Document domain parameter of wxTranslations::GetTranslatedString().
[wxWidgets.git] / src / zlib / deflate.c
1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2005 Jean-loup Gailly.
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50
51 #include "deflate.h"
52
53 const char deflate_copyright[] =
54 " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
55 /*
56 If you use the zlib library in a product, an acknowledgment is welcome
57 in the documentation of your product. If for some reason you cannot
58 include such an acknowledgment, I would appreciate that you keep this
59 copyright string in the executable of your product.
60 */
61
62 /* ===========================================================================
63 * Function prototypes.
64 */
65 typedef enum {
66 need_more, /* block not completed, need more input or more output */
67 block_done, /* block flush performed */
68 finish_started, /* finish started, need only more output at next deflate */
69 finish_done /* finish done, accept no more input or output */
70 } block_state;
71
72 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
73 /* Compression function. Returns the block state after the call. */
74
75 local void fill_window OF((deflate_state *s));
76 local block_state deflate_stored OF((deflate_state *s, int flush));
77 local block_state deflate_fast OF((deflate_state *s, int flush));
78 #ifndef FASTEST
79 local block_state deflate_slow OF((deflate_state *s, int flush));
80 #endif
81 local void lm_init OF((deflate_state *s));
82 local void putShortMSB OF((deflate_state *s, uInt b));
83 local void flush_pending OF((z_streamp strm));
84 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
85 #ifndef FASTEST
86 #ifdef ASMV
87 void match_init OF((void)); /* asm code initialization */
88 uInt longest_match OF((deflate_state *s, IPos cur_match));
89 #else
90 local uInt longest_match OF((deflate_state *s, IPos cur_match));
91 #endif
92 #endif
93 local uInt longest_match_fast OF((deflate_state *s, IPos cur_match));
94
95 #ifdef DEBUG
96 local void check_match OF((deflate_state *s, IPos start, IPos match,
97 int length));
98 #endif
99
100 /* ===========================================================================
101 * Local data
102 */
103
104 #define NIL 0
105 /* Tail of hash chains */
106
107 #ifndef TOO_FAR
108 # define TOO_FAR 4096
109 #endif
110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
111
112 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
113 /* Minimum amount of lookahead, except at the end of the input file.
114 * See deflate.c for comments about the MIN_MATCH+1.
115 */
116
117 /* Values for max_lazy_match, good_match and max_chain_length, depending on
118 * the desired pack level (0..9). The values given below have been tuned to
119 * exclude worst case performance for pathological files. Better values may be
120 * found for specific files.
121 */
122 typedef struct config_s {
123 ush good_length; /* reduce lazy search above this match length */
124 ush max_lazy; /* do not perform lazy search above this match length */
125 ush nice_length; /* quit search above this match length */
126 ush max_chain;
127 compress_func func;
128 } config;
129
130 #ifdef FASTEST
131 local const config configuration_table[2] = {
132 /* good lazy nice chain */
133 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
134 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
135 #else
136 local const config configuration_table[10] = {
137 /* good lazy nice chain */
138 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
139 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
140 /* 2 */ {4, 5, 16, 8, deflate_fast},
141 /* 3 */ {4, 6, 32, 32, deflate_fast},
142
143 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
144 /* 5 */ {8, 16, 32, 32, deflate_slow},
145 /* 6 */ {8, 16, 128, 128, deflate_slow},
146 /* 7 */ {8, 32, 128, 256, deflate_slow},
147 /* 8 */ {32, 128, 258, 1024, deflate_slow},
148 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
149 #endif
150
151 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
152 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
153 * meaning.
154 */
155
156 #define EQUAL 0
157 /* result of memcmp for equal strings */
158
159 #ifndef NO_DUMMY_DECL
160 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
161 #endif
162
163 /* ===========================================================================
164 * Update a hash value with the given input byte
165 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
166 * input characters, so that a running hash key can be computed from the
167 * previous key instead of complete recalculation each time.
168 */
169 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
170
171
172 /* ===========================================================================
173 * Insert string str in the dictionary and set match_head to the previous head
174 * of the hash chain (the most recent string with same hash key). Return
175 * the previous length of the hash chain.
176 * If this file is compiled with -DFASTEST, the compression level is forced
177 * to 1, and no hash chains are maintained.
178 * IN assertion: all calls to to INSERT_STRING are made with consecutive
179 * input characters and the first MIN_MATCH bytes of str are valid
180 * (except for the last MIN_MATCH-1 bytes of the input file).
181 */
182 #ifdef FASTEST
183 #define INSERT_STRING(s, str, match_head) \
184 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
185 match_head = s->head[s->ins_h], \
186 s->head[s->ins_h] = (Pos)(str))
187 #else
188 #define INSERT_STRING(s, str, match_head) \
189 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
190 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
191 s->head[s->ins_h] = (Pos)(str))
192 #endif
193
194 /* ===========================================================================
195 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
196 * prev[] will be initialized on the fly.
197 */
198 #define CLEAR_HASH(s) \
199 s->head[s->hash_size-1] = NIL; \
200 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
201
202 /* ========================================================================= */
203 int ZEXPORT deflateInit_(strm, level, version, stream_size)
204 z_streamp strm;
205 int level;
206 const char *version;
207 int stream_size;
208 {
209 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
210 Z_DEFAULT_STRATEGY, version, stream_size);
211 /* To do: ignore strm->next_in if we use it as window */
212 }
213
214 /* ========================================================================= */
215 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
216 version, stream_size)
217 z_streamp strm;
218 int level;
219 int method;
220 int windowBits;
221 int memLevel;
222 int strategy;
223 const char *version;
224 int stream_size;
225 {
226 deflate_state *s;
227 int wrap = 1;
228 static const char my_version[] = ZLIB_VERSION;
229
230 ushf *overlay;
231 /* We overlay pending_buf and d_buf+l_buf. This works since the average
232 * output size for (length,distance) codes is <= 24 bits.
