]> git.saurik.com Git - wxWidgets.git/blob - src/common/quantize.cpp
fixed bug in mouse handling
[wxWidgets.git] / src / common / quantize.cpp
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: quantize.cpp
3 // Purpose: wxQuantize implementation
4 // Author: Julian Smart
5 // Modified by:
6 // Created: 22/6/2000
7 // RCS-ID: $Id$
8 // Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart
9 // Licence: wxWindows licence + JPEG library licence
10 /////////////////////////////////////////////////////////////////////////////
11
12 /*
13 * jquant2.c
14 *
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
18 *
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
25 *
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
29 */
30
31 /* modified by Vaclav Slavik for use as jpeglib-independent module */
32
33 #ifdef __GNUG__
34 #pragma implementation "quantize.h"
35 #endif
36
37 // For compilers that support precompilation, includes "wx/wx.h".
38 #include "wx/wxprec.h"
39
40 #ifdef __BORLANDC__
41 #pragma hdrstop
42 #endif
43
44 #ifndef WX_PRECOMP
45 #include "wx/wx.h"
46 #endif
47
48 #include "wx/image.h"
49 #include "wx/quantize.h"
50
51 #ifdef __WXMSW__
52 #include <windows.h>
53 #endif
54
55 #include <stdlib.h>
56 #include <string.h>
57
58 #define RGB_RED 0
59 #define RGB_GREEN 1
60 #define RGB_BLUE 2
61 #define RGB_PIXELSIZE 3
62
63 #define MAXJSAMPLE 255
64 #define CENTERJSAMPLE 128
65 #define BITS_IN_JSAMPLE 8
66 #define GETJSAMPLE(value) ((int) (value))
67
68 #define RIGHT_SHIFT(x,shft) ((x) >> (shft))
69
70 typedef unsigned short UINT16;
71 typedef signed short INT16;
72 typedef signed int INT32;
73
74 typedef unsigned char JSAMPLE;
75 typedef JSAMPLE *JSAMPROW;
76 typedef JSAMPROW *JSAMPARRAY;
77 typedef unsigned int JDIMENSION;
78
79 typedef struct {
80 void *cquantize;
81 JDIMENSION output_width;
82 JSAMPARRAY colormap;
83 int actual_number_of_colors;
84 int desired_number_of_colors;
85 JSAMPLE *sample_range_limit, *srl_orig;
86 } j_decompress;
87
88 typedef j_decompress *j_decompress_ptr;
89
90
91 /*
92 * This module implements the well-known Heckbert paradigm for color
93 * quantization. Most of the ideas used here can be traced back to
94 * Heckbert's seminal paper
95 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
96 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
97 *
98 * In the first pass over the image, we accumulate a histogram showing the
99 * usage count of each possible color. To keep the histogram to a reasonable
100 * size, we reduce the precision of the input; typical practice is to retain
101 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
102 * in the same histogram cell.
103 *
104 * Next, the color-selection step begins with a box representing the whole
105 * color space, and repeatedly splits the "largest" remaining box until we
106 * have as many boxes as desired colors. Then the mean color in each
107 * remaining box becomes one of the possible output colors.
108 *
109 * The second pass over the image maps each input pixel to the closest output
110 * color (optionally after applying a Floyd-Steinberg dithering correction).
111 * This mapping is logically trivial, but making it go fast enough requires
112 * considerable care.
113 *
114 * Heckbert-style quantizers vary a good deal in their policies for choosing
115 * the "largest" box and deciding where to cut it. The particular policies
116 * used here have proved out well in experimental comparisons, but better ones
117 * may yet be found.
118 *
119 * In earlier versions of the IJG code, this module quantized in YCbCr color
120 * space, processing the raw upsampled data without a color conversion step.
121 * This allowed the color conversion math to be done only once per colormap
122 * entry, not once per pixel. However, that optimization precluded other
123 * useful optimizations (such as merging color conversion with upsampling)
124 * and it also interfered with desired capabilities such as quantizing to an
125 * externally-supplied colormap. We have therefore abandoned that approach.
126 * The present code works in the post-conversion color space, typically RGB.
127 *
128 * To improve the visual quality of the results, we actually work in scaled
129 * RGB space, giving G distances more weight than R, and R in turn more than
130 * B. To do everything in integer math, we must use integer scale factors.
131 * The 2/3/1 scale factors used here correspond loosely to the relative
132 * weights of the colors in the NTSC grayscale equation.
133 * If you want to use this code to quantize a non-RGB color space, you'll
134 * probably need to change these scale factors.
135 */
136
137 #define R_SCALE 2 /* scale R distances by this much */
138 #define G_SCALE 3 /* scale G distances by this much */
139 #define B_SCALE 1 /* and B by this much */
140
141 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
142 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
143 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
144 * you'll get compile errors until you extend this logic. In that case
145 * you'll probably want to tweak the histogram sizes too.
146 */
147
148 #if RGB_RED == 0
149 #define C0_SCALE R_SCALE
150 #endif
151 #if RGB_BLUE == 0
152 #define C0_SCALE B_SCALE
153 #endif
154 #if RGB_GREEN == 1
155 #define C1_SCALE G_SCALE
156 #endif
157 #if RGB_RED == 2
158 #define C2_SCALE R_SCALE
159 #endif
160 #if RGB_BLUE == 2
161 #define C2_SCALE B_SCALE
162 #endif
163
164
165 /*
166 * First we have the histogram data structure and routines for creating it.
167 *
168 * The number of bits of precision can be adjusted by changing these symbols.
169 * We recommend keeping 6 bits for G and 5 each for R and B.
170 * If you have plenty of memory and cycles, 6 bits all around gives marginally
171 * better results; if you are short of memory, 5 bits all around will save
172 * some space but degrade the results.
173 * To maintain a fully accurate histogram, we'd need to allocate a "long"
174 * (preferably unsigned long) for each cell. In practice this is overkill;
175 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
176 * and clamping those that do overflow to the maximum value will give close-
177 * enough results. This reduces the recommended histogram size from 256Kb
178 * to 128Kb, which is a useful savings on PC-class machines.
179 * (In the second pass the histogram space is re-used for pixel mapping data;
180 * in that capacity, each cell must be able to store zero to the number of
181 * desired colors. 16 bits/cell is plenty for that too.)
182 * Since the JPEG code is intended to run in small memory model on 80x86
183 * machines, we can't just allocate the histogram in one chunk. Instead
184 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
185 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
186 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
187 * on 80x86 machines, the pointer row is in near memory but the actual
188 * arrays are in far memory (same arrangement as we use for image arrays).
189 */
190
191 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
192
193 /* These will do the right thing for either R,G,B or B,G,R color order,
194 * but you may not like the results for other color orders.
