]> git.saurik.com Git - wxWidgets.git/blob - src/zlib/trees.c
Upgrade bundled zlib to 1.2.8.
[wxWidgets.git] / src / zlib / trees.c
1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2012 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7 /*
8 * ALGORITHM
9 *
10 * The "deflation" process uses several Huffman trees. The more
11 * common source values are represented by shorter bit sequences.
12 *
13 * Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values). The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 * REFERENCES
20 *
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 * Storer, James A.
25 * Data Compression: Methods and Theory, pp. 49-50.
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27 *
28 * Sedgewick, R.
29 * Algorithms, p290.
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33
34 /* #define GEN_TREES_H */
35
36 #include "deflate.h"
37
38 #ifdef DEBUG
39 # include <ctype.h>
40 #endif
41
42 /* ===========================================================================
43 * Constants
44 */
45
46 #define MAX_BL_BITS 7
47 /* Bit length codes must not exceed MAX_BL_BITS bits */
48
49 #define END_BLOCK 256
50 /* end of block literal code */
51
52 #define REP_3_6 16
53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
54
55 #define REPZ_3_10 17
56 /* repeat a zero length 3-10 times (3 bits of repeat count) */
57
58 #define REPZ_11_138 18
59 /* repeat a zero length 11-138 times (7 bits of repeat count) */
60
61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63
64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66
67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69
70 local const uch bl_order[BL_CODES]
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72 /* The lengths of the bit length codes are sent in order of decreasing
73 * probability, to avoid transmitting the lengths for unused bit length codes.
74 */
75
76 /* ===========================================================================
77 * Local data. These are initialized only once.
78 */
79
80 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
81
82 #if defined(GEN_TREES_H) || !defined(STDC)
83 /* non ANSI compilers may not accept trees.h */
84
85 local ct_data static_ltree[L_CODES+2];
86 /* The static literal tree. Since the bit lengths are imposed, there is no
87 * need for the L_CODES extra codes used during heap construction. However
88 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
89 * below).
90 */
91
92 local ct_data static_dtree[D_CODES];
93 /* The static distance tree. (Actually a trivial tree since all codes use
94 * 5 bits.)
95 */
96
97 uch _dist_code[DIST_CODE_LEN];
98 /* Distance codes. The first 256 values correspond to the distances
99 * 3 .. 258, the last 256 values correspond to the top 8 bits of
100 * the 15 bit distances.
101 */
102
103 uch _length_code[MAX_MATCH-MIN_MATCH+1];
104 /* length code for each normalized match length (0 == MIN_MATCH) */
105
106 local int base_length[LENGTH_CODES];
107 /* First normalized length for each code (0 = MIN_MATCH) */
108
109 local int base_dist[D_CODES];
110 /* First normalized distance for each code (0 = distance of 1) */
111
112 #else
113 # include "trees.h"
114 #endif /* GEN_TREES_H */
115
116 struct static_tree_desc_s {
117 const ct_data *static_tree; /* static tree or NULL */
118 const intf *extra_bits; /* extra bits for each code or NULL */
119 int extra_base; /* base index for extra_bits */
120 int elems; /* max number of elements in the tree */
121 int max_length; /* max bit length for the codes */
122 };
123
124 local static_tree_desc static_l_desc =
125 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
126
127 local static_tree_desc static_d_desc =
128 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
129
130 local static_tree_desc static_bl_desc =
131 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
132
133 /* ===========================================================================
134 * Local (static) routines in this file.
135 */
136
137 local void tr_static_init OF((void));
138 local void init_block OF((deflate_state *s));
139 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
140 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
141 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
142 local void build_tree OF((deflate_state *s, tree_desc *desc));
143 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
144 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
145 local int build_bl_tree OF((deflate_state *s));
146 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
147 int blcodes));
148 local void compress_block OF((deflate_state *s, const ct_data *ltree,
149 const ct_data *dtree));
150 local int detect_data_type OF((deflate_state *s));
151 local unsigned bi_reverse OF((unsigned value, int length));
152 local void bi_windup OF((deflate_state *s));
153 local void bi_flush OF((deflate_state *s));
154 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
155 int header));
156
157 #ifdef GEN_TREES_H
158 local void gen_trees_header OF((void));
159 #endif
160
161 #ifndef DEBUG
162 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
163 /* Send a code of the given tree. c and tree must not have side effects */
164
165 #else /* DEBUG */
166 # define send_code(s, c, tree) \
167 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
168 send_bits(s, tree[c].Code, tree[c].Len); }
169 #endif
170
171 /* ===========================================================================
172 * Output a short LSB first on the stream.
173 * IN assertion: there is enough room in pendingBuf.
174 */
175 #define put_short(s, w) { \
176 put_byte(s, (uch)((w) & 0xff)); \
177 put_byte(s, (uch)((ush)(w) >> 8)); \
178 }
179
180 /* ===========================================================================
181 * Send a value on a given number of bits.
