 int hotspot_x = image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_X);
1395 int hotspot_y = image.GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y);
1400 virtual bool LoadFile(wxInputStream
& stream
,
1401 wxBitmapType type
= wxBITMAP_TYPE_ANY
,
1405 Loads an image from a file.
1406 If no handler type is provided, the library will try to autodetect the format.
1409 Name of the file from which to load the image.
1411 See the description in the LoadFile(wxInputStream&, wxBitmapType, int) overload.
1413 See the description in the LoadFile(wxInputStream&, wxBitmapType, int) overload.
1415 virtual bool LoadFile(const wxString
& name
,
1416 wxBitmapType type
= wxBITMAP_TYPE_ANY
,
1420 Loads an image from a file.
1421 If no handler type is provided, the library will try to autodetect the format.
1424 Name of the file from which to load the image.
1426 MIME type string (for example 'image/jpeg')
1428 See the description in the LoadFile(wxInputStream&, wxBitmapType, int) overload.
1430 virtual bool LoadFile(const wxString
& name
, const wxString
& mimetype
,
1434 Loads an image from an input stream.
1437 Opened input stream from which to load the image.
1438 Currently, the stream must support seeking.
1440 MIME type string (for example 'image/jpeg')
1442 See the description in the LoadFile(wxInputStream&, wxBitmapType, int) overload.
1444 virtual bool LoadFile(wxInputStream
& stream
, const wxString
& mimetype
,
1448 Saves an image in the given stream.
1451 Opened output stream to save the image to.
1455 @return @true if the operation succeeded, @false otherwise.
1457 @remarks Depending on how wxWidgets has been configured, not all formats
1461 You can use SetOption() to set the hotspot when saving an image
1462 into a cursor file (default hotspot is in the centre of the image):
1464 image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, hotspotX);
1465 image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, hotspotY);
1470 virtual bool SaveFile(wxOutputStream
& stream
,
1471 const wxString
& mimetype
) const;
1474 Saves an image in the named file.
1477 Name of the file to save the image to.
1479 Currently these types can be used:
1480 @li wxBITMAP_TYPE_BMP: Save a BMP image file.
1481 @li wxBITMAP_TYPE_JPEG: Save a JPEG image file.
1482 @li wxBITMAP_TYPE_PNG: Save a PNG image file.
1483 @li wxBITMAP_TYPE_PCX: Save a PCX image file
1484 (tries to save as 8-bit if possible, falls back to 24-bit otherwise).
1485 @li wxBITMAP_TYPE_PNM: Save a PNM image file (as raw RGB always).
1486 @li wxBITMAP_TYPE_TIFF: Save a TIFF image file.
1487 @li wxBITMAP_TYPE_XPM: Save a XPM image file.
1488 @li wxBITMAP_TYPE_ICO: Save a Windows icon file (ICO).
1489 The size may be up to 255 wide by 127 high. A single image is saved
1490 in 8 colors at the size supplied.
1491 @li wxBITMAP_TYPE_CUR: Save a Windows cursor file (CUR).
1493 virtual bool SaveFile(const wxString
& name
, wxBitmapType type
) const;
1496 Saves an image in the named file.
1499 Name of the file to save the image to.
1503 virtual bool SaveFile(const wxString
& name
, const wxString
& mimetype
) const;
1506 Saves an image in the named file.
1508 File type is determined from the extension of the file name.
1509 Note that this function may fail if the extension is not recognized!
1510 You can use one of the forms above to save images to files with
1511 non-standard extensions.
1514 Name of the file to save the image to.
1516 virtual bool SaveFile(const wxString
& name
) const;
1519 Saves an image in the given stream.
1522 Opened output stream to save the image to.
1526 virtual bool SaveFile(wxOutputStream
& stream
, wxBitmapType type
) const;
1538 This function is similar to SetData() and has similar restrictions.
1540 The pointer passed to it may however be @NULL in which case the function
1541 will allocate the alpha array internally -- this is useful to add alpha
1542 channel data to an image which doesn't have any.
1544 If the pointer is not @NULL, it must have one byte for each image pixel
1545 and be allocated with malloc().
1546 wxImage takes ownership of the pointer and will free it unless @a static_data
1547 parameter is set to @true -- in this case the caller should do it.
1549 void SetAlpha(unsigned char* alpha
= NULL
,
1550 bool static_data
= false);
1553 Sets the alpha value for the given pixel.
1554 This function should only be called if the image has alpha channel data,
1555 use HasAlpha() to check for this.
1557 void SetAlpha(int x
, int y
, unsigned char alpha
);
1560 Removes the alpha channel from the image.
1562 This function should only be called if the image has alpha channel data,
1563 use HasAlpha() to check for this.
1570 Sets the image data without performing checks.
1572 The data given must have the size (width*height*3) or results will be
1573 unexpected. Don't use this method if you aren't sure you know what you
1576 The data must have been allocated with @c malloc(), @b NOT with
1579 If @a static_data is @false, after this call the pointer to the data is
1580 owned by the wxImage object, that will be responsible for deleting it.