195 */
196 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
197 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
198 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
199
200 /* Number of elements along histogram axes. */
201 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
202 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
203 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
204
205 /* These are the amounts to shift an input value to get a histogram index. */
206 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
207 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
208 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
209
210
211 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
212
213 typedef histcell * histptr; /* for pointers to histogram cells */
214
215 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
216 typedef hist1d * hist2d; /* type for the 2nd-level pointers */
217 typedef hist2d * hist3d; /* type for top-level pointer */
218
219
220 /* Declarations for Floyd-Steinberg dithering.
221 *
222 * Errors are accumulated into the array fserrors[], at a resolution of
223 * 1/16th of a pixel count. The error at a given pixel is propagated
224 * to its not-yet-processed neighbors using the standard F-S fractions,
225 * ... (here) 7/16
226 * 3/16 5/16 1/16
227 * We work left-to-right on even rows, right-to-left on odd rows.
228 *
229 * We can get away with a single array (holding one row's worth of errors)
230 * by using it to store the current row's errors at pixel columns not yet
231 * processed, but the next row's errors at columns already processed. We
232 * need only a few extra variables to hold the errors immediately around the
233 * current column. (If we are lucky, those variables are in registers, but
234 * even if not, they're probably cheaper to access than array elements are.)
235 *
236 * The fserrors[] array has (#columns + 2) entries; the extra entry at
237 * each end saves us from special-casing the first and last pixels.
238 * Each entry is three values long, one value for each color component.
239 *
240 * Note: on a wide image, we might not have enough room in a PC's near data
241 * segment to hold the error array; so it is allocated with alloc_large.
242 */
243
244 #if BITS_IN_JSAMPLE == 8
245 typedef INT16 FSERROR; /* 16 bits should be enough */
246 typedef int LOCFSERROR; /* use 'int' for calculation temps */
247 #else
248 typedef INT32 FSERROR; /* may need more than 16 bits */
249 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
250 #endif
251
252 typedef FSERROR *FSERRPTR; /* pointer to error array (in storage!) */
253
254
255 /* Private subobject */
256
257 typedef struct {
258
259 struct {
260 void (*finish_pass)(j_decompress_ptr);
261 void (*color_quantize)(j_decompress_ptr, JSAMPARRAY, JSAMPARRAY, int);
262 void (*start_pass)(j_decompress_ptr, bool);
263 void (*new_color_map)(j_decompress_ptr);
264 } pub;
265
266 /* Space for the eventually created colormap is stashed here */
267 JSAMPARRAY sv_colormap; /* colormap allocated at init time */
268 int desired; /* desired # of colors = size of colormap */
269
270 /* Variables for accumulating image statistics */
271 hist3d histogram; /* pointer to the histogram */
272
273 bool needs_zeroed; /* true if next pass must zero histogram */
274
275 /* Variables for Floyd-Steinberg dithering */
276 FSERRPTR fserrors; /* accumulated errors */
277 bool on_odd_row; /* flag to remember which row we are on */
278 int * error_limiter; /* table for clamping the applied error */
279 } my_cquantizer;
280
281 typedef my_cquantizer * my_cquantize_ptr;
282
283
284 /*
285 * Prescan some rows of pixels.
286 * In this module the prescan simply updates the histogram, which has been
287 * initialized to zeroes by start_pass.
288 * An output_buf parameter is required by the method signature, but no data
289 * is actually output (in fact the buffer controller is probably passing a
290 * NULL pointer).
291 */
292
293 void
294 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
295 JSAMPARRAY output_buf, int num_rows)
296 {
297 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
298 register JSAMPROW ptr;
299 register histptr histp;
300 register hist3d histogram = cquantize->histogram;
301 int row;
302 JDIMENSION col;
303 JDIMENSION width = cinfo->output_width;
304
305 for (row = 0; row < num_rows; row++) {
306 ptr = input_buf[row];
307 for (col = width; col > 0; col--) {
308
309 {
310
311 /* get pixel value and index into the histogram */
312 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
313 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
314 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
315 /* increment, check for overflow and undo increment if so. */
316 if (++(*histp) <= 0)
317 (*histp)--;
318 }
319 ptr += 3;
320 }
321 }
322 }
323
324
325 /*
326 * Next we have the really interesting routines: selection of a colormap
327 * given the completed histogram.
328 * These routines work with a list of "boxes", each representing a rectangular
329 * subset of the input color space (to histogram precision).
330 */
331
332 typedef struct {
333 /* The bounds of the box (inclusive); expressed as histogram indexes */
334 int c0min, c0max;
335 int c1min, c1max;
336 int c2min, c2max;
337 /* The volume (actually 2-norm) of the box */
338 INT32 volume;
339 /* The number of nonzero histogram cells within this box */
340 long colorcount;
341 } box;
342
343 typedef box * boxptr;
344
345
346 boxptr
347 find_biggest_color_pop (boxptr boxlist, int numboxes)
348 /* Find the splittable box with the largest color population */
349 /* Returns NULL if no splittable boxes remain */
350 {
351 register boxptr boxp;
352 register int i;
353 register long maxc = 0;
354 boxptr which = NULL;
355
356 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
357 if (boxp->colorcount > maxc && boxp->volume > 0) {
358 which = boxp;
359 maxc = boxp->colorcount;
360 }
361 }
362 return which;
363 }
364
365
366 boxptr
367 find_biggest_volume (boxptr boxlist, int numboxes)
368 /* Find the splittable box with the largest (scaled) volume */
369 /* Returns NULL if no splittable boxes remain */
370 {
371 register boxptr boxp;
372 register int i;
373 register INT32 maxv = 0;
374 boxptr which = NULL;
375
376 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
377 if (boxp->volume > maxv) {
378 which = boxp;
379 maxv = boxp->volume;
380 }
381 }
382 return which;
383 }
384
385
386 void
387 update_box (j_decompress_ptr cinfo, boxptr boxp)
388 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
389 /* and recompute its volume and population */
390 {
391 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
392 hist3d histogram = cquantize->histogram;
393 histptr histp;
394 int c0,c1,c2;
395 int c0min,c0max,c1min,c1max,c2min,c2max;
396 INT32 dist0,dist1,dist2;
397 long ccount;
398
399 c0min = boxp->c0min; c0max = boxp->c0max;
400 c1min = boxp->c1min; c1max = boxp->c1max;
401 c2min = boxp->c2min; c2max = boxp->c2max;
402
403 if (c0max > c0min)
404 for (c0 = c0min; c0 <= c0max; c0++)
405 for (c1 = c1min; c1 <= c1max; c1++) {
406 histp = & histogram[c0][c1][c2min];
407 for (c2 = c2min; c2 <= c2max; c2++)
408 if (*histp++ != 0) {
409 boxp->c0min = c0min = c0;
410 goto have_c0min;
411 }
412 }
413 have_c0min:
414 if (c0max > c0min)
415 for (c0 = c0max; c0 >= c0min; c0--)
416 for (c1 = c1min; c1 <= c1max; c1++) {
417 histp = & histogram[c0][c1][c2min];
418 for (c2 = c2min; c2 <= c2max; c2++)
419 if (*histp++ != 0) {
420 boxp->c0max = c0max = c0;
421 goto have_c0max;
422 }
423 }
424 have_c0max:
425 if (c1max > c1min)
426 for (c1 = c1min; c1 <= c1max; c1++)
427 for (c0 = c0min; c0 <= c0max; c0++) {
428 histp = & histogram[c0][c1][c2min];
429 for (c2 = c2min; c2 <= c2max; c2++)
430 if (*histp++ != 0) {
431 boxp->c1min = c1min = c1;
432 goto have_c1min;
433 }
434 }
435 have_c1min:
436 if (c1max > c1min)
437 for (c1 = c1max; c1 >= c1min; c1--)
438 for (c0 = c0min; c0 <= c0max; c0++) {
439 histp = & histogram[c0][c1][c2min];
440 for (c2 = c2min; c2 <= c2max; c2++)
441 if (*histp++ != 0) {
442 boxp->c1max = c1max = c1;
443 goto have_c1max;
444 }
445 }
446 have_c1max:
447 if (c2max > c2min)
448 for (c2 = c2min; c2 <= c2max; c2++)
449 for (c0 = c0min; c0 <= c0max; c0++) {
450 histp = & histogram[c0][c1min][c2];
451 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
452 if (*histp != 0) {
453 boxp->c2min = c2min = c2;
454 goto have_c2min;
455 }
456 }
457 have_c2min:
458 if (c2max > c2min)
459 for (c2 = c2max; c2 >= c2min; c2--)
460 for (c0 = c0min; c0 <= c0max; c0++) {
461 histp = & histogram[c0][c1min][c2];
462 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
463 if (*histp != 0) {
464 boxp->c2max = c2max = c2;
465 goto have_c2max;
466 }
467 }
468 have_c2max:
469
470 /* Update box volume.