182 * IN assertion: length <= 16 and value fits in length bits.
183 */
184 #ifdef DEBUG
185 local void send_bits OF((deflate_state *s, int value, int length));
186
187 local void send_bits(s, value, length)
188 deflate_state *s;
189 int value; /* value to send */
190 int length; /* number of bits */
191 {
192 Tracevv((stderr," l %2d v %4x ", length, value));
193 Assert(length > 0 && length <= 15, "invalid length");
194 s->bits_sent += (ulg)length;
195
196 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
197 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
198 * unused bits in value.
199 */
200 if (s->bi_valid > (int)Buf_size - length) {
201 s->bi_buf |= (ush)value << s->bi_valid;
202 put_short(s, s->bi_buf);
203 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
204 s->bi_valid += length - Buf_size;
205 } else {
206 s->bi_buf |= (ush)value << s->bi_valid;
207 s->bi_valid += length;
208 }
209 }
210 #else /* !DEBUG */
211
212 #define send_bits(s, value, length) \
213 { int len = length;\
214 if (s->bi_valid > (int)Buf_size - len) {\
215 int val = value;\
216 s->bi_buf |= (ush)val << s->bi_valid;\
217 put_short(s, s->bi_buf);\
218 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
219 s->bi_valid += len - Buf_size;\
220 } else {\
221 s->bi_buf |= (ush)(value) << s->bi_valid;\
222 s->bi_valid += len;\
223 }\
224 }
225 #endif /* DEBUG */
226
227
228 /* the arguments must not have side effects */
229
230 /* ===========================================================================
231 * Initialize the various 'constant' tables.
232 */
233 local void tr_static_init()
234 {
235 #if defined(GEN_TREES_H) || !defined(STDC)
236 static int static_init_done = 0;
237 int n; /* iterates over tree elements */
238 int bits; /* bit counter */
239 int length; /* length value */
240 int code; /* code value */
241 int dist; /* distance index */
242 ush bl_count[MAX_BITS+1];
243 /* number of codes at each bit length for an optimal tree */
244
245 if (static_init_done) return;
246
247 /* For some embedded targets, global variables are not initialized: */
248 #ifdef NO_INIT_GLOBAL_POINTERS
249 static_l_desc.static_tree = static_ltree;
250 static_l_desc.extra_bits = extra_lbits;
251 static_d_desc.static_tree = static_dtree;
252 static_d_desc.extra_bits = extra_dbits;
253 static_bl_desc.extra_bits = extra_blbits;
254 #endif
255
256 /* Initialize the mapping length (0..255) -> length code (0..28) */
257 length = 0;
258 for (code = 0; code < LENGTH_CODES-1; code++) {
259 base_length[code] = length;
260 for (n = 0; n < (1<<extra_lbits[code]); n++) {
261 _length_code[length++] = (uch)code;
262 }
263 }
264 Assert (length == 256, "tr_static_init: length != 256");
265 /* Note that the length 255 (match length 258) can be represented
266 * in two different ways: code 284 + 5 bits or code 285, so we
267 * overwrite length_code[255] to use the best encoding:
268 */
269 _length_code[length-1] = (uch)code;
270
271 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
272 dist = 0;
273 for (code = 0 ; code < 16; code++) {
274 base_dist[code] = dist;
275 for (n = 0; n < (1<<extra_dbits[code]); n++) {
276 _dist_code[dist++] = (uch)code;
277 }
278 }
279 Assert (dist == 256, "tr_static_init: dist != 256");
280 dist >>= 7; /* from now on, all distances are divided by 128 */
281 for ( ; code < D_CODES; code++) {
282 base_dist[code] = dist << 7;
283 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
284 _dist_code[256 + dist++] = (uch)code;
285 }
286 }
287 Assert (dist == 256, "tr_static_init: 256+dist != 512");
288
289 /* Construct the codes of the static literal tree */
290 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
291 n = 0;
292 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
293 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
294 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
295 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
296 /* Codes 286 and 287 do not exist, but we must include them in the
297 * tree construction to get a canonical Huffman tree (longest code
298 * all ones)
299 */
300 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
301
302 /* The static distance tree is trivial: */
303 for (n = 0; n < D_CODES; n++) {
304 static_dtree[n].Len = 5;
305 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
306 }
307 static_init_done = 1;
308
309 # ifdef GEN_TREES_H
310 gen_trees_header();
311 # endif
312 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
313 }
314
315 /* ===========================================================================
316 * Genererate the file trees.h describing the static trees.