233 */
234
235 if (version == Z_NULL || version[0] != my_version[0] ||
236 stream_size != sizeof(z_stream)) {
237 return Z_VERSION_ERROR;
238 }
239 if (strm == Z_NULL) return Z_STREAM_ERROR;
240
241 strm->msg = Z_NULL;
242 if (strm->zalloc == (alloc_func)0) {
243 strm->zalloc = zcalloc;
244 strm->opaque = (voidpf)0;
245 }
246 if (strm->zfree == (free_func)0) strm->zfree = zcfree;
247
248 #ifdef FASTEST
249 if (level != 0) level = 1;
250 #else
251 if (level == Z_DEFAULT_COMPRESSION) level = 6;
252 #endif
253
254 if (windowBits < 0) { /* suppress zlib wrapper */
255 wrap = 0;
256 windowBits = -windowBits;
257 }
258 #ifdef GZIP
259 else if (windowBits > 15) {
260 wrap = 2; /* write gzip wrapper instead */
261 windowBits -= 16;
262 }
263 #endif
264 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
265 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
266 strategy < 0 || strategy > Z_FIXED) {
267 return Z_STREAM_ERROR;
268 }
269 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
270 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
271 if (s == Z_NULL) return Z_MEM_ERROR;
272 strm->state = (struct internal_state FAR *)s;
273 s->strm = strm;
274
275 s->wrap = wrap;
276 s->gzhead = Z_NULL;
277 s->w_bits = windowBits;
278 s->w_size = 1 << s->w_bits;
279 s->w_mask = s->w_size - 1;
280
281 s->hash_bits = memLevel + 7;
282 s->hash_size = 1 << s->hash_bits;
283 s->hash_mask = s->hash_size - 1;
284 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
285
286 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
287 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
288 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
289
290 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
291
292 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
293 s->pending_buf = (uchf *) overlay;
294 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
295
296 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
297 s->pending_buf == Z_NULL) {
298 s->status = FINISH_STATE;
299 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
300 deflateEnd (strm);
301 return Z_MEM_ERROR;
302 }
303 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
304 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
305
306 s->level = level;
307 s->strategy = strategy;
308 s->method = (Byte)method;
309
310 return deflateReset(strm);
311 }
312
313 /* ========================================================================= */
314 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
315 z_streamp strm;
316 const Bytef *dictionary;
317 uInt dictLength;
318 {
319 deflate_state *s;
320 uInt length = dictLength;
321 uInt n;
322 IPos hash_head = 0;
323
324 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
325 strm->state->wrap == 2 ||
326 (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
327 return Z_STREAM_ERROR;
328
329 s = strm->state;
330 if (s->wrap)
331 strm->adler = adler32(strm->adler, dictionary, dictLength);
332
333 if (length < MIN_MATCH) return Z_OK;
334 if (length > MAX_DIST(s)) {
335 length = MAX_DIST(s);
336 dictionary += dictLength - length; /* use the tail of the dictionary */
337 }
338 zmemcpy(s->window, dictionary, length);
339 s->strstart = length;
340 s->block_start = (long)length;
341
342 /* Insert all strings in the hash table (except for the last two bytes).
343 * s->lookahead stays null, so s->ins_h will be recomputed at the next
344 * call of fill_window.
345 */
346 s->ins_h = s->window[0];
347 UPDATE_HASH(s, s->ins_h, s->window[1]);
348 for (n = 0; n <= length - MIN_MATCH; n++) {
349 INSERT_STRING(s, n, hash_head);
350 }
351 if (hash_head) hash_head = 0; /* to make compiler happy */
352 return Z_OK;
353 }
354
355 /* ========================================================================= */
356 int ZEXPORT deflateReset (strm)
357 z_streamp strm;
358 {
359 deflate_state *s;
360
361 if (strm == Z_NULL || strm->state == Z_NULL ||
362 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
363 return Z_STREAM_ERROR;
364 }
365
366 strm->total_in = strm->total_out = 0;
367 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
368 strm->data_type = Z_UNKNOWN;
369
370 s = (deflate_state *)strm->state;
371 s->pending = 0;
372 s->pending_out = s->pending_buf;
373
374 if (s->wrap < 0) {
375 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
376 }
377 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
378 strm->adler =
379 #ifdef GZIP
380 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
381 #endif
382 adler32(0L, Z_NULL, 0);
383 s->last_flush = Z_NO_FLUSH;
384
385 _tr_init(s);
386 lm_init(s);
387
388 return Z_OK;
389 }
390
391 /* ========================================================================= */
392 int ZEXPORT deflateSetHeader (strm, head)
393 z_streamp strm;
394 gz_headerp head;
395 {
396 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
397 if (strm->state->wrap != 2) return Z_STREAM_ERROR;
398 strm->state->gzhead = head;
399 return Z_OK;
400 }
401
402 /* ========================================================================= */
403 int ZEXPORT deflatePrime (strm, bits, value)
404 z_streamp strm;
405 int bits;
406 int value;
407 {
408 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
409 strm->state->bi_valid = bits;
410 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
411 return Z_OK;
412 }
413
414 /* ========================================================================= */
415 int ZEXPORT deflateParams(strm, level, strategy)
416 z_streamp strm;
417 int level;
418 int strategy;
419 {
420 deflate_state *s;
421 compress_func func;
422 int err = Z_OK;
423
424 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
425 s = strm->state;
426
427 #ifdef FASTEST
428 if (level != 0) level = 1;
429 #else
430 if (level == Z_DEFAULT_COMPRESSION) level = 6;
431 #endif
432 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
433 return Z_STREAM_ERROR;
434 }
435 func = configuration_table[s->level].func;
436
437 if (func != configuration_table[level].func && strm->total_in != 0) {
438 /* Flush the last buffer: */
439 err = deflate(strm, Z_PARTIAL_FLUSH);
440 }
441 if (s->level != level) {
442 s->level = level;
443 s->max_lazy_match = configuration_table[level].max_lazy;
444 s->good_match = configuration_table[level].good_length;
445 s->nice_match = configuration_table[level].nice_length;
446 s->max_chain_length = configuration_table[level].max_chain;
447 }
448 s->strategy = strategy;
449 return err;
450 }
451
452 /* ========================================================================= */
453 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
454 z_streamp strm;
455 int good_length;
456 int max_lazy;
457 int nice_length;
458 int max_chain;
459 {
460 deflate_state *s;
461
462 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
463 s = strm->state;
464 s->good_match = good_length;
465 s->max_lazy_match = max_lazy;
466 s->nice_match = nice_length;
467 s->max_chain_length = max_chain;
468 return Z_OK;
469 }
470
471 /* =========================================================================
472 * For the default windowBits of 15 and memLevel of 8, this function returns
473 * a close to exact, as well as small, upper bound on the compressed size.
474 * They are coded as constants here for a reason--if the #define's are
475 * changed, then this function needs to be changed as well. The return
476 * value for 15 and 8 only works for those exact settings.
477 *
478 * For any setting other than those defaults for windowBits and memLevel,
479 * the value returned is a conservative worst case for the maximum expansion
480 * resulting from using fixed blocks instead of stored blocks, which deflate
481 * can emit on compressed data for some combinations of the parameters.
482 *
483 * This function could be more sophisticated to provide closer upper bounds
484 * for every combination of windowBits and memLevel, as well as wrap.
485 * But even the conservative upper bound of about 14% expansion does not
486 * seem onerous for output buffer allocation.
487 */
488 uLong ZEXPORT deflateBound(strm, sourceLen)
489 z_streamp strm;
490 uLong sourceLen;
491 {
492 deflate_state *s;
493 uLong destLen;
494
495 /* conservative upper bound */
496 destLen = sourceLen +
497 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11;
498
499 /* if can't get parameters, return conservative bound */
500 if (strm == Z_NULL || strm->state == Z_NULL)
501 return destLen;
502
503 /* if not default parameters, return conservative bound */
504 s = strm->state;
505 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
506 return destLen;
507
508 /* default settings: return tight bound for that case */
509 return compressBound(sourceLen);
510 }
511
512 /* =========================================================================
513 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
514 * IN assertion: the stream state is correct and there is enough room in
515 * pending_buf.