471 * We use 2-norm rather than real volume here; this biases the method
472 * against making long narrow boxes, and it has the side benefit that
473 * a box is splittable iff norm > 0.
474 * Since the differences are expressed in histogram-cell units,
475 * we have to shift back to JSAMPLE units to get consistent distances;
476 * after which, we scale according to the selected distance scale factors.
477 */
478 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
479 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
480 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
481 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
482
483 /* Now scan remaining volume of box and compute population */
484 ccount = 0;
485 for (c0 = c0min; c0 <= c0max; c0++)
486 for (c1 = c1min; c1 <= c1max; c1++) {
487 histp = & histogram[c0][c1][c2min];
488 for (c2 = c2min; c2 <= c2max; c2++, histp++)
489 if (*histp != 0) {
490 ccount++;
491 }
492 }
493 boxp->colorcount = ccount;
494 }
495
496
497 int
498 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
499 int desired_colors)
500 /* Repeatedly select and split the largest box until we have enough boxes */
501 {
502 int n,lb;
503 int c0,c1,c2,cmax;
504 register boxptr b1,b2;
505
506 while (numboxes < desired_colors) {
507 /* Select box to split.
508 * Current algorithm: by population for first half, then by volume.
509 */
510 if (numboxes*2 <= desired_colors) {
511 b1 = find_biggest_color_pop(boxlist, numboxes);
512 } else {
513 b1 = find_biggest_volume(boxlist, numboxes);
514 }
515 if (b1 == NULL) /* no splittable boxes left! */
516 break;
517 b2 = &boxlist[numboxes]; /* where new box will go */
518 /* Copy the color bounds to the new box. */
519 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
520 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
521 /* Choose which axis to split the box on.
522 * Current algorithm: longest scaled axis.
523 * See notes in update_box about scaling distances.
524 */
525 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
526 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
527 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
528 /* We want to break any ties in favor of green, then red, blue last.
529 * This code does the right thing for R,G,B or B,G,R color orders only.
530 */
531 #if RGB_RED == 0
532 cmax = c1; n = 1;
533 if (c0 > cmax) { cmax = c0; n = 0; }
534 if (c2 > cmax) { n = 2; }
535 #else
536 cmax = c1; n = 1;
537 if (c2 > cmax) { cmax = c2; n = 2; }
538 if (c0 > cmax) { n = 0; }
539 #endif
540 /* Choose split point along selected axis, and update box bounds.
541 * Current algorithm: split at halfway point.
542 * (Since the box has been shrunk to minimum volume,
543 * any split will produce two nonempty subboxes.)
544 * Note that lb value is max for lower box, so must be < old max.
545 */
546 switch (n) {
547 case 0:
548 lb = (b1->c0max + b1->c0min) / 2;
549 b1->c0max = lb;
550 b2->c0min = lb+1;
551 break;
552 case 1:
553 lb = (b1->c1max + b1->c1min) / 2;
554 b1->c1max = lb;
555 b2->c1min = lb+1;
556 break;
557 case 2:
558 lb = (b1->c2max + b1->c2min) / 2;
559 b1->c2max = lb;
560 b2->c2min = lb+1;
561 break;
562 }
563 /* Update stats for boxes */
564 update_box(cinfo, b1);
565 update_box(cinfo, b2);
566 numboxes++;
567 }
568 return numboxes;
569 }
570
571
572 void
573 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
574 /* Compute representative color for a box, put it in colormap[icolor] */
575 {
576 /* Current algorithm: mean weighted by pixels (not colors) */
577 /* Note it is important to get the rounding correct! */
578 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
579 hist3d histogram = cquantize->histogram;
580 histptr histp;
581 int c0,c1,c2;
582 int c0min,c0max,c1min,c1max,c2min,c2max;
583 long count;
584 long total = 0;
585 long c0total = 0;
586 long c1total = 0;
587 long c2total = 0;
588
589 c0min = boxp->c0min; c0max = boxp->c0max;
590 c1min = boxp->c1min; c1max = boxp->c1max;
591 c2min = boxp->c2min; c2max = boxp->c2max;
592
593 for (c0 = c0min; c0 <= c0max; c0++)
594 for (c1 = c1min; c1 <= c1max; c1++) {
595 histp = & histogram[c0][c1][c2min];
596 for (c2 = c2min; c2 <= c2max; c2++) {
597 if ((count = *histp++) != 0) {
598 total += count;
599 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
600 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
601 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
602 }
603 }
604 }
605
606 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
607 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
608 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
609 }
610
611
612 static void
613 select_colors (j_decompress_ptr cinfo, int desired_colors)
614 /* Master routine for color selection */
615 {
616 boxptr boxlist;
617 int numboxes;
618 int i;
619
620 /* Allocate workspace for box list */
621 boxlist = (boxptr) malloc(desired_colors * sizeof(box));
622 /* Initialize one box containing whole space */
623 numboxes = 1;
624 boxlist[0].c0min = 0;
625 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
626 boxlist[0].c1min = 0;
627 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
628 boxlist[0].c2min = 0;
629 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
630 /* Shrink it to actually-used volume and set its statistics */
631 update_box(cinfo, & boxlist[0]);
632 /* Perform median-cut to produce final box list */
633 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
634 /* Compute the representative color for each box, fill colormap */
635 for (i = 0; i < numboxes; i++)
636 compute_color(cinfo, & boxlist[i], i);
637 cinfo->actual_number_of_colors = numboxes;
638
639 free(boxlist); //FIXME?? I don't know if this is correct - VS
640 }
641
642
643 /*
644 * These routines are concerned with the time-critical task of mapping input
645 * colors to the nearest color in the selected colormap.