317 */
318 #ifdef GEN_TREES_H
319 # ifndef DEBUG
320 # include <stdio.h>
321 # endif
322
323 # define SEPARATOR(i, last, width) \
324 ((i) == (last)? "\n};\n\n" : \
325 ((i) % (width) == (width)-1 ? ",\n" : ", "))
326
327 void gen_trees_header()
328 {
329 FILE *header = fopen("trees.h", "w");
330 int i;
331
332 Assert (header != NULL, "Can't open trees.h");
333 fprintf(header,
334 "/* header created automatically with -DGEN_TREES_H */\n\n");
335
336 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
337 for (i = 0; i < L_CODES+2; i++) {
338 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
339 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
340 }
341
342 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
343 for (i = 0; i < D_CODES; i++) {
344 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
345 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
346 }
347
348 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
349 for (i = 0; i < DIST_CODE_LEN; i++) {
350 fprintf(header, "%2u%s", _dist_code[i],
351 SEPARATOR(i, DIST_CODE_LEN-1, 20));
352 }
353
354 fprintf(header,
355 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
356 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
357 fprintf(header, "%2u%s", _length_code[i],
358 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
359 }
360
361 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
362 for (i = 0; i < LENGTH_CODES; i++) {
363 fprintf(header, "%1u%s", base_length[i],
364 SEPARATOR(i, LENGTH_CODES-1, 20));
365 }
366
367 fprintf(header, "local const int base_dist[D_CODES] = {\n");
368 for (i = 0; i < D_CODES; i++) {
369 fprintf(header, "%5u%s", base_dist[i],
370 SEPARATOR(i, D_CODES-1, 10));
371 }
372
373 fclose(header);
374 }
375 #endif /* GEN_TREES_H */
376
377 /* ===========================================================================
378 * Initialize the tree data structures for a new zlib stream.
379 */
380 void ZLIB_INTERNAL _tr_init(s)
381 deflate_state *s;
382 {
383 tr_static_init();
384
385 s->l_desc.dyn_tree = s->dyn_ltree;
386 s->l_desc.stat_desc = &static_l_desc;
387
388 s->d_desc.dyn_tree = s->dyn_dtree;
389 s->d_desc.stat_desc = &static_d_desc;
390
391 s->bl_desc.dyn_tree = s->bl_tree;
392 s->bl_desc.stat_desc = &static_bl_desc;
393
394 s->bi_buf = 0;
395 s->bi_valid = 0;
396 #ifdef DEBUG
397 s->compressed_len = 0L;
398 s->bits_sent = 0L;
399 #endif
400
401 /* Initialize the first block of the first file: */
402 init_block(s);
403 }
404
405 /* ===========================================================================
406 * Initialize a new block.
407 */
408 local void init_block(s)
409 deflate_state *s;
410 {
411 int n; /* iterates over tree elements */
412
413 /* Initialize the trees. */
414 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
415 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
416 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
417
418 s->dyn_ltree[END_BLOCK].Freq = 1;
419 s->opt_len = s->static_len = 0L;
420 s->last_lit = s->matches = 0;
421 }
422
423 #define SMALLEST 1
424 /* Index within the heap array of least frequent node in the Huffman tree */
425
426
427 /* ===========================================================================
428 * Remove the smallest element from the heap and recreate the heap with
429 * one less element. Updates heap and heap_len.
430 */
431 #define pqremove(s, tree, top) \
432 {\
433 top = s->heap[SMALLEST]; \
434 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
435 pqdownheap(s, tree, SMALLEST); \
436 }
437
438 /* ===========================================================================
439 * Compares to subtrees, using the tree depth as tie breaker when
440 * the subtrees have equal frequency. This minimizes the worst case length.
441 */
442 #define smaller(tree, n, m, depth) \
443 (tree[n].Freq < tree[m].Freq || \
444 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
445
446 /* ===========================================================================
447 * Restore the heap property by moving down the tree starting at node k,
448 * exchanging a node with the smallest of its two sons if necessary, stopping
449 * when the heap property is re-established (each father smaller than its
450 * two sons).
451 */
452 local void pqdownheap(s, tree, k)
453 deflate_state *s;
454 ct_data *tree; /* the tree to restore */
455 int k; /* node to move down */
456 {
457 int v = s->heap[k];
458 int j = k << 1; /* left son of k */
459 while (j <= s->heap_len) {
460 /* Set j to the smallest of the two sons: */
461 if (j < s->heap_len &&
462 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
463 j++;
464 }
465 /* Exit if v is smaller than both sons */
466 if (smaller(tree, v, s->heap[j], s->depth)) break;
467
468 /* Exchange v with the smallest son */
469 s->heap[k] = s->heap[j]; k = j;
470
471 /* And continue down the tree, setting j to the left son of k */
472 j <<= 1;
473 }
474 s->heap[k] = v;
475 }
476
477 /* ===========================================================================
478 * Compute the optimal bit lengths for a tree and update the total bit length
479 * for the current block.
480 * IN assertion: the fields freq and dad are set, heap[heap_max] and
481 * above are the tree nodes sorted by increasing frequency.
482 * OUT assertions: the field len is set to the optimal bit length, the
483 * array bl_count contains the frequencies for each bit length.