1581 Do not pass to this function a pointer obtained through GetData().
1583 void SetData(unsigned char* data
, bool static_data
= false);
1588 void SetData(unsigned char* data
, int new_width
, int new_height
,
1589 bool static_data
= false);
1592 Specifies whether there is a mask or not.
1594 The area of the mask is determined by the current mask colour.
1596 void SetMask(bool hasMask
= true);
1599 Sets the mask colour for this image (and tells the image to use the mask).
1601 void SetMaskColour(unsigned char red
, unsigned char green
,
1602 unsigned char blue
);
1605 Sets image's mask so that the pixels that have RGB value of mr,mg,mb in
1606 mask will be masked in the image.
1608 This is done by first finding an unused colour in the image, setting
1609 this colour as the mask colour and then using this colour to draw all
1610 pixels in the image who corresponding pixel in mask has given RGB value.
1612 The parameter @a mask is the mask image to extract mask shape from.
1613 It must have the same dimensions as the image.
1615 The parameters @a mr, @a mg, @a mb are the RGB values of the pixels in
1616 mask that will be used to create the mask.
1618 @return Returns @false if mask does not have same dimensions as the image
1619 or if there is no unused colour left. Returns @true if the mask
1620 was successfully applied.
1623 Note that this method involves computing the histogram, which is a
1624 computationally intensive operation.
1626 bool SetMaskFromImage(const wxImage
& mask
, unsigned char mr
,
1631 Sets a user-defined option. The function is case-insensitive to @a name.
1633 For example, when saving as a JPEG file, the option @b quality is
1634 used, which is a number between 0 and 100 (0 is terrible, 100 is very good).
1636 The lists of the currently supported options are in GetOption() and
1637 GetOptionInt() function docs.
1639 @see GetOption(), GetOptionInt(), HasOption()
1641 void SetOption(const wxString
& name
, const wxString
& value
);
1646 void SetOption(const wxString
& name
, int value
);
1649 Associates a palette with the image.
1651 The palette may be used when converting wxImage to wxBitmap (MSW only at present)
1652 or in file save operations (none as yet).
1654 void SetPalette(const wxPalette
& palette
);
1657 Sets the colour of the pixels within the given rectangle.
1659 This routine performs bounds-checks for the coordinate so it can be considered
1660 a safe way to manipulate the data.
1662 void SetRGB(const wxRect
& rect
,
1664 unsigned char green
,
1665 unsigned char blue
);
1668 Set the type of image returned by GetType().
1670 This method is mostly used internally by the library but can also be
1671 called from the user code if the image was created from data in the
1672 given bitmap format without using LoadFile() (which would set the type
1673 correctly automatically).
1675 Notice that the image must be created before this function is called.
1680 One of bitmap type constants, @c wxBITMAP_TYPE_INVALID is a valid
1681 value for it and can be used to reset the bitmap type to default
1682 but @c wxBITMAP_TYPE_MAX is not allowed here.
1684 void SetType(wxBitmapType type
);
1691 @name Handler management functions
1696 Register an image handler.
1698 Typical example of use:
1700 wxImage::AddHandler(new wxPNGHandler);
1703 See @ref image_handlers for a list of the available handlers. You can
1704 also use ::wxInitAllImageHandlers() to add handlers for all the image
1705 formats supported by wxWidgets at once.
1708 A heap-allocated handler object which will be deleted by wxImage
1709 if it is removed later by RemoveHandler() or at program shutdown.
1711 static void AddHandler(wxImageHandler
* handler
);
1714 Deletes all image handlers.
1715 This function is called by wxWidgets on exit.
1717 static void CleanUpHandlers();
1720 Finds the handler with the given name.
1725 @return A pointer to the handler if found, @NULL otherwise.
1729 static wxImageHandler
* FindHandler(const wxString
& name
);
1732 Finds the handler associated with the given extension and type.
1735 The file extension, such as "bmp".
1737 The image type; one of the ::wxBitmapType values.
1739 @return A pointer to the handler if found, @NULL otherwise.
1743 static wxImageHandler
* FindHandler(const wxString
& extension
,
1744 wxBitmapType imageType
);
1747 Finds the handler associated with the given image type.
1750 The image type; one of the ::wxBitmapType values.
1752 @return A pointer to the handler if found, @NULL otherwise.
1756 static wxImageHandler
* FindHandler(wxBitmapType imageType
);
1759 Finds the handler associated with the given MIME type.
1764 @return A pointer to the handler if found, @NULL otherwise.
1768 static wxImageHandler
* FindHandlerMime(const wxString
& mimetype
);
1771 Returns the static list of image format handlers.
1775 static wxList
& GetHandlers();
1778 Internal use only. Adds standard image format handlers.
1779 It only install wxBMPHandler for the time being, which is used by wxBitmap.
1781 This function is called by wxWidgets on startup, and shouldn't be called by
1784 @see wxImageHandler, wxInitAllImageHandlers(), wxQuantize
1786 static void InitStandardHandlers();
1789 Adds a handler at the start of the static list of format handlers.
1792 A new image format handler object. There is usually only one instance
1793 of a given handler class in an application session.