646 *
647 * We re-use the histogram space as an "inverse color map", essentially a
648 * cache for the results of nearest-color searches. All colors within a
649 * histogram cell will be mapped to the same colormap entry, namely the one
650 * closest to the cell's center. This may not be quite the closest entry to
651 * the actual input color, but it's almost as good. A zero in the cache
652 * indicates we haven't found the nearest color for that cell yet; the array
653 * is cleared to zeroes before starting the mapping pass. When we find the
654 * nearest color for a cell, its colormap index plus one is recorded in the
655 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
656 * when they need to use an unfilled entry in the cache.
657 *
658 * Our method of efficiently finding nearest colors is based on the "locally
659 * sorted search" idea described by Heckbert and on the incremental distance
660 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
661 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
662 * the distances from a given colormap entry to each cell of the histogram can
663 * be computed quickly using an incremental method: the differences between
664 * distances to adjacent cells themselves differ by a constant. This allows a
665 * fairly fast implementation of the "brute force" approach of computing the
666 * distance from every colormap entry to every histogram cell. Unfortunately,
667 * it needs a work array to hold the best-distance-so-far for each histogram
668 * cell (because the inner loop has to be over cells, not colormap entries).
669 * The work array elements have to be INT32s, so the work array would need
670 * 256Kb at our recommended precision. This is not feasible in DOS machines.
671 *
672 * To get around these problems, we apply Thomas' method to compute the
673 * nearest colors for only the cells within a small subbox of the histogram.
674 * The work array need be only as big as the subbox, so the memory usage
675 * problem is solved. Furthermore, we need not fill subboxes that are never
676 * referenced in pass2; many images use only part of the color gamut, so a
677 * fair amount of work is saved. An additional advantage of this
678 * approach is that we can apply Heckbert's locality criterion to quickly
679 * eliminate colormap entries that are far away from the subbox; typically
680 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
681 * and we need not compute their distances to individual cells in the subbox.
682 * The speed of this approach is heavily influenced by the subbox size: too
683 * small means too much overhead, too big loses because Heckbert's criterion
684 * can't eliminate as many colormap entries. Empirically the best subbox
685 * size seems to be about 1/512th of the histogram (1/8th in each direction).
686 *
687 * Thomas' article also describes a refined method which is asymptotically
688 * faster than the brute-force method, but it is also far more complex and
689 * cannot efficiently be applied to small subboxes. It is therefore not
690 * useful for programs intended to be portable to DOS machines. On machines
691 * with plenty of memory, filling the whole histogram in one shot with Thomas'
692 * refined method might be faster than the present code --- but then again,
693 * it might not be any faster, and it's certainly more complicated.
694 */
695
696
697 /* log2(histogram cells in update box) for each axis; this can be adjusted */
698 #define BOX_C0_LOG (HIST_C0_BITS-3)
699 #define BOX_C1_LOG (HIST_C1_BITS-3)
700 #define BOX_C2_LOG (HIST_C2_BITS-3)
701
702 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
703 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
704 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
705
706 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
707 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
708 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
709
710
711 /*
712 * The next three routines implement inverse colormap filling. They could
713 * all be folded into one big routine, but splitting them up this way saves
714 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
715 * and may allow some compilers to produce better code by registerizing more
716 * inner-loop variables.
717 */
718
719 static int
720 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
721 JSAMPLE colorlist[])
722 /* Locate the colormap entries close enough to an update box to be candidates
723 * for the nearest entry to some cell(s) in the update box. The update box
724 * is specified by the center coordinates of its first cell. The number of
725 * candidate colormap entries is returned, and their colormap indexes are
726 * placed in colorlist[].
727 * This routine uses Heckbert's "locally sorted search" criterion to select
728 * the colors that need further consideration.
729 */
730 {
731 int numcolors = cinfo->actual_number_of_colors;
732 int maxc0, maxc1, maxc2;
733 int centerc0, centerc1, centerc2;
734 int i, x, ncolors;
735 INT32 minmaxdist, min_dist, max_dist, tdist;
736 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
737
738 /* Compute true coordinates of update box's upper corner and center.
739 * Actually we compute the coordinates of the center of the upper-corner
740 * histogram cell, which are the upper bounds of the volume we care about.
741 * Note that since ">>" rounds down, the "center" values may be closer to
742 * min than to max; hence comparisons to them must be "<=", not "<".
743 */
744 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
745 centerc0 = (minc0 + maxc0) >> 1;
746 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
747 centerc1 = (minc1 + maxc1) >> 1;
748 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
749 centerc2 = (minc2 + maxc2) >> 1;
750
751 /* For each color in colormap, find:
752 * 1. its minimum squared-distance to any point in the update box
753 * (zero if color is within update box);
754 * 2. its maximum squared-distance to any point in the update box.
755 * Both of these can be found by considering only the corners of the box.
756 * We save the minimum distance for each color in mindist[];
757 * only the smallest maximum distance is of interest.