484 * The length opt_len is updated; static_len is also updated if stree is
485 * not null.
486 */
487 local void gen_bitlen(s, desc)
488 deflate_state *s;
489 tree_desc *desc; /* the tree descriptor */
490 {
491 ct_data *tree = desc->dyn_tree;
492 int max_code = desc->max_code;
493 const ct_data *stree = desc->stat_desc->static_tree;
494 const intf *extra = desc->stat_desc->extra_bits;
495 int base = desc->stat_desc->extra_base;
496 int max_length = desc->stat_desc->max_length;
497 int h; /* heap index */
498 int n, m; /* iterate over the tree elements */
499 int bits; /* bit length */
500 int xbits; /* extra bits */
501 ush f; /* frequency */
502 int overflow = 0; /* number of elements with bit length too large */
503
504 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
505
506 /* In a first pass, compute the optimal bit lengths (which may
507 * overflow in the case of the bit length tree).
508 */
509 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
510
511 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
512 n = s->heap[h];
513 bits = tree[tree[n].Dad].Len + 1;
514 if (bits > max_length) bits = max_length, overflow++;
515 tree[n].Len = (ush)bits;
516 /* We overwrite tree[n].Dad which is no longer needed */
517
518 if (n > max_code) continue; /* not a leaf node */
519
520 s->bl_count[bits]++;
521 xbits = 0;
522 if (n >= base) xbits = extra[n-base];
523 f = tree[n].Freq;
524 s->opt_len += (ulg)f * (bits + xbits);
525 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
526 }
527 if (overflow == 0) return;
528
529 Trace((stderr,"\nbit length overflow\n"));
530 /* This happens for example on obj2 and pic of the Calgary corpus */
531
532 /* Find the first bit length which could increase: */
533 do {
534 bits = max_length-1;
535 while (s->bl_count[bits] == 0) bits--;
536 s->bl_count[bits]--; /* move one leaf down the tree */
537 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
538 s->bl_count[max_length]--;
539 /* The brother of the overflow item also moves one step up,
540 * but this does not affect bl_count[max_length]
541 */
542 overflow -= 2;
543 } while (overflow > 0);
544
545 /* Now recompute all bit lengths, scanning in increasing frequency.
546 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
547 * lengths instead of fixing only the wrong ones. This idea is taken
548 * from 'ar' written by Haruhiko Okumura.)
549 */
550 for (bits = max_length; bits != 0; bits--) {
551 n = s->bl_count[bits];
552 while (n != 0) {
553 m = s->heap[--h];
554 if (m > max_code) continue;
555 if ((unsigned) tree[m].Len != (unsigned) bits) {
556 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
557 s->opt_len += ((long)bits - (long)tree[m].Len)
558 *(long)tree[m].Freq;
559 tree[m].Len = (ush)bits;
560 }
561 n--;
562 }
563 }
564 }
565
566 /* ===========================================================================
567 * Generate the codes for a given tree and bit counts (which need not be
568 * optimal).
569 * IN assertion: the array bl_count contains the bit length statistics for
570 * the given tree and the field len is set for all tree elements.
571 * OUT assertion: the field code is set for all tree elements of non
572 * zero code length.
573 */
574 local void gen_codes (tree, max_code, bl_count)
575 ct_data *tree; /* the tree to decorate */
576 int max_code; /* largest code with non zero frequency */
577 ushf *bl_count; /* number of codes at each bit length */
578 {
579 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
580 ush code = 0; /* running code value */
581 int bits; /* bit index */
582 int n; /* code index */
583
584 /* The distribution counts are first used to generate the code values
585 * without bit reversal.
586 */
587 for (bits = 1; bits <= MAX_BITS; bits++) {
588 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
589 }
590 /* Check that the bit counts in bl_count are consistent. The last code
591 * must be all ones.
592 */
593 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
594 "inconsistent bit counts");
595 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
596
597 for (n = 0; n <= max_code; n++) {
598 int len = tree[n].Len;
599 if (len == 0) continue;
600 /* Now reverse the bits */
601 tree[n].Code = bi_reverse(next_code[len]++, len);
602
603 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
604 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
605 }
606 }
607
608 /* ===========================================================================
609 * Construct one Huffman tree and assigns the code bit strings and lengths.
610 * Update the total bit length for the current block.
611 * IN assertion: the field freq is set for all tree elements.
612 * OUT assertions: the fields len and code are set to the optimal bit length
613 * and corresponding code. The length opt_len is updated; static_len is
614 * also updated if stree is not null. The field max_code is set.
615 */
616 local void build_tree(s, desc)
617 deflate_state *s;
618 tree_desc *desc; /* the tree descriptor */
619 {
620 ct_data *tree = desc->dyn_tree;
621 const ct_data *stree = desc->stat_desc->static_tree;
622 int elems = desc->stat_desc->elems;
623 int n, m; /* iterate over heap elements */
624 int max_code = -1; /* largest code with non zero frequency */
625 int node; /* new node being created */
626
627 /* Construct the initial heap, with least frequent element in
628 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
629 * heap[0] is not used.