1797 static void InsertHandler(wxImageHandler
* handler
);
1800 Finds the handler with the given name, and removes it.
1802 The handler is also deleted.
1807 @return @true if the handler was found and removed, @false otherwise.
1811 static bool RemoveHandler(const wxString
& name
);
1817 Returns @true if at least one of the available image handlers can read
1818 the file with the given name.
1820 See wxImageHandler::CanRead for more info.
1822 static bool CanRead(const wxString
& filename
);
1825 Returns @true if at least one of the available image handlers can read
1826 the data in the given stream.
1828 See wxImageHandler::CanRead for more info.
1830 static bool CanRead(wxInputStream
& stream
);
1834 If the image file contains more than one image and the image handler is
1835 capable of retrieving these individually, this function will return the
1836 number of available images.
1838 For the overload taking the parameter @a filename, that's the name
1839 of the file to query.
1840 For the overload taking the parameter @a stream, that's the opened input
1841 stream with image data.
1843 See wxImageHandler::GetImageCount() for more info.
1845 The parameter @a type may be one of the following values:
1846 @li wxBITMAP_TYPE_BMP: Load a Windows bitmap file.
1847 @li wxBITMAP_TYPE_GIF: Load a GIF bitmap file.
1848 @li wxBITMAP_TYPE_JPEG: Load a JPEG bitmap file.
1849 @li wxBITMAP_TYPE_PNG: Load a PNG bitmap file.
1850 @li wxBITMAP_TYPE_PCX: Load a PCX bitmap file.
1851 @li wxBITMAP_TYPE_PNM: Load a PNM bitmap file.
1852 @li wxBITMAP_TYPE_TIFF: Load a TIFF bitmap file.
1853 @li wxBITMAP_TYPE_TGA: Load a TGA bitmap file.
1854 @li wxBITMAP_TYPE_XPM: Load a XPM bitmap file.
1855 @li wxBITMAP_TYPE_ICO: Load a Windows icon file (ICO).
1856 @li wxBITMAP_TYPE_CUR: Load a Windows cursor file (CUR).
1857 @li wxBITMAP_TYPE_ANI: Load a Windows animated cursor file (ANI).
1858 @li wxBITMAP_TYPE_ANY: Will try to autodetect the format.
1860 @return Number of available images. For most image handlers, this is 1
1861 (exceptions are TIFF and ICO formats as well as animated GIFs
1862 for which this function returns the number of frames in the
1865 static int GetImageCount(const wxString
& filename
,
1866 wxBitmapType type
= wxBITMAP_TYPE_ANY
);
1867 static int GetImageCount(wxInputStream
& stream
,
1868 wxBitmapType type
= wxBITMAP_TYPE_ANY
);
1872 Iterates all registered wxImageHandler objects, and returns a string containing
1873 file extension masks suitable for passing to file open/save dialog boxes.
1875 @return The format of the returned string is @c "(*.ext1;*.ext2)|*.ext1;*.ext2".
1876 It is usually a good idea to prepend a description before passing
1877 the result to the dialog.
1880 wxFileDialog FileDlg( this, "Choose Image", ::wxGetCwd(), "",
1881 _("Image Files ") + wxImage::GetImageExtWildcard(),
1887 static wxString
GetImageExtWildcard();
1890 Converts a color in RGB color space to HSV color space.
1892 static wxImage::HSVValue
RGBtoHSV(const wxImage::RGBValue
& rgb
);
1895 Converts a color in HSV color space to RGB color space.
1897 static wxImage::RGBValue
HSVtoRGB(const wxImage::HSVValue
& hsv
);
1901 class wxImageHistogram
: public wxImageHistogramBase
1906 // get the key in the histogram for the given RGB values
1907 static unsigned long MakeKey(unsigned char r
,
1911 // find first colour that is not used in the image and has higher
1912 // RGB values than RGB(startR, startG, startB)
1914 // returns true and puts this colour in r, g, b (each of which may be NULL)
1915 // on success or returns false if there are no more free colours
1916 bool FindFirstUnusedColour(unsigned char *r
,
1919 unsigned char startR
= 1,
1920 unsigned char startG
= 0,
1921 unsigned char startB
= 0 ) const;
1925 An instance of an empty image without an alpha channel.
1927 wxImage wxNullImage
;
1930 // ============================================================================
1931 // Global functions/macros
1932 // ============================================================================
1934 /** @addtogroup group_funcmacro_appinitterm */
1938 Initializes all available image handlers.
1940 This function calls wxImage::AddHandler() for all the available image
1941 handlers (see @ref image_handlers for the full list). Calling it is the
1942 simplest way to initialize wxImage but it creates and registers even the
1943 handlers your program may not use. If you want to avoid the overhead of
1944 doing this you need to call wxImage::AddHandler() manually just for the
1945 handlers that you do want to use.
1947 @see wxImage, wxImageHandler
1951 void wxInitAllImageHandlers();