758 */
759 minmaxdist = 0x7FFFFFFFL;
760
761 for (i = 0; i < numcolors; i++) {
762 /* We compute the squared-c0-distance term, then add in the other two. */
763 x = GETJSAMPLE(cinfo->colormap[0][i]);
764 if (x < minc0) {
765 tdist = (x - minc0) * C0_SCALE;
766 min_dist = tdist*tdist;
767 tdist = (x - maxc0) * C0_SCALE;
768 max_dist = tdist*tdist;
769 } else if (x > maxc0) {
770 tdist = (x - maxc0) * C0_SCALE;
771 min_dist = tdist*tdist;
772 tdist = (x - minc0) * C0_SCALE;
773 max_dist = tdist*tdist;
774 } else {
775 /* within cell range so no contribution to min_dist */
776 min_dist = 0;
777 if (x <= centerc0) {
778 tdist = (x - maxc0) * C0_SCALE;
779 max_dist = tdist*tdist;
780 } else {
781 tdist = (x - minc0) * C0_SCALE;
782 max_dist = tdist*tdist;
783 }
784 }
785
786 x = GETJSAMPLE(cinfo->colormap[1][i]);
787 if (x < minc1) {
788 tdist = (x - minc1) * C1_SCALE;
789 min_dist += tdist*tdist;
790 tdist = (x - maxc1) * C1_SCALE;
791 max_dist += tdist*tdist;
792 } else if (x > maxc1) {
793 tdist = (x - maxc1) * C1_SCALE;
794 min_dist += tdist*tdist;
795 tdist = (x - minc1) * C1_SCALE;
796 max_dist += tdist*tdist;
797 } else {
798 /* within cell range so no contribution to min_dist */
799 if (x <= centerc1) {
800 tdist = (x - maxc1) * C1_SCALE;
801 max_dist += tdist*tdist;
802 } else {
803 tdist = (x - minc1) * C1_SCALE;
804 max_dist += tdist*tdist;
805 }
806 }
807
808 x = GETJSAMPLE(cinfo->colormap[2][i]);
809 if (x < minc2) {
810 tdist = (x - minc2) * C2_SCALE;
811 min_dist += tdist*tdist;
812 tdist = (x - maxc2) * C2_SCALE;
813 max_dist += tdist*tdist;
814 } else if (x > maxc2) {
815 tdist = (x - maxc2) * C2_SCALE;
816 min_dist += tdist*tdist;
817 tdist = (x - minc2) * C2_SCALE;
818 max_dist += tdist*tdist;
819 } else {
820 /* within cell range so no contribution to min_dist */
821 if (x <= centerc2) {
822 tdist = (x - maxc2) * C2_SCALE;
823 max_dist += tdist*tdist;
824 } else {
825 tdist = (x - minc2) * C2_SCALE;
826 max_dist += tdist*tdist;
827 }
828 }
829
830 mindist[i] = min_dist; /* save away the results */
831 if (max_dist < minmaxdist)
832 minmaxdist = max_dist;
833 }
834
835 /* Now we know that no cell in the update box is more than minmaxdist
836 * away from some colormap entry. Therefore, only colors that are
837 * within minmaxdist of some part of the box need be considered.
838 */
839 ncolors = 0;
840 for (i = 0; i < numcolors; i++) {
841 if (mindist[i] <= minmaxdist)
842 colorlist[ncolors++] = (JSAMPLE) i;
843 }
844 return ncolors;
845 }
846
847
848 static void
849 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
850 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
851 /* Find the closest colormap entry for each cell in the update box,
852 * given the list of candidate colors prepared by find_nearby_colors.
853 * Return the indexes of the closest entries in the bestcolor[] array.
854 * This routine uses Thomas' incremental distance calculation method to
855 * find the distance from a colormap entry to successive cells in the box.
856 */
857 {
858 int ic0, ic1, ic2;
859 int i, icolor;
860 register INT32 * bptr; /* pointer into bestdist[] array */
861 JSAMPLE * cptr; /* pointer into bestcolor[] array */
862 INT32 dist0, dist1; /* initial distance values */
863 register INT32 dist2; /* current distance in inner loop */
864 INT32 xx0, xx1; /* distance increments */
865 register INT32 xx2;
866 INT32 inc0, inc1, inc2; /* initial values for increments */
867 /* This array holds the distance to the nearest-so-far color for each cell */
868 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
869
870 /* Initialize best-distance for each cell of the update box */
871 bptr = bestdist;
872 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
873 *bptr++ = 0x7FFFFFFFL;
874
875 /* For each color selected by find_nearby_colors,
876 * compute its distance to the center of each cell in the box.
877 * If that's less than best-so-far, update best distance and color number.
878 */
879
880 /* Nominal steps between cell centers ("x" in Thomas article) */
881 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
882 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
883 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
884
885 for (i = 0; i < numcolors; i++) {
886 icolor = GETJSAMPLE(colorlist[i]);
887 /* Compute (square of) distance from minc0/c1/c2 to this color */
888 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
889 dist0 = inc0*inc0;
890 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
891 dist0 += inc1*inc1;
892 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
893 dist0 += inc2*inc2;
894 /* Form the initial difference increments */
895 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
896 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
897 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
898 /* Now loop over all cells in box, updating distance per Thomas method */
899 bptr = bestdist;
900 cptr = bestcolor;
901 xx0 = inc0;
902 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
903 dist1 = dist0;
904 xx1 = inc1;
905 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
906 dist2 = dist1;
907 xx2 = inc2;
908 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
909 if (dist2 < *bptr) {
910 *bptr = dist2;
911 *cptr = (JSAMPLE) icolor;
912 }
913 dist2 += xx2;
914 xx2 += 2 * STEP_C2 * STEP_C2;
915 bptr++;
916 cptr++;
917 }
918 dist1 += xx1;
919 xx1 += 2 * STEP_C1 * STEP_C1;
920 }
921 dist0 += xx0;
922 xx0 += 2 * STEP_C0 * STEP_C0;
923 }
924 }
925 }
926
927
928 static void
929 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
930 /* Fill the inverse-colormap entries in the update box that contains */
931 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
932 /* we can fill as many others as we wish.) */
933 {
934 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
935 hist3d histogram = cquantize->histogram;
936 int minc0, minc1, minc2; /* lower left corner of update box */
937 int ic0, ic1, ic2;
938 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
939 register histptr cachep; /* pointer into main cache array */
940 /* This array lists the candidate colormap indexes. */
941 JSAMPLE colorlist[MAXNUMCOLORS];
942 int numcolors; /* number of candidate colors */
943 /* This array holds the actually closest colormap index for each cell. */
944 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
945
946 /* Convert cell coordinates to update box ID */
947 c0 >>= BOX_C0_LOG;
948 c1 >>= BOX_C1_LOG;
949 c2 >>= BOX_C2_LOG;
950
951 /* Compute true coordinates of update box's origin corner.
952 * Actually we compute the coordinates of the center of the corner
953 * histogram cell, which are the lower bounds of the volume we care about.
954 */
955 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
956 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
957 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
958
959 /* Determine which colormap entries are close enough to be candidates
960 * for the nearest entry to some cell in the update box.
961 */
962 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
963
964 /* Determine the actually nearest colors. */
965 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
966 bestcolor);
967
968 /* Save the best color numbers (plus 1) in the main cache array */
969 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
970 c1 <<= BOX_C1_LOG;
971 c2 <<= BOX_C2_LOG;
972 cptr = bestcolor;
973 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
974 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
975 cachep = & histogram[c0+ic0][c1+ic1][c2];
976 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
977 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
978 }
979 }
980 }
981 }
982
983
984 /*
985 * Map some rows of pixels to the output colormapped representation.