516 */
517 local void putShortMSB (s, b)
518 deflate_state *s;
519 uInt b;
520 {
521 put_byte(s, (Byte)(b >> 8));
522 put_byte(s, (Byte)(b & 0xff));
523 }
524
525 /* =========================================================================
526 * Flush as much pending output as possible. All deflate() output goes
527 * through this function so some applications may wish to modify it
528 * to avoid allocating a large strm->next_out buffer and copying into it.
529 * (See also read_buf()).
530 */
531 local void flush_pending(strm)
532 z_streamp strm;
533 {
534 unsigned len = strm->state->pending;
535
536 if (len > strm->avail_out) len = strm->avail_out;
537 if (len == 0) return;
538
539 zmemcpy(strm->next_out, strm->state->pending_out, len);
540 strm->next_out += len;
541 strm->state->pending_out += len;
542 strm->total_out += len;
543 strm->avail_out -= len;
544 strm->state->pending -= len;
545 if (strm->state->pending == 0) {
546 strm->state->pending_out = strm->state->pending_buf;
547 }
548 }
549
550 /* ========================================================================= */
551 int ZEXPORT deflate (strm, flush)
552 z_streamp strm;
553 int flush;
554 {
555 int old_flush; /* value of flush param for previous deflate call */
556 deflate_state *s;
557
558 if (strm == Z_NULL || strm->state == Z_NULL ||
559 flush > Z_FINISH || flush < 0) {
560 return Z_STREAM_ERROR;
561 }
562 s = strm->state;
563
564 if (strm->next_out == Z_NULL ||
565 (strm->next_in == Z_NULL && strm->avail_in != 0) ||
566 (s->status == FINISH_STATE && flush != Z_FINISH)) {
567 ERR_RETURN(strm, Z_STREAM_ERROR);
568 }
569 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
570
571 s->strm = strm; /* just in case */
572 old_flush = s->last_flush;
573 s->last_flush = flush;
574
575 /* Write the header */
576 if (s->status == INIT_STATE) {
577 #ifdef GZIP
578 if (s->wrap == 2) {
579 strm->adler = crc32(0L, Z_NULL, 0);
580 put_byte(s, 31);
581 put_byte(s, 139);
582 put_byte(s, 8);
583 if (s->gzhead == NULL) {
584 put_byte(s, 0);
585 put_byte(s, 0);
586 put_byte(s, 0);
587 put_byte(s, 0);
588 put_byte(s, 0);
589 put_byte(s, s->level == 9 ? 2 :
590 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
591 4 : 0));
592 put_byte(s, OS_CODE);
593 s->status = BUSY_STATE;
594 }
595 else {
596 put_byte(s, (s->gzhead->text ? 1 : 0) +
597 (s->gzhead->hcrc ? 2 : 0) +
598 (s->gzhead->extra == Z_NULL ? 0 : 4) +
599 (s->gzhead->name == Z_NULL ? 0 : 8) +
600 (s->gzhead->comment == Z_NULL ? 0 : 16)
601 );
602 put_byte(s, (Byte)(s->gzhead->time & 0xff));
603 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
604 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
605 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
606 put_byte(s, s->level == 9 ? 2 :
607 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
608 4 : 0));
609 put_byte(s, s->gzhead->os & 0xff);
610 if (s->gzhead->extra != NULL) {
611 put_byte(s, s->gzhead->extra_len & 0xff);
612 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
613 }
614 if (s->gzhead->hcrc)
615 strm->adler = crc32(strm->adler, s->pending_buf,
616 s->pending);
617 s->gzindex = 0;
618 s->status = EXTRA_STATE;
619 }
620 }
621 else
622 #endif
623 {
624 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
625 uInt level_flags;
626
627 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
628 level_flags = 0;
629 else if (s->level < 6)
630 level_flags = 1;
631 else if (s->level == 6)
632 level_flags = 2;
633 else
634 level_flags = 3;
635 header |= (level_flags << 6);
636 if (s->strstart != 0) header |= PRESET_DICT;
637 header += 31 - (header % 31);
638
639 s->status = BUSY_STATE;
640 putShortMSB(s, header);
641
642 /* Save the adler32 of the preset dictionary: */
643 if (s->strstart != 0) {
644 putShortMSB(s, (uInt)(strm->adler >> 16));
645 putShortMSB(s, (uInt)(strm->adler & 0xffff));
646 }
647 strm->adler = adler32(0L, Z_NULL, 0);
648 }
649 }
650 #ifdef GZIP
651 if (s->status == EXTRA_STATE) {
652 if (s->gzhead->extra != NULL) {
653 uInt beg = s->pending; /* start of bytes to update crc */
654
655 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
656 if (s->pending == s->pending_buf_size) {
657 if (s->gzhead->hcrc && s->pending > beg)
658 strm->adler = crc32(strm->adler, s->pending_buf + beg,
659 s->pending - beg);
660 flush_pending(strm);
661 beg = s->pending;
662 if (s->pending == s->pending_buf_size)
663 break;
664 }
665 put_byte(s, s->gzhead->extra[s->gzindex]);
666 s->gzindex++;
667 }
668 if (s->gzhead->hcrc && s->pending > beg)
669 strm->adler = crc32(strm->adler, s->pending_buf + beg,
670 s->pending - beg);
671 if (s->gzindex == s->gzhead->extra_len) {
672 s->gzindex = 0;
673 s->status = NAME_STATE;
674 }
675 }
676 else
677 s->status = NAME_STATE;
678 }
679 if (s->status == NAME_STATE) {
680 if (s->gzhead->name != NULL) {
681 uInt beg = s->pending; /* start of bytes to update crc */
682 int val;
683
684 do {
685 if (s->pending == s->pending_buf_size) {
686 if (s->gzhead->hcrc && s->pending > beg)
687 strm->adler = crc32(strm->adler, s->pending_buf + beg,
688 s->pending - beg);
689 flush_pending(strm);
690 beg = s->pending;
691 if (s->pending == s->pending_buf_size) {
692 val = 1;
693 break;
694 }
695 }
696 val = s->gzhead->name[s->gzindex++];
697 put_byte(s, val);
698 } while (val != 0);
699 if (s->gzhead->hcrc && s->pending > beg)
700 strm->adler = crc32(strm->adler, s->pending_buf + beg,
701 s->pending - beg);
702 if (val == 0) {
703 s->gzindex = 0;
704 s->status = COMMENT_STATE;
705 }
706 }
707 else
708 s->status = COMMENT_STATE;
709 }
710 if (s->status == COMMENT_STATE) {
711 if (s->gzhead->comment != NULL) {
712 uInt beg = s->pending; /* start of bytes to update crc */
713 int val;
714
715 do {
716 if (s->pending == s->pending_buf_size) {
717 if (s->gzhead->hcrc && s->pending > beg)
718 strm->adler = crc32(strm->adler, s->pending_buf + beg,
719 s->pending - beg);
720 flush_pending(strm);
721 beg = s->pending;
722 if (s->pending == s->pending_buf_size) {
723 val = 1;
724 break;
725 }
726 }
727 val = s->gzhead->comment[s->gzindex++];
728 put_byte(s, val);
729 } while (val != 0);
730 if (s->gzhead->hcrc && s->pending > beg)
731 strm->adler = crc32(strm->adler, s->pending_buf + beg,
732 s->pending - beg);
733 if (val == 0)
734 s->status = HCRC_STATE;
735 }
736 else
737 s->status = HCRC_STATE;
738 }
739 if (s->status == HCRC_STATE) {
740 if (s->gzhead->hcrc) {
741 if (s->pending + 2 > s->pending_buf_size)
742 flush_pending(strm);
743 if (s->pending + 2 <= s->pending_buf_size) {
744 put_byte(s, (Byte)(strm->adler & 0xff));
745 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
746 strm->adler = crc32(0L, Z_NULL, 0);
747 s->status = BUSY_STATE;
748 }
749 }
750 else