630 */
631 s->heap_len = 0, s->heap_max = HEAP_SIZE;
632
633 for (n = 0; n < elems; n++) {
634 if (tree[n].Freq != 0) {
635 s->heap[++(s->heap_len)] = max_code = n;
636 s->depth[n] = 0;
637 } else {
638 tree[n].Len = 0;
639 }
640 }
641
642 /* The pkzip format requires that at least one distance code exists,
643 * and that at least one bit should be sent even if there is only one
644 * possible code. So to avoid special checks later on we force at least
645 * two codes of non zero frequency.
646 */
647 while (s->heap_len < 2) {
648 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
649 tree[node].Freq = 1;
650 s->depth[node] = 0;
651 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
652 /* node is 0 or 1 so it does not have extra bits */
653 }
654 desc->max_code = max_code;
655
656 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
657 * establish sub-heaps of increasing lengths:
658 */
659 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
660
661 /* Construct the Huffman tree by repeatedly combining the least two
662 * frequent nodes.
663 */
664 node = elems; /* next internal node of the tree */
665 do {
666 pqremove(s, tree, n); /* n = node of least frequency */
667 m = s->heap[SMALLEST]; /* m = node of next least frequency */
668
669 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
670 s->heap[--(s->heap_max)] = m;
671
672 /* Create a new node father of n and m */
673 tree[node].Freq = tree[n].Freq + tree[m].Freq;
674 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
675 s->depth[n] : s->depth[m]) + 1);
676 tree[n].Dad = tree[m].Dad = (ush)node;
677 #ifdef DUMP_BL_TREE
678 if (tree == s->bl_tree) {
679 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
680 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
681 }
682 #endif
683 /* and insert the new node in the heap */
684 s->heap[SMALLEST] = node++;
685 pqdownheap(s, tree, SMALLEST);
686
687 } while (s->heap_len >= 2);
688
689 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
690
691 /* At this point, the fields freq and dad are set. We can now
692 * generate the bit lengths.
693 */
694 gen_bitlen(s, (tree_desc *)desc);
695
696 /* The field len is now set, we can generate the bit codes */
697 gen_codes ((ct_data *)tree, max_code, s->bl_count);
698 }
699
700 /* ===========================================================================
701 * Scan a literal or distance tree to determine the frequencies of the codes
702 * in the bit length tree.
703 */
704 local void scan_tree (s, tree, max_code)
705 deflate_state *s;
706 ct_data *tree; /* the tree to be scanned */
707 int max_code; /* and its largest code of non zero frequency */
708 {
709 int n; /* iterates over all tree elements */
710 int prevlen = -1; /* last emitted length */
711 int curlen; /* length of current code */
712 int nextlen = tree[0].Len; /* length of next code */
713 int count = 0; /* repeat count of the current code */
714 int max_count = 7; /* max repeat count */
715 int min_count = 4; /* min repeat count */
716
717 if (nextlen == 0) max_count = 138, min_count = 3;
718 tree[max_code+1].Len = (ush)0xffff; /* guard */
719
720 for (n = 0; n <= max_code; n++) {
721 curlen = nextlen; nextlen = tree[n+1].Len;
722 if (++count < max_count && curlen == nextlen) {
723 continue;
724 } else if (count < min_count) {
725 s->bl_tree[curlen].Freq += count;
726 } else if (curlen != 0) {
727 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
728 s->bl_tree[REP_3_6].Freq++;
729 } else if (count <= 10) {
730 s->bl_tree[REPZ_3_10].Freq++;
731 } else {
732 s->bl_tree[REPZ_11_138].Freq++;
733 }
734 count = 0; prevlen = curlen;
735 if (nextlen == 0) {
736 max_count = 138, min_count = 3;
737 } else if (curlen == nextlen) {
738 max_count = 6, min_count = 3;
739 } else {
740 max_count = 7, min_count = 4;
741 }
742 }
743 }
744
745 /* ===========================================================================
746 * Send a literal or distance tree in compressed form, using the codes in
747 * bl_tree.