986 */
987
988 void
989 pass2_no_dither (j_decompress_ptr cinfo,
990 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
991 /* This version performs no dithering */
992 {
993 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
994 hist3d histogram = cquantize->histogram;
995 register JSAMPROW inptr, outptr;
996 register histptr cachep;
997 register int c0, c1, c2;
998 int row;
999 JDIMENSION col;
1000 JDIMENSION width = cinfo->output_width;
1001
1002 for (row = 0; row < num_rows; row++) {
1003 inptr = input_buf[row];
1004 outptr = output_buf[row];
1005 for (col = width; col > 0; col--) {
1006 /* get pixel value and index into the cache */
1007 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
1008 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
1009 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
1010 cachep = & histogram[c0][c1][c2];
1011 /* If we have not seen this color before, find nearest colormap entry */
1012 /* and update the cache */
1013 if (*cachep == 0)
1014 fill_inverse_cmap(cinfo, c0,c1,c2);
1015 /* Now emit the colormap index for this cell */
1016 *outptr++ = (JSAMPLE) (*cachep - 1);
1017 }
1018 }
1019 }
1020
1021
1022 void
1023 pass2_fs_dither (j_decompress_ptr cinfo,
1024 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
1025 /* This version performs Floyd-Steinberg dithering */
1026 {
1027 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1028 hist3d histogram = cquantize->histogram;
1029 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
1030 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
1031 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
1032 register FSERRPTR errorptr; /* => fserrors[] at column before current */
1033 JSAMPROW inptr; /* => current input pixel */
1034 JSAMPROW outptr; /* => current output pixel */
1035 histptr cachep;
1036 int dir; /* +1 or -1 depending on direction */
1037 int dir3; /* 3*dir, for advancing inptr & errorptr */
1038 int row;
1039 JDIMENSION col;
1040 JDIMENSION width = cinfo->output_width;
1041 JSAMPLE *range_limit = cinfo->sample_range_limit;
1042 int *error_limit = cquantize->error_limiter;
1043 JSAMPROW colormap0 = cinfo->colormap[0];
1044 JSAMPROW colormap1 = cinfo->colormap[1];
1045 JSAMPROW colormap2 = cinfo->colormap[2];
1046
1047
1048 for (row = 0; row < num_rows; row++) {
1049 inptr = input_buf[row];
1050 outptr = output_buf[row];
1051 if (cquantize->on_odd_row) {
1052 /* work right to left in this row */
1053 inptr += (width-1) * 3; /* so point to rightmost pixel */
1054 outptr += width-1;
1055 dir = -1;
1056 dir3 = -3;
1057 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
1058 cquantize->on_odd_row = FALSE; /* flip for next time */
1059 } else {
1060 /* work left to right in this row */
1061 dir = 1;
1062 dir3 = 3;
1063 errorptr = cquantize->fserrors; /* => entry before first real column */
1064 cquantize->on_odd_row = TRUE; /* flip for next time */
1065 }
1066 /* Preset error values: no error propagated to first pixel from left */
1067 cur0 = cur1 = cur2 = 0;
1068 /* and no error propagated to row below yet */
1069 belowerr0 = belowerr1 = belowerr2 = 0;
1070 bpreverr0 = bpreverr1 = bpreverr2 = 0;
1071
1072 for (col = width; col > 0; col--) {
1073 /* curN holds the error propagated from the previous pixel on the
1074 * current line. Add the error propagated from the previous line
1075 * to form the complete error correction term for this pixel, and
1076 * round the error term (which is expressed * 16) to an integer.
1077 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1078 * for either sign of the error value.
1079 * Note: errorptr points to *previous* column's array entry.
1080 */
1081 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1082 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1083 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1084 /* Limit the error using transfer function set by init_error_limit.
1085 * See comments with init_error_limit for rationale.
1086 */
1087 cur0 = error_limit[cur0];
1088 cur1 = error_limit[cur1];
1089 cur2 = error_limit[cur2];
1090 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1091 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1092 * this sets the required size of the range_limit array.
1093 */
1094 cur0 += GETJSAMPLE(inptr[0]);
1095 cur1 += GETJSAMPLE(inptr[1]);
1096 cur2 += GETJSAMPLE(inptr[2]);
1097 cur0 = GETJSAMPLE(range_limit[cur0]);
1098 cur1 = GETJSAMPLE(range_limit[cur1]);
1099 cur2 = GETJSAMPLE(range_limit[cur2]);
1100 /* Index into the cache with adjusted pixel value */
1101 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1102 /* If we have not seen this color before, find nearest colormap */
1103 /* entry and update the cache */
1104 if (*cachep == 0)
1105 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1106 /* Now emit the colormap index for this cell */
1107 { register int pixcode = *cachep - 1;
1108 *outptr = (JSAMPLE) pixcode;
1109 /* Compute representation error for this pixel */
1110 cur0 -= GETJSAMPLE(colormap0[pixcode]);
1111 cur1 -= GETJSAMPLE(colormap1[pixcode]);
1112 cur2 -= GETJSAMPLE(colormap2[pixcode]);
1113 }
1114 /* Compute error fractions to be propagated to adjacent pixels.
1115 * Add these into the running sums, and simultaneously shift the
1116 * next-line error sums left by 1 column.
1117 */
1118 { register LOCFSERROR bnexterr, delta;
1119
1120 bnexterr = cur0; /* Process component 0 */
1121 delta = cur0 * 2;
1122 cur0 += delta; /* form error * 3 */
1123 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1124 cur0 += delta; /* form error * 5 */
1125 bpreverr0 = belowerr0 + cur0;
1126 belowerr0 = bnexterr;
1127 cur0 += delta; /* form error * 7 */
1128 bnexterr = cur1; /* Process component 1 */
1129 delta = cur1 * 2;
1130 cur1 += delta; /* form error * 3 */
1131 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1132 cur1 += delta; /* form error * 5 */
1133 bpreverr1 = belowerr1 + cur1;
1134 belowerr1 = bnexterr;
1135 cur1 += delta; /* form error * 7 */
1136 bnexterr = cur2; /* Process component 2 */
1137 delta = cur2 * 2;
1138 cur2 += delta; /* form error * 3 */
1139 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1140 cur2 += delta; /* form error * 5 */
1141 bpreverr2 = belowerr2 + cur2;
1142 belowerr2 = bnexterr;
1143 cur2 += delta; /* form error * 7 */
1144 }
1145 /* At this point curN contains the 7/16 error value to be propagated
1146 * to the next pixel on the current line, and all the errors for the
1147 * next line have been shifted over. We are therefore ready to move on.
1148 */
1149 inptr += dir3; /* Advance pixel pointers to next column */
1150 outptr += dir;
1151 errorptr += dir3; /* advance errorptr to current column */
1152 }
1153 /* Post-loop cleanup: we must unload the final error values into the
1154 * final fserrors[] entry. Note we need not unload belowerrN because
1155 * it is for the dummy column before or after the actual array.
1156 */
1157 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1158 errorptr[1] = (FSERROR) bpreverr1;
1159 errorptr[2] = (FSERROR) bpreverr2;
1160 }
1161 }
1162
1163
1164 /*
1165 * Initialize the error-limiting transfer function (lookup table).
1166 * The raw F-S error computation can potentially compute error values of up to
1167 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1168 * much less, otherwise obviously wrong pixels will be created. (Typical
1169 * effects include weird fringes at color-area boundaries, isolated bright
1170 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1171 * is to ensure that the "corners" of the color cube are allocated as output
1172 * colors; then repeated errors in the same direction cannot cause cascading
1173 * error buildup. However, that only prevents the error from getting
1174 * completely out of hand; Aaron Giles reports that error limiting improves
1175 * the results even with corner colors allocated.