751 s->status = BUSY_STATE;
752 }
753 #endif
754
755 /* Flush as much pending output as possible */
756 if (s->pending != 0) {
757 flush_pending(strm);
758 if (strm->avail_out == 0) {
759 /* Since avail_out is 0, deflate will be called again with
760 * more output space, but possibly with both pending and
761 * avail_in equal to zero. There won't be anything to do,
762 * but this is not an error situation so make sure we
763 * return OK instead of BUF_ERROR at next call of deflate:
764 */
765 s->last_flush = -1;
766 return Z_OK;
767 }
768
769 /* Make sure there is something to do and avoid duplicate consecutive
770 * flushes. For repeated and useless calls with Z_FINISH, we keep
771 * returning Z_STREAM_END instead of Z_BUF_ERROR.
772 */
773 } else if (strm->avail_in == 0 && flush <= old_flush &&
774 flush != Z_FINISH) {
775 ERR_RETURN(strm, Z_BUF_ERROR);
776 }
777
778 /* User must not provide more input after the first FINISH: */
779 if (s->status == FINISH_STATE && strm->avail_in != 0) {
780 ERR_RETURN(strm, Z_BUF_ERROR);
781 }
782
783 /* Start a new block or continue the current one.
784 */
785 if (strm->avail_in != 0 || s->lookahead != 0 ||
786 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
787 block_state bstate;
788
789 bstate = (*(configuration_table[s->level].func))(s, flush);
790
791 if (bstate == finish_started || bstate == finish_done) {
792 s->status = FINISH_STATE;
793 }
794 if (bstate == need_more || bstate == finish_started) {
795 if (strm->avail_out == 0) {
796 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
797 }
798 return Z_OK;
799 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
800 * of deflate should use the same flush parameter to make sure
801 * that the flush is complete. So we don't have to output an
802 * empty block here, this will be done at next call. This also
803 * ensures that for a very small output buffer, we emit at most
804 * one empty block.
805 */
806 }
807 if (bstate == block_done) {
808 if (flush == Z_PARTIAL_FLUSH) {
809 _tr_align(s);
810 } else { /* FULL_FLUSH or SYNC_FLUSH */
811 _tr_stored_block(s, (char*)0, 0L, 0);
812 /* For a full flush, this empty block will be recognized
813 * as a special marker by inflate_sync().
814 */
815 if (flush == Z_FULL_FLUSH) {
816 CLEAR_HASH(s); /* forget history */
817 }
818 }
819 flush_pending(strm);
820 if (strm->avail_out == 0) {
821 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
822 return Z_OK;
823 }
824 }
825 }
826 Assert(strm->avail_out > 0, "bug2");
827
828 if (flush != Z_FINISH) return Z_OK;
829 if (s->wrap <= 0) return Z_STREAM_END;
830
831 /* Write the trailer */
832 #ifdef GZIP
833 if (s->wrap == 2) {
834 put_byte(s, (Byte)(strm->adler & 0xff));
835 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
836 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
837 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
838 put_byte(s, (Byte)(strm->total_in & 0xff));
839 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
840 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
841 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
842 }
843 else
844 #endif
845 {
846 putShortMSB(s, (uInt)(strm->adler >> 16));
847 putShortMSB(s, (uInt)(strm->adler & 0xffff));
848 }
849 flush_pending(strm);
850 /* If avail_out is zero, the application will call deflate again
851 * to flush the rest.
852 */
853 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
854 return s->pending != 0 ? Z_OK : Z_STREAM_END;
855 }
856
857 /* ========================================================================= */
858 int ZEXPORT deflateEnd (strm)
859 z_streamp strm;
860 {
861 int status;
862
863 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
864
865 status = strm->state->status;
866 if (status != INIT_STATE &&
867 status != EXTRA_STATE &&
868 status != NAME_STATE &&
869 status != COMMENT_STATE &&
870 status != HCRC_STATE &&
871 status != BUSY_STATE &&
872 status != FINISH_STATE) {
873 return Z_STREAM_ERROR;
874 }
875
876 /* Deallocate in reverse order of allocations: */
877 TRY_FREE(strm, strm->state->pending_buf);
878 TRY_FREE(strm, strm->state->head);
879 TRY_FREE(strm, strm->state->prev);
880 TRY_FREE(strm, strm->state->window);
881
882 ZFREE(strm, strm->state);
883 strm->state = Z_NULL;
884
885 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
886 }
887
888 /* =========================================================================
889 * Copy the source state to the destination state.
890 * To simplify the source, this is not supported for 16-bit MSDOS (which
891 * doesn't have enough memory anyway to duplicate compression states).
892 */
893 int ZEXPORT deflateCopy (dest, source)
894 z_streamp dest;
895 z_streamp source;
896 {
897 #ifdef MAXSEG_64K
898 return Z_STREAM_ERROR;
899 #else
900 deflate_state *ds;
901 deflate_state *ss;
902 ushf *overlay;
903
904
905 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
906 return Z_STREAM_ERROR;
907 }
908
909 ss = source->state;
910
911 zmemcpy(dest, source, sizeof(z_stream));
912
913 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
914 if (ds == Z_NULL) return Z_MEM_ERROR;
915 dest->state = (struct internal_state FAR *) ds;
916 zmemcpy(ds, ss, sizeof(deflate_state));
917 ds->strm = dest;
918
919 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
920 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
921 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
922 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
923 ds->pending_buf = (uchf *) overlay;
924
925 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
926 ds->pending_buf == Z_NULL) {
927 deflateEnd (dest);
928 return Z_MEM_ERROR;
929 }
930 /* following zmemcpy do not work for 16-bit MSDOS */
931 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
932 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
933 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
934 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
935
936 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
937 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
938 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
939
940 ds->l_desc.dyn_tree = ds->dyn_ltree;
941 ds->d_desc.dyn_tree = ds->dyn_dtree;
942 ds->bl_desc.dyn_tree = ds->bl_tree;
943
944 return Z_OK;
945 #endif /* MAXSEG_64K */
946 }
947
948 /* ===========================================================================
949 * Read a new buffer from the current input stream, update the adler32
950 * and total number of bytes read. All deflate() input goes through
951 * this function so some applications may wish to modify it to avoid
952 * allocating a large strm->next_in buffer and copying from it.