748 */
749 local void send_tree (s, tree, max_code)
750 deflate_state *s;
751 ct_data *tree; /* the tree to be scanned */
752 int max_code; /* and its largest code of non zero frequency */
753 {
754 int n; /* iterates over all tree elements */
755 int prevlen = -1; /* last emitted length */
756 int curlen; /* length of current code */
757 int nextlen = tree[0].Len; /* length of next code */
758 int count = 0; /* repeat count of the current code */
759 int max_count = 7; /* max repeat count */
760 int min_count = 4; /* min repeat count */
761
762 /* tree[max_code+1].Len = -1; */ /* guard already set */
763 if (nextlen == 0) max_count = 138, min_count = 3;
764
765 for (n = 0; n <= max_code; n++) {
766 curlen = nextlen; nextlen = tree[n+1].Len;
767 if (++count < max_count && curlen == nextlen) {
768 continue;
769 } else if (count < min_count) {
770 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
771
772 } else if (curlen != 0) {
773 if (curlen != prevlen) {
774 send_code(s, curlen, s->bl_tree); count--;
775 }
776 Assert(count >= 3 && count <= 6, " 3_6?");
777 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
778
779 } else if (count <= 10) {
780 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
781
782 } else {
783 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
784 }
785 count = 0; prevlen = curlen;
786 if (nextlen == 0) {
787 max_count = 138, min_count = 3;
788 } else if (curlen == nextlen) {
789 max_count = 6, min_count = 3;
790 } else {
791 max_count = 7, min_count = 4;
792 }
793 }
794 }
795
796 /* ===========================================================================
797 * Construct the Huffman tree for the bit lengths and return the index in
798 * bl_order of the last bit length code to send.
799 */
800 local int build_bl_tree(s)
801 deflate_state *s;
802 {
803 int max_blindex; /* index of last bit length code of non zero freq */
804
805 /* Determine the bit length frequencies for literal and distance trees */
806 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
807 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
808
809 /* Build the bit length tree: */
810 build_tree(s, (tree_desc *)(&(s->bl_desc)));
811 /* opt_len now includes the length of the tree representations, except
812 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
813 */
814
815 /* Determine the number of bit length codes to send. The pkzip format
816 * requires that at least 4 bit length codes be sent. (appnote.txt says
817 * 3 but the actual value used is 4.)
818 */
819 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
820 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
821 }
822 /* Update opt_len to include the bit length tree and counts */
823 s->opt_len += 3*(max_blindex+1) + 5+5+4;
824 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
825 s->opt_len, s->static_len));
826
827 return max_blindex;
828 }
829
830 /* ===========================================================================
831 * Send the header for a block using dynamic Huffman trees: the counts, the
832 * lengths of the bit length codes, the literal tree and the distance tree.
833 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
834 */
835 local void send_all_trees(s, lcodes, dcodes, blcodes)
836 deflate_state *s;
837 int lcodes, dcodes, blcodes; /* number of codes for each tree */
838 {
839 int rank; /* index in bl_order */
840
841 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
842 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
843 "too many codes");
844 Tracev((stderr, "\nbl counts: "));
845 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
846 send_bits(s, dcodes-1, 5);
847 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
848 for (rank = 0; rank < blcodes; rank++) {
849 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
850 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
851 }
852 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
853
854 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
855 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
856
857 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
858 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
859 }
860
861 /* ===========================================================================
862 * Send a stored block
863 */
864 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
865 deflate_state *s;
866 charf *buf; /* input block */
867 ulg stored_len; /* length of input block */
868 int last; /* one if this is the last block for a file */
869 {
870 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
871 #ifdef DEBUG
872 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
873 s->compressed_len += (stored_len + 4) << 3;
874 #endif
875 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
876 }
877
878 /* ===========================================================================
879 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
880 */
881 void ZLIB_INTERNAL _tr_flush_bits(s)
882 deflate_state *s;
883 {
884 bi_flush(s);
885 }
886
887 /* ===========================================================================
888 * Send one empty static block to give enough lookahead for inflate.
889 * This takes 10 bits, of which 7 may remain in the bit buffer.
890 */
891 void ZLIB_INTERNAL _tr_align(s)
892 deflate_state *s;
893 {
894 send_bits(s, STATIC_TREES<<1, 3);
895 send_code(s, END_BLOCK, static_ltree);
896 #ifdef DEBUG
897 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
898 #endif
899 bi_flush(s);
900 }
901
902 /* ===========================================================================
903 * Determine the best encoding for the current block: dynamic trees, static
904 * trees or store, and output the encoded block to the zip file.
905 */
906 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
907 deflate_state *s;
908 charf *buf; /* input block, or NULL if too old */
909 ulg stored_len; /* length of input block */
910 int last; /* one if this is the last block for a file */
911 {
912 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
913 int max_blindex = 0; /* index of last bit length code of non zero freq */
914
915 /* Build the Huffman trees unless a stored block is forced */
916 if (s->level > 0) {
917
918 /* Check if the file is binary or text */
919 if (s->strm->data_type == Z_UNKNOWN)
920 s->strm->data_type = detect_data_type(s);
921
922 /* Construct the literal and distance trees */
923 build_tree(s, (tree_desc *)(&(s->l_desc)));
924 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
925 s->static_len));
926
927 build_tree(s, (tree_desc *)(&(s->d_desc)));
928 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
929 s->static_len));
930 /* At this point, opt_len and static_len are the total bit lengths of
931 * the compressed block data, excluding the tree representations.
932 */
933
934 /* Build the bit length tree for the above two trees, and get the index
935 * in bl_order of the last bit length code to send.