1176 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1177 * well, but the smoother transfer function used below is even better. Thanks
1178 * to Aaron Giles for this idea.
1179 */
1180
1181 static void
1182 init_error_limit (j_decompress_ptr cinfo)
1183 /* Allocate and fill in the error_limiter table */
1184 {
1185 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1186 int * table;
1187 int in, out;
1188
1189 table = (int *) malloc((MAXJSAMPLE*2+1) * sizeof(int));
1190 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1191 cquantize->error_limiter = table;
1192
1193 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1194 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1195 out = 0;
1196 for (in = 0; in < STEPSIZE; in++, out++) {
1197 table[in] = out; table[-in] = -out;
1198 }
1199 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1200 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1201 table[in] = out; table[-in] = -out;
1202 }
1203 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1204 for (; in <= MAXJSAMPLE; in++) {
1205 table[in] = out; table[-in] = -out;
1206 }
1207 #undef STEPSIZE
1208 }
1209
1210
1211 /*
1212 * Finish up at the end of each pass.
1213 */
1214
1215 void
1216 finish_pass1 (j_decompress_ptr cinfo)
1217 {
1218 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1219
1220 /* Select the representative colors and fill in cinfo->colormap */
1221 cinfo->colormap = cquantize->sv_colormap;
1222 select_colors(cinfo, cquantize->desired);
1223 /* Force next pass to zero the color index table */
1224 cquantize->needs_zeroed = TRUE;
1225 }
1226
1227
1228 void
1229 finish_pass2 (j_decompress_ptr cinfo)
1230 {
1231 /* no work */
1232 }
1233
1234
1235 /*
1236 * Initialize for each processing pass.
1237 */
1238
1239 void
1240 start_pass_2_quant (j_decompress_ptr cinfo, bool is_pre_scan)
1241 {
1242 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1243 hist3d histogram = cquantize->histogram;
1244 int i;
1245
1246 if (is_pre_scan) {
1247 /* Set up method pointers */
1248 cquantize->pub.color_quantize = prescan_quantize;
1249 cquantize->pub.finish_pass = finish_pass1;
1250 cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1251 } else {
1252 /* Set up method pointers */
1253 cquantize->pub.color_quantize = pass2_fs_dither;
1254 cquantize->pub.finish_pass = finish_pass2;
1255
1256 /* Make sure color count is acceptable */
1257 i = cinfo->actual_number_of_colors;
1258
1259 {
1260 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1261 (3 * sizeof(FSERROR)));
1262 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1263 if (cquantize->fserrors == NULL)
1264 cquantize->fserrors = (INT16*) malloc(arraysize);
1265 /* Initialize the propagated errors to zero. */
1266 memset((void *) cquantize->fserrors, 0, arraysize);
1267 /* Make the error-limit table if we didn't already. */
1268 if (cquantize->error_limiter == NULL)
1269 init_error_limit(cinfo);
1270 cquantize->on_odd_row = FALSE;
1271 }
1272
1273 }
1274 /* Zero the histogram or inverse color map, if necessary */
1275 if (cquantize->needs_zeroed) {
1276 for (i = 0; i < HIST_C0_ELEMS; i++) {
1277 memset((void *) histogram[i], 0,
1278 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1279 }
1280 cquantize->needs_zeroed = FALSE;
1281 }
1282 }
1283
1284
1285 /*
1286 * Switch to a new external colormap between output passes.
1287 */
1288
1289 void
1290 new_color_map_2_quant (j_decompress_ptr cinfo)
1291 {
1292 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1293
1294 /* Reset the inverse color map */
1295 cquantize->needs_zeroed = TRUE;
1296 }
1297
1298
1299 /*
1300 * Module initialization routine for 2-pass color quantization.
1301 */
1302
1303 void
1304 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1305 {
1306 my_cquantize_ptr cquantize;
1307 int i;
1308
1309 cquantize = (my_cquantize_ptr) malloc(sizeof(my_cquantizer));
1310 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1311 cquantize->pub.start_pass = start_pass_2_quant;
1312 cquantize->pub.new_color_map = new_color_map_2_quant;
1313 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1314 cquantize->error_limiter = NULL;
1315
1316
1317 /* Allocate the histogram/inverse colormap storage */
1318 cquantize->histogram = (hist3d) malloc(HIST_C0_ELEMS * sizeof(hist2d));
1319 for (i = 0; i < HIST_C0_ELEMS; i++) {
1320 cquantize->histogram[i] = (hist2d) malloc(HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1321 }
1322 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1323
1324 /* Allocate storage for the completed colormap, if required.
1325 * We do this now since it is storage and may affect
1326 * the memory manager's space calculations.
1327 */
1328 {
1329 /* Make sure color count is acceptable */
1330 int desired = cinfo->desired_number_of_colors;
1331
1332 cquantize->sv_colormap = (JSAMPARRAY) malloc(sizeof(JSAMPROW) * 3);
1333 cquantize->sv_colormap[0] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1334 cquantize->sv_colormap[1] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1335 cquantize->sv_colormap[2] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1336
1337 cquantize->desired = desired;
1338 }
1339
1340 /* Allocate Floyd-Steinberg workspace if necessary.
1341 * This isn't really needed until pass 2, but again it is storage.
1342 * Although we will cope with a later change in dither_mode,
1343 * we do not promise to honor max_memory_to_use if dither_mode changes.