953 * (See also flush_pending()).
954 */
955 local int read_buf(strm, buf, size)
956 z_streamp strm;
957 Bytef *buf;
958 unsigned size;
959 {
960 unsigned len = strm->avail_in;
961
962 if (len > size) len = size;
963 if (len == 0) return 0;
964
965 strm->avail_in -= len;
966
967 if (strm->state->wrap == 1) {
968 strm->adler = adler32(strm->adler, strm->next_in, len);
969 }
970 #ifdef GZIP
971 else if (strm->state->wrap == 2) {
972 strm->adler = crc32(strm->adler, strm->next_in, len);
973 }
974 #endif
975 zmemcpy(buf, strm->next_in, len);
976 strm->next_in += len;
977 strm->total_in += len;
978
979 return (int)len;
980 }
981
982 /* ===========================================================================
983 * Initialize the "longest match" routines for a new zlib stream
984 */
985 local void lm_init (s)
986 deflate_state *s;
987 {
988 s->window_size = (ulg)2L*s->w_size;
989
990 CLEAR_HASH(s);
991
992 /* Set the default configuration parameters:
993 */
994 s->max_lazy_match = configuration_table[s->level].max_lazy;
995 s->good_match = configuration_table[s->level].good_length;
996 s->nice_match = configuration_table[s->level].nice_length;
997 s->max_chain_length = configuration_table[s->level].max_chain;
998
999 s->strstart = 0;
1000 s->block_start = 0L;
1001 s->lookahead = 0;
1002 s->match_length = s->prev_length = MIN_MATCH-1;
1003 s->match_available = 0;
1004 s->ins_h = 0;
1005 #ifndef FASTEST
1006 #ifdef ASMV
1007 match_init(); /* initialize the asm code */
1008 #endif
1009 #endif
1010 }
1011
1012 #ifndef FASTEST
1013 /* ===========================================================================
1014 * Set match_start to the longest match starting at the given string and
1015 * return its length. Matches shorter or equal to prev_length are discarded,
1016 * in which case the result is equal to prev_length and match_start is
1017 * garbage.
1018 * IN assertions: cur_match is the head of the hash chain for the current
1019 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1020 * OUT assertion: the match length is not greater than s->lookahead.
1021 */
1022 #ifndef ASMV
1023 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1024 * match.S. The code will be functionally equivalent.
1025 */
1026 local uInt longest_match(s, cur_match)
1027 deflate_state *s;
1028 IPos cur_match; /* current match */
1029 {
1030 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1031 register Bytef *scan = s->window + s->strstart; /* current string */
1032 register Bytef *match; /* matched string */
1033 register int len; /* length of current match */
1034 int best_len = s->prev_length; /* best match length so far */
1035 int nice_match = s->nice_match; /* stop if match long enough */
1036 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1037 s->strstart - (IPos)MAX_DIST(s) : NIL;
1038 /* Stop when cur_match becomes <= limit. To simplify the code,
1039 * we prevent matches with the string of window index 0.
1040 */
1041 Posf *prev = s->prev;
1042 uInt wmask = s->w_mask;
1043
1044 #ifdef UNALIGNED_OK
1045 /* Compare two bytes at a time. Note: this is not always beneficial.
1046 * Try with and without -DUNALIGNED_OK to check.
1047 */
1048 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1049 register ush scan_start = *(ushf*)scan;
1050 register ush scan_end = *(ushf*)(scan+best_len-1);
1051 #else
1052 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1053 register Byte scan_end1 = scan[best_len-1];
1054 register Byte scan_end = scan[best_len];
1055 #endif
1056
1057 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1058 * It is easy to get rid of this optimization if necessary.
1059 */
1060 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1061
1062 /* Do not waste too much time if we already have a good match: */
1063 if (s->prev_length >= s->good_match) {
1064 chain_length >>= 2;
1065 }
1066 /* Do not look for matches beyond the end of the input. This is necessary
1067 * to make deflate deterministic.
1068 */
1069 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1070
1071 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1072
1073 do {
1074 Assert(cur_match < s->strstart, "no future");
1075 match = s->window + cur_match;
1076
1077 /* Skip to next match if the match length cannot increase
1078 * or if the match length is less than 2. Note that the checks below
1079 * for insufficient lookahead only occur occasionally for performance
1080 * reasons. Therefore uninitialized memory will be accessed, and
1081 * conditional jumps will be made that depend on those values.
1082 * However the length of the match is limited to the lookahead, so
1083 * the output of deflate is not affected by the uninitialized values.
1084 */
1085 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1086 /* This code assumes sizeof(unsigned short) == 2. Do not use
1087 * UNALIGNED_OK if your compiler uses a different size.
1088 */
1089 if (*(ushf*)(match+best_len-1) != scan_end ||
1090 *(ushf*)match != scan_start) continue;
1091
1092 /* It is not necessary to compare scan[2] and match[2] since they are
1093 * always equal when the other bytes match, given that the hash keys
1094 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1095 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1096 * lookahead only every 4th comparison; the 128th check will be made
1097 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1098 * necessary to put more guard bytes at the end of the window, or
1099 * to check more often for insufficient lookahead.
1100 */
1101 Assert(scan[2] == match[2], "scan[2]?");
1102 scan++, match++;
1103 do {
1104 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1105 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1106 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1107 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1108 scan < strend);
1109 /* The funny "do {}" generates better code on most compilers */
1110
1111 /* Here, scan <= window+strstart+257 */
1112 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1113 if (*scan == *match) scan++;
1114
1115 len = (MAX_MATCH - 1) - (int)(strend-scan);
1116 scan = strend - (MAX_MATCH-1);
1117
1118 #else /* UNALIGNED_OK */
1119
1120 if (match[best_len] != scan_end ||
1121 match[best_len-1] != scan_end1 ||
1122 *match != *scan ||
1123 *++match != scan[1]) continue;
1124
1125 /* The check at best_len-1 can be removed because it will be made
1126 * again later. (This heuristic is not always a win.)
1127 * It is not necessary to compare scan[2] and match[2] since they
1128 * are always equal when the other bytes match, given that
1129 * the hash keys are equal and that HASH_BITS >= 8.