936 */
937 max_blindex = build_bl_tree(s);
938
939 /* Determine the best encoding. Compute the block lengths in bytes. */
940 opt_lenb = (s->opt_len+3+7)>>3;
941 static_lenb = (s->static_len+3+7)>>3;
942
943 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
944 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
945 s->last_lit));
946
947 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
948
949 } else {
950 Assert(buf != (char*)0, "lost buf");
951 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
952 }
953
954 #ifdef FORCE_STORED
955 if (buf != (char*)0) { /* force stored block */
956 #else
957 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
958 /* 4: two words for the lengths */
959 #endif
960 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
961 * Otherwise we can't have processed more than WSIZE input bytes since
962 * the last block flush, because compression would have been
963 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
964 * transform a block into a stored block.
965 */
966 _tr_stored_block(s, buf, stored_len, last);
967
968 #ifdef FORCE_STATIC
969 } else if (static_lenb >= 0) { /* force static trees */
970 #else
971 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
972 #endif
973 send_bits(s, (STATIC_TREES<<1)+last, 3);
974 compress_block(s, (const ct_data *)static_ltree,
975 (const ct_data *)static_dtree);
976 #ifdef DEBUG
977 s->compressed_len += 3 + s->static_len;
978 #endif
979 } else {
980 send_bits(s, (DYN_TREES<<1)+last, 3);
981 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
982 max_blindex+1);
983 compress_block(s, (const ct_data *)s->dyn_ltree,
984 (const ct_data *)s->dyn_dtree);
985 #ifdef DEBUG
986 s->compressed_len += 3 + s->opt_len;
987 #endif
988 }
989 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
990 /* The above check is made mod 2^32, for files larger than 512 MB
991 * and uLong implemented on 32 bits.
992 */
993 init_block(s);
994
995 if (last) {
996 bi_windup(s);
997 #ifdef DEBUG
998 s->compressed_len += 7; /* align on byte boundary */
999 #endif
1000 }
1001 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1002 s->compressed_len-7*last));
1003 }
1004
1005 /* ===========================================================================
1006 * Save the match info and tally the frequency counts. Return true if
1007 * the current block must be flushed.
1008 */
1009 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1010 deflate_state *s;
1011 unsigned dist; /* distance of matched string */
1012 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1013 {
1014 s->d_buf[s->last_lit] = (ush)dist;
1015 s->l_buf[s->last_lit++] = (uch)lc;
1016 if (dist == 0) {
1017 /* lc is the unmatched char */
1018 s->dyn_ltree[lc].Freq++;
1019 } else {
1020 s->matches++;
1021 /* Here, lc is the match length - MIN_MATCH */
1022 dist--; /* dist = match distance - 1 */
1023 Assert((ush)dist < (ush)MAX_DIST(s) &&
1024 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1025 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1026
1027 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1028 s->dyn_dtree[d_code(dist)].Freq++;
1029 }
1030
1031 #ifdef TRUNCATE_BLOCK
1032 /* Try to guess if it is profitable to stop the current block here */
1033 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1034 /* Compute an upper bound for the compressed length */
1035 ulg out_length = (ulg)s->last_lit*8L;
1036 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1037 int dcode;
1038 for (dcode = 0; dcode < D_CODES; dcode++) {
1039 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1040 (5L+extra_dbits[dcode]);
1041 }
1042 out_length >>= 3;
1043 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1044 s->last_lit, in_length, out_length,
1045 100L - out_length*100L/in_length));
1046 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1047 }
1048 #endif
1049 return (s->last_lit == s->lit_bufsize-1);
1050 /* We avoid equality with lit_bufsize because of wraparound at 64K
1051 * on 16 bit machines and because stored blocks are restricted to
1052 * 64K-1 bytes.
1053 */
1054 }
1055
1056 /* ===========================================================================
1057 * Send the block data compressed using the given Huffman trees
1058 */
1059 local void compress_block(s, ltree, dtree)
1060 deflate_state *s;
1061 const ct_data *ltree; /* literal tree */
1062 const ct_data *dtree; /* distance tree */
1063 {
1064 unsigned dist; /* distance of matched string */
1065 int lc; /* match length or unmatched char (if dist == 0) */
1066 unsigned lx = 0; /* running index in l_buf */
1067 unsigned code; /* the code to send */
1068 int extra; /* number of extra bits to send */
1069
1070 if (s->last_lit != 0) do {
1071 dist = s->d_buf[lx];
1072 lc = s->l_buf[lx++];
1073 if (dist == 0) {
1074 send_code(s, lc, ltree); /* send a literal byte */
1075 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1076 } else {
1077 /* Here, lc is the match length - MIN_MATCH */
1078 code = _length_code[lc];
1079 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1080 extra = extra_lbits[code];
1081 if (extra != 0) {
1082 lc -= base_length[code];
1083 send_bits(s, lc, extra); /* send the extra length bits */
1084 }
1085 dist--; /* dist is now the match distance - 1 */
1086 code = d_code(dist);
1087 Assert (code < D_CODES, "bad d_code");
1088
1089 send_code(s, code, dtree); /* send the distance code */
1090 extra = extra_dbits[code];
1091 if (extra != 0) {
1092 dist -= base_dist[code];
1093 send_bits(s, dist, extra); /* send the extra distance bits */
1094 }
1095 } /* literal or match pair ? */
1096
1097 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1098 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1099 "pendingBuf overflow");
1100
1101 } while (lx < s->last_lit);
1102
1103 send_code(s, END_BLOCK, ltree);
1104 }
1105
1106 /* ===========================================================================
1107 * Check if the data type is TEXT or BINARY, using the following algorithm:
1108 * - TEXT if the two conditions below are satisfied:
1109 * a) There are no non-portable control characters belonging to the
1110 * "black list" (0..6, 14..25, 28..31).