1344 */
1345 {
1346 cquantize->fserrors = (FSERRPTR) malloc(
1347 (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1348 /* Might as well create the error-limiting table too. */
1349 init_error_limit(cinfo);
1350 }
1351 }
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362 void
1363 prepare_range_limit_table (j_decompress_ptr cinfo)
1364 /* Allocate and fill in the sample_range_limit table */
1365 {
1366 JSAMPLE * table;
1367 int i;
1368
1369 table = (JSAMPLE *) malloc((5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE));
1370 cinfo->srl_orig = table;
1371 table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
1372 cinfo->sample_range_limit = table;
1373 /* First segment of "simple" table: limit[x] = 0 for x < 0 */
1374 memset(table - (MAXJSAMPLE+1), 0, (MAXJSAMPLE+1) * sizeof(JSAMPLE));
1375 /* Main part of "simple" table: limit[x] = x */
1376 for (i = 0; i <= MAXJSAMPLE; i++)
1377 table[i] = (JSAMPLE) i;
1378 table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
1379 /* End of simple table, rest of first half of post-IDCT table */
1380 for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
1381 table[i] = MAXJSAMPLE;
1382 /* Second half of post-IDCT table */
1383 memset(table + (2 * (MAXJSAMPLE+1)), 0,
1384 (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE));
1385 memcpy(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
1386 cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE));
1387 }
1388
1389
1390
1391
1392 /*
1393 * wxQuantize
1394 */
1395
1396 IMPLEMENT_DYNAMIC_CLASS(wxQuantize, wxObject)
1397
1398 void wxQuantize::DoQuantize(unsigned w, unsigned h, unsigned char **in_rows, unsigned char **out_rows,
1399 unsigned char *palette, int desiredNoColours)
1400 {
1401 j_decompress dec;
1402 my_cquantize_ptr cquantize;
1403
1404 dec.output_width = w;
1405 dec.desired_number_of_colors = desiredNoColours;
1406 prepare_range_limit_table(&dec);
1407 jinit_2pass_quantizer(&dec);
1408 cquantize = (my_cquantize_ptr) dec.cquantize;
1409
1410
1411 cquantize->pub.start_pass(&dec, TRUE);
1412 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1413 cquantize->pub.finish_pass(&dec);
1414
1415 cquantize->pub.start_pass(&dec, FALSE);
1416 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1417 cquantize->pub.finish_pass(&dec);
1418
1419
1420 for (int i = 0; i < dec.desired_number_of_colors; i++) {
1421 palette[3 * i + 0] = dec.colormap[0][i];
1422 palette[3 * i + 1] = dec.colormap[1][i];
1423 palette[3 * i + 2] = dec.colormap[2][i];
1424 }
1425
1426 for (int ii = 0; ii < HIST_C0_ELEMS; ii++) free(cquantize->histogram[ii]);
1427 free(cquantize->histogram);
1428 free(dec.colormap[0]);
1429 free(dec.colormap[1]);
1430 free(dec.colormap[2]);
1431 free(dec.colormap);
1432 free(dec.srl_orig);
1433
1434 //free(cquantize->error_limiter);
1435 free((void*)(cquantize->error_limiter - MAXJSAMPLE)); // To reverse what was done to it
1436
1437 free(cquantize->fserrors);
1438 free(cquantize);
1439 }
1440
1441 // TODO: somehow make use of the Windows system colours, rather than ignoring them for the
1442 // purposes of quantization.
1443
1444 bool wxQuantize::Quantize(const wxImage& src, wxImage& dest, wxPalette** pPalette, int desiredNoColours,
1445 unsigned char** eightBitData, int flags)
1446
1447 {
1448 int i;
1449 int w = src.GetWidth();
1450 int h = src.GetHeight();
1451
1452 int windowsSystemColourCount = 20;
1453 int paletteShift = 0;
1454
1455 // Shift the palette up by the number of Windows system colours,
1456 // if necessary
1457 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1458 paletteShift = windowsSystemColourCount;
1459
1460 // Make room for the Windows system colours
1461 #ifdef __WXMSW__
1462 if ((flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) && (desiredNoColours > (256 - windowsSystemColourCount)))
1463 desiredNoColours = 256 - windowsSystemColourCount;
1464 #endif
1465
1466 // create rows info:
1467 unsigned char **rows = new unsigned char *[h];
1468 h = src.GetHeight(), w = src.GetWidth();
1469 unsigned char *imgdt = src.GetData();
1470 for (i = 0; i < h; i++)
1471 rows[i] = imgdt + 3/*RGB*/ * w * i;
1472
1473 unsigned char palette[3*256];
1474
1475 // This is the image as represented by palette indexes.
1476 unsigned char *data8bit = new unsigned char[w * h];
1477 unsigned char **outrows = new unsigned char *[h];
1478 for (i = 0; i < h; i++)
1479 outrows[i] = data8bit + w * i;
1480
1481 //RGB->palette
1482 DoQuantize(w, h, rows, outrows, palette, desiredNoColours);
1483
1484 delete[] rows;
1485 delete[] outrows;
1486
1487 // palette->RGB(max.256)
1488
1489 if (flags & wxQUANTIZE_FILL_DESTINATION_IMAGE)
1490 {
1491 if (!dest.Ok())
1492 dest.Create(w, h);
1493
1494 imgdt = dest.GetData();
1495 for (i = 0; i < w * h; i++)
1496 {
1497 unsigned char c = data8bit[i];
1498 imgdt[3 * i + 0/*R*/] = palette[3 * c + 0];
1499 imgdt[3 * i + 1/*G*/] = palette[3 * c + 1];
1500 imgdt[3 * i + 2/*B*/] = palette[3 * c + 2];
1501 }
1502 }
1503
1504 if (eightBitData && (flags & wxQUANTIZE_RETURN_8BIT_DATA))
1505 {
1506 #ifdef __WXMSW__
1507 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1508 {
1509 // We need to shift the palette entries up
1510 // to make room for the Windows system colours.
1511 for (i = 0; i < w * h; i++)
1512 data8bit[i] = data8bit[i] + paletteShift;
1513 }
1514 #endif
1515 *eightBitData = data8bit;
1516 }
1517 else
1518 delete[] data8bit;
1519
1520 // Make a wxWindows palette
1521 if (pPalette)
1522 {
1523 unsigned char* r = new unsigned char[256];
1524 unsigned char* g = new unsigned char[256];
1525 unsigned char* b = new unsigned char[256];
1526
1527 #ifdef __WXMSW__
1528 // Fill the first 20 entries with Windows system colours
1529 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1530 {
1531 HDC hDC = ::GetDC(NULL);
1532 PALETTEENTRY* entries = new PALETTEENTRY[windowsSystemColourCount];
1533 ::GetSystemPaletteEntries(hDC, 0, windowsSystemColourCount, entries);
1534 ::ReleaseDC(NULL, hDC);
1535
1536 for (i = 0; i < windowsSystemColourCount; i++)
1537 {
1538 r[i] = entries[i].peRed;
1539 g[i] = entries[i].peGreen;
1540 b[i] = entries[i].peBlue;
1541 }
1542 delete[] entries;
1543 }
1544 #endif
1545
1546 for (i = 0; i < desiredNoColours; i++)
1547 {
1548 r[i+paletteShift] = palette[i*3 + 0];
1549 g[i+paletteShift] = palette[i*3 + 1];
1550 b[i+paletteShift] = palette[i*3 + 2];
1551 }
1552
1553 // Blank out any remaining palette entries
1554 for (i = desiredNoColours+paletteShift; i < 256; i++)
1555 {
1556 r[i] = 0;
1557 g[i] = 0;
1558 b[i] = 0;
1559 }
1560 *pPalette = new wxPalette(256, r, g, b);
1561 delete[] r;
1562 delete[] g;
1563 delete[] b;
1564 }
1565
1566 return TRUE;
1567 }
1568
1569 // This version sets a palette in the destination image so you don't
1570 // have to manage it yourself.
1571
1572 bool wxQuantize::Quantize(const wxImage& src, wxImage& dest, int desiredNoColours,
1573 unsigned char** eightBitData, int flags)
1574 {
1575 wxPalette* palette = NULL;
1576 if (Quantize(src, dest, & palette, desiredNoColours, eightBitData, flags))
1577 {
1578 if (palette)
1579 {
1580 dest.SetPalette(* palette);
1581 delete palette;
1582 }
1583 return TRUE;
1584 }
1585 else
1586 return FALSE;
1587 }
1588