1130 */
1131 scan += 2, match++;
1132 Assert(*scan == *match, "match[2]?");
1133
1134 /* We check for insufficient lookahead only every 8th comparison;
1135 * the 256th check will be made at strstart+258.
1136 */
1137 do {
1138 } while (*++scan == *++match && *++scan == *++match &&
1139 *++scan == *++match && *++scan == *++match &&
1140 *++scan == *++match && *++scan == *++match &&
1141 *++scan == *++match && *++scan == *++match &&
1142 scan < strend);
1143
1144 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1145
1146 len = MAX_MATCH - (int)(strend - scan);
1147 scan = strend - MAX_MATCH;
1148
1149 #endif /* UNALIGNED_OK */
1150
1151 if (len > best_len) {
1152 s->match_start = cur_match;
1153 best_len = len;
1154 if (len >= nice_match) break;
1155 #ifdef UNALIGNED_OK
1156 scan_end = *(ushf*)(scan+best_len-1);
1157 #else
1158 scan_end1 = scan[best_len-1];
1159 scan_end = scan[best_len];
1160 #endif
1161 }
1162 } while ((cur_match = prev[cur_match & wmask]) > limit
1163 && --chain_length != 0);
1164
1165 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1166 return s->lookahead;
1167 }
1168 #endif /* ASMV */
1169 #endif /* FASTEST */
1170
1171 /* ---------------------------------------------------------------------------
1172 * Optimized version for level == 1 or strategy == Z_RLE only
1173 */
1174 local uInt longest_match_fast(s, cur_match)
1175 deflate_state *s;
1176 IPos cur_match; /* current match */
1177 {
1178 register Bytef *scan = s->window + s->strstart; /* current string */
1179 register Bytef *match; /* matched string */
1180 register int len; /* length of current match */
1181 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1182
1183 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1184 * It is easy to get rid of this optimization if necessary.
1185 */
1186 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1187
1188 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1189
1190 Assert(cur_match < s->strstart, "no future");
1191
1192 match = s->window + cur_match;
1193
1194 /* Return failure if the match length is less than 2:
1195 */
1196 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1197
1198 /* The check at best_len-1 can be removed because it will be made
1199 * again later. (This heuristic is not always a win.)
1200 * It is not necessary to compare scan[2] and match[2] since they
1201 * are always equal when the other bytes match, given that
1202 * the hash keys are equal and that HASH_BITS >= 8.
1203 */
1204 scan += 2, match += 2;
1205 Assert(*scan == *match, "match[2]?");
1206
1207 /* We check for insufficient lookahead only every 8th comparison;
1208 * the 256th check will be made at strstart+258.
1209 */
1210 do {
1211 } while (*++scan == *++match && *++scan == *++match &&
1212 *++scan == *++match && *++scan == *++match &&
1213 *++scan == *++match && *++scan == *++match &&
1214 *++scan == *++match && *++scan == *++match &&
1215 scan < strend);
1216
1217 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1218
1219 len = MAX_MATCH - (int)(strend - scan);
1220
1221 if (len < MIN_MATCH) return MIN_MATCH - 1;
1222
1223 s->match_start = cur_match;
1224 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1225 }
1226
1227 #ifdef DEBUG
1228 /* ===========================================================================
1229 * Check that the match at match_start is indeed a match.
1230 */
1231 local void check_match(s, start, match, length)
1232 deflate_state *s;
1233 IPos start, match;
1234 int length;
1235 {
1236 /* check that the match is indeed a match */
1237 if (zmemcmp(s->window + match,
1238 s->window + start, length) != EQUAL) {
1239 fprintf(stderr, " start %u, match %u, length %d\n",
1240 start, match, length);
1241 do {
1242 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1243 } while (--length != 0);
1244 z_error("invalid match");
1245 }
1246 if (z_verbose > 1) {
1247 fprintf(stderr,"\\[%d,%d]", start-match, length);
1248 do { putc(s->window[start++], stderr); } while (--length != 0);
1249 }
1250 }
1251 #else
1252 # define check_match(s, start, match, length)
1253 #endif /* DEBUG */
1254
1255 /* ===========================================================================
1256 * Fill the window when the lookahead becomes insufficient.
1257 * Updates strstart and lookahead.
1258 *
1259 * IN assertion: lookahead < MIN_LOOKAHEAD
1260 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1261 * At least one byte has been read, or avail_in == 0; reads are
1262 * performed for at least two bytes (required for the zip translate_eol
1263 * option -- not supported here).
1264 */
1265 local void fill_window(s)
1266 deflate_state *s;
1267 {
1268 register unsigned n, m;
1269 register Posf *p;
1270 unsigned more; /* Amount of free space at the end of the window. */
1271 uInt wsize = s->w_size;
1272
1273 do {
1274 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1275
1276 /* Deal with !@#$% 64K limit: */
1277 if (sizeof(int) <= 2) {
1278 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1279 more = wsize;
1280
1281 } else if (more == (unsigned)(-1)) {
1282 /* Very unlikely, but possible on 16 bit machine if
1283 * strstart == 0 && lookahead == 1 (input done a byte at time)
1284 */
1285 more--;
1286 }
1287 }
1288
1289 /* If the window is almost full and there is insufficient lookahead,
1290 * move the upper half to the lower one to make room in the upper half.
1291 */
1292 if (s->strstart >= wsize+MAX_DIST(s)) {
1293
1294 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1295 s->match_start -= wsize;
1296 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1297 s->block_start -= (long) wsize;
1298
1299 /* Slide the hash table (could be avoided with 32 bit values
1300 at the expense of memory usage). We slide even when level == 0
1301 to keep the hash table consistent if we switch back to level > 0
1302 later. (Using level 0 permanently is not an optimal usage of
1303 zlib, so we don't care about this pathological case.)
1304 */
1305 /* %%% avoid this when Z_RLE */
1306 n = s->hash_size;
1307 p = &s->head[n];
1308 do {
1309 m = *--p;
1310 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1311 } while (--n);
1312
1313 n = wsize;
1314 #ifndef FASTEST
1315 p = &s->prev[n];
1316 do {
1317 m = *--p;
1318 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1319 /* If n is not on any hash chain, prev[n] is garbage but
1320 * its value will never be used.
1321 */
1322 } while (--n);
1323 #endif
1324 more += wsize;
1325 }
1326 if (s->strm->avail_in == 0) return;
1327
1328 /* If there was no sliding:
1329 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1330 * more == window_size - lookahead - strstart
1331 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1332 * => more >= window_size - 2*WSIZE + 2
1333 * In the BIG_MEM or MMAP case (not yet supported),
1334 * window_size == input_size + MIN_LOOKAHEAD &&
1335 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1336 * Otherwise, window_size == 2*WSIZE so more >= 2.