1111 * b) There is at least one printable character belonging to the
1112 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1113 * - BINARY otherwise.
1114 * - The following partially-portable control characters form a
1115 * "gray list" that is ignored in this detection algorithm:
1116 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1117 * IN assertion: the fields Freq of dyn_ltree are set.
1118 */
1119 local int detect_data_type(s)
1120 deflate_state *s;
1121 {
1122 /* black_mask is the bit mask of black-listed bytes
1123 * set bits 0..6, 14..25, and 28..31
1124 * 0xf3ffc07f = binary 11110011111111111100000001111111
1125 */
1126 unsigned long black_mask = 0xf3ffc07fUL;
1127 int n;
1128
1129 /* Check for non-textual ("black-listed") bytes. */
1130 for (n = 0; n <= 31; n++, black_mask >>= 1)
1131 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1132 return Z_BINARY;
1133
1134 /* Check for textual ("white-listed") bytes. */
1135 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1136 || s->dyn_ltree[13].Freq != 0)
1137 return Z_TEXT;
1138 for (n = 32; n < LITERALS; n++)
1139 if (s->dyn_ltree[n].Freq != 0)
1140 return Z_TEXT;
1141
1142 /* There are no "black-listed" or "white-listed" bytes:
1143 * this stream either is empty or has tolerated ("gray-listed") bytes only.
1144 */
1145 return Z_BINARY;
1146 }
1147
1148 /* ===========================================================================
1149 * Reverse the first len bits of a code, using straightforward code (a faster
1150 * method would use a table)
1151 * IN assertion: 1 <= len <= 15
1152 */
1153 local unsigned bi_reverse(code, len)
1154 unsigned code; /* the value to invert */
1155 int len; /* its bit length */
1156 {
1157 register unsigned res = 0;
1158 do {
1159 res |= code & 1;
1160 code >>= 1, res <<= 1;
1161 } while (--len > 0);
1162 return res >> 1;
1163 }
1164
1165 /* ===========================================================================
1166 * Flush the bit buffer, keeping at most 7 bits in it.
1167 */
1168 local void bi_flush(s)
1169 deflate_state *s;
1170 {
1171 if (s->bi_valid == 16) {
1172 put_short(s, s->bi_buf);
1173 s->bi_buf = 0;
1174 s->bi_valid = 0;
1175 } else if (s->bi_valid >= 8) {
1176 put_byte(s, (Byte)s->bi_buf);
1177 s->bi_buf >>= 8;
1178 s->bi_valid -= 8;
1179 }
1180 }
1181
1182 /* ===========================================================================
1183 * Flush the bit buffer and align the output on a byte boundary
1184 */
1185 local void bi_windup(s)
1186 deflate_state *s;
1187 {
1188 if (s->bi_valid > 8) {
1189 put_short(s, s->bi_buf);
1190 } else if (s->bi_valid > 0) {
1191 put_byte(s, (Byte)s->bi_buf);
1192 }
1193 s->bi_buf = 0;
1194 s->bi_valid = 0;
1195 #ifdef DEBUG
1196 s->bits_sent = (s->bits_sent+7) & ~7;
1197 #endif
1198 }
1199
1200 /* ===========================================================================
1201 * Copy a stored block, storing first the length and its
1202 * one's complement if requested.
1203 */
1204 local void copy_block(s, buf, len, header)
1205 deflate_state *s;
1206 charf *buf; /* the input data */
1207 unsigned len; /* its length */
1208 int header; /* true if block header must be written */
1209 {
1210 bi_windup(s); /* align on byte boundary */
1211
1212 if (header) {
1213 put_short(s, (ush)len);
1214 put_short(s, (ush)~len);
1215 #ifdef DEBUG
1216 s->bits_sent += 2*16;
1217 #endif
1218 }
1219 #ifdef DEBUG
1220 s->bits_sent += (ulg)len<<3;
1221 #endif
1222 while (len--) {
1223 put_byte(s, *buf++);
1224 }
1225 }