1337 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1338 */
1339 Assert(more >= 2, "more < 2");
1340
1341 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1342 s->lookahead += n;
1343
1344 /* Initialize the hash value now that we have some input: */
1345 if (s->lookahead >= MIN_MATCH) {
1346 s->ins_h = s->window[s->strstart];
1347 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1348 #if MIN_MATCH != 3
1349 Call UPDATE_HASH() MIN_MATCH-3 more times
1350 #endif
1351 }
1352 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1353 * but this is not important since only literal bytes will be emitted.
1354 */
1355
1356 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1357 }
1358
1359 /* ===========================================================================
1360 * Flush the current block, with given end-of-file flag.
1361 * IN assertion: strstart is set to the end of the current match.
1362 */
1363 #define FLUSH_BLOCK_ONLY(s, eof) { \
1364 _tr_flush_block(s, (s->block_start >= 0L ? \
1365 (charf *)&s->window[(unsigned)s->block_start] : \
1366 (charf *)Z_NULL), \
1367 (ulg)((long)s->strstart - s->block_start), \
1368 (eof)); \
1369 s->block_start = s->strstart; \
1370 flush_pending(s->strm); \
1371 Tracev((stderr,"[FLUSH]")); \
1372 }
1373
1374 /* Same but force premature exit if necessary. */
1375 #define FLUSH_BLOCK(s, eof) { \
1376 FLUSH_BLOCK_ONLY(s, eof); \
1377 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1378 }
1379
1380 /* ===========================================================================
1381 * Copy without compression as much as possible from the input stream, return
1382 * the current block state.
1383 * This function does not insert new strings in the dictionary since
1384 * uncompressible data is probably not useful. This function is used
1385 * only for the level=0 compression option.
1386 * NOTE: this function should be optimized to avoid extra copying from
1387 * window to pending_buf.
1388 */
1389 local block_state deflate_stored(s, flush)
1390 deflate_state *s;
1391 int flush;
1392 {
1393 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1394 * to pending_buf_size, and each stored block has a 5 byte header:
1395 */
1396 ulg max_block_size = 0xffff;
1397 ulg max_start;
1398
1399 if (max_block_size > s->pending_buf_size - 5) {
1400 max_block_size = s->pending_buf_size - 5;
1401 }
1402
1403 /* Copy as much as possible from input to output: */
1404 for (;;) {
1405 /* Fill the window as much as possible: */
1406 if (s->lookahead <= 1) {
1407
1408 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1409 s->block_start >= (long)s->w_size, "slide too late");
1410
1411 fill_window(s);
1412 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1413
1414 if (s->lookahead == 0) break; /* flush the current block */
1415 }
1416 Assert(s->block_start >= 0L, "block gone");
1417
1418 s->strstart += s->lookahead;
1419 s->lookahead = 0;
1420
1421 /* Emit a stored block if pending_buf will be full: */
1422 max_start = s->block_start + max_block_size;
1423 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1424 /* strstart == 0 is possible when wraparound on 16-bit machine */
1425 s->lookahead = (uInt)(s->strstart - max_start);
1426 s->strstart = (uInt)max_start;
1427 FLUSH_BLOCK(s, 0);
1428 }
1429 /* Flush if we may have to slide, otherwise block_start may become
1430 * negative and the data will be gone:
1431 */
1432 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1433 FLUSH_BLOCK(s, 0);
1434 }
1435 }
1436 FLUSH_BLOCK(s, flush == Z_FINISH);
1437 return flush == Z_FINISH ? finish_done : block_done;
1438 }
1439
1440 /* ===========================================================================
1441 * Compress as much as possible from the input stream, return the current
1442 * block state.
1443 * This function does not perform lazy evaluation of matches and inserts
1444 * new strings in the dictionary only for unmatched strings or for short
1445 * matches. It is used only for the fast compression options.
1446 */
1447 local block_state deflate_fast(s, flush)
1448 deflate_state *s;
1449 int flush;
1450 {
1451 IPos hash_head = NIL; /* head of the hash chain */
1452 int bflush; /* set if current block must be flushed */
1453
1454 for (;;) {
1455 /* Make sure that we always have enough lookahead, except
1456 * at the end of the input file. We need MAX_MATCH bytes
1457 * for the next match, plus MIN_MATCH bytes to insert the
1458 * string following the next match.
1459 */
1460 if (s->lookahead < MIN_LOOKAHEAD) {
1461 fill_window(s);
1462 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1463 return need_more;
1464 }
1465 if (s->lookahead == 0) break; /* flush the current block */
1466 }
1467
1468 /* Insert the string window[strstart .. strstart+2] in the
1469 * dictionary, and set hash_head to the head of the hash chain:
1470 */
1471 if (s->lookahead >= MIN_MATCH) {
1472 INSERT_STRING(s, s->strstart, hash_head);
1473 }
1474
1475 /* Find the longest match, discarding those <= prev_length.
1476 * At this point we have always match_length < MIN_MATCH
1477 */
1478 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1479 /* To simplify the code, we prevent matches with the string
1480 * of window index 0 (in particular we have to avoid a match
1481 * of the string with itself at the start of the input file).
1482 */
1483 #ifdef FASTEST
1484 if ((s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) ||
1485 (s->strategy == Z_RLE && s->strstart - hash_head == 1)) {
1486 s->match_length = longest_match_fast (s, hash_head);
1487 }
1488 #else
1489 if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
1490 s->match_length = longest_match (s, hash_head);
1491 } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1492 s->match_length = longest_match_fast (s, hash_head);
1493 }
1494 #endif
1495 /* longest_match() or longest_match_fast() sets match_start */
1496 }
1497 if (s->match_length >= MIN_MATCH) {
1498 check_match(s, s->strstart, s->match_start, s->match_length);
1499
1500 _tr_tally_dist(s, s->strstart - s->match_start,
1501 s->match_length - MIN_MATCH, bflush);
1502
1503 s->lookahead -= s->match_length;
1504
1505 /* Insert new strings in the hash table only if the match length
1506 * is not too large. This saves time but degrades compression.
1507 */
1508 #ifndef FASTEST
1509 if (s->match_length <= s->max_insert_length &&
1510 s->lookahead >= MIN_MATCH) {
1511 s->match_length--; /* string at strstart already in table */
1512 do {
1513 s->strstart++;
1514 INSERT_STRING(s, s->strstart, hash_head);
1515 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1516 * always MIN_MATCH bytes ahead.
1517 */
1518 } while (--s->match_length != 0);
1519 s->strstart++;
1520 } else
1521 #endif
1522 {
1523 s->strstart += s->match_length;
1524 s->match_length = 0;
1525 s->ins_h = s->window[s->strstart];
1526 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1527 #if MIN_MATCH != 3
1528 Call UPDATE_HASH() MIN_MATCH-3 more times
1529 #endif
1530 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1531 * matter since it will be recomputed at next deflate call.
1532 */
1533 }
1534 } else {
1535 /* No match, output a literal byte */
1536 Tracevv((stderr,"%c", s->window[s->strstart]));
1537 _tr_tally_lit (s, s->window[s->strstart], bflush);
1538 s->lookahead--;
1539 s->strstart++;
1540 }
1541 if (bflush) FLUSH_BLOCK(s, 0);
1542 }
1543 FLUSH_BLOCK(s, flush == Z_FINISH);
1544 return flush == Z_FINISH ? finish_done : block_done;
1545 }
1546
1547 #ifndef FASTEST
1548 /* ===========================================================================
1549 * Same as above, but achieves better compression. We use a lazy
1550 * evaluation for matches: a match is finally adopted only if there is
1551 * no better match at the next window position.
1552 */
1553 local block_state deflate_slow(s, flush)
1554 deflate_state *s;
1555 int flush;
1556 {
1557 IPos hash_head = NIL; /* head of hash chain */
1558 int bflush; /* set if current block must be flushed */
1559
1560 /* Process the input block. */
1561 for (;;) {
1562 /* Make sure that we always have enough lookahead, except
1563 * at the end of the input file. We need MAX_MATCH bytes
1564 * for the next match, plus MIN_MATCH bytes to insert the
1565 * string following the next match.
1566 */
1567 if (s->lookahead < MIN_LOOKAHEAD) {
1568 fill_window(s);
1569 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1570 return need_more;
1571 }
1572 if (s->lookahead == 0) break; /* flush the current block */
1573 }
1574
1575 /* Insert the string window[strstart .. strstart+2] in the
1576 * dictionary, and set hash_head to the head of the hash chain:
1577 */
1578 if (s->lookahead >= MIN_MATCH) {
1579 INSERT_STRING(s, s->strstart, hash_head);
1580 }
1581
1582 /* Find the longest match, discarding those <= prev_length.
1583 */
1584 s->prev_length = s->match_length, s->prev_match = s->match_start;
1585 s->match_length = MIN_MATCH-1;
1586
1587 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1588 s->strstart - hash_head <= MAX_DIST(s)) {
1589 /* To simplify the code, we prevent matches with the string
1590 * of window index 0 (in particular we have to avoid a match
1591 * of the string with itself at the start of the input file).
1592 */
1593 if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
1594 s->match_length = longest_match (s, hash_head);
1595 } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1596 s->match_length = longest_match_fast (s, hash_head);
1597 }
1598 /* longest_match() or longest_match_fast() sets match_start */
1599
1600 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1601 #if TOO_FAR <= 32767
1602 || (s->match_length == MIN_MATCH &&
1603 s->strstart - s->match_start > TOO_FAR)
1604 #endif
1605 )) {
1606
1607 /* If prev_match is also MIN_MATCH, match_start is garbage
1608 * but we will ignore the current match anyway.
1609 */
1610 s->match_length = MIN_MATCH-1;
1611 }
1612 }
1613 /* If there was a match at the previous step and the current
1614 * match is not better, output the previous match:
1615 */
1616 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1617 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1618 /* Do not insert strings in hash table beyond this. */
1619
1620 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1621
1622 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1623 s->prev_length - MIN_MATCH, bflush);
1624
1625 /* Insert in hash table all strings up to the end of the match.
1626 * strstart-1 and strstart are already inserted. If there is not
1627 * enough lookahead, the last two strings are not inserted in
1628 * the hash table.
1629 */
1630 s->lookahead -= s->prev_length-1;
1631 s->prev_length -= 2;
1632 do {
1633 if (++s->strstart <= max_insert) {
1634 INSERT_STRING(s, s->strstart, hash_head);
1635 }
1636 } while (--s->prev_length != 0);
1637 s->match_available = 0;
1638 s->match_length = MIN_MATCH-1;
1639 s->strstart++;
1640
1641 if (bflush) FLUSH_BLOCK(s, 0);
1642
1643 } else if (s->match_available) {
1644 /* If there was no match at the previous position, output a
1645 * single literal. If there was a match but the current match
1646 * is longer, truncate the previous match to a single literal.
1647 */
1648 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1649 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1650 if (bflush) {
1651 FLUSH_BLOCK_ONLY(s, 0);
1652 }
1653 s->strstart++;
1654 s->lookahead--;
1655 if (s->strm->avail_out == 0) return need_more;
1656 } else {
1657 /* There is no previous match to compare with, wait for
1658 * the next step to decide.
1659 */
1660 s->match_available = 1;
1661 s->strstart++;
1662 s->lookahead--;
1663 }
1664 }
1665 Assert (flush != Z_NO_FLUSH, "no flush?");
1666 if (s->match_available) {
1667 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1668 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1669 s->match_available = 0;
1670 }
1671 FLUSH_BLOCK(s, flush == Z_FINISH);
1672 return flush == Z_FINISH ? finish_done : block_done;
1673 }
1674 #endif /* FASTEST */
1675
1676 #if 0
1677 /* ===========================================================================
1678 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1679 * one. Do not maintain a hash table. (It will be regenerated if this run of
1680 * deflate switches away from Z_RLE.)
1681 */
1682 local block_state deflate_rle(s, flush)
1683 deflate_state *s;
1684 int flush;
1685 {
1686 int bflush; /* set if current block must be flushed */
1687 uInt run; /* length of run */
1688 uInt max; /* maximum length of run */
1689 uInt prev; /* byte at distance one to match */
1690 Bytef *scan; /* scan for end of run */
1691
1692 for (;;) {
1693 /* Make sure that we always have enough lookahead, except
1694 * at the end of the input file. We need MAX_MATCH bytes
1695 * for the longest encodable run.
1696 */
1697 if (s->lookahead < MAX_MATCH) {
1698 fill_window(s);
1699 if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1700 return need_more;
1701 }
1702 if (s->lookahead == 0) break; /* flush the current block */
1703 }
1704
1705 /* See how many times the previous byte repeats */
1706 run = 0;
1707 if (s->strstart > 0) { /* if there is a previous byte, that is */
1708 max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH;
1709 scan = s->window + s->strstart - 1;
1710 prev = *scan++;
1711 do {
1712 if (*scan++ != prev)
1713 break;
1714 } while (++run < max);
1715 }
1716
1717 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1718 if (run >= MIN_MATCH) {
1719 check_match(s, s->strstart, s->strstart - 1, run);
1720 _tr_tally_dist(s, 1, run - MIN_MATCH, bflush);
1721 s->lookahead -= run;
1722 s->strstart += run;
1723 } else {
1724 /* No match, output a literal byte */
1725 Tracevv((stderr,"%c", s->window[s->strstart]));
1726 _tr_tally_lit (s, s->window[s->strstart], bflush);
1727 s->lookahead--;
1728 s->strstart++;
1729 }
1730 if (bflush) FLUSH_BLOCK(s, 0);
1731 }
1732 FLUSH_BLOCK(s, flush == Z_FINISH);
1733 return flush == Z_FINISH ? finish_done : block_done;
1734 }
1735 #endif